1/*
2 * Copyright 2012 Tilera Corporation. All Rights Reserved.
3 *
4 *   This program is free software; you can redistribute it and/or
5 *   modify it under the terms of the GNU General Public License
6 *   as published by the Free Software Foundation, version 2.
7 *
8 *   This program is distributed in the hope that it will be useful, but
9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 *   NON INFRINGEMENT.  See the GNU General Public License for
12 *   more details.
13 */
14
15#ifndef _GXIO_MPIPE_H_
16#define _GXIO_MPIPE_H_
17
18/*
19 *
20 * An API for allocating, configuring, and manipulating mPIPE hardware
21 * resources.
22 */
23
24#include <gxio/common.h>
25#include <gxio/dma_queue.h>
26
27#include <linux/time.h>
28
29#include <arch/mpipe_def.h>
30#include <arch/mpipe_shm.h>
31
32#include <hv/drv_mpipe_intf.h>
33#include <hv/iorpc.h>
34
35/*
36 *
37 * The TILE-Gx mPIPE&tm; shim provides Ethernet connectivity, packet
38 * classification, and packet load balancing services.  The
39 * gxio_mpipe_ API, declared in <gxio/mpipe.h>, allows applications to
40 * allocate mPIPE IO channels, configure packet distribution
41 * parameters, and send and receive Ethernet packets.  The API is
42 * designed to be a minimal wrapper around the mPIPE hardware, making
43 * system calls only where necessary to preserve inter-process
44 * protection guarantees.
45 *
46 * The APIs described below allow the programmer to allocate and
47 * configure mPIPE resources.  As described below, the mPIPE is a
48 * single shared hardware device that provides partitionable resources
49 * that are shared between all applications in the system.  The
50 * gxio_mpipe_ API allows userspace code to make resource request
51 * calls to the hypervisor, which in turns keeps track of the
52 * resources in use by all applications, maintains protection
53 * guarantees, and resets resources upon application shutdown.
54 *
55 * We strongly recommend reading the mPIPE section of the IO Device
56 * Guide (UG404) before working with this API.  Most functions in the
57 * gxio_mpipe_ API are directly analogous to hardware interfaces and
58 * the documentation assumes that the reader understands those
59 * hardware interfaces.
60 *
61 * @section mpipe__ingress mPIPE Ingress Hardware Resources
62 *
63 * The mPIPE ingress hardware provides extensive hardware offload for
64 * tasks like packet header parsing, load balancing, and memory
65 * management.  This section provides a brief introduction to the
66 * hardware components and the gxio_mpipe_ calls used to manage them;
67 * see the IO Device Guide for a much more detailed description of the
68 * mPIPE's capabilities.
69 *
70 * When a packet arrives at one of the mPIPE's Ethernet MACs, it is
71 * assigned a channel number indicating which MAC received it.  It
72 * then proceeds through the following hardware pipeline:
73 *
74 * @subsection mpipe__classification Classification
75 *
76 * A set of classification processors run header parsing code on each
77 * incoming packet, extracting information including the destination
78 * MAC address, VLAN, Ethernet type, and five-tuple hash.  Some of
79 * this information is then used to choose which buffer stack will be
80 * used to hold the packet, and which bucket will be used by the load
81 * balancer to determine which application will receive the packet.
82 *
83 * The rules by which the buffer stack and bucket are chosen can be
84 * configured via the @ref gxio_mpipe_classifier API.  A given app can
85 * specify multiple rules, each one specifying a bucket range, and a
86 * set of buffer stacks, to be used for packets matching the rule.
87 * Each rule can optionally specify a restricted set of channels,
88 * VLANs, and/or dMACs, in which it is interested.  By default, a
89 * given rule starts out matching all channels associated with the
90 * mPIPE context's set of open links; all VLANs; and all dMACs.
91 * Subsequent restrictions can then be added.
92 *
93 * @subsection mpipe__load_balancing Load Balancing
94 *
95 * The mPIPE load balancer is responsible for choosing the NotifRing
96 * to which the packet will be delivered.  This decision is based on
97 * the bucket number indicated by the classification program.  In
98 * general, the bucket number is based on some number of low bits of
99 * the packet's flow hash (applications that aren't interested in flow
100 * hashing use a single bucket).  Each load balancer bucket keeps a
101 * record of the NotifRing to which packets directed to that bucket
102 * are currently being delivered.  Based on the bucket's load
103 * balancing mode (@ref gxio_mpipe_bucket_mode_t), the load balancer
104 * either forwards the packet to the previously assigned NotifRing or
105 * decides to choose a new NotifRing.  If a new NotifRing is required,
106 * the load balancer chooses the least loaded ring in the NotifGroup
107 * associated with the bucket.
108 *
109 * The load balancer is a shared resource.  Each application needs to
110 * explicitly allocate NotifRings, NotifGroups, and buckets, using
111 * gxio_mpipe_alloc_notif_rings(), gxio_mpipe_alloc_notif_groups(),
112 * and gxio_mpipe_alloc_buckets().  Then the application needs to
113 * configure them using gxio_mpipe_init_notif_ring() and
114 * gxio_mpipe_init_notif_group_and_buckets().
115 *
116 * @subsection mpipe__buffers Buffer Selection and Packet Delivery
117 *
118 * Once the load balancer has chosen the destination NotifRing, the
119 * mPIPE DMA engine pops at least one buffer off of the 'buffer stack'
120 * chosen by the classification program and DMAs the packet data into
121 * that buffer.  Each buffer stack provides a hardware-accelerated
122 * stack of data buffers with the same size.  If the packet data is
123 * larger than the buffers provided by the chosen buffer stack, the
124 * mPIPE hardware pops off multiple buffers and chains the packet data
125 * through a multi-buffer linked list.  Once the packet data is
126 * delivered to the buffer(s), the mPIPE hardware writes the
127 * ::gxio_mpipe_idesc_t metadata object (calculated by the classifier)
128 * into the NotifRing and increments the number of packets delivered
129 * to that ring.
130 *
131 * Applications can push buffers onto a buffer stack by calling
132 * gxio_mpipe_push_buffer() or by egressing a packet with the
133 * ::gxio_mpipe_edesc_t::hwb bit set, indicating that the egressed
134 * buffers should be returned to the stack.
135 *
136 * Applications can allocate and initialize buffer stacks with the
137 * gxio_mpipe_alloc_buffer_stacks() and gxio_mpipe_init_buffer_stack()
138 * APIs.
139 *
140 * The application must also register the memory pages that will hold
141 * packets.  This requires calling gxio_mpipe_register_page() for each
142 * memory page that will hold packets allocated by the application for
143 * a given buffer stack.  Since each buffer stack is limited to 16
144 * registered pages, it may be necessary to use huge pages, or even
145 * extremely huge pages, to hold all the buffers.
146 *
147 * @subsection mpipe__iqueue NotifRings
148 *
149 * Each NotifRing is a region of shared memory, allocated by the
150 * application, to which the mPIPE delivers packet descriptors
151 * (::gxio_mpipe_idesc_t).  The application can allocate them via
152 * gxio_mpipe_alloc_notif_rings().  The application can then either
153 * explicitly initialize them with gxio_mpipe_init_notif_ring() and
154 * then read from them manually, or can make use of the convenience
155 * wrappers provided by @ref gxio_mpipe_wrappers.
156 *
157 * @section mpipe__egress mPIPE Egress Hardware
158 *
159 * Applications use eDMA rings to queue packets for egress.  The
160 * application can allocate them via gxio_mpipe_alloc_edma_rings().
161 * The application can then either explicitly initialize them with
162 * gxio_mpipe_init_edma_ring() and then write to them manually, or
163 * can make use of the convenience wrappers provided by
164 * @ref gxio_mpipe_wrappers.
165 *
166 * @section gxio__shortcomings Plans for Future API Revisions
167 *
168 * The API defined here is only an initial version of the mPIPE API.
169 * Future plans include:
170 *
171 * - Higher level wrapper functions to provide common initialization
172 * patterns.  This should help users start writing mPIPE programs
173 * without having to learn the details of the hardware.
174 *
175 * - Support for reset and deallocation of resources, including
176 * cleanup upon application shutdown.
177 *
178 * - Support for calling these APIs in the BME.
179 *
180 * - Support for IO interrupts.
181 *
182 * - Clearer definitions of thread safety guarantees.
183 *
184 * @section gxio__mpipe_examples Examples
185 *
186 * See the following mPIPE example programs for more information about
187 * allocating mPIPE resources and using them in real applications:
188 *
189 * - @ref mpipe/ingress/app.c : Receiving packets.
190 *
191 * - @ref mpipe/forward/app.c : Forwarding packets.
192 *
193 * Note that there are several more examples.
194 */
195
196/* Flags that can be passed to resource allocation functions. */
197enum gxio_mpipe_alloc_flags_e {
198	/* Require an allocation to start at a specified resource index. */
199	GXIO_MPIPE_ALLOC_FIXED = HV_MPIPE_ALLOC_FIXED,
200};
201
202/* Flags that can be passed to memory registration functions. */
203enum gxio_mpipe_mem_flags_e {
204	/* Do not fill L3 when writing, and invalidate lines upon egress. */
205	GXIO_MPIPE_MEM_FLAG_NT_HINT = IORPC_MEM_BUFFER_FLAG_NT_HINT,
206
207	/* L3 cache fills should only populate IO cache ways. */
208	GXIO_MPIPE_MEM_FLAG_IO_PIN = IORPC_MEM_BUFFER_FLAG_IO_PIN,
209};
210
211/* An ingress packet descriptor.  When a packet arrives, the mPIPE
212 * hardware generates this structure and writes it into a NotifRing.
213 */
214typedef MPIPE_PDESC_t gxio_mpipe_idesc_t;
215
216/* An egress command descriptor.  Applications write this structure
217 * into eDMA rings and the hardware performs the indicated operation
218 * (normally involving egressing some bytes).  Note that egressing a
219 * single packet may involve multiple egress command descriptors.
220 */
221typedef MPIPE_EDMA_DESC_t gxio_mpipe_edesc_t;
222
223/*
224 * Max # of mpipe instances. 2 currently.
