1#ifndef _ASM_X86_MMU_CONTEXT_H 2#define _ASM_X86_MMU_CONTEXT_H 3 4#include <asm/desc.h> 5#include <linux/atomic.h> 6#include <linux/mm_types.h> 7 8#include <trace/events/tlb.h> 9 10#include <asm/pgalloc.h> 11#include <asm/tlbflush.h> 12#include <asm/paravirt.h> 13#include <asm/mpx.h> 14#ifndef CONFIG_PARAVIRT 15static inline void paravirt_activate_mm(struct mm_struct *prev, 16 struct mm_struct *next) 17{ 18} 19#endif /* !CONFIG_PARAVIRT */ 20 21#ifdef CONFIG_PERF_EVENTS 22extern struct static_key rdpmc_always_available; 23 24static inline void load_mm_cr4(struct mm_struct *mm) 25{ 26 if (static_key_false(&rdpmc_always_available) || 27 atomic_read(&mm->context.perf_rdpmc_allowed)) 28 cr4_set_bits(X86_CR4_PCE); 29 else 30 cr4_clear_bits(X86_CR4_PCE); 31} 32#else 33static inline void load_mm_cr4(struct mm_struct *mm) {} 34#endif 35 36/* 37 * ldt_structs can be allocated, used, and freed, but they are never 38 * modified while live. 39 */ 40struct ldt_struct { 41 /* 42 * Xen requires page-aligned LDTs with special permissions. This is 43 * needed to prevent us from installing evil descriptors such as 44 * call gates. On native, we could merge the ldt_struct and LDT 45 * allocations, but it's not worth trying to optimize. 46 */ 47 struct desc_struct *entries; 48 int size; 49}; 50 51static inline void load_mm_ldt(struct mm_struct *mm) 52{ 53 struct ldt_struct *ldt; 54 55 /* lockless_dereference synchronizes with smp_store_release */ 56 ldt = lockless_dereference(mm->context.ldt); 57 58 /* 59 * Any change to mm->context.ldt is followed by an IPI to all 60 * CPUs with the mm active. The LDT will not be freed until 61 * after the IPI is handled by all such CPUs. This means that, 62 * if the ldt_struct changes before we return, the values we see 63 * will be safe, and the new values will be loaded before we run 64 * any user code. 65 * 66 * NB: don't try to convert this to use RCU without extreme care. 67 * We would still need IRQs off, because we don't want to change 68 * the local LDT after an IPI loaded a newer value than the one 69 * that we can see. 70 */ 71 72 if (unlikely(ldt)) 73 set_ldt(ldt->entries, ldt->size); 74 else 75 clear_LDT(); 76 77 DEBUG_LOCKS_WARN_ON(preemptible()); 78} 79 80/* 81 * Used for LDT copy/destruction. 82 */ 83int init_new_context(struct task_struct *tsk, struct mm_struct *mm); 84void destroy_context(struct mm_struct *mm); 85 86 87static inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 88{ 89#ifdef CONFIG_SMP 90 if (this_cpu_read(cpu_tlbstate.state) == TLBSTATE_OK) 91 this_cpu_write(cpu_tlbstate.state, TLBSTATE_LAZY); 92#endif 93} 94 95static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, 96 struct task_struct *tsk) 97{ 98 unsigned cpu = smp_processor_id(); 99 100 if (likely(prev != next)) { 101#ifdef CONFIG_SMP 102 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK); 103 this_cpu_write(cpu_tlbstate.active_mm, next); 104#endif 105 cpumask_set_cpu(cpu, mm_cpumask(next)); 106 107 /* 108 * Re-load page tables. 109 * 110 * This logic has an ordering constraint: 111 * 112 * CPU 0: Write to a PTE for 'next' 113 * CPU 0: load bit 1 in mm_cpumask. if nonzero, send IPI. 114 * CPU 1: set bit 1 in next's mm_cpumask 115 * CPU 1: load from the PTE that CPU 0 writes (implicit) 116 * 117 * We need to prevent an outcome in which CPU 1 observes 118 * the new PTE value and CPU 0 observes bit 1 clear in 119 * mm_cpumask. (If that occurs, then the IPI will never 120 * be sent, and CPU 0's TLB will contain a stale entry.) 121 * 122 * The bad outcome can occur if either CPU's load is 123 * reordered before that CPU's store, so both CPUs must 124 * execute full barriers to prevent this from happening. 