1/* 2 * Copyright (C) 1994 Linus Torvalds 3 * 4 * Pentium III FXSR, SSE support 5 * General FPU state handling cleanups 6 * Gareth Hughes <gareth@valinux.com>, May 2000 7 * x86-64 work by Andi Kleen 2002 8 */ 9 10#ifndef _FPU_INTERNAL_H 11#define _FPU_INTERNAL_H 12 13#include <linux/kernel_stat.h> 14#include <linux/regset.h> 15#include <linux/compat.h> 16#include <linux/slab.h> 17#include <asm/asm.h> 18#include <asm/cpufeature.h> 19#include <asm/processor.h> 20#include <asm/sigcontext.h> 21#include <asm/user.h> 22#include <asm/uaccess.h> 23#include <asm/xsave.h> 24#include <asm/smap.h> 25 26#ifdef CONFIG_X86_64 27# include <asm/sigcontext32.h> 28# include <asm/user32.h> 29struct ksignal; 30int ia32_setup_rt_frame(int sig, struct ksignal *ksig, 31 compat_sigset_t *set, struct pt_regs *regs); 32int ia32_setup_frame(int sig, struct ksignal *ksig, 33 compat_sigset_t *set, struct pt_regs *regs); 34#else 35# define user_i387_ia32_struct user_i387_struct 36# define user32_fxsr_struct user_fxsr_struct 37# define ia32_setup_frame __setup_frame 38# define ia32_setup_rt_frame __setup_rt_frame 39#endif 40 41extern unsigned int mxcsr_feature_mask; 42extern void fpu_init(void); 43extern void eager_fpu_init(void); 44 45DECLARE_PER_CPU(struct task_struct *, fpu_owner_task); 46 47extern void convert_from_fxsr(struct user_i387_ia32_struct *env, 48 struct task_struct *tsk); 49extern void convert_to_fxsr(struct task_struct *tsk, 50 const struct user_i387_ia32_struct *env); 51 52extern user_regset_active_fn fpregs_active, xfpregs_active; 53extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get, 54 xstateregs_get; 55extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set, 56 xstateregs_set; 57 58/* 59 * xstateregs_active == fpregs_active. Please refer to the comment 60 * at the definition of fpregs_active. 61 */ 62#define xstateregs_active fpregs_active 63 64#ifdef CONFIG_MATH_EMULATION 65extern void finit_soft_fpu(struct i387_soft_struct *soft); 66#else 67static inline void finit_soft_fpu(struct i387_soft_struct *soft) {} 68#endif 69 70/* 71 * Must be run with preemption disabled: this clears the fpu_owner_task, 72 * on this CPU. 73 * 74 * This will disable any lazy FPU state restore of the current FPU state, 75 * but if the current thread owns the FPU, it will still be saved by. 76 */ 77static inline void __cpu_disable_lazy_restore(unsigned int cpu) 78{ 79 per_cpu(fpu_owner_task, cpu) = NULL; 80} 81 82/* 83 * Used to indicate that the FPU state in memory is newer than the FPU 84 * state in registers, and the FPU state should be reloaded next time the 85 * task is run. Only safe on the current task, or non-running tasks. 86 */ 87static inline void task_disable_lazy_fpu_restore(struct task_struct *tsk) 88{ 89 tsk->thread.fpu.last_cpu = ~0; 90} 91 92static inline int fpu_lazy_restore(struct task_struct *new, unsigned int cpu) 93{ 94 return new == this_cpu_read_stable(fpu_owner_task) && 95 cpu == new->thread.fpu.last_cpu; 96} 97 98static inline int is_ia32_compat_frame(void) 99{ 100 return config_enabled(CONFIG_IA32_EMULATION) && 101 test_thread_flag(TIF_IA32); 102} 103 104static inline int is_ia32_frame(void) 105{ 106 return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame(); 107} 108 109static inline int is_x32_frame(void) 110{ 111 return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32); 112} 113 114#define X87_FSW_ES (1 << 7) /* Exception Summary */ 115 116static __always_inline __pure bool use_eager_fpu(void) 117{ 118 return