1/*
2 * Intel Cache Quality-of-Service Monitoring (CQM) support.
3 *
4 * Based very, very heavily on work by Peter Zijlstra.
5 */
6
7#include <linux/perf_event.h>
8#include <linux/slab.h>
9#include <asm/cpu_device_id.h>
10#include "perf_event.h"
11
12#define MSR_IA32_PQR_ASSOC	0x0c8f
13#define MSR_IA32_QM_CTR		0x0c8e
14#define MSR_IA32_QM_EVTSEL	0x0c8d
15
16static unsigned int cqm_max_rmid = -1;
17static unsigned int cqm_l3_scale; /* supposedly cacheline size */
18
19struct intel_cqm_state {
20	raw_spinlock_t		lock;
21	int			rmid;
22	int			cnt;
23};
24
25static DEFINE_PER_CPU(struct intel_cqm_state, cqm_state);
26
27/*
28 * Protects cache_cgroups and cqm_rmid_free_lru and cqm_rmid_limbo_lru.
29 * Also protects event->hw.cqm_rmid
30 *
31 * Hold either for stability, both for modification of ->hw.cqm_rmid.
32 */
33static DEFINE_MUTEX(cache_mutex);
34static DEFINE_RAW_SPINLOCK(cache_lock);
35
36/*
37 * Groups of events that have the same target(s), one RMID per group.
38 */
39static LIST_HEAD(cache_groups);
40
41/*
42 * Mask of CPUs for reading CQM values. We only need one per-socket.
43 */
44static cpumask_t cqm_cpumask;
45
46#define RMID_VAL_ERROR		(1ULL << 63)
47#define RMID_VAL_UNAVAIL	(1ULL << 62)
48
49#define QOS_L3_OCCUP_EVENT_ID	(1 << 0)
50
51#define QOS_EVENT_MASK	QOS_L3_OCCUP_EVENT_ID
52
53/*
54 * This is central to the rotation algorithm in __intel_cqm_rmid_rotate().
55 *
56 * This rmid is always free and is guaranteed to have an associated
57 * near-zero occupancy value, i.e. no cachelines are tagged with this
58 * RMID, once __intel_cqm_rmid_rotate() returns.
59 */
60static unsigned int intel_cqm_rotation_rmid;
61
62#define INVALID_RMID		(-1)
63
64/*
65 * Is @rmid valid for programming the hardware?
66 *
67 * rmid 0 is reserved by the hardware for all non-monitored tasks, which
68 * means that we should never come across an rmid with that value.
69 * Likewise, an rmid value of -1 is used to indicate "no rmid currently
70 * assigned" and is used as part of the rotation code.
71 */
72static inline bool __rmid_valid(unsigned int rmid)
73{
74	if (!rmid || rmid == INVALID_RMID)
75		return false;
76
77	return true;
78}
79
80static u64 __rmid_read(unsigned int rmid)
81{
82	u64 val;
83
84	/*
85	 * Ignore the SDM, this thing is _NOTHING_ like a regular perfcnt,
86	 * it just says that to increase confusion.
87	 */
88	wrmsr(MSR_IA32_QM_EVTSEL, QOS_L3_OCCUP_EVENT_ID, rmid);
89	rdmsrl(MSR_IA32_QM_CTR, val);
90
91	/*
92	 * Aside from the ERROR and UNAVAIL bits, assume this thing returns
93	 * the number of cachelines tagged with @rmid.
94	 */
95	return val;
96}
97
98enum rmid_recycle_state {
99	RMID_YOUNG = 0,
100	RMID_AVAILABLE,
101	RMID_DIRTY,
102};
103
104struct cqm_rmid_entry {
105	unsigned int rmid;
106	enum rmid_recycle_state state;
107	struct list_head list;
108	unsigned long queue_time;
109};
110
111/*
112 * cqm_rmid_free_lru - A least recently used list of RMIDs.
113 *
114 * Oldest entry at the head, newest (most recently used) entry at the
115 * tail. This list is never traversed, it's only used to keep track of
116 * the lru order. That is, we only pick entries of the head or insert
117 * them on the tail.
118 *
119 * All entries on the list are 'free', and their RMIDs are not currently
120 * in use. To mark an RMID as in use, remove its entry from the lru
121 * list.
122 *
123 *
124 * cqm_rmid_limbo_lru - list of currently unused but (potentially) dirty RMIDs.
125 *
126 * This list is contains RMIDs that no one is currently using but that
127 * may have a non-zero occupancy value associated with them. The
128 * rotation worker moves RMIDs from the limbo list to the free list once
129 * the occupancy value drops below __intel_cqm_threshold.
130 *
131 * Both lists are protected by cache_mutex.
132 */
133static LIST_HEAD(cqm_rmid_free_lru);
134static LIST_HEAD(cqm_rmid_limbo_lru);
135
136/*
137 * We use a simple array of pointers so that we can lookup a struct
138 * cqm_rmid_entry in O(1). This alleviates the callers of __get_rmid()
139 * and __put_rmid() from having to worry about dealing with struct
140 * cqm_rmid_entry - they just deal with rmids, i.e. integers.
141 *
142 * Once this array is initialized it is read-only. No locks are required
143 * to access it.
144 *
145 * All entries for all RMIDs can be looked up in the this array at all
146 * times.
147 */
148static struct cqm_rmid_entry **cqm_rmid_ptrs;
149
150static inline struct cqm_rmid_entry *__rmid_entry(int rmid)
151{
152	struct cqm_rmid_entry *entry;
153
154	entry = cqm_rmid_ptrs[rmid];
155	WARN_ON(entry->rmid != rmid);
156
157	return entry;
158}
159
160/*
161 * Returns < 0 on fail.
162 *
163 * We expect to be called with cache_mutex held.
