1/* 2 * Suspend support specific for i386/x86-64. 3 * 4 * Distribute under GPLv2 5 * 6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl> 7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz> 8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org> 9 */ 10 11#include <linux/suspend.h> 12#include <linux/export.h> 13#include <linux/smp.h> 14#include <linux/perf_event.h> 15 16#include <asm/pgtable.h> 17#include <asm/proto.h> 18#include <asm/mtrr.h> 19#include <asm/page.h> 20#include <asm/mce.h> 21#include <asm/xcr.h> 22#include <asm/suspend.h> 23#include <asm/debugreg.h> 24#include <asm/fpu-internal.h> /* pcntxt_mask */ 25#include <asm/cpu.h> 26#include <asm/mmu_context.h> 27 28#ifdef CONFIG_X86_32 29__visible unsigned long saved_context_ebx; 30__visible unsigned long saved_context_esp, saved_context_ebp; 31__visible unsigned long saved_context_esi, saved_context_edi; 32__visible unsigned long saved_context_eflags; 33#endif 34struct saved_context saved_context; 35 36/** 37 * __save_processor_state - save CPU registers before creating a 38 * hibernation image and before restoring the memory state from it 39 * @ctxt - structure to store the registers contents in 40 * 41 * NOTE: If there is a CPU register the modification of which by the 42 * boot kernel (ie. the kernel used for loading the hibernation image) 43 * might affect the operations of the restored target kernel (ie. the one 44 * saved in the hibernation image), then its contents must be saved by this 45 * function. In other words, if kernel A is hibernated and different 46 * kernel B is used for loading the hibernation image into memory, the 47 * kernel A's __save_processor_state() function must save all registers 48 * needed by kernel A, so that it can operate correctly after the resume 49 * regardless of what kernel B does in the meantime. 50 */ 51static void __save_processor_state(struct saved_context *ctxt) 52{ 53#ifdef CONFIG_X86_32 54 mtrr_save_fixed_ranges(NULL); 55#endif 56 kernel_fpu_begin(); 57 58 /* 59 * descriptor tables 60 */ 61#ifdef CONFIG_X86_32 62 store_idt(&ctxt->idt); 63#else 64/* CONFIG_X86_64 */ 65 store_idt((struct desc_ptr *)&ctxt->idt_limit); 66#endif 67 /* 68 * We save it here, but restore it only in the hibernate case. 69 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit 70 * mode in "secondary_startup_64". In 32-bit mode it is done via 71 * 'pmode_gdt' in wakeup_start. 72 */ 73 ctxt->gdt_desc.size = GDT_SIZE - 1; 74 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id()); 75 76 store_tr(ctxt->tr); 77 78 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */ 79 /* 80 * segment registers 81 */ 82#ifdef CONFIG_X86_32 83 savesegment(es, ctxt->es); 84 savesegment(fs, ctxt->fs); 85 savesegment(gs, ctxt->gs); 86 savesegment(ss, ctxt->ss); 87#else 88/* CONFIG_X86_64 */ 89 asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds)); 90 asm volatile ("movw %%es, %0" : "=m" (ctxt->es)); 91 asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs)); 92 asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs)); 93 asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss)); 94 95 rdmsrl(MSR_FS_BASE, ctxt->fs_base); 96 rdmsrl(MSR_GS_BASE, ctxt->gs_base); 97 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base); 98 mtrr_save_fixed_ranges(NULL); 99 100 rdmsrl(MSR_EFER, ctxt->efer); 101#endif 102 103 /* 104 * control registers 105 */ 106 ctxt->cr0 = read_cr0(); 107 ctxt->cr2 = read_cr2(); 108 ctxt->cr3 = read_cr3(); 109 ctxt->cr4 = __read_cr4_safe(); 110#ifdef CONFIG_X86_64 111 ctxt->cr8 = read_cr8(); 112#endif 113 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE, 114 &ctxt->misc_enable); 115} 116 117/* Needed by apm.c */ 118void save_processor_state(void) 119{ 120 __save_processor_state(&saved_context); 121 x86_platform.save_sched_clock_state(); 122} 123#ifdef CONFIG_X86_32 124EXPORT_SYMBOL(save_processor_state); 125#endif 126 127static void do_fpu_end(void) 128{ 129 /* 130 * Restore FPU regs if necessary. 131 */ 132 kernel_fpu_end(); 133} 134 135static void fix_processor_context(void) 136{ 137 int cpu = smp_processor_id(); 138 struct tss_struct *t = &per_cpu(cpu_tss, cpu); 139#ifdef CONFIG_X86_64 140 struct desc_struct *desc = get_cpu_gdt_table(cpu); 141 tss_desc tss; 142#endif 143 set_tss_desc(cpu, t); /* 144 * This just modifies memory; should not be 145 * necessary. But... This is necessary, because 146 * 386 hardware has concept of busy TSS or some 147 * similar stupidity. 