1/* 2 * libata-sff.c - helper library for PCI IDE BMDMA 3 * 4 * Maintained by: Tejun Heo <tj@kernel.org> 5 * Please ALWAYS copy linux-ide@vger.kernel.org 6 * on emails. 7 * 8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved. 9 * Copyright 2003-2006 Jeff Garzik 10 * 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License as published by 14 * the Free Software Foundation; either version 2, or (at your option) 15 * any later version. 16 * 17 * This program is distributed in the hope that it will be useful, 18 * but WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 20 * GNU General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; see the file COPYING. If not, write to 24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. 25 * 26 * 27 * libata documentation is available via 'make {ps|pdf}docs', 28 * as Documentation/DocBook/libata.* 29 * 30 * Hardware documentation available from http://www.t13.org/ and 31 * http://www.sata-io.org/ 32 * 33 */ 34 35#include <linux/kernel.h> 36#include <linux/gfp.h> 37#include <linux/pci.h> 38#include <linux/module.h> 39#include <linux/libata.h> 40#include <linux/highmem.h> 41 42#include "libata.h" 43 44static struct workqueue_struct *ata_sff_wq; 45 46const struct ata_port_operations ata_sff_port_ops = { 47 .inherits = &ata_base_port_ops, 48 49 .qc_prep = ata_noop_qc_prep, 50 .qc_issue = ata_sff_qc_issue, 51 .qc_fill_rtf = ata_sff_qc_fill_rtf, 52 53 .freeze = ata_sff_freeze, 54 .thaw = ata_sff_thaw, 55 .prereset = ata_sff_prereset, 56 .softreset = ata_sff_softreset, 57 .hardreset = sata_sff_hardreset, 58 .postreset = ata_sff_postreset, 59 .error_handler = ata_sff_error_handler, 60 61 .sff_dev_select = ata_sff_dev_select, 62 .sff_check_status = ata_sff_check_status, 63 .sff_tf_load = ata_sff_tf_load, 64 .sff_tf_read = ata_sff_tf_read, 65 .sff_exec_command = ata_sff_exec_command, 66 .sff_data_xfer = ata_sff_data_xfer, 67 .sff_drain_fifo = ata_sff_drain_fifo, 68 69 .lost_interrupt = ata_sff_lost_interrupt, 70}; 71EXPORT_SYMBOL_GPL(ata_sff_port_ops); 72 73/** 74 * ata_sff_check_status - Read device status reg & clear interrupt 75 * @ap: port where the device is 76 * 77 * Reads ATA taskfile status register for currently-selected device 78 * and return its value. This also clears pending interrupts 79 * from this device 80 * 81 * LOCKING: 82 * Inherited from caller. 83 */ 84u8 ata_sff_check_status(struct ata_port *ap) 85{ 86 return ioread8(ap->ioaddr.status_addr); 87} 88EXPORT_SYMBOL_GPL(ata_sff_check_status); 89 90/** 91 * ata_sff_altstatus - Read device alternate status reg 92 * @ap: port where the device is 93 * 94 * Reads ATA taskfile alternate status register for 95 * currently-selected device and return its value. 96 * 97 * Note: may NOT be used as the check_altstatus() entry in 98 * ata_port_operations. 99 * 100 * LOCKING: 101 * Inherited from caller. 102 */ 103static u8 ata_sff_altstatus(struct ata_port *ap) 104{ 105 if (ap->ops->sff_check_altstatus) 106 return ap->ops->sff_check_altstatus(ap); 107 108 return ioread8(ap->ioaddr.altstatus_addr); 109} 110 111/** 112 * ata_sff_irq_status - Check if the device is busy 113 * @ap: port where the device is 114 * 115 * Determine if the port is currently busy. Uses altstatus 116 * if available in order to avoid clearing shared IRQ status 117 * when finding an IRQ source. Non ctl capable devices don't 118 * share interrupt lines fortunately for us. 119 * 120 * LOCKING: 121 * Inherited from caller. 122 */ 123static u8 ata_sff_irq_status(struct ata_port *ap) 124{ 125 u8 status; 126 127 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 128 status = ata_sff_altstatus(ap); 129 /* Not us: We are busy */ 130 if (status & ATA_BUSY) 131 return status; 132 } 133 /* Clear INTRQ latch */ 134 status = ap->ops->sff_check_status(ap); 135 return status; 136} 137 138/** 139 * ata_sff_sync - Flush writes 140 * @ap: Port to wait for. 141 * 142 * CAUTION: 143 * If we have an mmio device with no ctl and no altstatus 144 * method this will fail. No such devices are known to exist. 145 * 146 * LOCKING: 147 * Inherited from caller. 148 */ 149 150static void ata_sff_sync(struct ata_port *ap) 151{ 152 if (ap->ops->sff_check_altstatus) 153 ap->ops->sff_check_altstatus(ap); 154 else if (ap->ioaddr.altstatus_addr) 155 ioread8(ap->ioaddr.altstatus_addr); 156} 157 158/** 159 * ata_sff_pause - Flush writes and wait 400nS 160 * @ap: Port to pause for. 161 * 162 * CAUTION: 163 * If we have an mmio device with no ctl and no altstatus 164 * method this will fail. No such devices are known to exist. 165 * 166 * LOCKING: 167 * Inherited from caller. 168 */ 169 170void ata_sff_pause(struct ata_port *ap) 171{ 172 ata_sff_sync(ap); 173 ndelay(400); 174} 175EXPORT_SYMBOL_GPL(ata_sff_pause); 176 177/** 178 * ata_sff_dma_pause - Pause before commencing DMA 179 * @ap: Port to pause for. 180 * 181 * Perform I/O fencing and ensure sufficient cycle delays occur 182 * for the HDMA1:0 transition 183 */ 184 185void ata_sff_dma_pause(struct ata_port *ap) 186{ 187 if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) { 188 /* An altstatus read will cause the needed delay without 189 messing up the IRQ status */ 190 ata_sff_altstatus(ap); 191 return; 192 } 193 /* There are no DMA controllers without ctl. BUG here to ensure 194 we never violate the HDMA1:0 transition timing and risk 195 corruption. */ 196 BUG(); 197} 198EXPORT_SYMBOL_GPL(ata_sff_dma_pause); 199 200/** 201 * ata_sff_busy_sleep - sleep until BSY clears, or timeout 202 * @ap: port containing status register to be polled 203 * @tmout_pat: impatience timeout in msecs 204 * @tmout: overall timeout in msecs 205 * 206 * Sleep until ATA Status register bit BSY clears, 207 * or a timeout occurs. 