225 */
226#define GXIO_MPIPE_INSTANCE_MAX  HV_MPIPE_INSTANCE_MAX
227
228#define NR_MPIPE_MAX   GXIO_MPIPE_INSTANCE_MAX
229
230/* Get the "va" field from an "idesc".
231 *
232 * This is the address at which the ingress hardware copied the first
233 * byte of the packet.
234 *
235 * If the classifier detected a custom header, then this will point to
236 * the custom header, and gxio_mpipe_idesc_get_l2_start() will point
237 * to the actual L2 header.
238 *
239 * Note that this value may be misleading if "idesc->be" is set.
240 *
241 * @param idesc An ingress packet descriptor.
242 */
243static inline unsigned char *gxio_mpipe_idesc_get_va(gxio_mpipe_idesc_t *idesc)
244{
245	return (unsigned char *)(long)idesc->va;
246}
247
248/* Get the "xfer_size" from an "idesc".
249 *
250 * This is the actual number of packet bytes transferred into memory
251 * by the hardware.
252 *
253 * Note that this value may be misleading if "idesc->be" is set.
254 *
255 * @param idesc An ingress packet descriptor.
256 *
257 * ISSUE: Is this the best name for this?
258 * FIXME: Add more docs about chaining, clipping, etc.
259 */
260static inline unsigned int gxio_mpipe_idesc_get_xfer_size(gxio_mpipe_idesc_t
261							  *idesc)
262{
263	return idesc->l2_size;
264}
265
266/* Get the "l2_offset" from an "idesc".
267 *
268 * Extremely customized classifiers might not support this function.
269 *
270 * This is the number of bytes between the "va" and the L2 header.
271 *
272 * The L2 header consists of a destination mac address, a source mac
273 * address, and an initial ethertype.  Various initial ethertypes
274 * allow encoding extra information in the L2 header, often including
275 * a vlan, and/or a new ethertype.
276 *
277 * Note that the "l2_offset" will be non-zero if (and only if) the
278 * classifier processed a custom header for the packet.
279 *
280 * @param idesc An ingress packet descriptor.
281 */
282static inline uint8_t gxio_mpipe_idesc_get_l2_offset(gxio_mpipe_idesc_t *idesc)
283{
284	return (idesc->custom1 >> 32) & 0xFF;
285}
286
287/* Get the "l2_start" from an "idesc".
288 *
289 * This is simply gxio_mpipe_idesc_get_va() plus
290 * gxio_mpipe_idesc_get_l2_offset().
291 *
292 * @param idesc An ingress packet descriptor.
293 */
294static inline unsigned char *gxio_mpipe_idesc_get_l2_start(gxio_mpipe_idesc_t
295							   *idesc)
296{
297	unsigned char *va = gxio_mpipe_idesc_get_va(idesc);
298	return va + gxio_mpipe_idesc_get_l2_offset(idesc);
299}
300
301/* Get the "l2_length" from an "idesc".
302 *
303 * This is simply gxio_mpipe_idesc_get_xfer_size() minus
304 * gxio_mpipe_idesc_get_l2_offset().
305 *
306 * @param idesc An ingress packet descriptor.
307 */
308static inline unsigned int gxio_mpipe_idesc_get_l2_length(gxio_mpipe_idesc_t
309							  *idesc)
310{
311	unsigned int xfer_size = idesc->l2_size;
312	return xfer_size - gxio_mpipe_idesc_get_l2_offset(idesc);
313}
314
315/* A context object used to manage mPIPE hardware resources. */
316typedef struct {
317
318	/* File descriptor for calling up to Linux (and thus the HV). */
319	int fd;
320
321	/* Corresponding mpipe instance #. */
322	int instance;
323
324	/* The VA at which configuration registers are mapped. */
325	char *mmio_cfg_base;
326
327	/* The VA at which IDMA, EDMA, and buffer manager are mapped. */
328	char *mmio_fast_base;
329
330	/* The "initialized" buffer stacks. */
331	gxio_mpipe_rules_stacks_t __stacks;
332
333} gxio_mpipe_context_t;
334
335/* This is only used internally, but it's most easily made visible here. */
336typedef gxio_mpipe_context_t gxio_mpipe_info_context_t;
337
338/* Initialize an mPIPE context.
339 *
340 * This function allocates an mPIPE "service domain" and maps the MMIO
341 * registers into the caller's VA space.
342 *
343 * @param context Context object to be initialized.
344 * @param mpipe_instance Instance number of mPIPE shim to be controlled via
345 *  context.
346 */
347extern int gxio_mpipe_init(gxio_mpipe_context_t *context,
348			   unsigned int mpipe_instance);
349
350/* Destroy an mPIPE context.
351 *
352 * This function frees the mPIPE "service domain" and unmaps the MMIO
353 * registers from the caller's VA space.
354 *
355 * If a user process exits without calling this routine, the kernel
356 * will destroy the mPIPE context as part of process teardown.
357 *
358 * @param context Context object to be destroyed.
359 */
360extern int gxio_mpipe_destroy(gxio_mpipe_context_t *context);
361
362/*****************************************************************
363 *                         Buffer Stacks                          *
364 ******************************************************************/
365
366/* Allocate a set of buffer stacks.
367 *
368 * The return value is NOT interesting if count is zero.
369 *
370 * @param context An initialized mPIPE context.
371 * @param count Number of stacks required.
372 * @param first Index of first stack if ::GXIO_MPIPE_ALLOC_FIXED flag is set,
373 *   otherwise ignored.
374 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
375 * @return Index of first allocated buffer stack, or
376 * ::GXIO_MPIPE_ERR_NO_BUFFER_STACK if allocation failed.
377 */
378extern int gxio_mpipe_alloc_buffer_stacks(gxio_mpipe_context_t *context,
379					  unsigned int count,
380					  unsigned int first,
381					  unsigned int flags);
382
383/* Enum codes for buffer sizes supported by mPIPE. */
384typedef enum {
385	/* 128 byte packet data buffer. */
386	GXIO_MPIPE_BUFFER_SIZE_128 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_128,
387	/* 256 byte packet data buffer. */
388	GXIO_MPIPE_BUFFER_SIZE_256 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_256,
389	/* 512 byte packet data buffer. */
390	GXIO_MPIPE_BUFFER_SIZE_512 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_512,
391	/* 1024 byte packet data buffer. */
392	GXIO_MPIPE_BUFFER_SIZE_1024 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1024,
393	/* 1664 byte packet data buffer. */
394	GXIO_MPIPE_BUFFER_SIZE_1664 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1664,
395	/* 4096 byte packet data buffer. */
396	GXIO_MPIPE_BUFFER_SIZE_4096 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_4096,
397	/* 10368 byte packet data buffer. */
398	GXIO_MPIPE_BUFFER_SIZE_10368 =
399		MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_10368,
400	/* 16384 byte packet data buffer. */
401	GXIO_MPIPE_BUFFER_SIZE_16384 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_16384
402} gxio_mpipe_buffer_size_enum_t;
403
404/* Convert a buffer size in bytes into a buffer size enum. */
405extern gxio_mpipe_buffer_size_enum_t
406gxio_mpipe_buffer_size_to_buffer_size_enum(size_t size);
407
408/* Convert a buffer size enum into a buffer size in bytes. */
409extern size_t
410gxio_mpipe_buffer_size_enum_to_buffer_size(gxio_mpipe_buffer_size_enum_t
411					   buffer_size_enum);
412
413/* Calculate the number of bytes required to store a given number of
414 * buffers in the memory registered with a buffer stack via
415 * gxio_mpipe_init_buffer_stack().
416 */
417extern size_t gxio_mpipe_calc_buffer_stack_bytes(unsigned long buffers);
418
419/* Initialize a buffer stack.  This function binds a region of memory
420 * to be used by the hardware for storing buffer addresses pushed via
421 * gxio_mpipe_push_buffer() or as the result of sending a buffer out
422 * the egress with the 'push to stack when done' bit set.  Once this
423 * function returns, the memory region's contents may be arbitrarily
424 * modified by the hardware at any time and software should not access
425 * the memory region again.
426 *
427 * @param context An initialized mPIPE context.
428 * @param stack The buffer stack index.
429 * @param buffer_size_enum The size of each buffer in the buffer stack,
430 * as an enum.
431 * @param mem The address of the buffer stack.  This memory must be
432 * physically contiguous and aligned to a 64kB boundary.
433 * @param mem_size The size of the buffer stack, in bytes.
434 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
435 * @return Zero on success, ::GXIO_MPIPE_ERR_INVAL_BUFFER_SIZE if
436 * buffer_size_enum is invalid, ::GXIO_MPIPE_ERR_BAD_BUFFER_STACK if
437 * stack has not been allocated.
438 */
439extern int gxio_mpipe_init_buffer_stack(gxio_mpipe_context_t *context,
440					unsigned int stack,
441					gxio_mpipe_buffer_size_enum_t
442					buffer_size_enum, void *mem,
443					size_t mem_size,
444					unsigned int mem_flags);
445
446/* Push a buffer onto a previously initialized buffer stack.
447 *
448 * The size of the buffer being pushed must match the size that was
449 * registered with gxio_mpipe_init_buffer_stack().  All packet buffer
450 * addresses are 128-byte aligned; the low 7 bits of the specified
451 * buffer address will be ignored.
452 *
453 * @param context An initialized mPIPE context.
454 * @param stack The buffer stack index.
455 * @param buffer The buffer (the low seven bits are ignored).
456 */
457static inline void gxio_mpipe_push_buffer(gxio_mpipe_context_t *context,
458					  unsigned int stack, void *buffer)
459{
460	MPIPE_BSM_REGION_ADDR_t offset = { {0} };
461	MPIPE_BSM_REGION_VAL_t val = { {0} };
462
463	/*
464	 * The mmio_fast_base region starts at the IDMA region, so subtract
465	 * off that initial offset.
466	 */
467	offset.region =
468		MPIPE_MMIO_ADDR__REGION_VAL_BSM -
469		MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
470	offset.stack = stack;
471
472#if __SIZEOF_POINTER__ == 4
473	val.va = ((ulong) buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT;
474#else
475	val.va = ((long)buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT;
476#endif
477
478	__gxio_mmio_write(context->mmio_fast_base + offset.word, val.word);
479}
480
481/* Pop a buffer off of a previously initialized buffer stack.