static_cpu_has_safe(X86_FEATURE_EAGER_FPU); 119} 120 121static __always_inline __pure bool use_xsaveopt(void) 122{ 123 return static_cpu_has_safe(X86_FEATURE_XSAVEOPT); 124} 125 126static __always_inline __pure bool use_xsave(void) 127{ 128 return static_cpu_has_safe(X86_FEATURE_XSAVE); 129} 130 131static __always_inline __pure bool use_fxsr(void) 132{ 133 return static_cpu_has_safe(X86_FEATURE_FXSR); 134} 135 136static inline void fx_finit(struct i387_fxsave_struct *fx) 137{ 138 fx->cwd = 0x37f; 139 fx->mxcsr = MXCSR_DEFAULT; 140} 141 142extern void __sanitize_i387_state(struct task_struct *); 143 144static inline void sanitize_i387_state(struct task_struct *tsk) 145{ 146 if (!use_xsaveopt()) 147 return; 148 __sanitize_i387_state(tsk); 149} 150 151#define user_insn(insn, output, input...) \ 152({ \ 153 int err; \ 154 asm volatile(ASM_STAC "\n" \ 155 "1:" #insn "\n\t" \ 156 "2: " ASM_CLAC "\n" \ 157 ".section .fixup,\"ax\"\n" \ 158 "3: movl $-1,%[err]\n" \ 159 " jmp 2b\n" \ 160 ".previous\n" \ 161 _ASM_EXTABLE(1b, 3b) \ 162 : [err] "=r" (err), output \ 163 : "0"(0), input); \ 164 err; \ 165}) 166 167#define check_insn(insn, output, input...) \ 168({ \ 169 int err; \ 170 asm volatile("1:" #insn "\n\t" \ 171 "2:\n" \ 172 ".section .fixup,\"ax\"\n" \ 173 "3: movl $-1,%[err]\n" \ 174 " jmp 2b\n" \ 175 ".previous\n" \ 176 _ASM_EXTABLE(1b, 3b) \ 177 : [err] "=r" (err), output \ 178 : "0"(0), input); \ 179 err; \ 180}) 181 182static inline int fsave_user(struct i387_fsave_struct __user *fx) 183{ 184 return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); 185} 186 187static inline int fxsave_user(struct i387_fxsave_struct __user *fx) 188{ 189 if (config_enabled(CONFIG_X86_32)) 190 return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); 191 else if (config_enabled(CONFIG_AS_FXSAVEQ)) 192 return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); 193 194 /* See comment in fpu_fxsave() below. */ 195 return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx)); 196} 197 198static inline int fxrstor_checking(struct i387_fxsave_struct *fx) 199{ 200 if (config_enabled(CONFIG_X86_32)) 201 return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); 202 else if (config_enabled(CONFIG_AS_FXSAVEQ)) 203 return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); 204 205 /* See comment in fpu_fxsave() below. */ 206 return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), 207 "m" (*fx)); 208} 209 210static inline int fxrstor_user(struct i387_fxsave_struct __user *fx) 211{ 212 if (config_enabled(CONFIG_X86_32)) 213 return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); 214 else if (config_enabled(CONFIG_AS_FXSAVEQ)) 215 return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); 216 217 /* See comment in fpu_fxsave() below. */ 218 return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), 219 "m" (*fx)); 220} 221 222static inline int frstor_checking(struct i387_fsave_struct *fx) 223{ 224 return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); 225} 226 227static inline int frstor_user(struct i387_fsave_struct __user *fx) 228{ 229 return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); 230} 231 232static inline void fpu_fxsave(struct fpu *fpu) 233{ 234 if (config_enabled(CONFIG_X86_32)) 235 asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state->fxsave)); 236 else if (config_enabled(CONFIG_AS_FXSAVEQ)) 237 asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state->fxsave)); 238 else { 239 /* Using "rex64; fxsave %0" is broken because, if the memory 240 * operand uses any extended registers for addressing, a second 241 * REX prefix will be generated (to the assembler, rex64 242 * followed by semicolon is a separate instruction), and hence 243 * the 64-bitness is lost. 244 * 245 * Using "fxsaveq %0" would be the ideal choice, but is only 246 * supported starting with gas 2.16. 