1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * SGI UV architectural definitions
7 *
8 * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
9 */
10
11#ifndef _ASM_X86_UV_UV_HUB_H
12#define _ASM_X86_UV_UV_HUB_H
13
14#ifdef CONFIG_X86_64
15#include <linux/numa.h>
16#include <linux/percpu.h>
17#include <linux/timer.h>
18#include <linux/io.h>
19#include <asm/types.h>
20#include <asm/percpu.h>
21#include <asm/uv/uv_mmrs.h>
22#include <asm/irq_vectors.h>
23#include <asm/io_apic.h>
24
25
26/*
27 * Addressing Terminology
28 *
29 *	M       - The low M bits of a physical address represent the offset
30 *		  into the blade local memory. RAM memory on a blade is physically
31 *		  contiguous (although various IO spaces may punch holes in
32 *		  it)..
33 *
34 *	N	- Number of bits in the node portion of a socket physical
35 *		  address.
36 *
37 *	NASID   - network ID of a router, Mbrick or Cbrick. Nasid values of
38 *		  routers always have low bit of 1, C/MBricks have low bit
39 *		  equal to 0. Most addressing macros that target UV hub chips
40 *		  right shift the NASID by 1 to exclude the always-zero bit.
41 *		  NASIDs contain up to 15 bits.
42 *
43 *	GNODE   - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 *		  of nasids.
45 *
46 *	PNODE   - the low N bits of the GNODE. The PNODE is the most useful variant
47 *		  of the nasid for socket usage.
48 *
49 *	GPA	- (global physical address) a socket physical address converted
50 *		  so that it can be used by the GRU as a global address. Socket
51 *		  physical addresses 1) need additional NASID (node) bits added
52 *		  to the high end of the address, and 2) unaliased if the
53 *		  partition does not have a physical address 0. In addition, on
54 *		  UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
55 *
56 *
57 *  NumaLink Global Physical Address Format:
58 *  +--------------------------------+---------------------+
59 *  |00..000|      GNODE             |      NodeOffset     |
60 *  +--------------------------------+---------------------+
61 *          |<-------53 - M bits --->|<--------M bits ----->
62 *
63 *	M - number of node offset bits (35 .. 40)
64 *
65 *
66 *  Memory/UV-HUB Processor Socket Address Format:
67 *  +----------------+---------------+---------------------+
68 *  |00..000000000000|   PNODE       |      NodeOffset     |
69 *  +----------------+---------------+---------------------+
70 *                   <--- N bits --->|<--------M bits ----->
71 *
72 *	M - number of node offset bits (35 .. 40)
73 *	N - number of PNODE bits (0 .. 10)
74 *
75 *		Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
76 *		The actual values are configuration dependent and are set at
77 *		boot time. M & N values are set by the hardware/BIOS at boot.
78 *
79 *
80 * APICID format
81 *	NOTE!!!!!! This is the current format of the APICID. However, code
82 *	should assume that this will change in the future. Use functions
83 *	in this file for all APICID bit manipulations and conversion.
84 *
85 *		1111110000000000
86 *		5432109876543210
87 *		pppppppppplc0cch	Nehalem-EX (12 bits in hdw reg)
88 *		ppppppppplcc0cch	Westmere-EX (12 bits in hdw reg)
89 *		pppppppppppcccch	SandyBridge (15 bits in hdw reg)
90 *		sssssssssss
91 *
92 *			p  = pnode bits
93 *			l =  socket number on board
94 *			c  = core
95 *			h  = hyperthread
96 *			s  = bits that are in the SOCKET_ID CSR
97 *
98 *	Note: Processor may support fewer bits in the APICID register. The ACPI
99 *	      tables hold all 16 bits. Software needs to be aware of this.
100 *
101 *	      Unless otherwise specified, all references to APICID refer to
102 *	      the FULL value contained in ACPI tables, not the subset in the
103 *	      processor APICID register.