482 *
483 * @param context An initialized mPIPE context.
484 * @param stack The buffer stack index.
485 * @return The buffer, or NULL if the stack is empty.
486 */
487static inline void *gxio_mpipe_pop_buffer(gxio_mpipe_context_t *context,
488					  unsigned int stack)
489{
490	MPIPE_BSM_REGION_ADDR_t offset = { {0} };
491
492	/*
493	 * The mmio_fast_base region starts at the IDMA region, so subtract
494	 * off that initial offset.
495	 */
496	offset.region =
497		MPIPE_MMIO_ADDR__REGION_VAL_BSM -
498		MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
499	offset.stack = stack;
500
501	while (1) {
502		/*
503		 * Case 1: val.c == ..._UNCHAINED, va is non-zero.
504		 * Case 2: val.c == ..._INVALID, va is zero.
505		 * Case 3: val.c == ..._NOT_RDY, va is zero.
506		 */
507		MPIPE_BSM_REGION_VAL_t val;
508		val.word =
509			__gxio_mmio_read(context->mmio_fast_base +
510					 offset.word);
511
512		/*
513		 * Handle case 1 and 2 by returning the buffer (or NULL).
514		 * Handle case 3 by waiting for the prefetch buffer to refill.
515		 */
516		if (val.c != MPIPE_EDMA_DESC_WORD1__C_VAL_NOT_RDY)
517			return (void *)((unsigned long)val.
518					va << MPIPE_BSM_REGION_VAL__VA_SHIFT);
519	}
520}
521
522/*****************************************************************
523 *                          NotifRings                            *
524 ******************************************************************/
525
526/* Allocate a set of NotifRings.
527 *
528 * The return value is NOT interesting if count is zero.
529 *
530 * Note that NotifRings are allocated in chunks, so allocating one at
531 * a time is much less efficient than allocating several at once.
532 *
533 * @param context An initialized mPIPE context.
534 * @param count Number of NotifRings required.
535 * @param first Index of first NotifRing if ::GXIO_MPIPE_ALLOC_FIXED flag
536 *   is set, otherwise ignored.
537 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
538 * @return Index of first allocated buffer NotifRing, or
539 * ::GXIO_MPIPE_ERR_NO_NOTIF_RING if allocation failed.
540 */
541extern int gxio_mpipe_alloc_notif_rings(gxio_mpipe_context_t *context,
542					unsigned int count, unsigned int first,
543					unsigned int flags);
544
545/* Initialize a NotifRing, using the given memory and size.
546 *
547 * @param context An initialized mPIPE context.
548 * @param ring The NotifRing index.
549 * @param mem A physically contiguous region of memory to be filled
550 * with a ring of ::gxio_mpipe_idesc_t structures.
551 * @param mem_size Number of bytes in the ring.  Must be 128, 512,
552 * 2048, or 65536 * sizeof(gxio_mpipe_idesc_t).
553 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
554 *
555 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_NOTIF_RING or
556 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
557 */
558extern int gxio_mpipe_init_notif_ring(gxio_mpipe_context_t *context,
559				      unsigned int ring,
560				      void *mem, size_t mem_size,
561				      unsigned int mem_flags);
562
563/* Configure an interrupt to be sent to a tile on incoming NotifRing
564 *  traffic.  Once an interrupt is sent for a particular ring, no more
565 *  will be sent until gxio_mica_enable_notif_ring_interrupt() is called.
566 *
567 * @param context An initialized mPIPE context.
568 * @param x X coordinate of interrupt target tile.
569 * @param y Y coordinate of interrupt target tile.
570 * @param i Index of the IPI register which will receive the interrupt.
571 * @param e Specific event which will be set in the target IPI register when
572 * the interrupt occurs.
573 * @param ring The NotifRing index.
574 * @return Zero on success, GXIO_ERR_INVAL if params are out of range.
575 */
576extern int gxio_mpipe_request_notif_ring_interrupt(gxio_mpipe_context_t
577						   *context, int x, int y,
578						   int i, int e,
579						   unsigned int ring);
580
581/* Enable an interrupt on incoming NotifRing traffic.
582 *
583 * @param context An initialized mPIPE context.
584 * @param ring The NotifRing index.
585 * @return Zero on success, GXIO_ERR_INVAL if params are out of range.
586 */
587extern int gxio_mpipe_enable_notif_ring_interrupt(gxio_mpipe_context_t
588						  *context, unsigned int ring);
589
590/* Map all of a client's memory via the given IOTLB.
591 * @param context An initialized mPIPE context.
592 * @param iotlb IOTLB index.
593 * @param pte Page table entry.
594 * @param flags Flags.
595 * @return Zero on success, or a negative error code.
596 */
597extern int gxio_mpipe_register_client_memory(gxio_mpipe_context_t *context,
598					     unsigned int iotlb, HV_PTE pte,
599					     unsigned int flags);
600
601/*****************************************************************
602 *                        Notif Groups                            *
603 ******************************************************************/
604
605/* Allocate a set of NotifGroups.
606 *
607 * The return value is NOT interesting if count is zero.
608 *
609 * @param context An initialized mPIPE context.
610 * @param count Number of NotifGroups required.
611 * @param first Index of first NotifGroup if ::GXIO_MPIPE_ALLOC_FIXED flag
612 *   is set, otherwise ignored.
613 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
614 * @return Index of first allocated buffer NotifGroup, or
615 * ::GXIO_MPIPE_ERR_NO_NOTIF_GROUP if allocation failed.
616 */
617extern int gxio_mpipe_alloc_notif_groups(gxio_mpipe_context_t *context,
618					 unsigned int count,
619					 unsigned int first,
620					 unsigned int flags);
621
622/* Add a NotifRing to a NotifGroup.  This only sets a bit in the
623 * application's 'group' object; the hardware NotifGroup can be
624 * initialized by passing 'group' to gxio_mpipe_init_notif_group() or
625 * gxio_mpipe_init_notif_group_and_buckets().
626 */
627static inline void
628gxio_mpipe_notif_group_add_ring(gxio_mpipe_notif_group_bits_t *bits, int ring)
629{
630	bits->ring_mask[ring / 64] |= (1ull << (ring % 64));
631}
632
633/* Set a particular NotifGroup bitmask.  Since the load balancer
634 * makes decisions based on both bucket and NotifGroup state, most
635 * applications should use gxio_mpipe_init_notif_group_and_buckets()
636 * rather than using this function to configure just a NotifGroup.
637 */
638extern int gxio_mpipe_init_notif_group(gxio_mpipe_context_t *context,
639				       unsigned int group,
640				       gxio_mpipe_notif_group_bits_t bits);
641
642/*****************************************************************
643 *                         Load Balancer                          *
644 ******************************************************************/
645
646/* Allocate a set of load balancer buckets.
647 *
648 * The return value is NOT interesting if count is zero.
649 *
650 * Note that buckets are allocated in chunks, so allocating one at
651 * a time is much less efficient than allocating several at once.
652 *
653 * Note that the buckets are actually divided into two sub-ranges, of
654 * different sizes, and different chunk sizes, and the range you get
655 * by default is determined by the size of the request.  Allocations
656 * cannot span the two sub-ranges.
657 *
658 * @param context An initialized mPIPE context.
659 * @param count Number of buckets required.
660 * @param first Index of first bucket if ::GXIO_MPIPE_ALLOC_FIXED flag is set,
661 *   otherwise ignored.
662 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
663 * @return Index of first allocated buffer bucket, or
664 * ::GXIO_MPIPE_ERR_NO_BUCKET if allocation failed.
665 */
666extern int gxio_mpipe_alloc_buckets(gxio_mpipe_context_t *context,
667				    unsigned int count, unsigned int first,
668				    unsigned int flags);
669
670/* The legal modes for gxio_mpipe_bucket_info_t and
671 * gxio_mpipe_init_notif_group_and_buckets().
672 *
673 * All modes except ::GXIO_MPIPE_BUCKET_ROUND_ROBIN expect that the user
674 * will allocate a power-of-two number of buckets and initialize them
675 * to the same mode.  The classifier program then uses the appropriate
676 * number of low bits from the incoming packet's flow hash to choose a
677 * load balancer bucket.  Based on that bucket's load balancing mode,
678 * reference count, and currently active NotifRing, the load balancer
679 * chooses the NotifRing to which the packet will be delivered.
680 */
681typedef enum {
682	/* All packets for a bucket go to the same NotifRing unless the
683	 * NotifRing gets full, in which case packets will be dropped.  If
684	 * the bucket reference count ever reaches zero, a new NotifRing may
685	 * be chosen.
686	 */
687	GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY =
688		MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_DFA,
689
690	/* All packets for a bucket always go to the same NotifRing.
691	 */
692	GXIO_MPIPE_BUCKET_STATIC_FLOW_AFFINITY =
693		MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_FIXED,
694
695	/* All packets for a bucket go to the least full NotifRing in the
696	 * group, providing load balancing round robin behavior.
697	 */
698	GXIO_MPIPE_BUCKET_ROUND_ROBIN =
699		MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_ALWAYS_PICK,
700
701	/* All packets for a bucket go to the same NotifRing unless the
702	 * NotifRing gets full, at which point the bucket starts using the
703	 * least full NotifRing in the group.  If all NotifRings in the
704	 * group are full, packets will be dropped.
705	 */
706	GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY =
707		MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY,
708
709	/* All packets for a bucket go to the same NotifRing unless the
710	 * NotifRing gets full, or a random timer fires, at which point the
711	 * bucket starts using the least full NotifRing in the group.  If
712	 * all NotifRings in the group are full, packets will be dropped.
713	 * WARNING: This mode is BROKEN on chips with fewer than 64 tiles.
714	 */
715	GXIO_MPIPE_BUCKET_PREFER_FLOW_LOCALITY =
716		MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY_RAND,
717
718} gxio_mpipe_bucket_mode_t;
719
720/* Copy a set of bucket initialization values into the mPIPE
721 * hardware.  Since the load balancer makes decisions based on both
722 * bucket and NotifGroup state, most applications should use
723 * gxio_mpipe_init_notif_group_and_buckets() rather than using this
724 * function to configure a single bucket.
