1/*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10#include <linux/kernel.h>
11#include <linux/interrupt.h>
12#include <linux/clocksource.h>
13#include <linux/clockchips.h>
14#include <linux/kernel_stat.h>
15#include <linux/math64.h>
16#include <linux/gfp.h>
17#include <linux/slab.h>
18#include <linux/pvclock_gtod.h>
19
20#include <asm/pvclock.h>
21#include <asm/xen/hypervisor.h>
22#include <asm/xen/hypercall.h>
23
24#include <xen/events.h>
25#include <xen/features.h>
26#include <xen/interface/xen.h>
27#include <xen/interface/vcpu.h>
28
29#include "xen-ops.h"
30
31/* Xen may fire a timer up to this many ns early */
32#define TIMER_SLOP	100000
33#define NS_PER_TICK	(1000000000LL / HZ)
34
35/* runstate info updated by Xen */
36static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
37
38/* snapshots of runstate info */
39static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
40
41/* unused ns of stolen time */
42static DEFINE_PER_CPU(u64, xen_residual_stolen);
43
44/* return an consistent snapshot of 64-bit time/counter value */
45static u64 get64(const u64 *p)
46{
47	u64 ret;
48
49	if (BITS_PER_LONG < 64) {
50		u32 *p32 = (u32 *)p;
51		u32 h, l;
52
53		/*
54		 * Read high then low, and then make sure high is
55		 * still the same; this will only loop if low wraps
56		 * and carries into high.
57		 * XXX some clean way to make this endian-proof?
58		 */
59		do {
60			h = p32[1];
61			barrier();
62			l = p32[0];
63			barrier();
64		} while (p32[1] != h);
65
66		ret = (((u64)h) << 32) | l;
67	} else
68		ret = *p;
69
70	return ret;
71}
72
73/*
74 * Runstate accounting
75 */
76static void get_runstate_snapshot(struct vcpu_runstate_info *res)
77{
78	u64 state_time;
79	struct vcpu_runstate_info *state;
80
81	BUG_ON(preemptible());
82
83	state = this_cpu_ptr(&xen_runstate);
84
85	/*
86	 * The runstate info is always updated by the hypervisor on
87	 * the current CPU, so there's no need to use anything
88	 * stronger than a compiler barrier when fetching it.
89	 */
90	do {
91		state_time = get64(&state->state_entry_time);
92		barrier();
93		*res = *state;
94		barrier();
95	} while (get64(&state->state_entry_time) != state_time);
96}
97
98/* return true when a vcpu could run but has no real cpu to run on */
99bool xen_vcpu_stolen(int vcpu)
100{
101	return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
102}
103
104void xen_setup_runstate_info(int cpu)
105{
106	struct vcpu_register_runstate_memory_area area;
107
108	area.addr.v = &per_cpu(xen_runstate, cpu);
109
110	if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
111			       cpu, &area))
112		BUG();
113}
114
115static void do_stolen_accounting(void)
116{
117	struct vcpu_runstate_info state;
118	struct vcpu_runstate_info *snap;
119	s64 runnable, offline, stolen;
120	cputime_t ticks;
121
122	get_runstate_snapshot(&state);
123
124	WARN_ON(state.state != RUNSTATE_running);
125
126	snap = this_cpu_ptr(&xen_runstate_snapshot);
127
128	/* work out how much time the VCPU has not been runn*ing*  */
129	runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
130	offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
131
132	*snap = state;
133
134	/* Add the appropriate number of ticks of stolen time,
135	   including any left-overs from last time. */
136	stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
137
138	if (stolen < 0)
139		stolen = 0;
140
141	ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
142	__this_cpu_write(xen_residual_stolen, stolen);
143	account_steal_ticks(ticks);
144}
145
146/* Get the TSC speed from Xen */
147static unsigned long xen_tsc_khz(void)
148{
149	struct pvclock_vcpu_time_info *info =
150		&HYPERVISOR_shared_info->vcpu_info[0].time;
151
152	return pvclock_tsc_khz(info);
153}
154