208 * 209 * LOCKING: 210 * Kernel thread context (may sleep). 211 * 212 * RETURNS: 213 * 0 on success, -errno otherwise. 214 */ 215int ata_sff_busy_sleep(struct ata_port *ap, 216 unsigned long tmout_pat, unsigned long tmout) 217{ 218 unsigned long timer_start, timeout; 219 u8 status; 220 221 status = ata_sff_busy_wait(ap, ATA_BUSY, 300); 222 timer_start = jiffies; 223 timeout = ata_deadline(timer_start, tmout_pat); 224 while (status != 0xff && (status & ATA_BUSY) && 225 time_before(jiffies, timeout)) { 226 ata_msleep(ap, 50); 227 status = ata_sff_busy_wait(ap, ATA_BUSY, 3); 228 } 229 230 if (status != 0xff && (status & ATA_BUSY)) 231 ata_port_warn(ap, 232 "port is slow to respond, please be patient (Status 0x%x)\n", 233 status); 234 235 timeout = ata_deadline(timer_start, tmout); 236 while (status != 0xff && (status & ATA_BUSY) && 237 time_before(jiffies, timeout)) { 238 ata_msleep(ap, 50); 239 status = ap->ops->sff_check_status(ap); 240 } 241 242 if (status == 0xff) 243 return -ENODEV; 244 245 if (status & ATA_BUSY) { 246 ata_port_err(ap, 247 "port failed to respond (%lu secs, Status 0x%x)\n", 248 DIV_ROUND_UP(tmout, 1000), status); 249 return -EBUSY; 250 } 251 252 return 0; 253} 254EXPORT_SYMBOL_GPL(ata_sff_busy_sleep); 255 256static int ata_sff_check_ready(struct ata_link *link) 257{ 258 u8 status = link->ap->ops->sff_check_status(link->ap); 259 260 return ata_check_ready(status); 261} 262 263/** 264 * ata_sff_wait_ready - sleep until BSY clears, or timeout 265 * @link: SFF link to wait ready status for 266 * @deadline: deadline jiffies for the operation 267 * 268 * Sleep until ATA Status register bit BSY clears, or timeout 269 * occurs. 270 * 271 * LOCKING: 272 * Kernel thread context (may sleep). 273 * 274 * RETURNS: 275 * 0 on success, -errno otherwise. 276 */ 277int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline) 278{ 279 return ata_wait_ready(link, deadline, ata_sff_check_ready); 280} 281EXPORT_SYMBOL_GPL(ata_sff_wait_ready); 282 283/** 284 * ata_sff_set_devctl - Write device control reg 285 * @ap: port where the device is 286 * @ctl: value to write 287 * 288 * Writes ATA taskfile device control register. 289 * 290 * Note: may NOT be used as the sff_set_devctl() entry in 291 * ata_port_operations. 292 * 293 * LOCKING: 294 * Inherited from caller. 295 */ 296static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl) 297{ 298 if (ap->ops->sff_set_devctl) 299 ap->ops->sff_set_devctl(ap, ctl); 300 else 301 iowrite8(ctl, ap->ioaddr.ctl_addr); 302} 303 304/** 305 * ata_sff_dev_select - Select device 0/1 on ATA bus 306 * @ap: ATA channel to manipulate 307 * @device: ATA device (numbered from zero) to select 308 * 309 * Use the method defined in the ATA specification to 310 * make either device 0, or device 1, active on the 311 * ATA channel. Works with both PIO and MMIO. 312 * 313 * May be used as the dev_select() entry in ata_port_operations. 314 * 315 * LOCKING: 316 * caller. 317 */ 318void ata_sff_dev_select(struct ata_port *ap, unsigned int device) 319{ 320 u8 tmp; 321 322 if (device == 0) 323 tmp = ATA_DEVICE_OBS; 324 else 325 tmp = ATA_DEVICE_OBS | ATA_DEV1; 326 327 iowrite8(tmp, ap->ioaddr.device_addr); 328 ata_sff_pause(ap); /* needed; also flushes, for mmio */ 329} 330EXPORT_SYMBOL_GPL(ata_sff_dev_select); 331 332/** 333 * ata_dev_select - Select device 0/1 on ATA bus 334 * @ap: ATA channel to manipulate 335 * @device: ATA device (numbered from zero) to select 336 * @wait: non-zero to wait for Status register BSY bit to clear 337 * @can_sleep: non-zero if context allows sleeping 338 * 339 * Use the method defined in the ATA specification to 340 * make either device 0, or device 1, active on the 341 * ATA channel. 342 * 343 * This is a high-level version of ata_sff_dev_select(), which 344 * additionally provides the services of inserting the proper 345 * pauses and status polling, where needed. 346 * 347 * LOCKING: 348 * caller. 349 */ 350static void ata_dev_select(struct ata_port *ap, unsigned int device, 351 unsigned int wait, unsigned int can_sleep) 352{ 353 if (ata_msg_probe(ap)) 354 ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n", 355 device, wait); 356 357 if (wait) 358 ata_wait_idle(ap); 359 360 ap->ops->sff_dev_select(ap, device); 361 362 if (wait) { 363 if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI) 364 ata_msleep(ap, 150); 365 ata_wait_idle(ap); 366 } 367} 368 369/** 370 * ata_sff_irq_on - Enable interrupts on a port. 371 * @ap: Port on which interrupts are enabled. 372 * 373 * Enable interrupts on a legacy IDE device using MMIO or PIO, 374 * wait for idle, clear any pending interrupts. 375 * 376 * Note: may NOT be used as the sff_irq_on() entry in 377 * ata_port_operations. 378 * 379 * LOCKING: 380 * Inherited from caller. 381 */ 382void ata_sff_irq_on(struct ata_port *ap) 383{ 384 struct ata_ioports *ioaddr = &ap->ioaddr; 385 386 if (ap->ops->sff_irq_on) { 387 ap->ops->sff_irq_on(ap); 388 return; 389 } 390 391 ap->ctl &= ~ATA_NIEN; 392 ap->last_ctl = ap->ctl; 393 394 if (ap->ops->sff_set_devctl || ioaddr->ctl_addr) 395 ata_sff_set_devctl(ap, ap->ctl); 396 ata_wait_idle(ap); 397 398 if (ap->ops->sff_irq_clear) 399 ap->ops->sff_irq_clear(ap); 400} 401EXPORT_SYMBOL_GPL(ata_sff_irq_on); 402 403/** 404 * ata_sff_tf_load - send taskfile registers to host controller 405 * @ap: Port to which output is sent 406 * @tf: ATA taskfile register set 407 * 408 * Outputs ATA taskfile to standard ATA host controller. 409 * 410 * LOCKING: 411 * Inherited from caller. 