725 *
726 * @param context An initialized mPIPE context.
727 * @param bucket Bucket index to be initialized.
728 * @param bucket_info Initial reference count, NotifRing index, and mode.
729 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET on failure.
730 */
731extern int gxio_mpipe_init_bucket(gxio_mpipe_context_t *context,
732				  unsigned int bucket,
733				  gxio_mpipe_bucket_info_t bucket_info);
734
735/* Initializes a group and range of buckets and range of rings such
736 * that the load balancer runs a particular load balancing function.
737 *
738 * First, the group is initialized with the given rings.
739 *
740 * Second, each bucket is initialized with the mode and group, and a
741 * ring chosen round-robin from the given rings.
742 *
743 * Normally, the classifier picks a bucket, and then the load balancer
744 * picks a ring, based on the bucket's mode, group, and current ring,
745 * possibly updating the bucket's ring.
746 *
747 * @param context An initialized mPIPE context.
748 * @param group The group.
749 * @param ring The first ring.
750 * @param num_rings The number of rings.
751 * @param bucket The first bucket.
752 * @param num_buckets The number of buckets.
753 * @param mode The load balancing mode.
754 *
755 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET,
756 * ::GXIO_MPIPE_ERR_BAD_NOTIF_GROUP, or
757 * ::GXIO_MPIPE_ERR_BAD_NOTIF_RING on failure.
758 */
759extern int gxio_mpipe_init_notif_group_and_buckets(gxio_mpipe_context_t
760						   *context,
761						   unsigned int group,
762						   unsigned int ring,
763						   unsigned int num_rings,
764						   unsigned int bucket,
765						   unsigned int num_buckets,
766						   gxio_mpipe_bucket_mode_t
767						   mode);
768
769/* Return credits to a NotifRing and/or bucket.
770 *
771 * @param context An initialized mPIPE context.
772 * @param ring The NotifRing index, or -1.
773 * @param bucket The bucket, or -1.
774 * @param count The number of credits to return.
775 */
776static inline void gxio_mpipe_credit(gxio_mpipe_context_t *context,
777				     int ring, int bucket, unsigned int count)
778{
779	/* NOTE: Fancy struct initialization would break "C89" header test. */
780
781	MPIPE_IDMA_RELEASE_REGION_ADDR_t offset = { {0} };
782	MPIPE_IDMA_RELEASE_REGION_VAL_t val = { {0} };
783
784	/*
785	 * The mmio_fast_base region starts at the IDMA region, so subtract
786	 * off that initial offset.
787	 */
788	offset.region =
789		MPIPE_MMIO_ADDR__REGION_VAL_IDMA -
790		MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
791	offset.ring = ring;
792	offset.bucket = bucket;
793	offset.ring_enable = (ring >= 0);
794	offset.bucket_enable = (bucket >= 0);
795	val.count = count;
796
797	__gxio_mmio_write(context->mmio_fast_base + offset.word, val.word);
798}
799
800/*****************************************************************
801 *                         Egress Rings                           *
802 ******************************************************************/
803
804/* Allocate a set of eDMA rings.
805 *
806 * The return value is NOT interesting if count is zero.
807 *
808 * @param context An initialized mPIPE context.
809 * @param count Number of eDMA rings required.
810 * @param first Index of first eDMA ring if ::GXIO_MPIPE_ALLOC_FIXED flag
811 *   is set, otherwise ignored.
812 * @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
813 * @return Index of first allocated buffer eDMA ring, or
814 * ::GXIO_MPIPE_ERR_NO_EDMA_RING if allocation failed.
815 */
816extern int gxio_mpipe_alloc_edma_rings(gxio_mpipe_context_t *context,
817				       unsigned int count, unsigned int first,
818				       unsigned int flags);
819
820/* Initialize an eDMA ring, using the given memory and size.
821 *
822 * @param context An initialized mPIPE context.
823 * @param ering The eDMA ring index.
824 * @param channel The channel to use.  This must be one of the channels
825 * associated with the context's set of open links.
826 * @param mem A physically contiguous region of memory to be filled
827 * with a ring of ::gxio_mpipe_edesc_t structures.
828 * @param mem_size Number of bytes in the ring.  Must be 512, 2048,
829 * 8192 or 65536, times 16 (i.e. sizeof(gxio_mpipe_edesc_t)).
830 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
831 *
832 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_EDMA_RING or
833 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
834 */
835extern int gxio_mpipe_init_edma_ring(gxio_mpipe_context_t *context,
836				     unsigned int ering, unsigned int channel,
837				     void *mem, size_t mem_size,
838				     unsigned int mem_flags);
839
840/* Set the "max_blks", "min_snf_blks", and "db" fields of
841 * ::MPIPE_EDMA_RG_INIT_DAT_THRESH_t for a given edma ring.
842 *
843 * The global pool of dynamic blocks will be automatically adjusted.
844 *
845 * This function should not be called after any egress has been done
846 * on the edma ring.
847 *
848 * Most applications should just use gxio_mpipe_equeue_set_snf_size().
849 *
850 * @param context An initialized mPIPE context.
851 * @param ering The eDMA ring index.
852 * @param max_blks The number of blocks to dedicate to the ring
853 * (normally min_snf_blks + 1).  Must be greater than min_snf_blocks.
854 * @param min_snf_blks The number of blocks which must be stored
855 * prior to starting to send the packet (normally 12).
856 * @param db Whether to allow use of dynamic blocks by the ring
857 * (normally 1).
858 *
859 * @return 0 on success, negative on error.
860 */
861extern int gxio_mpipe_config_edma_ring_blks(gxio_mpipe_context_t *context,
862					    unsigned int ering,
863					    unsigned int max_blks,
864					    unsigned int min_snf_blks,
865					    unsigned int db);
866
867/*****************************************************************
868 *                      Classifier Program                        *
869 ******************************************************************/
870
871/*
872 *
873 * Functions for loading or configuring the mPIPE classifier program.
874 *
875 * The mPIPE classification processors all run a special "classifier"
876 * program which, for each incoming packet, parses the packet headers,
877 * encodes some packet metadata in the "idesc", and either drops the
878 * packet, or picks a notif ring to handle the packet, and a buffer
879 * stack to contain the packet, usually based on the channel, VLAN,
880 * dMAC, flow hash, and packet size, under the guidance of the "rules"
881 * API described below.
882 *
883 * @section gxio_mpipe_classifier_default Default Classifier
884 *
885 * The MDE provides a simple "default" classifier program.  It is
886 * shipped as source in "$TILERA_ROOT/src/sys/mpipe/classifier.c",
887 * which serves as its official documentation.  It is shipped as a
888 * binary program in "$TILERA_ROOT/tile/boot/classifier", which is
889 * automatically included in bootroms created by "tile-monitor", and
890 * is automatically loaded by the hypervisor at boot time.
891 *
892 * The L2 analysis handles LLC packets, SNAP packets, and "VLAN
893 * wrappers" (keeping the outer VLAN).
894 *
895 * The L3 analysis handles IPv4 and IPv6, dropping packets with bad
896 * IPv4 header checksums, requesting computation of a TCP/UDP checksum
897 * if appropriate, and hashing the dest and src IP addresses, plus the
898 * ports for TCP/UDP packets, into the flow hash.  No special analysis
899 * is done for "fragmented" packets or "tunneling" protocols.  Thus,
900 * the first fragment of a fragmented TCP/UDP packet is hashed using
901 * src/dest IP address and ports and all subsequent fragments are only
902 * hashed according to src/dest IP address.
903 *
904 * The L3 analysis handles other packets too, hashing the dMAC
905 * smac into a flow hash.
906 *
907 * The channel, VLAN, and dMAC used to pick a "rule" (see the
908 * "rules" APIs below), which in turn is used to pick a buffer stack
909 * (based on the packet size) and a bucket (based on the flow hash).
910 *
911 * To receive traffic matching a particular (channel/VLAN/dMAC
912 * pattern, an application should allocate its own buffer stacks and
913 * load balancer buckets, and map traffic to those stacks and buckets,
914 * as decribed by the "rules" API below.
915 *
916 * Various packet metadata is encoded in the idesc.  The flow hash is
917 * four bytes at 0x0C.  The VLAN is two bytes at 0x10.  The ethtype is
918 * two bytes at 0x12.  The l3 start is one byte at 0x14.  The l4 start
919 * is one byte at 0x15 for IPv4 and IPv6 packets, and otherwise zero.
920 * The protocol is one byte at 0x16 for IPv4 and IPv6 packets, and
921 * otherwise zero.
922 *
923 * @section gxio_mpipe_classifier_custom Custom Classifiers.
924 *
925 * A custom classifier may be created using "tile-mpipe-cc" with a
926 * customized version of the default classifier sources.
927 *
928 * The custom classifier may be included in bootroms using the
929 * "--classifier" option to "tile-monitor", or loaded dynamically
930 * using gxio_mpipe_classifier_load_from_file().
931 *
932 * Be aware that "extreme" customizations may break the assumptions of
933 * the "rules" APIs described below, but simple customizations, such
934 * as adding new packet metadata, should be fine.
935 */
936
937/* A set of classifier rules, plus a context. */
938typedef struct {
939
940	/* The context. */
941	gxio_mpipe_context_t *context;
942
943	/* The actual rules. */
944	gxio_mpipe_rules_list_t list;
945
946} gxio_mpipe_rules_t;
947
948/* Initialize a classifier program rules list.
949 *
950 * This function can be called on a previously initialized rules list
951 * to discard any previously added rules.
952 *
953 * @param rules Rules list to initialize.
954 * @param context An initialized mPIPE context.
955 */
956extern void gxio_mpipe_rules_init(gxio_mpipe_rules_t *rules,
957				  gxio_mpipe_context_t *context);
958
959/* Begin a new rule on the indicated rules list.
960 *
961 * Note that an empty rule matches all packets, but an empty rule list
962 * matches no packets.
963 *
964 * @param rules Rules list to which new rule is appended.
965 * @param bucket First load balancer bucket to which packets will be
966 * delivered.