164 */
165static int __get_rmid(void)
166{
167	struct cqm_rmid_entry *entry;
168
169	lockdep_assert_held(&cache_mutex);
170
171	if (list_empty(&cqm_rmid_free_lru))
172		return INVALID_RMID;
173
174	entry = list_first_entry(&cqm_rmid_free_lru, struct cqm_rmid_entry, list);
175	list_del(&entry->list);
176
177	return entry->rmid;
178}
179
180static void __put_rmid(unsigned int rmid)
181{
182	struct cqm_rmid_entry *entry;
183
184	lockdep_assert_held(&cache_mutex);
185
186	WARN_ON(!__rmid_valid(rmid));
187	entry = __rmid_entry(rmid);
188
189	entry->queue_time = jiffies;
190	entry->state = RMID_YOUNG;
191
192	list_add_tail(&entry->list, &cqm_rmid_limbo_lru);
193}
194
195static int intel_cqm_setup_rmid_cache(void)
196{
197	struct cqm_rmid_entry *entry;
198	unsigned int nr_rmids;
199	int r = 0;
200
201	nr_rmids = cqm_max_rmid + 1;
202	cqm_rmid_ptrs = kmalloc(sizeof(struct cqm_rmid_entry *) *
203				nr_rmids, GFP_KERNEL);
204	if (!cqm_rmid_ptrs)
205		return -ENOMEM;
206
207	for (; r <= cqm_max_rmid; r++) {
208		struct cqm_rmid_entry *entry;
209
210		entry = kmalloc(sizeof(*entry), GFP_KERNEL);
211		if (!entry)
212			goto fail;
213
214		INIT_LIST_HEAD(&entry->list);
215		entry->rmid = r;
216		cqm_rmid_ptrs[r] = entry;
217
218		list_add_tail(&entry->list, &cqm_rmid_free_lru);
219	}
220
221	/*
222	 * RMID 0 is special and is always allocated. It's used for all
223	 * tasks that are not monitored.
224	 */
225	entry = __rmid_entry(0);
226	list_del(&entry->list);
227
228	mutex_lock(&cache_mutex);
229	intel_cqm_rotation_rmid = __get_rmid();
230	mutex_unlock(&cache_mutex);
231
232	return 0;
233fail:
234	while (r--)
235		kfree(cqm_rmid_ptrs[r]);
236
237	kfree(cqm_rmid_ptrs);
238	return -ENOMEM;
239}
240
241/*
242 * Determine if @a and @b measure the same set of tasks.
243 *
244 * If @a and @b measure the same set of tasks then we want to share a
245 * single RMID.
246 */
247static bool __match_event(struct perf_event *a, struct perf_event *b)
248{
249	/* Per-cpu and task events don't mix */
250	if ((a->attach_state & PERF_ATTACH_TASK) !=
251	    (b->attach_state & PERF_ATTACH_TASK))
252		return false;
253
254#ifdef CONFIG_CGROUP_PERF
255	if (a->cgrp != b->cgrp)
256		return false;
257#endif
258
259	/* If not task event, we're machine wide */
260	if (!(b->attach_state & PERF_ATTACH_TASK))
261		return true;
262
263	/*
264	 * Events that target same task are placed into the same cache group.
265	 */
266	if (a->hw.target == b->hw.target)
267		return true;
268
269	/*
270	 * Are we an inherited event?
271	 */
272	if (b->parent == a)
273		return true;
274
275	return false;
276}
277
278#ifdef CONFIG_CGROUP_PERF
279static inline struct perf_cgroup *event_to_cgroup(struct perf_event *event)
280{
281	if (event->attach_state & PERF_ATTACH_TASK)
282		return perf_cgroup_from_task(event->hw.target);
283
284	return event->cgrp;
285}
286#endif
287
288/*
289 * Determine if @a's tasks intersect with @b's tasks
290 *
291 * There are combinations of events that we explicitly prohibit,
292 *
293 *		   PROHIBITS
294 *     system-wide    -> 	cgroup and task
295 *     cgroup 	      ->	system-wide
296 *     		      ->	task in cgroup
297 *     task 	      -> 	system-wide
298 *     		      ->	task in cgroup
299 *
300 * Call this function before allocating an RMID.
301 */
302static bool __conflict_event(struct perf_event *a, struct perf_event *b)
303{
304#ifdef CONFIG_CGROUP_PERF
305	/*
306	 * We can have any number of cgroups but only one system-wide
307	 * event at a time.
308	 */
309	if (a->cgrp && b->cgrp) {
310		struct perf_cgroup *ac = a->cgrp;
311		struct perf_cgroup *bc = b->cgrp;
312
313		/*
314		 * This condition should have been caught in
315		 * __match_event() and we should be sharing an RMID.
316		 */
317		WARN_ON_ONCE(ac == bc);
318
319		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
320		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
321			return true;
322
323		return false;
324	}
325
326	if (a->cgrp || b->cgrp) {
327		struct perf_cgroup *ac, *bc;
328
329		/*
330		 * cgroup and system-wide events are mutually exclusive
331		 */
332		if ((a->cgrp && !(b->attach_state & PERF_ATTACH_TASK)) ||
333		    (b->cgrp && !(a->attach_state & PERF_ATTACH_TASK)))
334			return true;
335
336		/*
337		 * Ensure neither event is part of the other's cgroup
338		 */
339		ac = event_to_cgroup(a);
340		bc = event_to_cgroup(b);
341		if (ac == bc)
342			return true;
343
344		/*
345		 * Must have cgroup and non-intersecting task events.
346		 */
347		if (!ac || !bc)
348			return false;
349
350		/*
351		 * We have cgroup and task events, and the task belongs
352		 * to a cgroup. Check for for overlap.