148 */ 149 150#ifdef CONFIG_X86_64 151 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc)); 152 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */ 153 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS); 154 155 syscall_init(); /* This sets MSR_*STAR and related */ 156#endif 157 load_TR_desc(); /* This does ltr */ 158 load_mm_ldt(current->active_mm); /* This does lldt */ 159} 160 161/** 162 * __restore_processor_state - restore the contents of CPU registers saved 163 * by __save_processor_state() 164 * @ctxt - structure to load the registers contents from 165 */ 166static void notrace __restore_processor_state(struct saved_context *ctxt) 167{ 168 if (ctxt->misc_enable_saved) 169 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable); 170 /* 171 * control registers 172 */ 173 /* cr4 was introduced in the Pentium CPU */ 174#ifdef CONFIG_X86_32 175 if (ctxt->cr4) 176 __write_cr4(ctxt->cr4); 177#else 178/* CONFIG X86_64 */ 179 wrmsrl(MSR_EFER, ctxt->efer); 180 write_cr8(ctxt->cr8); 181 __write_cr4(ctxt->cr4); 182#endif 183 write_cr3(ctxt->cr3); 184 write_cr2(ctxt->cr2); 185 write_cr0(ctxt->cr0); 186 187 /* 188 * now restore the descriptor tables to their proper values 189 * ltr is done i fix_processor_context(). 190 */ 191#ifdef CONFIG_X86_32 192 load_idt(&ctxt->idt); 193#else 194/* CONFIG_X86_64 */ 195 load_idt((const struct desc_ptr *)&ctxt->idt_limit); 196#endif 197 198 /* 199 * segment registers 200 */ 201#ifdef CONFIG_X86_32 202 loadsegment(es, ctxt->es); 203 loadsegment(fs, ctxt->fs); 204 loadsegment(gs, ctxt->gs); 205 loadsegment(ss, ctxt->ss); 206 207 /* 208 * sysenter MSRs 209 */ 210 if (boot_cpu_has(X86_FEATURE_SEP)) 211 enable_sep_cpu(); 212#else 213/* CONFIG_X86_64 */ 214 asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds)); 215 asm volatile ("movw %0, %%es" :: "r" (ctxt->es)); 216 asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs)); 217 load_gs_index(ctxt->gs); 218 asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss)); 219 220 wrmsrl(MSR_FS_BASE, ctxt->fs_base); 221 wrmsrl(MSR_GS_BASE, ctxt->gs_base); 222 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base); 223#endif 224 225 /* 226 * restore XCR0 for xsave capable cpu's. 227 */ 228 if (cpu_has_xsave) 229 xsetbv(XCR_XFEATURE_ENABLED_MASK, pcntxt_mask); 230 231 fix_processor_context(); 232 233 do_fpu_end(); 234 x86_platform.restore_sched_clock_state(); 235 mtrr_bp_restore(); 236 perf_restore_debug_store(); 237} 238 239/* Needed by apm.c */ 240void notrace restore_processor_state(void) 241{ 242 __restore_processor_state(&saved_context); 243} 244#ifdef CONFIG_X86_32 245EXPORT_SYMBOL(restore_processor_state); 246#endif 247 248/* 249 * When bsp_check() is called in hibernate and suspend, cpu hotplug 250 * is disabled already. So it's unnessary to handle race condition between 251 * cpumask query and cpu hotplug. 252 */ 253static int bsp_check(void) 254{ 255 if (cpumask_first(cpu_online_mask) != 0) { 256 pr_warn("CPU0 is offline.\n"); 257 return -ENODEV; 258 } 259 260 return 0; 261} 262 263static int bsp_pm_callback(struct notifier_block *nb, unsigned long action, 264 void *ptr) 265{ 266 int ret = 0; 267 268 switch (action) { 269 case PM_SUSPEND_PREPARE: 270 case PM_HIBERNATION_PREPARE: 271 ret = bsp_check(); 272 break; 273#ifdef CONFIG_DEBUG_HOTPLUG_CPU0 274 case PM_RESTORE_PREPARE: 275 /* 276 * When system resumes from hibernation, online CPU0 because 277 * 1. it's required for resume and 278 * 2. the CPU was online before hibernation 279 */ 280 if (!cpu_online(0)) 281 _debug_hotplug_cpu(0, 1); 282 break; 283 case PM_POST_RESTORE: 284 /* 285 * When a resume really happens, this code won't be called. 286 * 287 * This code is called only when user space hibernation software 288 * prepares for snapshot device during boot time. So we just 289 * call _debug_hotplug_cpu() to restore to CPU0's state prior to 290 * preparing the snapshot device. 291 * 292 * This works for normal boot case in our CPU0 hotplug debug 293 * mode, i.e. CPU0 is offline and user mode hibernation 294 * software initializes during boot time. 295 * 296 * If CPU0 is online and user application accesses snapshot 297 * device after boot time, this will offline CPU0 and user may 298 * see different CPU0 state before and after accessing 299 * the snapshot device. But hopefully this is not a case when 300 * user debugging CPU0 hotplug. Even if users hit this case, 301 * they can easily online CPU0 back. 302 * 303 * To simplify this debug code, we only consider normal boot 304 * case. Otherwise we need to remember CPU0's state and restore 305 * to that state and resolve racy conditions etc. 306 */ 307 _debug_hotplug_cpu(0, 0); 308 break; 309#endif 310 default: 311 break; 312 } 313 return notifier_from_errno(ret); 314} 315 316static int __init bsp_pm_check_init(void) 317{ 318 /* 319 * Set this bsp_pm_callback as lower priority than 320 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called 321 * earlier to disable cpu hotplug before bsp online check. 322 */ 323 pm_notifier(bsp_pm_callback, -INT_MAX); 324 return 0; 325} 326 327core_initcall(bsp_pm_check_init); 328