967 * @param num_buckets Number of buckets (must be a power of two) across
968 * which packets will be distributed based on the "flow hash".
969 * @param stacks Either NULL, to assign each packet to the smallest
970 * initialized buffer stack which does not induce chaining (and to
971 * drop packets which exceed the largest initialized buffer stack
972 * buffer size), or an array, with each entry indicating which buffer
973 * stack should be used for packets up to that size (with 255
974 * indicating that those packets should be dropped).
975 * @return 0 on success, or a negative error code on failure.
976 */
977extern int gxio_mpipe_rules_begin(gxio_mpipe_rules_t *rules,
978				  unsigned int bucket,
979				  unsigned int num_buckets,
980				  gxio_mpipe_rules_stacks_t *stacks);
981
982/* Set the headroom of the current rule.
983 *
984 * @param rules Rules list whose current rule will be modified.
985 * @param headroom The headroom.
986 * @return 0 on success, or a negative error code on failure.
987 */
988extern int gxio_mpipe_rules_set_headroom(gxio_mpipe_rules_t *rules,
989					 uint8_t headroom);
990
991/* Indicate that packets from a particular channel can be delivered
992 * to the buckets and buffer stacks associated with the current rule.
993 *
994 * Channels added must be associated with links opened by the mPIPE context
995 * used in gxio_mpipe_rules_init().  A rule with no channels is equivalent
996 * to a rule naming all such associated channels.
997 *
998 * @param rules Rules list whose current rule will be modified.
999 * @param channel The channel to add.
1000 * @return 0 on success, or a negative error code on failure.
1001 */
1002extern int gxio_mpipe_rules_add_channel(gxio_mpipe_rules_t *rules,
1003					unsigned int channel);
1004
1005/* Commit rules.
1006 *
1007 * The rules are sent to the hypervisor, where they are combined with
1008 * the rules from other apps, and used to program the hardware classifier.
1009 *
1010 * Note that if this function returns an error, then the rules will NOT
1011 * have been committed, even if the error is due to interactions with
1012 * rules from another app.
1013 *
1014 * @param rules Rules list to commit.
1015 * @return 0 on success, or a negative error code on failure.
1016 */
1017extern int gxio_mpipe_rules_commit(gxio_mpipe_rules_t *rules);
1018
1019/*****************************************************************
1020 *                     Ingress Queue Wrapper                      *
1021 ******************************************************************/
1022
1023/*
1024 *
1025 * Convenience functions for receiving packets from a NotifRing and
1026 * sending packets via an eDMA ring.
1027 *
1028 * The mpipe ingress and egress hardware uses shared memory packet
1029 * descriptors to describe packets that have arrived on ingress or
1030 * are destined for egress.  These descriptors are stored in shared
1031 * memory ring buffers and written or read by hardware as necessary.
1032 * The gxio library provides wrapper functions that manage the head and
1033 * tail pointers for these rings, allowing the user to easily read or
1034 * write packet descriptors.
1035 *
1036 * The initialization interface for ingress and egress rings is quite
1037 * similar.  For example, to create an ingress queue, the user passes
1038 * a ::gxio_mpipe_iqueue_t state object, a ring number from
1039 * gxio_mpipe_alloc_notif_rings(), and the address of memory to hold a
1040 * ring buffer to the gxio_mpipe_iqueue_init() function.  The function
1041 * returns success when the state object has been initialized and the
1042 * hardware configured to deliver packets to the specified ring
1043 * buffer.  Similarly, gxio_mpipe_equeue_init() takes a
1044 * ::gxio_mpipe_equeue_t state object, a ring number from
1045 * gxio_mpipe_alloc_edma_rings(), and a shared memory buffer.
1046 *
1047 * @section gxio_mpipe_iqueue Working with Ingress Queues
1048 *
1049 * Once initialized, the gxio_mpipe_iqueue_t API provides two flows
1050 * for getting the ::gxio_mpipe_idesc_t packet descriptor associated
1051 * with incoming packets.  The simplest is to call
1052 * gxio_mpipe_iqueue_get() or gxio_mpipe_iqueue_try_get().  These
1053 * functions copy the oldest packet descriptor out of the NotifRing and
1054 * into a descriptor provided by the caller.  They also immediately
1055 * inform the hardware that a descriptor has been processed.
1056 *
1057 * For applications with stringent performance requirements, higher
1058 * efficiency can be achieved by avoiding the packet descriptor copy
1059 * and processing multiple descriptors at once.  The
1060 * gxio_mpipe_iqueue_peek() and gxio_mpipe_iqueue_try_peek() functions
1061 * allow such optimizations.  These functions provide a pointer to the
1062 * next valid ingress descriptor in the NotifRing's shared memory ring
1063 * buffer, and a count of how many contiguous descriptors are ready to
1064 * be processed.  The application can then process any number of those
1065 * descriptors in place, calling gxio_mpipe_iqueue_consume() to inform
1066 * the hardware after each one has been processed.
1067 *
1068 * @section gxio_mpipe_equeue Working with Egress Queues
1069 *
1070 * Similarly, the egress queue API provides a high-performance
1071 * interface plus a simple wrapper for use in posting
1072 * ::gxio_mpipe_edesc_t egress packet descriptors.  The simple
1073 * version, gxio_mpipe_equeue_put(), allows the programmer to wait for
1074 * an eDMA ring slot to become available and write a single descriptor
1075 * into the ring.
1076 *
1077 * Alternatively, you can reserve slots in the eDMA ring using
1078 * gxio_mpipe_equeue_reserve() or gxio_mpipe_equeue_try_reserve(), and
1079 * then fill in each slot using gxio_mpipe_equeue_put_at().  This
1080 * capability can be used to amortize the cost of reserving slots
1081 * across several packets.  It also allows gather operations to be
1082 * performed on a shared equeue, by ensuring that the edescs for all
1083 * the fragments are all contiguous in the eDMA ring.
1084 *
1085 * The gxio_mpipe_equeue_reserve() and gxio_mpipe_equeue_try_reserve()
1086 * functions return a 63-bit "completion slot", which is actually a
1087 * sequence number, the low bits of which indicate the ring buffer
1088 * index and the high bits the number of times the application has
1089 * gone around the egress ring buffer.  The extra bits allow an
1090 * application to check for egress completion by calling
1091 * gxio_mpipe_equeue_is_complete() to see whether a particular 'slot'
1092 * number has finished.  Given the maximum packet rates of the Gx
1093 * processor, the 63-bit slot number will never wrap.
1094 *
1095 * In practice, most applications use the ::gxio_mpipe_edesc_t::hwb
1096 * bit to indicate that the buffers containing egress packet data
1097 * should be pushed onto a buffer stack when egress is complete.  Such
1098 * applications generally do not need to know when an egress operation
1099 * completes (since there is no need to free a buffer post-egress),
1100 * and thus can use the optimized gxio_mpipe_equeue_reserve_fast() or
1101 * gxio_mpipe_equeue_try_reserve_fast() functions, which return a 24
1102 * bit "slot", instead of a 63-bit "completion slot".
1103 *
1104 * Once a slot has been "reserved", it MUST be filled.  If the
1105 * application reserves a slot and then decides that it does not
1106 * actually need it, it can set the ::gxio_mpipe_edesc_t::ns (no send)
1107 * bit on the descriptor passed to gxio_mpipe_equeue_put_at() to
1108 * indicate that no data should be sent.  This technique can also be
1109 * used to drop an incoming packet, instead of forwarding it, since
1110 * any buffer will still be pushed onto the buffer stack when the
1111 * egress descriptor is processed.
1112 */
1113
1114/* A convenient interface to a NotifRing, for use by a single thread.
1115 */
1116typedef struct {
1117
1118	/* The context. */
1119	gxio_mpipe_context_t *context;
1120
1121	/* The actual NotifRing. */
1122	gxio_mpipe_idesc_t *idescs;
1123
1124	/* The number of entries. */
1125	unsigned long num_entries;
1126
1127	/* The number of entries minus one. */
1128	unsigned long mask_num_entries;
1129
1130	/* The log2() of the number of entries. */
1131	unsigned long log2_num_entries;
1132
1133	/* The next entry. */
1134	unsigned int head;
1135
1136	/* The NotifRing id. */
1137	unsigned int ring;
1138
1139#ifdef __BIG_ENDIAN__
1140	/* The number of byteswapped entries. */
1141	unsigned int swapped;
1142#endif
1143
1144} gxio_mpipe_iqueue_t;
1145
1146/* Initialize an "iqueue".
1147 *
1148 * Takes the iqueue plus the same args as gxio_mpipe_init_notif_ring().
1149 */
1150extern int gxio_mpipe_iqueue_init(gxio_mpipe_iqueue_t *iqueue,
1151				  gxio_mpipe_context_t *context,
1152				  unsigned int ring,
1153				  void *mem, size_t mem_size,
1154				  unsigned int mem_flags);
1155
1156/* Advance over some old entries in an iqueue.
1157 *
1158 * Please see the documentation for gxio_mpipe_iqueue_consume().
1159 *
1160 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1161 * @param count The number of entries to advance over.
1162 */
1163static inline void gxio_mpipe_iqueue_advance(gxio_mpipe_iqueue_t *iqueue,
1164					     int count)
1165{
1166	/* Advance with proper wrap. */
1167	int head = iqueue->head + count;
1168	iqueue->head =
1169		(head & iqueue->mask_num_entries) +
1170		(head >> iqueue->log2_num_entries);
1171
1172#ifdef __BIG_ENDIAN__
1173	/* HACK: Track swapped entries. */
1174	iqueue->swapped -= count;
1175#endif
1176}
1177
1178/* Release the ring and bucket for an old entry in an iqueue.
1179 *
1180 * Releasing the ring allows more packets to be delivered to the ring.
1181 *
1182 * Releasing the bucket allows flows using the bucket to be moved to a
1183 * new ring when using GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY.
1184 *
1185 * This function is shorthand for "gxio_mpipe_credit(iqueue->context,
1186 * iqueue->ring, idesc->bucket_id, 1)", and it may be more convenient
1187 * to make that underlying call, using those values, instead of
1188 * tracking the entire "idesc".
1189 *
1190 * If packet processing is deferred, optimal performance requires that
1191 * the releasing be deferred as well.