353		 */
354		if (cgroup_is_descendant(ac->css.cgroup, bc->css.cgroup) ||
355		    cgroup_is_descendant(bc->css.cgroup, ac->css.cgroup))
356			return true;
357
358		return false;
359	}
360#endif
361	/*
362	 * If one of them is not a task, same story as above with cgroups.
363	 */
364	if (!(a->attach_state & PERF_ATTACH_TASK) ||
365	    !(b->attach_state & PERF_ATTACH_TASK))
366		return true;
367
368	/*
369	 * Must be non-overlapping.
370	 */
371	return false;
372}
373
374struct rmid_read {
375	unsigned int rmid;
376	atomic64_t value;
377};
378
379static void __intel_cqm_event_count(void *info);
380
381/*
382 * Exchange the RMID of a group of events.
383 */
384static unsigned int
385intel_cqm_xchg_rmid(struct perf_event *group, unsigned int rmid)
386{
387	struct perf_event *event;
388	unsigned int old_rmid = group->hw.cqm_rmid;
389	struct list_head *head = &group->hw.cqm_group_entry;
390
391	lockdep_assert_held(&cache_mutex);
392
393	/*
394	 * If our RMID is being deallocated, perform a read now.
395	 */
396	if (__rmid_valid(old_rmid) && !__rmid_valid(rmid)) {
397		struct rmid_read rr = {
398			.value = ATOMIC64_INIT(0),
399			.rmid = old_rmid,
400		};
401
402		on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count,
403				 &rr, 1);
404		local64_set(&group->count, atomic64_read(&rr.value));
405	}
406
407	raw_spin_lock_irq(&cache_lock);
408
409	group->hw.cqm_rmid = rmid;
410	list_for_each_entry(event, head, hw.cqm_group_entry)
411		event->hw.cqm_rmid = rmid;
412
413	raw_spin_unlock_irq(&cache_lock);
414
415	return old_rmid;
416}
417
418/*
419 * If we fail to assign a new RMID for intel_cqm_rotation_rmid because
420 * cachelines are still tagged with RMIDs in limbo, we progressively
421 * increment the threshold until we find an RMID in limbo with <=
422 * __intel_cqm_threshold lines tagged. This is designed to mitigate the
423 * problem where cachelines tagged with an RMID are not steadily being
424 * evicted.
425 *
426 * On successful rotations we decrease the threshold back towards zero.
427 *
428 * __intel_cqm_max_threshold provides an upper bound on the threshold,
429 * and is measured in bytes because it's exposed to userland.
430 */
431static unsigned int __intel_cqm_threshold;
432static unsigned int __intel_cqm_max_threshold;
433
434/*
435 * Test whether an RMID has a zero occupancy value on this cpu.
436 */
437static void intel_cqm_stable(void *arg)
438{
439	struct cqm_rmid_entry *entry;
440
441	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
442		if (entry->state != RMID_AVAILABLE)
443			break;
444
445		if (__rmid_read(entry->rmid) > __intel_cqm_threshold)
446			entry->state = RMID_DIRTY;
447	}
448}
449
450/*
451 * If we have group events waiting for an RMID that don't conflict with
452 * events already running, assign @rmid.
453 */
454static bool intel_cqm_sched_in_event(unsigned int rmid)
455{
456	struct perf_event *leader, *event;
457
458	lockdep_assert_held(&cache_mutex);
459
460	leader = list_first_entry(&cache_groups, struct perf_event,
461				  hw.cqm_groups_entry);
462	event = leader;
463
464	list_for_each_entry_continue(event, &cache_groups,
465				     hw.cqm_groups_entry) {
466		if (__rmid_valid(event->hw.cqm_rmid))
467			continue;
468
469		if (__conflict_event(event, leader))
470			continue;
471
472		intel_cqm_xchg_rmid(event, rmid);
473		return true;
474	}
475
476	return false;
477}
478
479/*
480 * Initially use this constant for both the limbo queue time and the
481 * rotation timer interval, pmu::hrtimer_interval_ms.
482 *
483 * They don't need to be the same, but the two are related since if you
484 * rotate faster than you recycle RMIDs, you may run out of available
485 * RMIDs.
486 */
487#define RMID_DEFAULT_QUEUE_TIME 250	/* ms */
488
489static unsigned int __rmid_queue_time_ms = RMID_DEFAULT_QUEUE_TIME;
490
491/*
492 * intel_cqm_rmid_stabilize - move RMIDs from limbo to free list
493 * @nr_available: number of freeable RMIDs on the limbo list
494 *
495 * Quiescent state; wait for all 'freed' RMIDs to become unused, i.e. no
496 * cachelines are tagged with those RMIDs. After this we can reuse them
497 * and know that the current set of active RMIDs is stable.
498 *
499 * Return %true or %false depending on whether stabilization needs to be
500 * reattempted.
501 *
502 * If we return %true then @nr_available is updated to indicate the
503 * number of RMIDs on the limbo list that have been queued for the
504 * minimum queue time (RMID_AVAILABLE), but whose data occupancy values
505 * are above __intel_cqm_threshold.
506 */
507static bool intel_cqm_rmid_stabilize(unsigned int *available)
508{
509	struct cqm_rmid_entry *entry, *tmp;
510
511	lockdep_assert_held(&cache_mutex);
512
513	*available = 0;
514	list_for_each_entry(entry, &cqm_rmid_limbo_lru, list) {
515		unsigned long min_queue_time;
516		unsigned long now = jiffies;
517
518		/*
519		 * We hold RMIDs placed into limbo for a minimum queue
520		 * time. Before the minimum queue time has elapsed we do
521		 * not recycle RMIDs.
522		 *
523		 * The reasoning is that until a sufficient time has
524		 * passed since we stopped using an RMID, any RMID
525		 * placed onto the limbo list will likely still have
526		 * data tagged in the cache, which means we'll probably
527		 * fail to recycle it anyway.