412 */ 413void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) 414{ 415 struct ata_ioports *ioaddr = &ap->ioaddr; 416 unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; 417 418 if (tf->ctl != ap->last_ctl) { 419 if (ioaddr->ctl_addr) 420 iowrite8(tf->ctl, ioaddr->ctl_addr); 421 ap->last_ctl = tf->ctl; 422 ata_wait_idle(ap); 423 } 424 425 if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) { 426 WARN_ON_ONCE(!ioaddr->ctl_addr); 427 iowrite8(tf->hob_feature, ioaddr->feature_addr); 428 iowrite8(tf->hob_nsect, ioaddr->nsect_addr); 429 iowrite8(tf->hob_lbal, ioaddr->lbal_addr); 430 iowrite8(tf->hob_lbam, ioaddr->lbam_addr); 431 iowrite8(tf->hob_lbah, ioaddr->lbah_addr); 432 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n", 433 tf->hob_feature, 434 tf->hob_nsect, 435 tf->hob_lbal, 436 tf->hob_lbam, 437 tf->hob_lbah); 438 } 439 440 if (is_addr) { 441 iowrite8(tf->feature, ioaddr->feature_addr); 442 iowrite8(tf->nsect, ioaddr->nsect_addr); 443 iowrite8(tf->lbal, ioaddr->lbal_addr); 444 iowrite8(tf->lbam, ioaddr->lbam_addr); 445 iowrite8(tf->lbah, ioaddr->lbah_addr); 446 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n", 447 tf->feature, 448 tf->nsect, 449 tf->lbal, 450 tf->lbam, 451 tf->lbah); 452 } 453 454 if (tf->flags & ATA_TFLAG_DEVICE) { 455 iowrite8(tf->device, ioaddr->device_addr); 456 VPRINTK("device 0x%X\n", tf->device); 457 } 458 459 ata_wait_idle(ap); 460} 461EXPORT_SYMBOL_GPL(ata_sff_tf_load); 462 463/** 464 * ata_sff_tf_read - input device's ATA taskfile shadow registers 465 * @ap: Port from which input is read 466 * @tf: ATA taskfile register set for storing input 467 * 468 * Reads ATA taskfile registers for currently-selected device 469 * into @tf. Assumes the device has a fully SFF compliant task file 470 * layout and behaviour. If you device does not (eg has a different 471 * status method) then you will need to provide a replacement tf_read 472 * 473 * LOCKING: 474 * Inherited from caller. 475 */ 476void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf) 477{ 478 struct ata_ioports *ioaddr = &ap->ioaddr; 479 480 tf->command = ata_sff_check_status(ap); 481 tf->feature = ioread8(ioaddr->error_addr); 482 tf->nsect = ioread8(ioaddr->nsect_addr); 483 tf->lbal = ioread8(ioaddr->lbal_addr); 484 tf->lbam = ioread8(ioaddr->lbam_addr); 485 tf->lbah = ioread8(ioaddr->lbah_addr); 486 tf->device = ioread8(ioaddr->device_addr); 487 488 if (tf->flags & ATA_TFLAG_LBA48) { 489 if (likely(ioaddr->ctl_addr)) { 490 iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr); 491 tf->hob_feature = ioread8(ioaddr->error_addr); 492 tf->hob_nsect = ioread8(ioaddr->nsect_addr); 493 tf->hob_lbal = ioread8(ioaddr->lbal_addr); 494 tf->hob_lbam = ioread8(ioaddr->lbam_addr); 495 tf->hob_lbah = ioread8(ioaddr->lbah_addr); 496 iowrite8(tf->ctl, ioaddr->ctl_addr); 497 ap->last_ctl = tf->ctl; 498 } else 499 WARN_ON_ONCE(1); 500 } 501} 502EXPORT_SYMBOL_GPL(ata_sff_tf_read); 503 504/** 505 * ata_sff_exec_command - issue ATA command to host controller 506 * @ap: port to which command is being issued 507 * @tf: ATA taskfile register set 508 * 509 * Issues ATA command, with proper synchronization with interrupt 510 * handler / other threads. 511 * 512 * LOCKING: 513 * spin_lock_irqsave(host lock) 514 */ 515void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf) 516{ 517 DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command); 518 519 iowrite8(tf->command, ap->ioaddr.command_addr); 520 ata_sff_pause(ap); 521} 522EXPORT_SYMBOL_GPL(ata_sff_exec_command); 523 524/** 525 * ata_tf_to_host - issue ATA taskfile to host controller 526 * @ap: port to which command is being issued 527 * @tf: ATA taskfile register set 528 * 529 * Issues ATA taskfile register set to ATA host controller, 530 * with proper synchronization with interrupt handler and 531 * other threads. 532 * 533 * LOCKING: 534 * spin_lock_irqsave(host lock) 535 */ 536static inline void ata_tf_to_host(struct ata_port *ap, 537 const struct ata_taskfile *tf) 538{ 539 ap->ops->sff_tf_load(ap, tf); 540 ap->ops->sff_exec_command(ap, tf); 541} 542 543/** 544 * ata_sff_data_xfer - Transfer data by PIO 545 * @dev: device to target 546 * @buf: data buffer 547 * @buflen: buffer length 548 * @rw: read/write 549 * 550 * Transfer data from/to the device data register by PIO. 551 * 552 * LOCKING: 553 * Inherited from caller. 554 * 555 * RETURNS: 556 * Bytes consumed. 557 */ 558unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf, 559 unsigned int buflen, int rw) 560{ 561 struct ata_port *ap = dev->link->ap; 562 void __iomem *data_addr = ap->ioaddr.data_addr; 563 unsigned int words = buflen >> 1; 564 565 /* Transfer multiple of 2 bytes */ 566 if (rw == READ) 567 ioread16_rep(data_addr, buf, words); 568 else 569 iowrite16_rep(data_addr, buf, words); 570 571 /* Transfer trailing byte, if any. */ 572 if (unlikely(buflen & 0x01)) { 573 unsigned char pad[2] = { }; 574 575 /* Point buf to the tail of buffer */ 576 buf += buflen - 1; 577 578 /* 579 * Use io*16_rep() accessors here as well to avoid pointlessly 580 * swapping bytes to and from on the big endian machines... 581 */ 582 if (rw == READ) { 583 ioread16_rep(data_addr, pad, 1); 584 *buf = pad[0]; 585 } else { 586 pad[0] = *buf; 587 iowrite16_rep(data_addr, pad, 1); 588 } 589 words++; 590 } 591 592 return words << 1; 593} 594EXPORT_SYMBOL_GPL(ata_sff_data_xfer); 595 596/** 597 * ata_sff_data_xfer32 - Transfer data by PIO 598 * @dev: device to target 599 * @buf: data buffer 600 * @buflen: buffer length 601 * @rw: read/write 602 * 603 * Transfer data from/to the device data register by PIO using 32bit 604 * I/O operations. 605 * 606 * LOCKING: 607 * Inherited from caller. 608 * 609 * RETURNS: 610 * Bytes consumed. 611 */ 612 613unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf, 614 unsigned int buflen, int rw) 615{ 616 struct ata_port *ap = dev->link->ap; 617 void __iomem *data_addr = ap->ioaddr.data_addr; 618 unsigned int words = buflen >> 2; 619 int slop = buflen & 3; 620 621 if (!