104 */
105
106
107/*
108 * Maximum number of bricks in all partitions and in all coherency domains.
109 * This is the total number of bricks accessible in the numalink fabric. It
110 * includes all C & M bricks. Routers are NOT included.
111 *
112 * This value is also the value of the maximum number of non-router NASIDs
113 * in the numalink fabric.
114 *
115 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
116 */
117#define UV_MAX_NUMALINK_BLADES	16384
118
119/*
120 * Maximum number of C/Mbricks within a software SSI (hardware may support
121 * more).
122 */
123#define UV_MAX_SSI_BLADES	256
124
125/*
126 * The largest possible NASID of a C or M brick (+ 2)
127 */
128#define UV_MAX_NASID_VALUE	(UV_MAX_NUMALINK_BLADES * 2)
129
130struct uv_scir_s {
131	struct timer_list timer;
132	unsigned long	offset;
133	unsigned long	last;
134	unsigned long	idle_on;
135	unsigned long	idle_off;
136	unsigned char	state;
137	unsigned char	enabled;
138};
139
140/*
141 * The following defines attributes of the HUB chip. These attributes are
142 * frequently referenced and are kept in the per-cpu data areas of each cpu.
143 * They are kept together in a struct to minimize cache misses.
144 */
145struct uv_hub_info_s {
146	unsigned long		global_mmr_base;
147	unsigned long		gpa_mask;
148	unsigned int		gnode_extra;
149	unsigned char		hub_revision;
150	unsigned char		apic_pnode_shift;
151	unsigned char		m_shift;
152	unsigned char		n_lshift;
153	unsigned long		gnode_upper;
154	unsigned long		lowmem_remap_top;
155	unsigned long		lowmem_remap_base;
156	unsigned short		pnode;
157	unsigned short		pnode_mask;
158	unsigned short		coherency_domain_number;
159	unsigned short		numa_blade_id;
160	unsigned char		blade_processor_id;
161	unsigned char		m_val;
162	unsigned char		n_val;
163	struct uv_scir_s	scir;
164};
165
166DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
167#define uv_hub_info		this_cpu_ptr(&__uv_hub_info)
168#define uv_cpu_hub_info(cpu)	(&per_cpu(__uv_hub_info, cpu))
169
170/*
171 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
172 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
173 * This is a software convention - NOT the hardware revision numbers in
174 * the hub chip.
175 */
176#define UV1_HUB_REVISION_BASE		1
177#define UV2_HUB_REVISION_BASE		3
178#define UV3_HUB_REVISION_BASE		5
179
180static inline int is_uv1_hub(void)
181{
182	return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
183}
184
185static inline int is_uv2_hub(void)
186{
187	return ((uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE) &&
188		(uv_hub_info->hub_revision < UV3_HUB_REVISION_BASE));
189}
190
191static inline int is_uv3_hub(void)
192{
193	return uv_hub_info->hub_revision >= UV3_HUB_REVISION_BASE;
194}
195
196static inline int is_uv_hub(void)
197{
198	return uv_hub_info->hub_revision;
199}
200
201/* code common to uv2 and uv3 only */
202static inline int is_uvx_hub(void)
203{
204	return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
205}
206
207union uvh_apicid {
208    unsigned long       v;
209    struct uvh_apicid_s {
210        unsigned long   local_apic_mask  : 24;
211        unsigned long   local_apic_shift :  5;
212        unsigned long   unused1          :  3;
213        unsigned long   pnode_mask       : 24;
214        unsigned long   pnode_shift      :  5;
215        unsigned long   unused2          :  3;
216    } s;
217};
218
219/*
220 * Local & Global MMR space macros.
221 *	Note: macros are intended to be used ONLY by inline functions
222 *	in this file - not by other kernel code.