155cycle_t xen_clocksource_read(void)
156{
157        struct pvclock_vcpu_time_info *src;
158	cycle_t ret;
159
160	preempt_disable_notrace();
161	src = &__this_cpu_read(xen_vcpu)->time;
162	ret = pvclock_clocksource_read(src);
163	preempt_enable_notrace();
164	return ret;
165}
166
167static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
168{
169	return xen_clocksource_read();
170}
171
172static void xen_read_wallclock(struct timespec *ts)
173{
174	struct shared_info *s = HYPERVISOR_shared_info;
175	struct pvclock_wall_clock *wall_clock = &(s->wc);
176        struct pvclock_vcpu_time_info *vcpu_time;
177
178	vcpu_time = &get_cpu_var(xen_vcpu)->time;
179	pvclock_read_wallclock(wall_clock, vcpu_time, ts);
180	put_cpu_var(xen_vcpu);
181}
182
183static void xen_get_wallclock(struct timespec *now)
184{
185	xen_read_wallclock(now);
186}
187
188static int xen_set_wallclock(const struct timespec *now)
189{
190	return -1;
191}
192
193static int xen_pvclock_gtod_notify(struct notifier_block *nb,
194				   unsigned long was_set, void *priv)
195{
196	/* Protected by the calling core code serialization */
197	static struct timespec next_sync;
198
199	struct xen_platform_op op;
200	struct timespec now;
201
202	now = __current_kernel_time();
203
204	/*
205	 * We only take the expensive HV call when the clock was set
206	 * or when the 11 minutes RTC synchronization time elapsed.
207	 */
208	if (!was_set && timespec_compare(&now, &next_sync) < 0)
209		return NOTIFY_OK;
210
211	op.cmd = XENPF_settime;
212	op.u.settime.secs = now.tv_sec;
213	op.u.settime.nsecs = now.tv_nsec;
214	op.u.settime.system_time = xen_clocksource_read();
215
216	(void)HYPERVISOR_dom0_op(&op);
217
218	/*
219	 * Move the next drift compensation time 11 minutes
220	 * ahead. That's emulating the sync_cmos_clock() update for
221	 * the hardware RTC.
222	 */
223	next_sync = now;
224	next_sync.tv_sec += 11 * 60;
225
226	return NOTIFY_OK;
227}
228
229static struct notifier_block xen_pvclock_gtod_notifier = {
230	.notifier_call = xen_pvclock_gtod_notify,
231};
232
233static struct clocksource xen_clocksource __read_mostly = {
234	.name = "xen",
235	.rating = 400,
236	.read = xen_clocksource_get_cycles,
237	.mask = ~0,
238	.flags = CLOCK_SOURCE_IS_CONTINUOUS,
239};
240
241/*
242   Xen clockevent implementation
243
244   Xen has two clockevent implementations:
245
246   The old timer_op one works with all released versions of Xen prior
247   to version 3.0.4.  This version of the hypervisor provides a
248   single-shot timer with nanosecond resolution.  However, sharing the
249   same event channel is a 100Hz tick which is delivered while the
250   vcpu is running.  We don't care about or use this tick, but it will
251   cause the core time code to think the timer fired too soon, and
252   will end up resetting it each time.  It could be filtered, but
253   doing so has complications when the ktime clocksource is not yet
254   the xen clocksource (ie, at boot time).
255
256   The new vcpu_op-based timer interface allows the tick timer period
257   to be changed or turned off.  The tick timer is not useful as a
258   periodic timer because events are only delivered to running vcpus.
259   The one-shot timer can report when a timeout is in the past, so
260   set_next_event is capable of returning -ETIME when appropriate.
261   This interface is used when available.
262*/
263
264
265/*
266  Get a hypervisor absolute time.  In theory we could maintain an
267  offset between the kernel's time and the hypervisor's time, and
268  apply that to a kernel's absolute timeout.  Unfortunately the
269  hypervisor and kernel times can drift even if the kernel is using
270  the Xen clocksource, because ntp can warp the kernel's clocksource.