1192 *
1193 * Please see the documentation for gxio_mpipe_iqueue_consume().
1194 *
1195 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1196 * @param idesc The descriptor which was processed.
1197 */
1198static inline void gxio_mpipe_iqueue_release(gxio_mpipe_iqueue_t *iqueue,
1199					     gxio_mpipe_idesc_t *idesc)
1200{
1201	gxio_mpipe_credit(iqueue->context, iqueue->ring, idesc->bucket_id, 1);
1202}
1203
1204/* Consume a packet from an "iqueue".
1205 *
1206 * After processing packets peeked at via gxio_mpipe_iqueue_peek()
1207 * or gxio_mpipe_iqueue_try_peek(), you must call this function, or
1208 * gxio_mpipe_iqueue_advance() plus gxio_mpipe_iqueue_release(), to
1209 * advance over those entries, and release their rings and buckets.
1210 *
1211 * You may call this function as each packet is processed, or you can
1212 * wait until several packets have been processed.
1213 *
1214 * Note that if you are using a single bucket, and you are handling
1215 * batches of N packets, then you can replace several calls to this
1216 * function with calls to "gxio_mpipe_iqueue_advance(iqueue, N)" and
1217 * "gxio_mpipe_credit(iqueue->context, iqueue->ring, bucket, N)".
1218 *
1219 * Note that if your classifier sets "idesc->nr", then you should
1220 * explicitly call "gxio_mpipe_iqueue_advance(iqueue, idesc)" plus
1221 * "gxio_mpipe_credit(iqueue->context, iqueue->ring, -1, 1)", to
1222 * avoid incorrectly crediting the (unused) bucket.
1223 *
1224 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1225 * @param idesc The descriptor which was processed.
1226 */
1227static inline void gxio_mpipe_iqueue_consume(gxio_mpipe_iqueue_t *iqueue,
1228					     gxio_mpipe_idesc_t *idesc)
1229{
1230	gxio_mpipe_iqueue_advance(iqueue, 1);
1231	gxio_mpipe_iqueue_release(iqueue, idesc);
1232}
1233
1234/* Peek at the next packet(s) in an "iqueue", without waiting.
1235 *
1236 * If no packets are available, fills idesc_ref with NULL, and then
1237 * returns ::GXIO_MPIPE_ERR_IQUEUE_EMPTY.  Otherwise, fills idesc_ref
1238 * with the address of the next valid packet descriptor, and returns
1239 * the maximum number of valid descriptors which can be processed.
1240 * You may process fewer descriptors if desired.
1241 *
1242 * Call gxio_mpipe_iqueue_consume() on each packet once it has been
1243 * processed (or dropped), to allow more packets to be delivered.
1244 *
1245 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1246 * @param idesc_ref A pointer to a packet descriptor pointer.
1247 * @return The (positive) number of packets which can be processed,
1248 * or ::GXIO_MPIPE_ERR_IQUEUE_EMPTY if no packets are available.
1249 */
1250static inline int gxio_mpipe_iqueue_try_peek(gxio_mpipe_iqueue_t *iqueue,
1251					     gxio_mpipe_idesc_t **idesc_ref)
1252{
1253	gxio_mpipe_idesc_t *next;
1254
1255	uint64_t head = iqueue->head;
1256	uint64_t tail = __gxio_mmio_read(iqueue->idescs);
1257
1258	/* Available entries. */
1259	uint64_t avail =
1260		(tail >= head) ? (tail - head) : (iqueue->num_entries - head);
1261
1262	if (avail == 0) {
1263		*idesc_ref = NULL;
1264		return GXIO_MPIPE_ERR_IQUEUE_EMPTY;
1265	}
1266
1267	next = &iqueue->idescs[head];
1268
1269	/* ISSUE: Is this helpful? */
1270	__insn_prefetch(next);
1271
1272#ifdef __BIG_ENDIAN__
1273	/* HACK: Swap new entries directly in memory. */
1274	{
1275		int i, j;
1276		for (i = iqueue->swapped; i < avail; i++) {
1277			for (j = 0; j < 8; j++)
1278				next[i].words[j] =
1279					__builtin_bswap64(next[i].words[j]);
1280		}
1281		iqueue->swapped = avail;
1282	}
1283#endif
1284
1285	*idesc_ref = next;
1286
1287	return avail;
1288}
1289
1290/* Drop a packet by pushing its buffer (if appropriate).
1291 *
1292 * NOTE: The caller must still call gxio_mpipe_iqueue_consume() if idesc
1293 * came from gxio_mpipe_iqueue_try_peek() or gxio_mpipe_iqueue_peek().
1294 *
1295 * @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
1296 * @param idesc A packet descriptor.
1297 */
1298static inline void gxio_mpipe_iqueue_drop(gxio_mpipe_iqueue_t *iqueue,
1299					  gxio_mpipe_idesc_t *idesc)
1300{
1301	/* FIXME: Handle "chaining" properly. */
1302
1303	if (!idesc->be) {
1304		unsigned char *va = gxio_mpipe_idesc_get_va(idesc);
1305		gxio_mpipe_push_buffer(iqueue->context, idesc->stack_idx, va);
1306	}
1307}
1308
1309/*****************************************************************
1310 *                      Egress Queue Wrapper                      *
1311 ******************************************************************/
1312
1313/* A convenient, thread-safe interface to an eDMA ring. */
1314typedef struct {
1315
1316	/* State object for tracking head and tail pointers. */
1317	__gxio_dma_queue_t dma_queue;
1318
1319	/* The ring entries. */
1320	gxio_mpipe_edesc_t *edescs;
1321
1322	/* The number of entries minus one. */
1323	unsigned long mask_num_entries;
1324
1325	/* The log2() of the number of entries. */
1326	unsigned long log2_num_entries;
1327
1328	/* The context. */
1329	gxio_mpipe_context_t *context;
1330
1331	/* The ering. */
1332	unsigned int ering;
1333
1334	/* The channel. */
1335	unsigned int channel;
1336
1337} gxio_mpipe_equeue_t;
1338
1339/* Initialize an "equeue".
1340 *
1341 * This function uses gxio_mpipe_init_edma_ring() to initialize the
1342 * underlying edma_ring using the provided arguments.
1343 *
1344 * @param equeue An egress queue to be initialized.
1345 * @param context An initialized mPIPE context.
1346 * @param ering The eDMA ring index.
1347 * @param channel The channel to use.  This must be one of the channels
1348 * associated with the context's set of open links.
1349 * @param mem A physically contiguous region of memory to be filled
1350 * with a ring of ::gxio_mpipe_edesc_t structures.
1351 * @param mem_size Number of bytes in the ring.  Must be 512, 2048,
1352 * 8192 or 65536, times 16 (i.e. sizeof(gxio_mpipe_edesc_t)).
1353 * @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
1354 *
1355 * @return 0 on success, ::GXIO_MPIPE_ERR_BAD_EDMA_RING or
1356 * ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
1357 */
1358extern int gxio_mpipe_equeue_init(gxio_mpipe_equeue_t *equeue,
1359				  gxio_mpipe_context_t *context,
1360				  unsigned int ering,
1361				  unsigned int channel,
1362				  void *mem, unsigned int mem_size,
1363				  unsigned int mem_flags);
1364
1365/* Reserve completion slots for edescs.
1366 *
1367 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1368 *
1369 * This function is slower than gxio_mpipe_equeue_reserve_fast(), but
1370 * returns a full 64 bit completion slot, which can be used with
1371 * gxio_mpipe_equeue_is_complete().
1372 *
1373 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1374 * @param num Number of slots to reserve (must be non-zero).
1375 * @return The first reserved completion slot, or a negative error code.
1376 */
1377static inline int64_t gxio_mpipe_equeue_reserve(gxio_mpipe_equeue_t *equeue,
1378						unsigned int num)
1379{
1380	return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, true);
1381}
1382
1383/* Reserve completion slots for edescs, if possible.
1384 *
1385 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1386 *
1387 * This function is slower than gxio_mpipe_equeue_try_reserve_fast(),
1388 * but returns a full 64 bit completion slot, which can be used with
1389 * gxio_mpipe_equeue_is_complete().
1390 *
1391 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1392 * @param num Number of slots to reserve (must be non-zero).
1393 * @return The first reserved completion slot, or a negative error code.
1394 */
1395static inline int64_t gxio_mpipe_equeue_try_reserve(gxio_mpipe_equeue_t
1396						    *equeue, unsigned int num)
1397{
1398	return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, false);
1399}
1400
1401/* Reserve slots for edescs.
1402 *
1403 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1404 *
1405 * This function is faster than gxio_mpipe_equeue_reserve(), but
1406 * returns a 24 bit slot (instead of a 64 bit completion slot), which
1407 * thus cannot be used with gxio_mpipe_equeue_is_complete().
1408 *
1409 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1410 * @param num Number of slots to reserve (should be non-zero).
1411 * @return The first reserved slot, or a negative error code.
1412 */
1413static inline int64_t gxio_mpipe_equeue_reserve_fast(gxio_mpipe_equeue_t
1414						     *equeue, unsigned int num)
1415{
1416	return __gxio_dma_queue_reserve(&equeue->dma_queue, num, true, false);
1417}
1418
1419/* Reserve slots for edescs, if possible.
1420 *
1421 * Use gxio_mpipe_equeue_put_at() to actually populate the slots.
1422 *
1423 * This function is faster than gxio_mpipe_equeue_try_reserve(), but
1424 * returns a 24 bit slot (instead of a 64 bit completion slot), which
1425 * thus cannot be used with gxio_mpipe_equeue_is_complete().
1426 *
1427 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1428 * @param num Number of slots to reserve (should be non-zero).
1429 * @return The first reserved slot, or a negative error code.
1430 */
1431static inline int64_t gxio_mpipe_equeue_try_reserve_fast(gxio_mpipe_equeue_t
1432							 *equeue,
1433							 unsigned int num)
1434{
1435	return __gxio_dma_queue_reserve(&equeue->dma_queue, num, false, false);
1436}
1437
1438/*
1439 * HACK: This helper function tricks gcc 4.6 into avoiding saving
1440 * a copy of "edesc->words[0]" on the stack for no obvious reason.