223 *		n -  NASID (full 15-bit global nasid)
224 *		g -  GNODE (full 15-bit global nasid, right shifted 1)
225 *		p -  PNODE (local part of nsids, right shifted 1)
226 */
227#define UV_NASID_TO_PNODE(n)		(((n) >> 1) & uv_hub_info->pnode_mask)
228#define UV_PNODE_TO_GNODE(p)		((p) |uv_hub_info->gnode_extra)
229#define UV_PNODE_TO_NASID(p)		(UV_PNODE_TO_GNODE(p) << 1)
230
231#define UV1_LOCAL_MMR_BASE		0xf4000000UL
232#define UV1_GLOBAL_MMR32_BASE		0xf8000000UL
233#define UV1_LOCAL_MMR_SIZE		(64UL * 1024 * 1024)
234#define UV1_GLOBAL_MMR32_SIZE		(64UL * 1024 * 1024)
235
236#define UV2_LOCAL_MMR_BASE		0xfa000000UL
237#define UV2_GLOBAL_MMR32_BASE		0xfc000000UL
238#define UV2_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
239#define UV2_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
240
241#define UV3_LOCAL_MMR_BASE		0xfa000000UL
242#define UV3_GLOBAL_MMR32_BASE		0xfc000000UL
243#define UV3_LOCAL_MMR_SIZE		(32UL * 1024 * 1024)
244#define UV3_GLOBAL_MMR32_SIZE		(32UL * 1024 * 1024)
245
246#define UV_LOCAL_MMR_BASE		(is_uv1_hub() ? UV1_LOCAL_MMR_BASE : \
247					(is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \
248							UV3_LOCAL_MMR_BASE))
249#define UV_GLOBAL_MMR32_BASE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE :\
250					(is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE :\
251							UV3_GLOBAL_MMR32_BASE))
252#define UV_LOCAL_MMR_SIZE		(is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
253					(is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \
254							UV3_LOCAL_MMR_SIZE))
255#define UV_GLOBAL_MMR32_SIZE		(is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
256					(is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE :\
257							UV3_GLOBAL_MMR32_SIZE))
258#define UV_GLOBAL_MMR64_BASE		(uv_hub_info->global_mmr_base)
259
260#define UV_GLOBAL_GRU_MMR_BASE		0x4000000
261
262#define UV_GLOBAL_MMR32_PNODE_SHIFT	15
263#define UV_GLOBAL_MMR64_PNODE_SHIFT	26
264
265#define UV_GLOBAL_MMR32_PNODE_BITS(p)	((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
266
267#define UV_GLOBAL_MMR64_PNODE_BITS(p)					\
268	(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
269
270#define UVH_APICID		0x002D0E00L
271#define UV_APIC_PNODE_SHIFT	6
272
273#define UV_APICID_HIBIT_MASK	0xffff0000
274
275/* Local Bus from cpu's perspective */
276#define LOCAL_BUS_BASE		0x1c00000
277#define LOCAL_BUS_SIZE		(4 * 1024 * 1024)
278
279/*
280 * System Controller Interface Reg
281 *
282 * Note there are NO leds on a UV system.  This register is only
283 * used by the system controller to monitor system-wide operation.
284 * There are 64 regs per node.  With Nahelem cpus (2 cores per node,
285 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
286 * a node.
287 *
288 * The window is located at top of ACPI MMR space
289 */
290#define SCIR_WINDOW_COUNT	64
291#define SCIR_LOCAL_MMR_BASE	(LOCAL_BUS_BASE + \
292				 LOCAL_BUS_SIZE - \
293				 SCIR_WINDOW_COUNT)
294
295#define SCIR_CPU_HEARTBEAT	0x01	/* timer interrupt */
296#define SCIR_CPU_ACTIVITY	0x02	/* not idle */
297#define SCIR_CPU_HB_INTERVAL	(HZ)	/* once per second */
298
299/* Loop through all installed blades */
300#define for_each_possible_blade(bid)		\
301	for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
302
303/*
304 * Macros for converting between kernel virtual addresses, socket local physical
305 * addresses, and UV global physical addresses.