(ap->pflags & ATA_PFLAG_PIO32)) 622 return ata_sff_data_xfer(dev, buf, buflen, rw); 623 624 /* Transfer multiple of 4 bytes */ 625 if (rw == READ) 626 ioread32_rep(data_addr, buf, words); 627 else 628 iowrite32_rep(data_addr, buf, words); 629 630 /* Transfer trailing bytes, if any */ 631 if (unlikely(slop)) { 632 unsigned char pad[4] = { }; 633 634 /* Point buf to the tail of buffer */ 635 buf += buflen - slop; 636 637 /* 638 * Use io*_rep() accessors here as well to avoid pointlessly 639 * swapping bytes to and from on the big endian machines... 640 */ 641 if (rw == READ) { 642 if (slop < 3) 643 ioread16_rep(data_addr, pad, 1); 644 else 645 ioread32_rep(data_addr, pad, 1); 646 memcpy(buf, pad, slop); 647 } else { 648 memcpy(pad, buf, slop); 649 if (slop < 3) 650 iowrite16_rep(data_addr, pad, 1); 651 else 652 iowrite32_rep(data_addr, pad, 1); 653 } 654 } 655 return (buflen + 1) & ~1; 656} 657EXPORT_SYMBOL_GPL(ata_sff_data_xfer32); 658 659/** 660 * ata_sff_data_xfer_noirq - Transfer data by PIO 661 * @dev: device to target 662 * @buf: data buffer 663 * @buflen: buffer length 664 * @rw: read/write 665 * 666 * Transfer data from/to the device data register by PIO. Do the 667 * transfer with interrupts disabled. 668 * 669 * LOCKING: 670 * Inherited from caller. 671 * 672 * RETURNS: 673 * Bytes consumed. 674 */ 675unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf, 676 unsigned int buflen, int rw) 677{ 678 unsigned long flags; 679 unsigned int consumed; 680 681 local_irq_save(flags); 682 consumed = ata_sff_data_xfer32(dev, buf, buflen, rw); 683 local_irq_restore(flags); 684 685 return consumed; 686} 687EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq); 688 689/** 690 * ata_pio_sector - Transfer a sector of data. 691 * @qc: Command on going 692 * 693 * Transfer qc->sect_size bytes of data from/to the ATA device. 694 * 695 * LOCKING: 696 * Inherited from caller. 697 */ 698static void ata_pio_sector(struct ata_queued_cmd *qc) 699{ 700 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE); 701 struct ata_port *ap = qc->ap; 702 struct page *page; 703 unsigned int offset; 704 unsigned char *buf; 705 706 if (qc->curbytes == qc->nbytes - qc->sect_size) 707 ap->hsm_task_state = HSM_ST_LAST; 708 709 page = sg_page(qc->cursg); 710 offset = qc->cursg->offset + qc->cursg_ofs; 711 712 /* get the current page and offset */ 713 page = nth_page(page, (offset >> PAGE_SHIFT)); 714 offset %= PAGE_SIZE; 715 716 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 717 718 if (PageHighMem(page)) { 719 unsigned long flags; 720 721 /* FIXME: use a bounce buffer */ 722 local_irq_save(flags); 723 buf = kmap_atomic(page); 724 725 /* do the actual data transfer */ 726 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 727 do_write); 728 729 kunmap_atomic(buf); 730 local_irq_restore(flags); 731 } else { 732 buf = page_address(page); 733 ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size, 734 do_write); 735 } 736 737 if (!do_write && !PageSlab(page)) 738 flush_dcache_page(page); 739 740 qc->curbytes += qc->sect_size; 741 qc->cursg_ofs += qc->sect_size; 742 743 if (qc->cursg_ofs == qc->cursg->length) { 744 qc->cursg = sg_next(qc->cursg); 745 qc->cursg_ofs = 0; 746 } 747} 748 749/** 750 * ata_pio_sectors - Transfer one or many sectors. 751 * @qc: Command on going 752 * 753 * Transfer one or many sectors of data from/to the 754 * ATA device for the DRQ request. 755 * 756 * LOCKING: 757 * Inherited from caller. 758 */ 759static void ata_pio_sectors(struct ata_queued_cmd *qc) 760{ 761 if (is_multi_taskfile(&qc->tf)) { 762 /* READ/WRITE MULTIPLE */ 763 unsigned int nsect; 764 765 WARN_ON_ONCE(qc->dev->multi_count == 0); 766 767 nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size, 768 qc->dev->multi_count); 769 while (nsect--) 770 ata_pio_sector(qc); 771 } else 772 ata_pio_sector(qc); 773 774 ata_sff_sync(qc->ap); /* flush */ 775} 776 777/** 778 * atapi_send_cdb - Write CDB bytes to hardware 779 * @ap: Port to which ATAPI device is attached. 780 * @qc: Taskfile currently active 781 * 782 * When device has indicated its readiness to accept 783 * a CDB, this function is called. Send the CDB. 784 * 785 * LOCKING: 786 * caller. 787 */ 788static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc) 789{ 790 /* send SCSI cdb */ 791 DPRINTK("send cdb\n"); 792 WARN_ON_ONCE(qc->dev->cdb_len < 12); 793 794 ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1); 795 ata_sff_sync(ap); 796 /* FIXME: If the CDB is for DMA do we need to do the transition delay 797 or is bmdma_start guaranteed to do it ? */ 798 switch (qc->tf.protocol) { 799 case ATAPI_PROT_PIO: 800 ap->hsm_task_state = HSM_ST; 801 break; 802 case ATAPI_PROT_NODATA: 803 ap->hsm_task_state = HSM_ST_LAST; 804 break; 805#ifdef CONFIG_ATA_BMDMA 806 case ATAPI_PROT_DMA: 807 ap->hsm_task_state = HSM_ST_LAST; 808 /* initiate bmdma */ 809 ap->ops->bmdma_start(qc); 810 break; 811#endif /* CONFIG_ATA_BMDMA */ 812 default: 813 BUG(); 814 } 815} 816 817/** 818 * __atapi_pio_bytes - Transfer data from/to the ATAPI device. 819 * @qc: Command on going 820 * @bytes: number of bytes 821 * 822 * Transfer Transfer data from/to the ATAPI device. 823 * 824 * LOCKING: 825 * Inherited from caller. 