528		 *
529		 * We can save ourselves an expensive IPI by skipping
530		 * any RMIDs that have not been queued for the minimum
531		 * time.
532		 */
533		min_queue_time = entry->queue_time +
534			msecs_to_jiffies(__rmid_queue_time_ms);
535
536		if (time_after(min_queue_time, now))
537			break;
538
539		entry->state = RMID_AVAILABLE;
540		(*available)++;
541	}
542
543	/*
544	 * Fast return if none of the RMIDs on the limbo list have been
545	 * sitting on the queue for the minimum queue time.
546	 */
547	if (!*available)
548		return false;
549
550	/*
551	 * Test whether an RMID is free for each package.
552	 */
553	on_each_cpu_mask(&cqm_cpumask, intel_cqm_stable, NULL, true);
554
555	list_for_each_entry_safe(entry, tmp, &cqm_rmid_limbo_lru, list) {
556		/*
557		 * Exhausted all RMIDs that have waited min queue time.
558		 */
559		if (entry->state == RMID_YOUNG)
560			break;
561
562		if (entry->state == RMID_DIRTY)
563			continue;
564
565		list_del(&entry->list);	/* remove from limbo */
566
567		/*
568		 * The rotation RMID gets priority if it's
569		 * currently invalid. In which case, skip adding
570		 * the RMID to the the free lru.
571		 */
572		if (!__rmid_valid(intel_cqm_rotation_rmid)) {
573			intel_cqm_rotation_rmid = entry->rmid;
574			continue;
575		}
576
577		/*
578		 * If we have groups waiting for RMIDs, hand
579		 * them one now provided they don't conflict.
580		 */
581		if (intel_cqm_sched_in_event(entry->rmid))
582			continue;
583
584		/*
585		 * Otherwise place it onto the free list.
586		 */
587		list_add_tail(&entry->list, &cqm_rmid_free_lru);
588	}
589
590
591	return __rmid_valid(intel_cqm_rotation_rmid);
592}
593
594/*
595 * Pick a victim group and move it to the tail of the group list.
596 * @next: The first group without an RMID
597 */
598static void __intel_cqm_pick_and_rotate(struct perf_event *next)
599{
600	struct perf_event *rotor;
601	unsigned int rmid;
602
603	lockdep_assert_held(&cache_mutex);
604
605	rotor = list_first_entry(&cache_groups, struct perf_event,
606				 hw.cqm_groups_entry);
607
608	/*
609	 * The group at the front of the list should always have a valid
610	 * RMID. If it doesn't then no groups have RMIDs assigned and we
611	 * don't need to rotate the list.
612	 */
613	if (next == rotor)
614		return;
615
616	rmid = intel_cqm_xchg_rmid(rotor, INVALID_RMID);
617	__put_rmid(rmid);
618
619	list_rotate_left(&cache_groups);
620}
621
622/*
623 * Deallocate the RMIDs from any events that conflict with @event, and
624 * place them on the back of the group list.
625 */
626static void intel_cqm_sched_out_conflicting_events(struct perf_event *event)
627{
628	struct perf_event *group, *g;
629	unsigned int rmid;
630
631	lockdep_assert_held(&cache_mutex);
632
633	list_for_each_entry_safe(group, g, &cache_groups, hw.cqm_groups_entry) {
634		if (group == event)
635			continue;
636
637		rmid = group->hw.cqm_rmid;
638
639		/*
640		 * Skip events that don't have a valid RMID.
641		 */
642		if (!__rmid_valid(rmid))
643			continue;
644
645		/*
646		 * No conflict? No problem! Leave the event alone.
647		 */
648		if (!__conflict_event(group, event))
649			continue;
650
651		intel_cqm_xchg_rmid(group, INVALID_RMID);
652		__put_rmid(rmid);
653	}
654}
655
656/*
657 * Attempt to rotate the groups and assign new RMIDs.
658 *
659 * We rotate for two reasons,
660 *   1. To handle the scheduling of conflicting events
661 *   2. To recycle RMIDs
662 *
663 * Rotating RMIDs is complicated because the hardware doesn't give us
664 * any clues.
665 *
666 * There's problems with the hardware interface; when you change the
667 * task:RMID map cachelines retain their 'old' tags, giving a skewed
668 * picture. In order to work around this, we must always keep one free
669 * RMID - intel_cqm_rotation_rmid.
670 *
671 * Rotation works by taking away an RMID from a group (the old RMID),
672 * and assigning the free RMID to another group (the new RMID). We must
673 * then wait for the old RMID to not be used (no cachelines tagged).
674 * This ensure that all cachelines are tagged with 'active' RMIDs. At
675 * this point we can start reading values for the new RMID and treat the
676 * old RMID as the free RMID for the next rotation.
677 *
678 * Return %true or %false depending on whether we did any rotating.
679 */
680static bool __intel_cqm_rmid_rotate(void)
681{
682	struct perf_event *group, *start = NULL;
683	unsigned int threshold_limit;
684	unsigned int nr_needed = 0;
685	unsigned int nr_available;
686	bool rotated = false;
687
688	mutex_lock(&cache_mutex);
689
690again:
691	/*
692	 * Fast path through this function if there are no groups and no
693	 * RMIDs that need cleaning.
694	 */
695	if (list_empty(&cache_groups) && list_empty(&cqm_rmid_limbo_lru))
696		goto out;
697
698	list_for_each_entry(group, &cache_groups, hw.cqm_groups_entry) {
699		if (!__rmid_valid(group->hw.cqm_rmid)) {
700			if (!start)
701				start = group;
702			nr_needed++;
703		}
704	}
705
706	/*
707	 * We have some event groups, but they all have RMIDs assigned
708	 * and no RMIDs need cleaning.