1441 */
1442
1443static inline void gxio_mpipe_equeue_put_at_aux(gxio_mpipe_equeue_t *equeue,
1444						uint_reg_t ew[2],
1445						unsigned long slot)
1446{
1447	unsigned long edma_slot = slot & equeue->mask_num_entries;
1448	gxio_mpipe_edesc_t *edesc_p = &equeue->edescs[edma_slot];
1449
1450	/*
1451	 * ISSUE: Could set eDMA ring to be on generation 1 at start, which
1452	 * would avoid the negation here, perhaps allowing "__insn_bfins()".
1453	 */
1454	ew[0] |= !((slot >> equeue->log2_num_entries) & 1);
1455
1456	/*
1457	 * NOTE: We use "__gxio_mpipe_write()", plus the fact that the eDMA
1458	 * queue alignment restrictions ensure that these two words are on
1459	 * the same cacheline, to force proper ordering between the stores.
1460	 */
1461	__gxio_mmio_write64(&edesc_p->words[1], ew[1]);
1462	__gxio_mmio_write64(&edesc_p->words[0], ew[0]);
1463}
1464
1465/* Post an edesc to a given slot in an equeue.
1466 *
1467 * This function copies the supplied edesc into entry "slot mod N" in
1468 * the underlying ring, setting the "gen" bit to the appropriate value
1469 * based on "(slot mod N*2)", where "N" is the size of the ring.  Note
1470 * that the higher bits of slot are unused, and thus, this function
1471 * can handle "slots" as well as "completion slots".
1472 *
1473 * Normally this function is used to fill in slots reserved by
1474 * gxio_mpipe_equeue_try_reserve(), gxio_mpipe_equeue_reserve(),
1475 * gxio_mpipe_equeue_try_reserve_fast(), or
1476 * gxio_mpipe_equeue_reserve_fast(),
1477 *
1478 * This function can also be used without "reserving" slots, if the
1479 * application KNOWS that the ring can never overflow, for example, by
1480 * pushing fewer buffers into the buffer stacks than there are total
1481 * slots in the equeue, but this is NOT recommended.
1482 *
1483 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1484 * @param edesc The egress descriptor to be posted.
1485 * @param slot An egress slot (only the low bits are actually used).
1486 */
1487static inline void gxio_mpipe_equeue_put_at(gxio_mpipe_equeue_t *equeue,
1488					    gxio_mpipe_edesc_t edesc,
1489					    unsigned long slot)
1490{
1491	gxio_mpipe_equeue_put_at_aux(equeue, edesc.words, slot);
1492}
1493
1494/* Post an edesc to the next slot in an equeue.
1495 *
1496 * This is a convenience wrapper around
1497 * gxio_mpipe_equeue_reserve_fast() and gxio_mpipe_equeue_put_at().
1498 *
1499 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1500 * @param edesc The egress descriptor to be posted.
1501 * @return 0 on success.
1502 */
1503static inline int gxio_mpipe_equeue_put(gxio_mpipe_equeue_t *equeue,
1504					gxio_mpipe_edesc_t edesc)
1505{
1506	int64_t slot = gxio_mpipe_equeue_reserve_fast(equeue, 1);
1507	if (slot < 0)
1508		return (int)slot;
1509
1510	gxio_mpipe_equeue_put_at(equeue, edesc, slot);
1511
1512	return 0;
1513}
1514
1515/* Ask the mPIPE hardware to egress outstanding packets immediately.
1516 *
1517 * This call is not necessary, but may slightly reduce overall latency.
1518 *
1519 * Technically, you should flush all gxio_mpipe_equeue_put_at() writes
1520 * to memory before calling this function, to ensure the descriptors
1521 * are visible in memory before the mPIPE hardware actually looks for
1522 * them.  But this should be very rare, and the only side effect would
1523 * be increased latency, so it is up to the caller to decide whether
1524 * or not to flush memory.
1525 *
1526 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1527 */
1528static inline void gxio_mpipe_equeue_flush(gxio_mpipe_equeue_t *equeue)
1529{
1530	/* Use "ring_idx = 0" and "count = 0" to "wake up" the eDMA ring. */
1531	MPIPE_EDMA_POST_REGION_VAL_t val = { {0} };
1532	/* Flush the write buffers. */
1533	__insn_flushwb();
1534	__gxio_mmio_write(equeue->dma_queue.post_region_addr, val.word);
1535}
1536
1537/* Determine if a given edesc has been completed.
1538 *
1539 * Note that this function requires a "completion slot", and thus may
1540 * NOT be used with a "slot" from gxio_mpipe_equeue_reserve_fast() or
1541 * gxio_mpipe_equeue_try_reserve_fast().
1542 *
1543 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1544 * @param completion_slot The completion slot used by the edesc.
1545 * @param update If true, and the desc does not appear to have completed
1546 * yet, then update any software cache of the hardware completion counter,
1547 * and check again.  This should normally be true.
1548 * @return True iff the given edesc has been completed.
1549 */
1550static inline int gxio_mpipe_equeue_is_complete(gxio_mpipe_equeue_t *equeue,
1551						int64_t completion_slot,
1552						int update)
1553{
1554	return __gxio_dma_queue_is_complete(&equeue->dma_queue,
1555					    completion_slot, update);
1556}
1557
1558/* Set the snf (store and forward) size for an equeue.
1559 *
1560 * The snf size for an equeue defaults to 1536, and encodes the size
1561 * of the largest packet for which egress is guaranteed to avoid
1562 * transmission underruns and/or corrupt checksums under heavy load.
1563 *
1564 * The snf size affects a global resource pool which cannot support,
1565 * for example, all 24 equeues each requesting an snf size of 8K.
1566 *
1567 * To ensure that jumbo packets can be egressed properly, the snf size
1568 * should be set to the size of the largest possible packet, which
1569 * will usually be limited by the size of the app's largest buffer.
1570 *
1571 * This is a convenience wrapper around
1572 * gxio_mpipe_config_edma_ring_blks().
1573 *
1574 * This function should not be called after any egress has been done
1575 * on the equeue.
1576 *
1577 * @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
1578 * @param size The snf size, in bytes.
1579 * @return Zero on success, negative error otherwise.
1580 */
1581static inline int gxio_mpipe_equeue_set_snf_size(gxio_mpipe_equeue_t *equeue,
1582						 size_t size)
1583{
1584	int blks = (size + 127) / 128;
1585	return gxio_mpipe_config_edma_ring_blks(equeue->context, equeue->ering,
1586						blks + 1, blks, 1);
1587}
1588
1589/*****************************************************************
1590 *                        Link Management                         *
1591 ******************************************************************/
1592
1593/*
1594 *
1595 * Functions for manipulating and sensing the state and configuration
1596 * of physical network links.
1597 *
1598 * @section gxio_mpipe_link_perm Link Permissions
1599 *
1600 * Opening a link (with gxio_mpipe_link_open()) requests a set of link
1601 * permissions, which control what may be done with the link, and potentially
1602 * what permissions may be granted to other processes.
1603 *
1604 * Data permission allows the process to receive packets from the link by
1605 * specifying the link's channel number in mPIPE packet distribution rules,
1606 * and to send packets to the link by using the link's channel number as
1607 * the target for an eDMA ring.
1608 *
1609 * Stats permission allows the process to retrieve link attributes (such as
1610 * the speeds it is capable of running at, or whether it is currently up), and
1611 * to read and write certain statistics-related registers in the link's MAC.
1612 *
1613 * Control permission allows the process to retrieve and modify link attributes
1614 * (so that it may, for example, bring the link up and take it down), and
1615 * read and write many registers in the link's MAC and PHY.
1616 *
1617 * Any permission may be requested as shared, which allows other processes
1618 * to also request shared permission, or exclusive, which prevents other
1619 * processes from requesting it.  In keeping with GXIO's typical usage in
1620 * an embedded environment, the defaults for all permissions are shared.
1621 *
1622 * Permissions are granted on a first-come, first-served basis, so if two
1623 * applications request an exclusive permission on the same link, the one
1624 * to run first will win.  Note, however, that some system components, like
1625 * the kernel Ethernet driver, may get an opportunity to open links before
1626 * any applications run.
1627 *
1628 * @section gxio_mpipe_link_names Link Names
1629 *
1630 * Link names are of the form gbe<em>number</em> (for Gigabit Ethernet),
1631 * xgbe<em>number</em> (for 10 Gigabit Ethernet), loop<em>number</em> (for
1632 * internal mPIPE loopback), or ilk<em>number</em>/<em>channel</em>
1633 * (for Interlaken links); for instance, gbe0, xgbe1, loop3, and
1634 * ilk0/12 are all possible link names.  The correspondence between
1635 * the link name and an mPIPE instance number or mPIPE channel number is
1636 * system-dependent; all links will not exist on all systems, and the set
1637 * of numbers used for a particular link type may not start at zero and may
1638 * not be contiguous.  Use gxio_mpipe_link_enumerate() to retrieve the set of
1639 * links which exist on a system, and always use gxio_mpipe_link_instance()
1640 * to determine which mPIPE controls a particular link.
1641 *
1642 * Note that in some cases, links may share hardware, such as PHYs, or
1643 * internal mPIPE buffers; in these cases, only one of the links may be
1644 * opened at a time.  This is especially common with xgbe and gbe ports,
1645 * since each xgbe port uses 4 SERDES lanes, each of which may also be
1646 * configured as one gbe port.
1647 *
1648 * @section gxio_mpipe_link_states Link States
1649 *
1650 * The mPIPE link management model revolves around three different states,
1651 * which are maintained for each link:
1652 *
1653 * 1. The <em>current</em> link state: is the link up now, and if so, at
1654 *    what speed?
1655 *
1656 * 2. The <em>desired</em> link state: what do we want the link state to be?
1657 *    The system is always working to make this state the current state;
1658 *    thus, if the desired state is up, and the link is down, we'll be
1659 *    constantly trying to bring it up, automatically.
1660 *
1661 * 3. The <em>possible</em> link state: what speeds are valid for this
1662 *    particular link?  Or, in other words, what are the capabilities of
1663 *    the link hardware?