826 * 827 */ 828static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes) 829{ 830 int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ; 831 struct ata_port *ap = qc->ap; 832 struct ata_device *dev = qc->dev; 833 struct ata_eh_info *ehi = &dev->link->eh_info; 834 struct scatterlist *sg; 835 struct page *page; 836 unsigned char *buf; 837 unsigned int offset, count, consumed; 838 839next_sg: 840 sg = qc->cursg; 841 if (unlikely(!sg)) { 842 ata_ehi_push_desc(ehi, "unexpected or too much trailing data " 843 "buf=%u cur=%u bytes=%u", 844 qc->nbytes, qc->curbytes, bytes); 845 return -1; 846 } 847 848 page = sg_page(sg); 849 offset = sg->offset + qc->cursg_ofs; 850 851 /* get the current page and offset */ 852 page = nth_page(page, (offset >> PAGE_SHIFT)); 853 offset %= PAGE_SIZE; 854 855 /* don't overrun current sg */ 856 count = min(sg->length - qc->cursg_ofs, bytes); 857 858 /* don't cross page boundaries */ 859 count = min(count, (unsigned int)PAGE_SIZE - offset); 860 861 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read"); 862 863 if (PageHighMem(page)) { 864 unsigned long flags; 865 866 /* FIXME: use bounce buffer */ 867 local_irq_save(flags); 868 buf = kmap_atomic(page); 869 870 /* do the actual data transfer */ 871 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 872 count, rw); 873 874 kunmap_atomic(buf); 875 local_irq_restore(flags); 876 } else { 877 buf = page_address(page); 878 consumed = ap->ops->sff_data_xfer(dev, buf + offset, 879 count, rw); 880 } 881 882 bytes -= min(bytes, consumed); 883 qc->curbytes += count; 884 qc->cursg_ofs += count; 885 886 if (qc->cursg_ofs == sg->length) { 887 qc->cursg = sg_next(qc->cursg); 888 qc->cursg_ofs = 0; 889 } 890 891 /* 892 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed); 893 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN 894 * check correctly as it doesn't know if it is the last request being 895 * made. Somebody should implement a proper sanity check. 896 */ 897 if (bytes) 898 goto next_sg; 899 return 0; 900} 901 902/** 903 * atapi_pio_bytes - Transfer data from/to the ATAPI device. 904 * @qc: Command on going 905 * 906 * Transfer Transfer data from/to the ATAPI device. 907 * 908 * LOCKING: 909 * Inherited from caller. 910 */ 911static void atapi_pio_bytes(struct ata_queued_cmd *qc) 912{ 913 struct ata_port *ap = qc->ap; 914 struct ata_device *dev = qc->dev; 915 struct ata_eh_info *ehi = &dev->link->eh_info; 916 unsigned int ireason, bc_lo, bc_hi, bytes; 917 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0; 918 919 /* Abuse qc->result_tf for temp storage of intermediate TF 920 * here to save some kernel stack usage. 921 * For normal completion, qc->result_tf is not relevant. For 922 * error, qc->result_tf is later overwritten by ata_qc_complete(). 923 * So, the correctness of qc->result_tf is not affected. 924 */ 925 ap->ops->sff_tf_read(ap, &qc->result_tf); 926 ireason = qc->result_tf.nsect; 927 bc_lo = qc->result_tf.lbam; 928 bc_hi = qc->result_tf.lbah; 929 bytes = (bc_hi << 8) | bc_lo; 930 931 /* shall be cleared to zero, indicating xfer of data */ 932 if (unlikely(ireason & ATAPI_COD)) 933 goto atapi_check; 934 935 /* make sure transfer direction matches expected */ 936 i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0; 937 if (unlikely(do_write != i_write)) 938 goto atapi_check; 939 940 if (unlikely(!bytes)) 941 goto atapi_check; 942 943 VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes); 944 945 if (unlikely(__atapi_pio_bytes(qc, bytes))) 946 goto err_out; 947 ata_sff_sync(ap); /* flush */ 948 949 return; 950 951 atapi_check: 952 ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)", 953 ireason, bytes); 954 err_out: 955 qc->err_mask |= AC_ERR_HSM; 956 ap->hsm_task_state = HSM_ST_ERR; 957} 958 959/** 960 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue. 961 * @ap: the target ata_port 962 * @qc: qc on going 963 * 964 * RETURNS: 965 * 1 if ok in workqueue, 0 otherwise. 966 */ 967static inline int ata_hsm_ok_in_wq(struct ata_port *ap, 968 struct ata_queued_cmd *qc) 969{ 970 if (qc->tf.flags & ATA_TFLAG_POLLING) 971 return 1; 972 973 if (ap->hsm_task_state == HSM_ST_FIRST) { 974 if (qc->tf.protocol == ATA_PROT_PIO && 975 (qc->tf.flags & ATA_TFLAG_WRITE)) 976 return 1; 977 978 if (ata_is_atapi(qc->tf.protocol) && 979 !(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 980 return 1; 981 } 982 983 return 0; 984} 985 986/** 987 * ata_hsm_qc_complete - finish a qc running on standard HSM 988 * @qc: Command to complete 989 * @in_wq: 1 if called from workqueue, 0 otherwise 990 * 991 * Finish @qc which is running on standard HSM. 992 * 993 * LOCKING: 994 * If @in_wq is zero, spin_lock_irqsave(host lock). 995 * Otherwise, none on entry and grabs host lock. 996 */ 997static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq) 998{ 999 struct ata_port *ap = qc->ap; 1000 1001 if (ap->ops->error_handler) { 1002 if (in_wq) { 1003 /* EH might have kicked in while host lock is 1004 * released. 1005 */ 1006 qc = ata_qc_from_tag(ap, qc->tag); 1007 if (qc) { 1008 if (likely(!(qc->err_mask & AC_ERR_HSM))) { 1009 ata_sff_irq_on(ap); 1010 ata_qc_complete(qc); 1011 } else 1012 ata_port_freeze(ap); 1013 } 1014 } else { 1015 if (likely(!(qc->err_mask & AC_ERR_HSM))) 1016 ata_qc_complete(qc); 1017 else 1018 ata_port_freeze(ap); 1019 } 1020 } else { 1021 if (in_wq) { 1022 ata_sff_irq_on(ap); 1023 ata_qc_complete(qc); 1024 } else 1025 ata_qc_complete(qc); 1026 } 1027} 1028 1029/** 1030 * ata_sff_hsm_move - move the HSM to the next state. 1031 * @ap: the target ata_port 1032 * @qc: qc on going 1033 * @status: current device status 1034 * @in_wq: 1 if called from workqueue, 0 otherwise 1035 * 1036 * RETURNS: 1037 * 1 when poll next status needed, 0 otherwise. 1038 */ 1039int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc, 1040 u8 status, int in_wq) 1041{ 1042 struct ata_link *link = qc->dev->link; 1043 struct ata_eh_info *ehi = &link->eh_info; 1044 int poll_next; 1045 1046 lockdep_assert_held(ap->lock); 1047 1048 WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0); 1049 1050 /* Make sure ata_sff_qc_issue() does not throw things 1051 * like DMA polling into the workqueue. Notice that 1052 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING). 