247 * 248 * Using, as a workaround, the properly prefixed form below 249 * isn't accepted by any binutils version so far released, 250 * complaining that the same type of prefix is used twice if 251 * an extended register is needed for addressing (fix submitted 252 * to mainline 2005-11-21). 253 * 254 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state->fxsave)); 255 * 256 * This, however, we can work around by forcing the compiler to 257 * select an addressing mode that doesn't require extended 258 * registers. 259 */ 260 asm volatile( "rex64/fxsave (%[fx])" 261 : "=m" (fpu->state->fxsave) 262 : [fx] "R" (&fpu->state->fxsave)); 263 } 264} 265 266/* 267 * These must be called with preempt disabled. Returns 268 * 'true' if the FPU state is still intact. 269 */ 270static inline int fpu_save_init(struct fpu *fpu) 271{ 272 if (use_xsave()) { 273 fpu_xsave(fpu); 274 275 /* 276 * xsave header may indicate the init state of the FP. 277 */ 278 if (!(fpu->state->xsave.xsave_hdr.xstate_bv & XSTATE_FP)) 279 return 1; 280 } else if (use_fxsr()) { 281 fpu_fxsave(fpu); 282 } else { 283 asm volatile("fnsave %[fx]; fwait" 284 : [fx] "=m" (fpu->state->fsave)); 285 return 0; 286 } 287 288 /* 289 * If exceptions are pending, we need to clear them so 290 * that we don't randomly get exceptions later. 291 * 292 * FIXME! Is this perhaps only true for the old-style 293 * irq13 case? Maybe we could leave the x87 state 294 * intact otherwise? 295 */ 296 if (unlikely(fpu->state->fxsave.swd & X87_FSW_ES)) { 297 asm volatile("fnclex"); 298 return 0; 299 } 300 return 1; 301} 302 303static inline int __save_init_fpu(struct task_struct *tsk) 304{ 305 return fpu_save_init(&tsk->thread.fpu); 306} 307 308static inline int fpu_restore_checking(struct fpu *fpu) 309{ 310 if (use_xsave()) 311 return fpu_xrstor_checking(&fpu->state->xsave); 312 else if (use_fxsr()) 313 return fxrstor_checking(&fpu->state->fxsave); 314 else 315 return frstor_checking(&fpu->state->fsave); 316} 317 318static inline int restore_fpu_checking(struct task_struct *tsk) 319{ 320 /* 321 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is 322 * pending. Clear the x87 state here by setting it to fixed values. 323 * "m" is a random variable that should be in L1. 324 */ 325 if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) { 326 asm volatile( 327 "fnclex\n\t" 328 "emms\n\t" 329 "fildl %P[addr]" /* set F?P to defined value */ 330 : : [addr] "m" (tsk->thread.fpu.has_fpu)); 331 } 332 333 return fpu_restore_checking(&tsk->thread.fpu); 334} 335 336/* 337 * Software FPU state helpers. Careful: these need to 338 * be preemption protection *and* they need to be 339 * properly paired with the CR0.TS changes! 