1664 *
1665 * These link states are not, strictly speaking, related to application
1666 * state; they may be manipulated at any time, whether or not the link
1667 * is currently being used for data transfer.  However, for convenience,
1668 * gxio_mpipe_link_open() and gxio_mpipe_link_close() (or application exit)
1669 * can affect the link state.  These implicit link management operations
1670 * may be modified or disabled by the use of link open flags.
1671 *
1672 * From an application, you can use gxio_mpipe_link_get_attr()
1673 * and gxio_mpipe_link_set_attr() to manipulate the link states.
1674 * gxio_mpipe_link_get_attr() with ::GXIO_MPIPE_LINK_POSSIBLE_STATE
1675 * gets you the possible link state.  gxio_mpipe_link_get_attr() with
1676 * ::GXIO_MPIPE_LINK_CURRENT_STATE gets you the current link state.
1677 * Finally, gxio_mpipe_link_set_attr() and gxio_mpipe_link_get_attr()
1678 * with ::GXIO_MPIPE_LINK_DESIRED_STATE allow you to modify or retrieve
1679 * the desired link state.
1680 *
1681 * If you want to manage a link from a part of your application which isn't
1682 * involved in packet processing, you can use the ::GXIO_MPIPE_LINK_NO_DATA
1683 * flags on a gxio_mpipe_link_open() call.  This opens the link, but does
1684 * not request data permission, so it does not conflict with any exclusive
1685 * permissions which may be held by other processes.  You can then can use
1686 * gxio_mpipe_link_get_attr() and gxio_mpipe_link_set_attr() on this link
1687 * object to bring up or take down the link.
1688 *
1689 * Some links support link state bits which support various loopback
1690 * modes. ::GXIO_MPIPE_LINK_LOOP_MAC tests datapaths within the Tile
1691 * Processor itself; ::GXIO_MPIPE_LINK_LOOP_PHY tests the datapath between
1692 * the Tile Processor and the external physical layer interface chip; and
1693 * ::GXIO_MPIPE_LINK_LOOP_EXT tests the entire network datapath with the
1694 * aid of an external loopback connector.  In addition to enabling hardware
1695 * testing, such configuration can be useful for software testing, as well.
1696 *
1697 * When LOOP_MAC or LOOP_PHY is enabled, packets transmitted on a channel
1698 * will be received by that channel, instead of being emitted on the
1699 * physical link, and packets received on the physical link will be ignored.
1700 * Other than that, all standard GXIO operations work as you might expect.
1701 * Note that loopback operation requires that the link be brought up using
1702 * one or more of the GXIO_MPIPE_LINK_SPEED_xxx link state bits.
1703 *
1704 * Those familiar with previous versions of the MDE on TILEPro hardware
1705 * will notice significant similarities between the NetIO link management
1706 * model and the mPIPE link management model.  However, the NetIO model
1707 * was developed in stages, and some of its features -- for instance,
1708 * the default setting of certain flags -- were shaped by the need to be
1709 * compatible with previous versions of NetIO.  Since the features provided
1710 * by the mPIPE hardware and the mPIPE GXIO library are significantly
1711 * different than those provided by NetIO, in some cases, we have made
1712 * different choices in the mPIPE link management API.  Thus, please read
1713 * this documentation carefully before assuming that mPIPE link management
1714 * operations are exactly equivalent to their NetIO counterparts.
1715 */
1716
1717/* An object used to manage mPIPE link state and resources. */
1718typedef struct {
1719	/* The overall mPIPE context. */
1720	gxio_mpipe_context_t *context;
1721
1722	/* The channel number used by this link. */
1723	uint8_t channel;
1724
1725	/* The MAC index used by this link. */
1726	uint8_t mac;
1727} gxio_mpipe_link_t;
1728
1729/* Translate a link name to the instance number of the mPIPE shim which is
1730 *  connected to that link.  This call does not verify whether the link is
1731 *  currently available, and does not reserve any link resources;
1732 *  gxio_mpipe_link_open() must be called to perform those functions.
1733 *
1734 *  Typically applications will call this function to translate a link name
1735 *  to an mPIPE instance number; call gxio_mpipe_init(), passing it that
1736 *  instance number, to initialize the mPIPE shim; and then call
1737 *  gxio_mpipe_link_open(), passing it the same link name plus the mPIPE
1738 *  context, to configure the link.
1739 *
1740 * @param link_name Name of the link; see @ref gxio_mpipe_link_names.
1741 * @return The mPIPE instance number which is associated with the named
1742 *  link, or a negative error code (::GXIO_ERR_NO_DEVICE) if the link does
1743 *  not exist.
1744 */
1745extern int gxio_mpipe_link_instance(const char *link_name);
1746
1747/* Retrieve one of this system's legal link names, and its MAC address.
1748 *
1749 * @param index Link name index.  If a system supports N legal link names,
1750 *  then indices between 0 and N - 1, inclusive, each correspond to one of
1751 *  those names.  Thus, to retrieve all of a system's legal link names,
1752 *  call this function in a loop, starting with an index of zero, and
1753 *  incrementing it once per iteration until -1 is returned.
1754 * @param link_name Pointer to the buffer which will receive the retrieved
1755 *  link name.  The buffer should contain space for at least
1756 *  ::GXIO_MPIPE_LINK_NAME_LEN bytes; the returned name, including the
1757 *  terminating null byte, will be no longer than that.
1758 * @param link_name Pointer to the buffer which will receive the retrieved
1759 *  MAC address.  The buffer should contain space for at least 6 bytes.
1760 * @return Zero if a link name was successfully retrieved; -1 if one was
1761 *  not.
1762 */
1763extern int gxio_mpipe_link_enumerate_mac(int index, char *link_name,
1764					 uint8_t *mac_addr);
1765
1766/* Open an mPIPE link.
1767 *
1768 *  A link must be opened before it may be used to send or receive packets,
1769 *  and before its state may be examined or changed.  Depending up on the
1770 *  link's intended use, one or more link permissions may be requested via
1771 *  the flags parameter; see @ref gxio_mpipe_link_perm.  In addition, flags
1772 *  may request that the link's state be modified at open time.  See @ref
1773 *  gxio_mpipe_link_states and @ref gxio_mpipe_link_open_flags for more detail.
1774 *
1775 * @param link A link state object, which will be initialized if this
1776 *  function completes successfully.
1777 * @param context An initialized mPIPE context.
1778 * @param link_name Name of the link.
1779 * @param flags Zero or more @ref gxio_mpipe_link_open_flags, ORed together.
1780 * @return 0 if the link was successfully opened, or a negative error code.
1781 *
1782 */
1783extern int gxio_mpipe_link_open(gxio_mpipe_link_t *link,
1784				gxio_mpipe_context_t *context,
1785				const char *link_name, unsigned int flags);
1786
1787/* Close an mPIPE link.
1788 *
1789 *  Closing a link makes it available for use by other processes.  Once
1790 *  a link has been closed, packets may no longer be sent on or received
1791 *  from the link, and its state may not be examined or changed.
1792 *
1793 * @param link A link state object, which will no longer be initialized
1794 *  if this function completes successfully.
1795 * @return 0 if the link was successfully closed, or a negative error code.
1796 *
1797 */
1798extern int gxio_mpipe_link_close(gxio_mpipe_link_t *link);
1799
1800/* Return a link's channel number.
1801 *
1802 * @param link A properly initialized link state object.
1803 * @return The channel number for the link.
1804 */
1805static inline int gxio_mpipe_link_channel(gxio_mpipe_link_t *link)
1806{
1807	return link->channel;
1808}
1809
1810/* Set a link attribute.
1811 *
1812 * @param link A properly initialized link state object.
1813 * @param attr An attribute from the set of @ref gxio_mpipe_link_attrs.
1814 * @param val New value of the attribute.
1815 * @return 0 if the attribute was successfully set, or a negative error
1816 *  code.
1817 */
1818extern int gxio_mpipe_link_set_attr(gxio_mpipe_link_t *link, uint32_t attr,
1819				    int64_t val);
1820
1821///////////////////////////////////////////////////////////////////
1822//                             Timestamp                         //
1823///////////////////////////////////////////////////////////////////
1824
1825/* Get the timestamp of mPIPE when this routine is called.
1826 *
1827 * @param context An initialized mPIPE context.
1828 * @param ts A timespec structure to store the current clock.
1829 * @return If the call was successful, zero; otherwise, a negative error
1830 *  code.
1831 */
1832extern int gxio_mpipe_get_timestamp(gxio_mpipe_context_t *context,
1833				    struct timespec64 *ts);
1834
1835/* Set the timestamp of mPIPE.
1836 *
1837 * @param context An initialized mPIPE context.
1838 * @param ts A timespec structure to store the requested clock.
1839 * @return If the call was successful, zero; otherwise, a negative error
1840 *  code.
1841 */
1842extern int gxio_mpipe_set_timestamp(gxio_mpipe_context_t *context,
1843				    const struct timespec64 *ts);
1844
1845/* Adjust the timestamp of mPIPE.
1846 *
1847 * @param context An initialized mPIPE context.
1848 * @param delta A signed time offset to adjust, in nanoseconds.
1849 * The absolute value of this parameter must be less than or
1850 * equal to 1000000000.
1851 * @return If the call was successful, zero; otherwise, a negative error
1852 *  code.
1853 */
1854extern int gxio_mpipe_adjust_timestamp(gxio_mpipe_context_t *context,
1855				       int64_t delta);
1856
1857/** Adjust the mPIPE timestamp clock frequency.
1858 *
1859 * @param context An initialized mPIPE context.
1860 * @param ppb A 32-bit signed PPB (Parts Per Billion) value to adjust.
1861 * The absolute value of ppb must be less than or equal to 1000000000.
1862 * Values less than about 30000 will generally cause a GXIO_ERR_INVAL
1863 * return due to the granularity of the hardware that converts reference
1864 * clock cycles into seconds and nanoseconds.
1865 * @return If the call was successful, zero; otherwise, a negative error
1866 *  code.
1867 */
1868extern int gxio_mpipe_adjust_timestamp_freq(gxio_mpipe_context_t* context,
1869                                            int32_t ppb);
1870
1871#endif /* !_GXIO_MPIPE_H_ */
1872