306 *	Note: use the standard __pa() & __va() macros for converting
307 *	      between socket virtual and socket physical addresses.
308 */
309
310/* socket phys RAM --> UV global physical address */
311static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
312{
313	if (paddr < uv_hub_info->lowmem_remap_top)
314		paddr |= uv_hub_info->lowmem_remap_base;
315	paddr |= uv_hub_info->gnode_upper;
316	paddr = ((paddr << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
317		((paddr >> uv_hub_info->m_val) << uv_hub_info->n_lshift);
318	return paddr;
319}
320
321
322/* socket virtual --> UV global physical address */
323static inline unsigned long uv_gpa(void *v)
324{
325	return uv_soc_phys_ram_to_gpa(__pa(v));
326}
327
328/* Top two bits indicate the requested address is in MMR space.  */
329static inline int
330uv_gpa_in_mmr_space(unsigned long gpa)
331{
332	return (gpa >> 62) == 0x3UL;
333}
334
335/* UV global physical address --> socket phys RAM */
336static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
337{
338	unsigned long paddr;
339	unsigned long remap_base = uv_hub_info->lowmem_remap_base;
340	unsigned long remap_top =  uv_hub_info->lowmem_remap_top;
341
342	gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
343		((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
344	paddr = gpa & uv_hub_info->gpa_mask;
345	if (paddr >= remap_base && paddr < remap_base + remap_top)
346		paddr -= remap_base;
347	return paddr;
348}
349
350
351/* gpa -> pnode */
352static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
353{
354	return gpa >> uv_hub_info->n_lshift;
355}
356
357/* gpa -> pnode */
358static inline int uv_gpa_to_pnode(unsigned long gpa)
359{
360	unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
361
362	return uv_gpa_to_gnode(gpa) & n_mask;
363}
364
365/* gpa -> node offset*/
366static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
367{
368	return (gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift;
369}
370
371/* pnode, offset --> socket virtual */
372static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
373{
374	return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
375}
376
377
378/*
379 * Extract a PNODE from an APICID (full apicid, not processor subset)
380 */
381static inline int uv_apicid_to_pnode(int apicid)
382{
383	return (apicid >> uv_hub_info->apic_pnode_shift);
384}
385
386/*
387 * Convert an apicid to the socket number on the blade
388 */
389static inline int uv_apicid_to_socket(int apicid)
390{
391	if (is_uv1_hub())
392		return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
393	else
394		return 0;
395}
396
397/*
398 * Access global MMRs using the low memory MMR32 space. This region supports
399 * faster MMR access but not all MMRs are accessible in this space.
400 */
401static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
402{
403	return __va(UV_GLOBAL_MMR32_BASE |
404		       UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
405}
406
407static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
408{
409	writeq(val, uv_global_mmr32_address(pnode, offset));
410}
411
412static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
413{
414	return readq(uv_global_mmr32_address(pnode, offset));
415}
416
417/*
418 * Access Global MMR space using the MMR space located at the top of physical
419 * memory.
420 */
421static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
422{
423	return __va(UV_GLOBAL_MMR64_BASE |
424		    UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
425}
426
427static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
428{
429	writeq(val, uv_global_mmr64_address(pnode, offset));
430}
431
432static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
433{
434	return readq(uv_global_mmr64_address(pnode, offset));
435}
436
437/*
438 * Global MMR space addresses when referenced by the GRU. (GRU does
439 * NOT use socket addressing).
440 */
441static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
442{
443	return UV_GLOBAL_GRU_MMR_BASE | offset |
444		((unsigned long)pnode << uv_hub_info->m_val);
445}
446
447static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
448{
449	writeb(val, uv_global_mmr64_address(pnode, offset));
450}
451
452static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
453{
454	return readb(uv_global_mmr64_address(pnode, offset));
455}
456
457/*
458 * Access hub local MMRs. Faster than using global space but only local MMRs
459 * are accessible.