340 */ 341static inline int __thread_has_fpu(struct task_struct *tsk) 342{ 343 return tsk->thread.fpu.has_fpu; 344} 345 346/* Must be paired with an 'stts' after! */ 347static inline void __thread_clear_has_fpu(struct task_struct *tsk) 348{ 349 tsk->thread.fpu.has_fpu = 0; 350 this_cpu_write(fpu_owner_task, NULL); 351} 352 353/* Must be paired with a 'clts' before! */ 354static inline void __thread_set_has_fpu(struct task_struct *tsk) 355{ 356 tsk->thread.fpu.has_fpu = 1; 357 this_cpu_write(fpu_owner_task, tsk); 358} 359 360/* 361 * Encapsulate the CR0.TS handling together with the 362 * software flag. 363 * 364 * These generally need preemption protection to work, 365 * do try to avoid using these on their own. 366 */ 367static inline void __thread_fpu_end(struct task_struct *tsk) 368{ 369 __thread_clear_has_fpu(tsk); 370 if (!use_eager_fpu()) 371 stts(); 372} 373 374static inline void __thread_fpu_begin(struct task_struct *tsk) 375{ 376 if (!use_eager_fpu()) 377 clts(); 378 __thread_set_has_fpu(tsk); 379} 380 381static inline void drop_fpu(struct task_struct *tsk) 382{ 383 /* 384 * Forget coprocessor state.. 385 */ 386 preempt_disable(); 387 tsk->thread.fpu_counter = 0; 388 389 if (__thread_has_fpu(tsk)) { 390 /* Ignore delayed exceptions from user space */ 391 asm volatile("1: fwait\n" 392 "2:\n" 393 _ASM_EXTABLE(1b, 2b)); 394 __thread_fpu_end(tsk); 395 } 396 397 clear_stopped_child_used_math(tsk); 398 preempt_enable(); 399} 400 401static inline void restore_init_xstate(void) 402{ 403 if (use_xsave()) 404 xrstor_state(init_xstate_buf, -1); 405 else 406 fxrstor_checking(&init_xstate_buf->i387); 407} 408 409/* 410 * Reset the FPU state in the eager case and drop it in the lazy case (later use 411 * will reinit it). 412 */ 413static inline void fpu_reset_state(struct task_struct *tsk) 414{ 415 if (!use_eager_fpu()) 416 drop_fpu(tsk); 417 else 418 restore_init_xstate(); 419} 420 421/* 422 * FPU state switching for scheduling. 423 * 424 * This is a two-stage process: 425 * 426 * - switch_fpu_prepare() saves the old state and 427 * sets the new state of the CR0.TS bit. This is 428 * done within the context of the old process. 429 * 430 * - switch_fpu_finish() restores the new state as 431 * necessary. 432 */ 433typedef struct { int preload; } fpu_switch_t; 434 435static inline fpu_switch_t switch_fpu_prepare(struct task_struct *old, struct task_struct *new, int cpu) 436{ 437 fpu_switch_t fpu; 438 439 /* 440 * If the task has used the math, pre-load the FPU on xsave processors 441 * or if the past 5 consecutive context-switches used math. 442 */ 443 fpu.preload = tsk_used_math(new) && 444 (use_eager_fpu() || new->thread.fpu_counter > 5); 445 446 if (__thread_has_fpu(old)) { 447 if (!__save_init_fpu(old)) 448 task_disable_lazy_fpu_restore(old); 449 else 450 old->thread.fpu.last_cpu = cpu; 451 452 /* But leave fpu_owner_task! */ 453 old->thread.fpu.has_fpu = 0; 454 455 /* Don't change CR0.TS if we just switch! */ 456 if (fpu.preload) { 457 new->thread.fpu_counter++; 458 __thread_set_has_fpu(new); 459 prefetch(new->thread.fpu.state); 460 } else if (!use_eager_fpu()) 461 stts(); 462 } else { 463 old->thread.fpu_counter = 0; 464 task_disable_lazy_fpu_restore(old); 465 if (fpu.preload) { 466 new->thread.fpu_counter++; 467 if (fpu_lazy_restore(new, cpu)) 468 fpu.preload = 0; 469 else 470 prefetch(new->thread.fpu.state); 471 __thread_fpu_begin(new); 472 } 473 } 474 return fpu; 475} 476 477/* 478 * By the time this gets called, we've already cleared CR0.TS and 479 * given the process the FPU if we are going to preload the FPU 480 * state - all we need to do is to conditionally restore the register 481 * state itself. 482 */ 483static inline void switch_fpu_finish(struct task_struct *new, fpu_switch_t fpu) 484{ 485 if (fpu.preload) { 486 if (unlikely(restore_fpu_checking(new))) 487 fpu_reset_state(new); 488 } 489} 490 491/* 492 * Signal frame handlers... 