709	 */
710	if (!nr_needed && list_empty(&cqm_rmid_limbo_lru))
711		goto out;
712
713	if (!nr_needed)
714		goto stabilize;
715
716	/*
717	 * We have more event groups without RMIDs than available RMIDs,
718	 * or we have event groups that conflict with the ones currently
719	 * scheduled.
720	 *
721	 * We force deallocate the rmid of the group at the head of
722	 * cache_groups. The first event group without an RMID then gets
723	 * assigned intel_cqm_rotation_rmid. This ensures we always make
724	 * forward progress.
725	 *
726	 * Rotate the cache_groups list so the previous head is now the
727	 * tail.
728	 */
729	__intel_cqm_pick_and_rotate(start);
730
731	/*
732	 * If the rotation is going to succeed, reduce the threshold so
733	 * that we don't needlessly reuse dirty RMIDs.
734	 */
735	if (__rmid_valid(intel_cqm_rotation_rmid)) {
736		intel_cqm_xchg_rmid(start, intel_cqm_rotation_rmid);
737		intel_cqm_rotation_rmid = __get_rmid();
738
739		intel_cqm_sched_out_conflicting_events(start);
740
741		if (__intel_cqm_threshold)
742			__intel_cqm_threshold--;
743	}
744
745	rotated = true;
746
747stabilize:
748	/*
749	 * We now need to stablize the RMID we freed above (if any) to
750	 * ensure that the next time we rotate we have an RMID with zero
751	 * occupancy value.
752	 *
753	 * Alternatively, if we didn't need to perform any rotation,
754	 * we'll have a bunch of RMIDs in limbo that need stabilizing.
755	 */
756	threshold_limit = __intel_cqm_max_threshold / cqm_l3_scale;
757
758	while (intel_cqm_rmid_stabilize(&nr_available) &&
759	       __intel_cqm_threshold < threshold_limit) {
760		unsigned int steal_limit;
761
762		/*
763		 * Don't spin if nobody is actively waiting for an RMID,
764		 * the rotation worker will be kicked as soon as an
765		 * event needs an RMID anyway.
766		 */
767		if (!nr_needed)
768			break;
769
770		/* Allow max 25% of RMIDs to be in limbo. */
771		steal_limit = (cqm_max_rmid + 1) / 4;
772
773		/*
774		 * We failed to stabilize any RMIDs so our rotation
775		 * logic is now stuck. In order to make forward progress
776		 * we have a few options:
777		 *
778		 *   1. rotate ("steal") another RMID
779		 *   2. increase the threshold
780		 *   3. do nothing
781		 *
782		 * We do both of 1. and 2. until we hit the steal limit.
783		 *
784		 * The steal limit prevents all RMIDs ending up on the
785		 * limbo list. This can happen if every RMID has a
786		 * non-zero occupancy above threshold_limit, and the
787		 * occupancy values aren't dropping fast enough.
788		 *
789		 * Note that there is prioritisation at work here - we'd
790		 * rather increase the number of RMIDs on the limbo list
791		 * than increase the threshold, because increasing the
792		 * threshold skews the event data (because we reuse
793		 * dirty RMIDs) - threshold bumps are a last resort.
794		 */
795		if (nr_available < steal_limit)
796			goto again;
797
798		__intel_cqm_threshold++;
799	}
800
801out:
802	mutex_unlock(&cache_mutex);
803	return rotated;
804}
805
806static void intel_cqm_rmid_rotate(struct work_struct *work);
807
808static DECLARE_DELAYED_WORK(intel_cqm_rmid_work, intel_cqm_rmid_rotate);
809
810static struct pmu intel_cqm_pmu;
811
812static void intel_cqm_rmid_rotate(struct work_struct *work)
813{
814	unsigned long delay;
815
816	__intel_cqm_rmid_rotate();
817
818	delay = msecs_to_jiffies(intel_cqm_pmu.hrtimer_interval_ms);
819	schedule_delayed_work(&intel_cqm_rmid_work, delay);
820}
821
822/*
823 * Find a group and setup RMID.
824 *
825 * If we're part of a group, we use the group's RMID.
826 */
827static void intel_cqm_setup_event(struct perf_event *event,
828				  struct perf_event **group)
829{
830	struct perf_event *iter;
831	unsigned int rmid;
832	bool conflict = false;
833
834	list_for_each_entry(iter, &cache_groups, hw.cqm_groups_entry) {
835		rmid = iter->hw.cqm_rmid;
836
837		if (__match_event(iter, event)) {
838			/* All tasks in a group share an RMID */
839			event->hw.cqm_rmid = rmid;
840			*group = iter;
841			return;
842		}
843
844		/*
845		 * We only care about conflicts for events that are
846		 * actually scheduled in (and hence have a valid RMID).
847		 */
848		if (__conflict_event(iter, event) && __rmid_valid(rmid))
849			conflict = true;
850	}
851
852	if (conflict)
853		rmid = INVALID_RMID;
854	else
855		rmid = __get_rmid();
856
857	event->hw.cqm_rmid = rmid;
858}
859
860static void intel_cqm_event_read(struct perf_event *event)
861{
862	unsigned long flags;
863	unsigned int rmid;
864	u64 val;
865
866	/*
867	 * Task events are handled by intel_cqm_event_count().
868	 */
869	if (event->cpu == -1)
870		return;
871
872	raw_spin_lock_irqsave(&cache_lock, flags);
873	rmid = event->hw.cqm_rmid;
874
875	if (!__rmid_valid(rmid))
876		goto out;
877
878	val = __rmid_read(rmid);
879
880	/*
881	 * Ignore this reading on error states and do not update the value.