1053 */ 1054 WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc)); 1055 1056fsm_start: 1057 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n", 1058 ap->print_id, qc->tf.protocol, ap->hsm_task_state, status); 1059 1060 switch (ap->hsm_task_state) { 1061 case HSM_ST_FIRST: 1062 /* Send first data block or PACKET CDB */ 1063 1064 /* If polling, we will stay in the work queue after 1065 * sending the data. Otherwise, interrupt handler 1066 * takes over after sending the data. 1067 */ 1068 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING); 1069 1070 /* check device status */ 1071 if (unlikely((status & ATA_DRQ) == 0)) { 1072 /* handle BSY=0, DRQ=0 as error */ 1073 if (likely(status & (ATA_ERR | ATA_DF))) 1074 /* device stops HSM for abort/error */ 1075 qc->err_mask |= AC_ERR_DEV; 1076 else { 1077 /* HSM violation. Let EH handle this */ 1078 ata_ehi_push_desc(ehi, 1079 "ST_FIRST: !(DRQ|ERR|DF)"); 1080 qc->err_mask |= AC_ERR_HSM; 1081 } 1082 1083 ap->hsm_task_state = HSM_ST_ERR; 1084 goto fsm_start; 1085 } 1086 1087 /* Device should not ask for data transfer (DRQ=1) 1088 * when it finds something wrong. 1089 * We ignore DRQ here and stop the HSM by 1090 * changing hsm_task_state to HSM_ST_ERR and 1091 * let the EH abort the command or reset the device. 1092 */ 1093 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1094 /* Some ATAPI tape drives forget to clear the ERR bit 1095 * when doing the next command (mostly request sense). 1096 * We ignore ERR here to workaround and proceed sending 1097 * the CDB. 1098 */ 1099 if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) { 1100 ata_ehi_push_desc(ehi, "ST_FIRST: " 1101 "DRQ=1 with device error, " 1102 "dev_stat 0x%X", status); 1103 qc->err_mask |= AC_ERR_HSM; 1104 ap->hsm_task_state = HSM_ST_ERR; 1105 goto fsm_start; 1106 } 1107 } 1108 1109 if (qc->tf.protocol == ATA_PROT_PIO) { 1110 /* PIO data out protocol. 1111 * send first data block. 1112 */ 1113 1114 /* ata_pio_sectors() might change the state 1115 * to HSM_ST_LAST. so, the state is changed here 1116 * before ata_pio_sectors(). 1117 */ 1118 ap->hsm_task_state = HSM_ST; 1119 ata_pio_sectors(qc); 1120 } else 1121 /* send CDB */ 1122 atapi_send_cdb(ap, qc); 1123 1124 /* if polling, ata_sff_pio_task() handles the rest. 1125 * otherwise, interrupt handler takes over from here. 1126 */ 1127 break; 1128 1129 case HSM_ST: 1130 /* complete command or read/write the data register */ 1131 if (qc->tf.protocol == ATAPI_PROT_PIO) { 1132 /* ATAPI PIO protocol */ 1133 if ((status & ATA_DRQ) == 0) { 1134 /* No more data to transfer or device error. 1135 * Device error will be tagged in HSM_ST_LAST. 1136 */ 1137 ap->hsm_task_state = HSM_ST_LAST; 1138 goto fsm_start; 1139 } 1140 1141 /* Device should not ask for data transfer (DRQ=1) 1142 * when it finds something wrong. 1143 * We ignore DRQ here and stop the HSM by 1144 * changing hsm_task_state to HSM_ST_ERR and 1145 * let the EH abort the command or reset the device. 1146 */ 1147 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1148 ata_ehi_push_desc(ehi, "ST-ATAPI: " 1149 "DRQ=1 with device error, " 1150 "dev_stat 0x%X", status); 1151 qc->err_mask |= AC_ERR_HSM; 1152 ap->hsm_task_state = HSM_ST_ERR; 1153 goto fsm_start; 1154 } 1155 1156 atapi_pio_bytes(qc); 1157 1158 if (unlikely(ap->hsm_task_state == HSM_ST_ERR)) 1159 /* bad ireason reported by device */ 1160 goto fsm_start; 1161 1162 } else { 1163 /* ATA PIO protocol */ 1164 if (unlikely((status & ATA_DRQ) == 0)) { 1165 /* handle BSY=0, DRQ=0 as error */ 1166 if (likely(status & (ATA_ERR | ATA_DF))) { 1167 /* device stops HSM for abort/error */ 1168 qc->err_mask |= AC_ERR_DEV; 1169 1170 /* If diagnostic failed and this is 1171 * IDENTIFY, it's likely a phantom 1172 * device. Mark hint. 1173 */ 1174 if (qc->dev->horkage & 1175 ATA_HORKAGE_DIAGNOSTIC) 1176 qc->err_mask |= 1177 AC_ERR_NODEV_HINT; 1178 } else { 1179 /* HSM violation. Let EH handle this. 1180 * Phantom devices also trigger this 1181 * condition. Mark hint. 1182 */ 1183 ata_ehi_push_desc(ehi, "ST-ATA: " 1184 "DRQ=0 without device error, " 1185 "dev_stat 0x%X", status); 1186 qc->err_mask |= AC_ERR_HSM | 1187 AC_ERR_NODEV_HINT; 1188 } 1189 1190 ap->hsm_task_state = HSM_ST_ERR; 1191 goto fsm_start; 1192 } 1193 1194 /* For PIO reads, some devices may ask for 1195 * data transfer (DRQ=1) alone with ERR=1. 1196 * We respect DRQ here and transfer one 1197 * block of junk data before changing the 1198 * hsm_task_state to HSM_ST_ERR. 1199 * 1200 * For PIO writes, ERR=1 DRQ=1 doesn't make 1201 * sense since the data block has been 1202 * transferred to the device. 1203 */ 1204 if (unlikely(status & (ATA_ERR | ATA_DF))) { 1205 /* data might be corrputed */ 1206 qc->err_mask |= AC_ERR_DEV; 1207 1208 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) { 1209 ata_pio_sectors(qc); 1210 status = ata_wait_idle(ap); 1211 } 1212 1213 if (status & (ATA_BUSY | ATA_DRQ)) { 1214 ata_ehi_push_desc(ehi, "ST-ATA: " 1215 "BUSY|DRQ persists on ERR|DF, " 1216 "dev_stat 0x%X", status); 1217 qc->err_mask |= AC_ERR_HSM; 1218 } 1219 1220 /* There are oddball controllers with 1221 * status register stuck at 0x7f and 1222 * lbal/m/h at zero which makes it 1223 * pass all other presence detection 1224 * mechanisms we have. Set NODEV_HINT 1225 * for it. Kernel bz#7241. 1226 */ 1227 if (status == 0x7f) 1228 qc->err_mask |= AC_ERR_NODEV_HINT; 1229 1230 /* ata_pio_sectors() might change the 1231 * state to HSM_ST_LAST. so, the state 1232 * is changed after ata_pio_sectors(). 