125 * 126 * Thus, switch_mm needs a full barrier between the 127 * store to mm_cpumask and any operation that could load 128 * from next->pgd. TLB fills are special and can happen 129 * due to instruction fetches or for no reason at all, 130 * and neither LOCK nor MFENCE orders them. 131 * Fortunately, load_cr3() is serializing and gives the 132 * ordering guarantee we need. 133 * 134 */ 135 load_cr3(next->pgd); 136 137 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 138 139 /* Stop flush ipis for the previous mm */ 140 cpumask_clear_cpu(cpu, mm_cpumask(prev)); 141 142 /* Load per-mm CR4 state */ 143 load_mm_cr4(next); 144 145 /* 146 * Load the LDT, if the LDT is different. 147 * 148 * It's possible that prev->context.ldt doesn't match 149 * the LDT register. This can happen if leave_mm(prev) 150 * was called and then modify_ldt changed 151 * prev->context.ldt but suppressed an IPI to this CPU. 152 * In this case, prev->context.ldt != NULL, because we 153 * never set context.ldt to NULL while the mm still 154 * exists. That means that next->context.ldt != 155 * prev->context.ldt, because mms never share an LDT. 156 */ 157 if (unlikely(prev->context.ldt != next->context.ldt)) 158 load_mm_ldt(next); 159 } 160#ifdef CONFIG_SMP 161 else { 162 this_cpu_write(cpu_tlbstate.state, TLBSTATE_OK); 163 BUG_ON(this_cpu_read(cpu_tlbstate.active_mm) != next); 164 165 if (!cpumask_test_cpu(cpu, mm_cpumask(next))) { 166 /* 167 * On established mms, the mm_cpumask is only changed 168 * from irq context, from ptep_clear_flush() while in 169 * lazy tlb mode, and here. Irqs are blocked during 170 * schedule, protecting us from simultaneous changes. 171 */ 172 cpumask_set_cpu(cpu, mm_cpumask(next)); 173 174 /* 175 * We were in lazy tlb mode and leave_mm disabled 176 * tlb flush IPI delivery. We must reload CR3 177 * to make sure to use no freed page tables. 178 * 179 * As above, load_cr3() is serializing and orders TLB 180 * fills with respect to the mm_cpumask write. 181 */ 182 load_cr3(next->pgd); 183 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL); 184 load_mm_cr4(next); 185 load_mm_ldt(next); 186 } 187 } 188#endif 189} 190 191#define activate_mm(prev, next) \ 192do { \ 193 paravirt_activate_mm((prev), (next)); \ 194 switch_mm((prev), (next), NULL); \ 195} while (0); 196 197#ifdef CONFIG_X86_32 198#define deactivate_mm(tsk, mm) \ 199do { \ 200 lazy_load_gs(0); \ 201} while (0) 202#else 203#define deactivate_mm(tsk, mm) \ 204do { \ 205 load_gs_index(0); \ 206 loadsegment(fs, 0); \ 207} while (0) 208#endif 209 210static inline void arch_dup_mmap(struct mm_struct *oldmm, 211 struct mm_struct *mm) 212{ 213 paravirt_arch_dup_mmap(oldmm, mm); 214} 215 216static inline void arch_exit_mmap(struct mm_struct *mm) 217{ 218 paravirt_arch_exit_mmap(mm); 219} 220 221static inline void arch_bprm_mm_init(struct mm_struct *mm, 222 struct vm_area_struct *vma) 223{ 224 mpx_mm_init(mm); 225} 226 227static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma, 228 unsigned long start, unsigned long end) 229{ 230 /* 231 * mpx_notify_unmap() goes and reads a rarely-hot 232 * cacheline in the mm_struct. That can be expensive 233 * enough to be seen in profiles. 234 * 235 * The mpx_notify_unmap() call and its contents have been 236 * observed to affect munmap() performance on hardware 237 * where MPX is not present. 238 * 239 * The unlikely() optimizes for the fast case: no MPX 240 * in the CPU, or no MPX use in the process. Even if 241 * we get this wrong (in the unlikely event that MPX 242 * is widely enabled on some system) the overhead of 243 * MPX itself (reading bounds tables) is expected to 244 * overwhelm the overhead of getting this unlikely() 245 * consistently wrong. 246 */ 247 if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX))) 248 mpx_notify_unmap(mm, vma, start, end); 249} 250 251#endif /* _ASM_X86_MMU_CONTEXT_H */ 252