882	 */
883	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
884		goto out;
885
886	local64_set(&event->count, val);
887out:
888	raw_spin_unlock_irqrestore(&cache_lock, flags);
889}
890
891static void __intel_cqm_event_count(void *info)
892{
893	struct rmid_read *rr = info;
894	u64 val;
895
896	val = __rmid_read(rr->rmid);
897
898	if (val & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
899		return;
900
901	atomic64_add(val, &rr->value);
902}
903
904static inline bool cqm_group_leader(struct perf_event *event)
905{
906	return !list_empty(&event->hw.cqm_groups_entry);
907}
908
909static u64 intel_cqm_event_count(struct perf_event *event)
910{
911	unsigned long flags;
912	struct rmid_read rr = {
913		.value = ATOMIC64_INIT(0),
914	};
915
916	/*
917	 * We only need to worry about task events. System-wide events
918	 * are handled like usual, i.e. entirely with
919	 * intel_cqm_event_read().
920	 */
921	if (event->cpu != -1)
922		return __perf_event_count(event);
923
924	/*
925	 * Only the group leader gets to report values. This stops us
926	 * reporting duplicate values to userspace, and gives us a clear
927	 * rule for which task gets to report the values.
928	 *
929	 * Note that it is impossible to attribute these values to
930	 * specific packages - we forfeit that ability when we create
931	 * task events.
932	 */
933	if (!cqm_group_leader(event))
934		return 0;
935
936	/*
937	 * Getting up-to-date values requires an SMP IPI which is not
938	 * possible if we're being called in interrupt context. Return
939	 * the cached values instead.
940	 */
941	if (unlikely(in_interrupt()))
942		goto out;
943
944	/*
945	 * Notice that we don't perform the reading of an RMID
946	 * atomically, because we can't hold a spin lock across the
947	 * IPIs.
948	 *
949	 * Speculatively perform the read, since @event might be
950	 * assigned a different (possibly invalid) RMID while we're
951	 * busying performing the IPI calls. It's therefore necessary to
952	 * check @event's RMID afterwards, and if it has changed,
953	 * discard the result of the read.
954	 */
955	rr.rmid = ACCESS_ONCE(event->hw.cqm_rmid);
956
957	if (!__rmid_valid(rr.rmid))
958		goto out;
959
960	on_each_cpu_mask(&cqm_cpumask, __intel_cqm_event_count, &rr, 1);
961
962	raw_spin_lock_irqsave(&cache_lock, flags);
963	if (event->hw.cqm_rmid == rr.rmid)
964		local64_set(&event->count, atomic64_read(&rr.value));
965	raw_spin_unlock_irqrestore(&cache_lock, flags);
966out:
967	return __perf_event_count(event);
968}
969
970static void intel_cqm_event_start(struct perf_event *event, int mode)
971{
972	struct intel_cqm_state *state = this_cpu_ptr(&cqm_state);
973	unsigned int rmid = event->hw.cqm_rmid;
974	unsigned long flags;
975
976	if (!(event->hw.cqm_state & PERF_HES_STOPPED))
977		return;
978
979	event->hw.cqm_state &= ~PERF_HES_STOPPED;
980
981	raw_spin_lock_irqsave(&state->lock, flags);
982
983	if (state->cnt++)
984		WARN_ON_ONCE(state->rmid != rmid);
985	else
986		WARN_ON_ONCE(state->rmid);
987
988	state->rmid = rmid;
989	wrmsrl(MSR_IA32_PQR_ASSOC, state->rmid);
990
991	raw_spin_unlock_irqrestore(&state->lock, flags);
992}
993
994static void intel_cqm_event_stop(struct perf_event *event, int mode)
995{
996	struct intel_cqm_state *state = this_cpu_ptr(&cqm_state);
997	unsigned long flags;
998
999	if (event->hw.cqm_state & PERF_HES_STOPPED)
1000		return;
1001
1002	event->hw.cqm_state |= PERF_HES_STOPPED;
1003
1004	raw_spin_lock_irqsave(&state->lock, flags);
1005	intel_cqm_event_read(event);
1006
1007	if (!--state->cnt) {
1008		state->rmid = 0;
1009		wrmsrl(MSR_IA32_PQR_ASSOC, 0);
1010	} else {
1011		WARN_ON_ONCE(!state->rmid);
1012	}
1013
1014	raw_spin_unlock_irqrestore(&state->lock, flags);
1015}
1016
1017static int intel_cqm_event_add(struct perf_event *event, int mode)
1018{
1019	unsigned long flags;
1020	unsigned int rmid;
1021
1022	raw_spin_lock_irqsave(&cache_lock, flags);
1023
1024	event->hw.cqm_state = PERF_HES_STOPPED;
1025	rmid = event->hw.cqm_rmid;
1026
1027	if (__rmid_valid(rmid) && (mode & PERF_EF_START))
1028		intel_cqm_event_start(event, mode);
1029
1030	raw_spin_unlock_irqrestore(&cache_lock, flags);
1031
1032	return 0;
1033}
1034
1035static void intel_cqm_event_del(struct perf_event *event, int mode)
1036{
1037	intel_cqm_event_stop(event, mode);
1038}
1039
1040static void intel_cqm_event_destroy(struct perf_event *event)
1041{
1042	struct perf_event *group_other = NULL;
1043
1044	mutex_lock(&cache_mutex);
1045
1046	/*
1047	 * If there's another event in this group...
1048	 */
1049	if (!list_empty(&event->hw.cqm_group_entry)) {
1050		group_other = list_first_entry(&event->hw.cqm_group_entry,
1051					       struct perf_event,
1052					       hw.cqm_group_entry);
1053		list_del(&event->hw.cqm_group_entry);
1054	}
1055
1056	/*
1057	 * And we're the group leader..
1058	 */
1059	if (cqm_group_leader(event)) {
1060		/*
1061		 * If there was a group_other, make that leader, otherwise
1062		 * destroy the group and return the RMID.