493 */ 494extern int save_xstate_sig(void __user *buf, void __user *fx, int size); 495extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size); 496 497static inline int xstate_sigframe_size(void) 498{ 499 return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size; 500} 501 502static inline int restore_xstate_sig(void __user *buf, int ia32_frame) 503{ 504 void __user *buf_fx = buf; 505 int size = xstate_sigframe_size(); 506 507 if (ia32_frame && use_fxsr()) { 508 buf_fx = buf + sizeof(struct i387_fsave_struct); 509 size += sizeof(struct i387_fsave_struct); 510 } 511 512 return __restore_xstate_sig(buf, buf_fx, size); 513} 514 515/* 516 * Needs to be preemption-safe. 517 * 518 * NOTE! user_fpu_begin() must be used only immediately before restoring 519 * the save state. It does not do any saving/restoring on its own. In 520 * lazy FPU mode, it is just an optimization to avoid a #NM exception, 521 * the task can lose the FPU right after preempt_enable(). 522 */ 523static inline void user_fpu_begin(void) 524{ 525 preempt_disable(); 526 if (!user_has_fpu()) 527 __thread_fpu_begin(current); 528 preempt_enable(); 529} 530 531static inline void __save_fpu(struct task_struct *tsk) 532{ 533 if (use_xsave()) { 534 if (unlikely(system_state == SYSTEM_BOOTING)) 535 xsave_state_booting(&tsk->thread.fpu.state->xsave, -1); 536 else 537 xsave_state(&tsk->thread.fpu.state->xsave, -1); 538 } else 539 fpu_fxsave(&tsk->thread.fpu); 540} 541 542/* 543 * i387 state interaction 544 */ 545static inline unsigned short get_fpu_cwd(struct task_struct *tsk) 546{ 547 if (cpu_has_fxsr) { 548 return tsk->thread.fpu.state->fxsave.cwd; 549 } else { 550 return (unsigned short)tsk->thread.fpu.state->fsave.cwd; 551 } 552} 553 554static inline unsigned short get_fpu_swd(struct task_struct *tsk) 555{ 556 if (cpu_has_fxsr) { 557 return tsk->thread.fpu.state->fxsave.swd; 558 } else { 559 return (unsigned short)tsk->thread.fpu.state->fsave.swd; 560 } 561} 562 563static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk) 564{ 565 if (cpu_has_xmm) { 566 return tsk->thread.fpu.state->fxsave.mxcsr; 567 } else { 568 return MXCSR_DEFAULT; 569 } 570} 571 572static bool fpu_allocated(struct fpu *fpu) 573{ 574 return fpu->state != NULL; 575} 576 577static inline int fpu_alloc(struct fpu *fpu) 578{ 579 if (fpu_allocated(fpu)) 580 return 0; 581 fpu->state = kmem_cache_alloc(task_xstate_cachep, GFP_KERNEL); 582 if (!fpu->state) 583 return -ENOMEM; 584 WARN_ON((unsigned long)fpu->state & 15); 585 return 0; 586} 587 588static inline void fpu_free(struct fpu *fpu) 589{ 590 if (fpu->state) { 591 kmem_cache_free(task_xstate_cachep, fpu->state); 592 fpu->state = NULL; 593 } 594} 595 596static inline void fpu_copy(struct task_struct *dst, struct task_struct *src) 597{ 598 if (use_eager_fpu()) { 599 memset(&dst->thread.fpu.state->xsave, 0, xstate_size); 600 __save_fpu(dst); 601 } else { 602 struct fpu *dfpu = &dst->thread.fpu; 603 struct fpu *sfpu = &src->thread.fpu; 604 605 unlazy_fpu(src); 606 memcpy(dfpu->state, sfpu->state, xstate_size); 607 } 608} 609 610static inline unsigned long 611alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx, 612 unsigned long *size) 613{ 614 unsigned long frame_size = xstate_sigframe_size(); 615 616 *buf_fx = sp = round_down(sp - frame_size, 64); 617 if (ia32_frame && use_fxsr()) { 618 frame_size += sizeof(struct i387_fsave_struct); 619 sp -= sizeof(struct i387_fsave_struct); 620 } 621 622 *size = frame_size; 623 return sp; 624} 625 626#endif 627