460 */
461static inline unsigned long *uv_local_mmr_address(unsigned long offset)
462{
463	return __va(UV_LOCAL_MMR_BASE | offset);
464}
465
466static inline unsigned long uv_read_local_mmr(unsigned long offset)
467{
468	return readq(uv_local_mmr_address(offset));
469}
470
471static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
472{
473	writeq(val, uv_local_mmr_address(offset));
474}
475
476static inline unsigned char uv_read_local_mmr8(unsigned long offset)
477{
478	return readb(uv_local_mmr_address(offset));
479}
480
481static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
482{
483	writeb(val, uv_local_mmr_address(offset));
484}
485
486/*
487 * Structures and definitions for converting between cpu, node, pnode, and blade
488 * numbers.
489 */
490struct uv_blade_info {
491	unsigned short	nr_possible_cpus;
492	unsigned short	nr_online_cpus;
493	unsigned short	pnode;
494	short		memory_nid;
495	spinlock_t	nmi_lock;	/* obsolete, see uv_hub_nmi */
496	unsigned long	nmi_count;	/* obsolete, see uv_hub_nmi */
497};
498extern struct uv_blade_info *uv_blade_info;
499extern short *uv_node_to_blade;
500extern short *uv_cpu_to_blade;
501extern short uv_possible_blades;
502
503/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
504static inline int uv_blade_processor_id(void)
505{
506	return uv_hub_info->blade_processor_id;
507}
508
509/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
510static inline int uv_numa_blade_id(void)
511{
512	return uv_hub_info->numa_blade_id;
513}
514
515/* Convert a cpu number to the the UV blade number */
516static inline int uv_cpu_to_blade_id(int cpu)
517{
518	return uv_cpu_to_blade[cpu];
519}
520
521/* Convert linux node number to the UV blade number */
522static inline int uv_node_to_blade_id(int nid)
523{
524	return uv_node_to_blade[nid];
525}
526
527/* Convert a blade id to the PNODE of the blade */
528static inline int uv_blade_to_pnode(int bid)
529{
530	return uv_blade_info[bid].pnode;
531}
532
533/* Nid of memory node on blade. -1 if no blade-local memory */
534static inline int uv_blade_to_memory_nid(int bid)
535{
536	return uv_blade_info[bid].memory_nid;
537}
538
539/* Determine the number of possible cpus on a blade */
540static inline int uv_blade_nr_possible_cpus(int bid)
541{
542	return uv_blade_info[bid].nr_possible_cpus;
543}
544
545/* Determine the number of online cpus on a blade */
546static inline int uv_blade_nr_online_cpus(int bid)
547{
548	return uv_blade_info[bid].nr_online_cpus;
549}
550
551/* Convert a cpu id to the PNODE of the blade containing the cpu */
552static inline int uv_cpu_to_pnode(int cpu)
553{
554	return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
555}
556
557/* Convert a linux node number to the PNODE of the blade */
558static inline int uv_node_to_pnode(int nid)
559{
560	return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
561}
562
563/* Maximum possible number of blades */
564static inline int uv_num_possible_blades(void)
565{
566	return uv_possible_blades;
567}
568
569/* Per Hub NMI support */
570extern void uv_nmi_setup(void);
571
572/* BMC sets a bit this MMR non-zero before sending an NMI */
573#define UVH_NMI_MMR		UVH_SCRATCH5
574#define UVH_NMI_MMR_CLEAR	UVH_SCRATCH5_ALIAS
575#define UVH_NMI_MMR_SHIFT	63
576#define	UVH_NMI_MMR_TYPE	"SCRATCH5"