271*/
272static s64 get_abs_timeout(unsigned long delta)
273{
274	return xen_clocksource_read() + delta;
275}
276
277static void xen_timerop_set_mode(enum clock_event_mode mode,
278				 struct clock_event_device *evt)
279{
280	switch (mode) {
281	case CLOCK_EVT_MODE_PERIODIC:
282		/* unsupported */
283		WARN_ON(1);
284		break;
285
286	case CLOCK_EVT_MODE_ONESHOT:
287	case CLOCK_EVT_MODE_RESUME:
288		break;
289
290	case CLOCK_EVT_MODE_UNUSED:
291	case CLOCK_EVT_MODE_SHUTDOWN:
292		HYPERVISOR_set_timer_op(0);  /* cancel timeout */
293		break;
294	}
295}
296
297static int xen_timerop_set_next_event(unsigned long delta,
298				      struct clock_event_device *evt)
299{
300	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
301
302	if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
303		BUG();
304
305	/* We may have missed the deadline, but there's no real way of
306	   knowing for sure.  If the event was in the past, then we'll
307	   get an immediate interrupt. */
308
309	return 0;
310}
311
312static const struct clock_event_device xen_timerop_clockevent = {
313	.name = "xen",
314	.features = CLOCK_EVT_FEAT_ONESHOT,
315
316	.max_delta_ns = 0xffffffff,
317	.min_delta_ns = TIMER_SLOP,
318
319	.mult = 1,
320	.shift = 0,
321	.rating = 500,
322
323	.set_mode = xen_timerop_set_mode,
324	.set_next_event = xen_timerop_set_next_event,
325};
326
327
328
329static void xen_vcpuop_set_mode(enum clock_event_mode mode,
330				struct clock_event_device *evt)
331{
332	int cpu = smp_processor_id();
333
334	switch (mode) {
335	case CLOCK_EVT_MODE_PERIODIC:
336		WARN_ON(1);	/* unsupported */
337		break;
338
339	case CLOCK_EVT_MODE_ONESHOT:
340		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
341			BUG();
342		break;
343
344	case CLOCK_EVT_MODE_UNUSED:
345	case CLOCK_EVT_MODE_SHUTDOWN:
346		if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
347		    HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
348			BUG();
349		break;
350	case CLOCK_EVT_MODE_RESUME:
351		break;
352	}
353}
354
355static int xen_vcpuop_set_next_event(unsigned long delta,
356				     struct clock_event_device *evt)
357{
358	int cpu = smp_processor_id();
359	struct vcpu_set_singleshot_timer single;
360	int ret;
361
362	WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
363
364	single.timeout_abs_ns = get_abs_timeout(delta);
365	single.flags = VCPU_SSHOTTMR_future;
366
367	ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
368
369	BUG_ON(ret != 0 && ret != -ETIME);
370
371	return ret;
372}
373
374static const struct clock_event_device xen_vcpuop_clockevent = {
375	.name = "xen",
376	.features = CLOCK_EVT_FEAT_ONESHOT,
377
378	.max_delta_ns = 0xffffffff,
379	.min_delta_ns = TIMER_SLOP,
380
381	.mult = 1,
382	.shift = 0,
383	.rating = 500,
384
385	.set_mode = xen_vcpuop_set_mode,
386	.set_next_event = xen_vcpuop_set_next_event,
387};
388
389static const struct clock_event_device *xen_clockevent =
390	&xen_timerop_clockevent;
391
392struct xen_clock_event_device {
393	struct clock_event_device evt;
394	char name[16];
395};
396static DEFINE_PER_CPU(struct xen_clock_event_device, xen_clock_events) = { .evt.irq = -1 };
397
398static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
399{
400	struct clock_event_device *evt = this_cpu_ptr(&xen_clock_events.evt);
401	irqreturn_t ret;
402
403	ret = IRQ_NONE;
404	if (evt->event_handler) {
405		evt->event_handler(evt);
406		ret = IRQ_HANDLED;
407	}
408
409	do_stolen_accounting();
410
411	return ret;
412}
413
414void xen_teardown_timer(int cpu)
415{
416	struct clock_event_device *evt;
417	BUG_ON(cpu == 0);
418	evt = &per_cpu(xen_clock_events, cpu).evt;
419
420	if (evt->irq >= 0) {
421		unbind_from_irqhandler(evt->irq, NULL);
422		evt->irq = -1;
423	}
424}
425
426void xen_setup_timer(int cpu)
427{
428	struct xen_clock_event_device *xevt = &per_cpu(xen_clock_events, cpu);