1233 */ 1234 ap->hsm_task_state = HSM_ST_ERR; 1235 goto fsm_start; 1236 } 1237 1238 ata_pio_sectors(qc); 1239 1240 if (ap->hsm_task_state == HSM_ST_LAST && 1241 (!(qc->tf.flags & ATA_TFLAG_WRITE))) { 1242 /* all data read */ 1243 status = ata_wait_idle(ap); 1244 goto fsm_start; 1245 } 1246 } 1247 1248 poll_next = 1; 1249 break; 1250 1251 case HSM_ST_LAST: 1252 if (unlikely(!ata_ok(status))) { 1253 qc->err_mask |= __ac_err_mask(status); 1254 ap->hsm_task_state = HSM_ST_ERR; 1255 goto fsm_start; 1256 } 1257 1258 /* no more data to transfer */ 1259 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n", 1260 ap->print_id, qc->dev->devno, status); 1261 1262 WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM)); 1263 1264 ap->hsm_task_state = HSM_ST_IDLE; 1265 1266 /* complete taskfile transaction */ 1267 ata_hsm_qc_complete(qc, in_wq); 1268 1269 poll_next = 0; 1270 break; 1271 1272 case HSM_ST_ERR: 1273 ap->hsm_task_state = HSM_ST_IDLE; 1274 1275 /* complete taskfile transaction */ 1276 ata_hsm_qc_complete(qc, in_wq); 1277 1278 poll_next = 0; 1279 break; 1280 default: 1281 poll_next = 0; 1282 BUG(); 1283 } 1284 1285 return poll_next; 1286} 1287EXPORT_SYMBOL_GPL(ata_sff_hsm_move); 1288 1289void ata_sff_queue_work(struct work_struct *work) 1290{ 1291 queue_work(ata_sff_wq, work); 1292} 1293EXPORT_SYMBOL_GPL(ata_sff_queue_work); 1294 1295void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay) 1296{ 1297 queue_delayed_work(ata_sff_wq, dwork, delay); 1298} 1299EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work); 1300 1301void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay) 1302{ 1303 struct ata_port *ap = link->ap; 1304 1305 WARN_ON((ap->sff_pio_task_link != NULL) && 1306 (ap->sff_pio_task_link != link)); 1307 ap->sff_pio_task_link = link; 1308 1309 /* may fail if ata_sff_flush_pio_task() in progress */ 1310 ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay)); 1311} 1312EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task); 1313 1314void ata_sff_flush_pio_task(struct ata_port *ap) 1315{ 1316 DPRINTK("ENTER\n"); 1317 1318 cancel_delayed_work_sync(&ap->sff_pio_task); 1319 1320 /* 1321 * We wanna reset the HSM state to IDLE. If we do so without 1322 * grabbing the port lock, critical sections protected by it which 1323 * expect the HSM state to stay stable may get surprised. For 1324 * example, we may set IDLE in between the time 1325 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls 1326 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG(). 1327 */ 1328 spin_lock_irq(ap->lock); 1329 ap->hsm_task_state = HSM_ST_IDLE; 1330 spin_unlock_irq(ap->lock); 1331 1332 ap->sff_pio_task_link = NULL; 1333 1334 if (ata_msg_ctl(ap)) 1335 ata_port_dbg(ap, "%s: EXIT\n", __func__); 1336} 1337 1338static void ata_sff_pio_task(struct work_struct *work) 1339{ 1340 struct ata_port *ap = 1341 container_of(work, struct ata_port, sff_pio_task.work); 1342 struct ata_link *link = ap->sff_pio_task_link; 1343 struct ata_queued_cmd *qc; 1344 u8 status; 1345 int poll_next; 1346 1347 spin_lock_irq(ap->lock); 1348 1349 BUG_ON(ap->sff_pio_task_link == NULL); 1350 /* qc can be NULL if timeout occurred */ 1351 qc = ata_qc_from_tag(ap, link->active_tag); 1352 if (!qc) { 1353 ap->sff_pio_task_link = NULL; 1354 goto out_unlock; 1355 } 1356 1357fsm_start: 1358 WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE); 1359 1360 /* 1361 * This is purely heuristic. This is a fast path. 1362 * Sometimes when we enter, BSY will be cleared in 1363 * a chk-status or two. If not, the drive is probably seeking 1364 * or something. Snooze for a couple msecs, then 1365 * chk-status again. If still busy, queue delayed work. 1366 */ 1367 status = ata_sff_busy_wait(ap, ATA_BUSY, 5); 1368 if (status & ATA_BUSY) { 1369 spin_unlock_irq(ap->lock); 1370 ata_msleep(ap, 2); 1371 spin_lock_irq(ap->lock); 1372 1373 status = ata_sff_busy_wait(ap, ATA_BUSY, 10); 1374 if (status & ATA_BUSY) { 1375 ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE); 1376 goto out_unlock; 1377 } 1378 } 1379 1380 /* 1381 * hsm_move() may trigger another command to be processed. 1382 * clean the link beforehand. 1383 */ 1384 ap->sff_pio_task_link = NULL; 1385 /* move the HSM */ 1386 poll_next = ata_sff_hsm_move(ap, qc, status, 1); 1387 1388 /* another command or interrupt handler 1389 * may be running at this point. 1390 */ 1391 if (poll_next) 1392 goto fsm_start; 1393out_unlock: 1394 spin_unlock_irq(ap->lock); 1395} 1396 1397/** 1398 * ata_sff_qc_issue - issue taskfile to a SFF controller 1399 * @qc: command to issue to device 1400 * 1401 * This function issues a PIO or NODATA command to a SFF 1402 * controller. 1403 * 1404 * LOCKING: 1405 * spin_lock_irqsave(host lock) 1406 * 1407 * RETURNS: 1408 * Zero on success, AC_ERR_* mask on failure 1409 */ 1410unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc) 1411{ 1412 struct ata_port *ap = qc->ap; 1413 struct ata_link *link = qc->dev->link; 1414 1415 /* Use polling pio if the LLD doesn't handle 1416 * interrupt driven pio and atapi CDB interrupt. 1417 */ 1418 if (ap->flags & ATA_FLAG_PIO_POLLING) 1419 qc->tf.flags |= ATA_TFLAG_POLLING; 1420 1421 /* select the device */ 1422 ata_dev_select(ap, qc->dev->devno, 1, 0); 1423 1424 /* start the command */ 1425 switch (qc->tf.protocol) { 1426 case ATA_PROT_NODATA: 1427 if (qc->tf.flags & ATA_TFLAG_POLLING) 1428 ata_qc_set_polling(qc); 1429 1430 ata_tf_to_host(ap, &qc->tf); 1431 ap->hsm_task_state = HSM_ST_LAST; 1432 1433 if (qc->tf.flags & ATA_TFLAG_POLLING) 1434 ata_sff_queue_pio_task(link, 0); 1435 1436 break; 1437 1438 case ATA_PROT_PIO: 1439 if (qc->tf.flags & ATA_TFLAG_POLLING) 1440 ata_qc_set_polling(qc); 1441 1442 ata_tf_to_host(ap, &qc->tf); 1443 1444 if (qc->tf.flags & ATA_TFLAG_WRITE) { 1445 /* PIO data out protocol */ 1446 ap->hsm_task_state = HSM_ST_FIRST; 1447 ata_sff_queue_pio_task(link, 0); 1448 1449 /* always send first data block using the 1450 * ata_sff_pio_task() codepath. 