577
578/* Newer SMM NMI handler, not present in all systems */
579#define UVH_NMI_MMRX		UVH_EVENT_OCCURRED0
580#define UVH_NMI_MMRX_CLEAR	UVH_EVENT_OCCURRED0_ALIAS
581#define UVH_NMI_MMRX_SHIFT	(is_uv1_hub() ? \
582					UV1H_EVENT_OCCURRED0_EXTIO_INT0_SHFT :\
583					UVXH_EVENT_OCCURRED0_EXTIO_INT0_SHFT)
584#define	UVH_NMI_MMRX_TYPE	"EXTIO_INT0"
585
586/* Non-zero indicates newer SMM NMI handler present */
587#define UVH_NMI_MMRX_SUPPORTED	UVH_EXTIO_INT0_BROADCAST
588
589/* Indicates to BIOS that we want to use the newer SMM NMI handler */
590#define UVH_NMI_MMRX_REQ	UVH_SCRATCH5_ALIAS_2
591#define UVH_NMI_MMRX_REQ_SHIFT	62
592
593struct uv_hub_nmi_s {
594	raw_spinlock_t	nmi_lock;
595	atomic_t	in_nmi;		/* flag this node in UV NMI IRQ */
596	atomic_t	cpu_owner;	/* last locker of this struct */
597	atomic_t	read_mmr_count;	/* count of MMR reads */
598	atomic_t	nmi_count;	/* count of true UV NMIs */
599	unsigned long	nmi_value;	/* last value read from NMI MMR */
600};
601
602struct uv_cpu_nmi_s {
603	struct uv_hub_nmi_s	*hub;
604	int			state;
605	int			pinging;
606	int			queries;
607	int			pings;
608};
609
610DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
611
612#define uv_hub_nmi			(uv_cpu_nmi.hub)
613#define uv_cpu_nmi_per(cpu)		(per_cpu(uv_cpu_nmi, cpu))
614#define uv_hub_nmi_per(cpu)		(uv_cpu_nmi_per(cpu).hub)
615
616/* uv_cpu_nmi_states */
617#define	UV_NMI_STATE_OUT		0
618#define	UV_NMI_STATE_IN			1
619#define	UV_NMI_STATE_DUMP		2
620#define	UV_NMI_STATE_DUMP_DONE		3
621
622/* Update SCIR state */
623static inline void uv_set_scir_bits(unsigned char value)
624{
625	if (uv_hub_info->scir.state != value) {
626		uv_hub_info->scir.state = value;
627		uv_write_local_mmr8(uv_hub_info->scir.offset, value);
628	}
629}
630
631static inline unsigned long uv_scir_offset(int apicid)
632{
633	return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
634}
635
636static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
637{
638	if (uv_cpu_hub_info(cpu)->scir.state != value) {
639		uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
640				uv_cpu_hub_info(cpu)->scir.offset, value);
641		uv_cpu_hub_info(cpu)->scir.state = value;
642	}
643}
644
645extern unsigned int uv_apicid_hibits;
646static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
647{
648	apicid |= uv_apicid_hibits;
649	return (1UL << UVH_IPI_INT_SEND_SHFT) |
650			((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
651			(mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
652			(vector << UVH_IPI_INT_VECTOR_SHFT);
653}
654
655static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
656{
657	unsigned long val;
658	unsigned long dmode = dest_Fixed;
659
660	if (vector == NMI_VECTOR)
661		dmode = dest_NMI;
662
663	val = uv_hub_ipi_value(apicid, vector, dmode);
664	uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
665}
666
667/*
668 * Get the minimum revision number of the hub chips within the partition.
669 *     1 - UV1 rev 1.0 initial silicon
670 *     2 - UV1 rev 2.0 production silicon
671 *     3 - UV2 rev 1.0 initial silicon
672 *     5 - UV3 rev 1.0 initial silicon
673 */
674static inline int uv_get_min_hub_revision_id(void)
675{
676	return uv_hub_info->hub_revision;
677}
678
679#endif /* CONFIG_X86_64 */
680#endif /* _ASM_X86_UV_UV_HUB_H */
681