429	struct clock_event_device *evt = &xevt->evt;
430	int irq;
431
432	WARN(evt->irq >= 0, "IRQ%d for CPU%d is already allocated\n", evt->irq, cpu);
433	if (evt->irq >= 0)
434		xen_teardown_timer(cpu);
435
436	printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
437
438	snprintf(xevt->name, sizeof(xevt->name), "timer%d", cpu);
439
440	irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
441				      IRQF_PERCPU|IRQF_NOBALANCING|IRQF_TIMER|
442				      IRQF_FORCE_RESUME|IRQF_EARLY_RESUME,
443				      xevt->name, NULL);
444	(void)xen_set_irq_priority(irq, XEN_IRQ_PRIORITY_MAX);
445
446	memcpy(evt, xen_clockevent, sizeof(*evt));
447
448	evt->cpumask = cpumask_of(cpu);
449	evt->irq = irq;
450}
451
452
453void xen_setup_cpu_clockevents(void)
454{
455	clockevents_register_device(this_cpu_ptr(&xen_clock_events.evt));
456}
457
458void xen_timer_resume(void)
459{
460	int cpu;
461
462	pvclock_resume();
463
464	if (xen_clockevent != &xen_vcpuop_clockevent)
465		return;
466
467	for_each_online_cpu(cpu) {
468		if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
469			BUG();
470	}
471}
472
473static const struct pv_time_ops xen_time_ops __initconst = {
474	.sched_clock = xen_clocksource_read,
475};
476
477static void __init xen_time_init(void)
478{
479	int cpu = smp_processor_id();
480	struct timespec tp;
481
482	/* As Dom0 is never moved, no penalty on using TSC there */
483	if (xen_initial_domain())
484		xen_clocksource.rating = 275;
485
486	clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
487
488	if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
489		/* Successfully turned off 100Hz tick, so we have the
490		   vcpuop-based timer interface */
491		printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
492		xen_clockevent = &xen_vcpuop_clockevent;
493	}
494
495	/* Set initial system time with full resolution */
496	xen_read_wallclock(&tp);
497	do_settimeofday(&tp);
498
499	setup_force_cpu_cap(X86_FEATURE_TSC);
500
501	xen_setup_runstate_info(cpu);
502	xen_setup_timer(cpu);
503	xen_setup_cpu_clockevents();
504
505	if (xen_initial_domain())
506		pvclock_gtod_register_notifier(&xen_pvclock_gtod_notifier);
507}
508
509void __init xen_init_time_ops(void)
510{
511	pv_time_ops = xen_time_ops;
512
513	x86_init.timers.timer_init = xen_time_init;
514	x86_init.timers.setup_percpu_clockev = x86_init_noop;
515	x86_cpuinit.setup_percpu_clockev = x86_init_noop;
516
517	x86_platform.calibrate_tsc = xen_tsc_khz;
518	x86_platform.get_wallclock = xen_get_wallclock;
519	/* Dom0 uses the native method to set the hardware RTC. */
520	if (!xen_initial_domain())
521		x86_platform.set_wallclock = xen_set_wallclock;
522}
523
524#ifdef CONFIG_XEN_PVHVM
525static void xen_hvm_setup_cpu_clockevents(void)
526{
527	int cpu = smp_processor_id();
528	xen_setup_runstate_info(cpu);
529	/*
530	 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
531	 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
532	 * early bootup and also during CPU hotplug events).
533	 */
534	xen_setup_cpu_clockevents();
535}
536
537void __init xen_hvm_init_time_ops(void)
538{
539	/* vector callback is needed otherwise we cannot receive interrupts
540	 * on cpu > 0 and at this point we don't know how many cpus are
541	 * available */
542	if (!xen_have_vector_callback)
543		return;
544	if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
545		printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
546				"disable pv timer\n");
547		return;
548	}
549
550	pv_time_ops = xen_time_ops;
551	x86_init.timers.setup_percpu_clockev = xen_time_init;
552	x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
553
554	x86_platform.calibrate_tsc = xen_tsc_khz;
555	x86_platform.get_wallclock = xen_get_wallclock;
556	x86_platform.set_wallclock = xen_set_wallclock;
557}
558#endif
559