1063		 */
1064		if (group_other) {
1065			list_replace(&event->hw.cqm_groups_entry,
1066				     &group_other->hw.cqm_groups_entry);
1067		} else {
1068			unsigned int rmid = event->hw.cqm_rmid;
1069
1070			if (__rmid_valid(rmid))
1071				__put_rmid(rmid);
1072			list_del(&event->hw.cqm_groups_entry);
1073		}
1074	}
1075
1076	mutex_unlock(&cache_mutex);
1077}
1078
1079static int intel_cqm_event_init(struct perf_event *event)
1080{
1081	struct perf_event *group = NULL;
1082	bool rotate = false;
1083
1084	if (event->attr.type != intel_cqm_pmu.type)
1085		return -ENOENT;
1086
1087	if (event->attr.config & ~QOS_EVENT_MASK)
1088		return -EINVAL;
1089
1090	/* unsupported modes and filters */
1091	if (event->attr.exclude_user   ||
1092	    event->attr.exclude_kernel ||
1093	    event->attr.exclude_hv     ||
1094	    event->attr.exclude_idle   ||
1095	    event->attr.exclude_host   ||
1096	    event->attr.exclude_guest  ||
1097	    event->attr.sample_period) /* no sampling */
1098		return -EINVAL;
1099
1100	INIT_LIST_HEAD(&event->hw.cqm_group_entry);
1101	INIT_LIST_HEAD(&event->hw.cqm_groups_entry);
1102
1103	event->destroy = intel_cqm_event_destroy;
1104
1105	mutex_lock(&cache_mutex);
1106
1107	/* Will also set rmid */
1108	intel_cqm_setup_event(event, &group);
1109
1110	if (group) {
1111		list_add_tail(&event->hw.cqm_group_entry,
1112			      &group->hw.cqm_group_entry);
1113	} else {
1114		list_add_tail(&event->hw.cqm_groups_entry,
1115			      &cache_groups);
1116
1117		/*
1118		 * All RMIDs are either in use or have recently been
1119		 * used. Kick the rotation worker to clean/free some.
1120		 *
1121		 * We only do this for the group leader, rather than for
1122		 * every event in a group to save on needless work.
1123		 */
1124		if (!__rmid_valid(event->hw.cqm_rmid))
1125			rotate = true;
1126	}
1127
1128	mutex_unlock(&cache_mutex);
1129
1130	if (rotate)
1131		schedule_delayed_work(&intel_cqm_rmid_work, 0);
1132
1133	return 0;
1134}
1135
1136EVENT_ATTR_STR(llc_occupancy, intel_cqm_llc, "event=0x01");
1137EVENT_ATTR_STR(llc_occupancy.per-pkg, intel_cqm_llc_pkg, "1");
1138EVENT_ATTR_STR(llc_occupancy.unit, intel_cqm_llc_unit, "Bytes");
1139EVENT_ATTR_STR(llc_occupancy.scale, intel_cqm_llc_scale, NULL);
1140EVENT_ATTR_STR(llc_occupancy.snapshot, intel_cqm_llc_snapshot, "1");
1141
1142static struct attribute *intel_cqm_events_attr[] = {
1143	EVENT_PTR(intel_cqm_llc),
1144	EVENT_PTR(intel_cqm_llc_pkg),
1145	EVENT_PTR(intel_cqm_llc_unit),
1146	EVENT_PTR(intel_cqm_llc_scale),
1147	EVENT_PTR(intel_cqm_llc_snapshot),
1148	NULL,
1149};
1150
1151static struct attribute_group intel_cqm_events_group = {
1152	.name = "events",
1153	.attrs = intel_cqm_events_attr,
1154};
1155
1156PMU_FORMAT_ATTR(event, "config:0-7");
1157static struct attribute *intel_cqm_formats_attr[] = {
1158	&format_attr_event.attr,
1159	NULL,
1160};
1161
1162static struct attribute_group intel_cqm_format_group = {
1163	.name = "format",
1164	.attrs = intel_cqm_formats_attr,
1165};
1166
1167static ssize_t
1168max_recycle_threshold_show(struct device *dev, struct device_attribute *attr,
1169			   char *page)
1170{
1171	ssize_t rv;
1172
1173	mutex_lock(&cache_mutex);
1174	rv = snprintf(page, PAGE_SIZE-1, "%u\n", __intel_cqm_max_threshold);
1175	mutex_unlock(&cache_mutex);
1176
1177	return rv;
1178}
1179
1180static ssize_t
1181max_recycle_threshold_store(struct device *dev,
1182			    struct device_attribute *attr,
1183			    const char *buf, size_t count)
1184{
1185	unsigned int bytes, cachelines;
1186	int ret;
1187
1188	ret = kstrtouint(buf, 0, &bytes);
1189	if (ret)
1190		return ret;
1191
1192	mutex_lock(&cache_mutex);
1193
1194	__intel_cqm_max_threshold = bytes;
1195	cachelines = bytes / cqm_l3_scale;
1196
1197	/*
1198	 * The new maximum takes effect immediately.
1199	 */
1200	if (__intel_cqm_threshold > cachelines)
1201		__intel_cqm_threshold = cachelines;
1202
1203	mutex_unlock(&cache_mutex);
1204
1205	return count;
1206}
1207
1208static DEVICE_ATTR_RW(max_recycle_threshold);
1209
1210static struct attribute *intel_cqm_attrs[] = {
1211	&dev_attr_max_recycle_threshold.attr,
1212	NULL,
1213};
1214
1215static const struct attribute_group intel_cqm_group = {
1216	.attrs = intel_cqm_attrs,
1217};
1218
1219static const struct attribute_group *intel_cqm_attr_groups[] = {
1220	&intel_cqm_events_group,
1221	&intel_cqm_format_group,
1222	&intel_cqm_group,
1223	NULL,
1224};
1225
1226static struct pmu intel_cqm_pmu = {
1227	.hrtimer_interval_ms = RMID_DEFAULT_QUEUE_TIME,
1228	.attr_groups	     = intel_cqm_attr_groups,
1229	.task_ctx_nr	     = perf_sw_context,
1230	.event_init	     = intel_cqm_event_init,
1231	.add		     = intel_cqm_event_add,
1232	.del		     = intel_cqm_event_del,
1233	.start		     = intel_cqm_event_start,
1234	.stop		     = intel_cqm_event_stop,
1235	.read		     = intel_cqm_event_read,
1236	.count		     = intel_cqm_event_count,
1237};
1238
1239static inline void cqm_pick_event_reader(int cpu)
1240{
1241	int phys_id = topology_physical_package_id(cpu);
1242	int i;
1243
1244	for_each_cpu(i, &cqm_cpumask) {
1245		if (phys_id == topology_physical_package_id(i))
1246			return;	/* already got reader for this socket */
1247	}
1248
1249	cpumask_set_cpu(cpu, &cqm_cpumask);
1250}
1251
1252static void intel_cqm_cpu_prepare(unsigned int cpu)
1253{
1254	struct intel_cqm_state *state = &per_cpu(cqm_state, cpu);
1255	struct cpuinfo_x86 *c = &cpu_data(cpu);
1256
1257	raw_spin_lock_init(&state->lock);
1258	state->rmid = 0;
1259	state->cnt  = 0;
1260
1261	WARN_ON(c->x86_cache_max_rmid != cqm_max_rmid);
1262	WARN_ON(c->x86_cache_occ_scale != cqm_l3_scale);
1263}
1264
1265static void intel_cqm_cpu_exit(unsigned int cpu)
1266{
1267	int phys_id = topology_physical_package_id(cpu);
1268	int i;
1269
1270	/*
1271	 * Is @cpu a designated cqm reader?
1272	 */
1273	if (!cpumask_test_and_clear_cpu(cpu, &cqm_cpumask))
1274		return;
1275
1276	for_each_online_cpu(i) {
1277		if (i == cpu)
1278			continue;
1279
1280		if (phys_id == topology_physical_package_id(i)) {
1281			cpumask_set_cpu(i, &cqm_cpumask);
1282			break;
1283		}
1284	}
1285}
1286
1287static int intel_cqm_cpu_notifier(struct notifier_block *nb,
1288				  unsigned long action, void *hcpu)
1289{
1290	unsigned int cpu  = (unsigned long)hcpu;
1291
1292	switch (action & ~CPU_TASKS_FROZEN) {
1293	case CPU_UP_PREPARE:
1294		intel_cqm_cpu_prepare(cpu);
1295		break;
1296	case CPU_DOWN_PREPARE:
1297		intel_cqm_cpu_exit(cpu);
1298		break;
1299	case CPU_STARTING:
1300		cqm_pick_event_reader(cpu);
1301		break;
1302	}
1303
1304	return NOTIFY_OK;
1305}
1306
1307static const struct x86_cpu_id intel_cqm_match[] = {
1308	{ .vendor = X86_VENDOR_INTEL, .feature = X86_FEATURE_CQM_OCCUP_LLC },
1309	{}
1310};
1311
1312static int __init intel_cqm_init(void)
1313{
1314	char *str, scale[20];
1315	int i, cpu, ret;
1316
1317	if (!x86_match_cpu(intel_cqm_match))
1318		return -ENODEV;
1319
1320	cqm_l3_scale = boot_cpu_data.x86_cache_occ_scale;
1321
1322	/*
1323	 * It's possible that not all resources support the same number
1324	 * of RMIDs. Instead of making scheduling much more complicated
1325	 * (where we have to match a task's RMID to a cpu that supports
1326	 * that many RMIDs) just find the minimum RMIDs supported across
1327	 * all cpus.
1328	 *
1329	 * Also, check that the scales match on all cpus.
1330	 */
1331	cpu_notifier_register_begin();
1332
1333	for_each_online_cpu(cpu) {
1334		struct cpuinfo_x86 *c = &cpu_data(cpu);
1335
1336		if (c->x86_cache_max_rmid < cqm_max_rmid)
1337			cqm_max_rmid = c->x86_cache_max_rmid;
1338
1339		if (c->x86_cache_occ_scale != cqm_l3_scale) {
1340			pr_err("Multiple LLC scale values, disabling\n");
1341			ret = -EINVAL;
1342			goto out;
1343		}
1344	}
1345
1346	/*
1347	 * A reasonable upper limit on the max threshold is the number
1348	 * of lines tagged per RMID if all RMIDs have the same number of
1349	 * lines tagged in the LLC.
1350	 *
1351	 * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
1352	 */
1353	__intel_cqm_max_threshold =
1354		boot_cpu_data.x86_cache_size * 1024 / (cqm_max_rmid + 1);
1355
1356	snprintf(scale, sizeof(scale), "%u", cqm_l3_scale);
1357	str = kstrdup(scale, GFP_KERNEL);
1358	if (!str) {
1359		ret = -ENOMEM;
1360		goto out;
1361	}
1362
1363	event_attr_intel_cqm_llc_scale.event_str = str;
1364
1365	ret = intel_cqm_setup_rmid_cache();
1366	if (ret)
1367		goto out;
1368
1369	for_each_online_cpu(i) {
1370		intel_cqm_cpu_prepare(i);
1371		cqm_pick_event_reader(i);
1372	}
1373
1374	__perf_cpu_notifier(intel_cqm_cpu_notifier);
1375
1376	ret = perf_pmu_register(&intel_cqm_pmu, "intel_cqm", -1);
1377	if (ret)
1378		pr_err("Intel CQM perf registration failed: %d\n", ret);
1379	else
1380		pr_info("Intel CQM monitoring enabled\n");
1381
1382out:
1383	cpu_notifier_register_done();
1384
1385	return ret;
1386}
1387device_initcall(intel_cqm_init);
1388