1451 */ 1452 } else { 1453 /* PIO data in protocol */ 1454 ap->hsm_task_state = HSM_ST; 1455 1456 if (qc->tf.flags & ATA_TFLAG_POLLING) 1457 ata_sff_queue_pio_task(link, 0); 1458 1459 /* if polling, ata_sff_pio_task() handles the 1460 * rest. otherwise, interrupt handler takes 1461 * over from here. 1462 */ 1463 } 1464 1465 break; 1466 1467 case ATAPI_PROT_PIO: 1468 case ATAPI_PROT_NODATA: 1469 if (qc->tf.flags & ATA_TFLAG_POLLING) 1470 ata_qc_set_polling(qc); 1471 1472 ata_tf_to_host(ap, &qc->tf); 1473 1474 ap->hsm_task_state = HSM_ST_FIRST; 1475 1476 /* send cdb by polling if no cdb interrupt */ 1477 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) || 1478 (qc->tf.flags & ATA_TFLAG_POLLING)) 1479 ata_sff_queue_pio_task(link, 0); 1480 break; 1481 1482 default: 1483 WARN_ON_ONCE(1); 1484 return AC_ERR_SYSTEM; 1485 } 1486 1487 return 0; 1488} 1489EXPORT_SYMBOL_GPL(ata_sff_qc_issue); 1490 1491/** 1492 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read 1493 * @qc: qc to fill result TF for 1494 * 1495 * @qc is finished and result TF needs to be filled. Fill it 1496 * using ->sff_tf_read. 1497 * 1498 * LOCKING: 1499 * spin_lock_irqsave(host lock) 1500 * 1501 * RETURNS: 1502 * true indicating that result TF is successfully filled. 1503 */ 1504bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc) 1505{ 1506 qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf); 1507 return true; 1508} 1509EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf); 1510 1511static unsigned int ata_sff_idle_irq(struct ata_port *ap) 1512{ 1513 ap->stats.idle_irq++; 1514 1515#ifdef ATA_IRQ_TRAP 1516 if ((ap->stats.idle_irq % 1000) == 0) { 1517 ap->ops->sff_check_status(ap); 1518 if (ap->ops->sff_irq_clear) 1519 ap->ops->sff_irq_clear(ap); 1520 ata_port_warn(ap, "irq trap\n"); 1521 return 1; 1522 } 1523#endif 1524 return 0; /* irq not handled */ 1525} 1526 1527static unsigned int __ata_sff_port_intr(struct ata_port *ap, 1528 struct ata_queued_cmd *qc, 1529 bool hsmv_on_idle) 1530{ 1531 u8 status; 1532 1533 VPRINTK("ata%u: protocol %d task_state %d\n", 1534 ap->print_id, qc->tf.protocol, ap->hsm_task_state); 1535 1536 /* Check whether we are expecting interrupt in this state */ 1537 switch (ap->hsm_task_state) { 1538 case HSM_ST_FIRST: 1539 /* Some pre-ATAPI-4 devices assert INTRQ 1540 * at this state when ready to receive CDB. 1541 */ 1542 1543 /* Check the ATA_DFLAG_CDB_INTR flag is enough here. 1544 * The flag was turned on only for atapi devices. No 1545 * need to check ata_is_atapi(qc->tf.protocol) again. 1546 */ 1547 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 1548 return ata_sff_idle_irq(ap); 1549 break; 1550 case HSM_ST_IDLE: 1551 return ata_sff_idle_irq(ap); 1552 default: 1553 break; 1554 } 1555 1556 /* check main status, clearing INTRQ if needed */ 1557 status = ata_sff_irq_status(ap); 1558 if (status & ATA_BUSY) { 1559 if (hsmv_on_idle) { 1560 /* BMDMA engine is already stopped, we're screwed */ 1561 qc->err_mask |= AC_ERR_HSM; 1562 ap->hsm_task_state = HSM_ST_ERR; 1563 } else 1564 return ata_sff_idle_irq(ap); 1565 } 1566 1567 /* clear irq events */ 1568 if (ap->ops->sff_irq_clear) 1569 ap->ops->sff_irq_clear(ap); 1570 1571 ata_sff_hsm_move(ap, qc, status, 0); 1572 1573 return 1; /* irq handled */ 1574} 1575 1576/** 1577 * ata_sff_port_intr - Handle SFF port interrupt 1578 * @ap: Port on which interrupt arrived (possibly...) 1579 * @qc: Taskfile currently active in engine 1580 * 1581 * Handle port interrupt for given queued command. 1582 * 1583 * LOCKING: 1584 * spin_lock_irqsave(host lock) 1585 * 1586 * RETURNS: 1587 * One if interrupt was handled, zero if not (shared irq). 1588 */ 1589unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 1590{ 1591 return __ata_sff_port_intr(ap, qc, false); 1592} 1593EXPORT_SYMBOL_GPL(ata_sff_port_intr); 1594 1595static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance, 1596 unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *)) 1597{ 1598 struct ata_host *host = dev_instance; 1599 bool retried = false; 1600 unsigned int i; 1601 unsigned int handled, idle, polling; 1602 unsigned long flags; 1603 1604 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */ 1605 spin_lock_irqsave(&host->lock, flags); 1606 1607retry: 1608 handled = idle = polling = 0; 1609 for (i = 0; i < host->n_ports; i++) { 1610 struct ata_port *ap = host->ports[i]; 1611 struct ata_queued_cmd *qc; 1612 1613 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1614 if (qc) { 1615 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) 1616 handled |= port_intr(ap, qc); 1617 else 1618 polling |= 1 << i; 1619 } else 1620 idle |= 1 << i; 1621 } 1622 1623 /* 1624 * If no port was expecting IRQ but the controller is actually 1625 * asserting IRQ line, nobody cared will ensue. Check IRQ 1626 * pending status if available and clear spurious IRQ. 1627 */ 1628 if (!handled && !retried) { 1629 bool retry = false; 1630 1631 for (i = 0; i < host->n_ports; i++) { 1632 struct ata_port *ap = host->ports[i]; 1633 1634 if (polling & (1 << i)) 1635 continue; 1636 1637 if (!ap->ops->sff_irq_check || 1638 !ap->ops->sff_irq_check(ap)) 1639 continue; 1640 1641 if (idle & (1 << i)) { 1642 ap->ops->sff_check_status(ap); 1643 if (ap->ops->sff_irq_clear) 1644 ap->ops->sff_irq_clear(ap); 1645 } else { 1646 /* clear INTRQ and check if BUSY cleared */ 1647 if (!(ap->ops->sff_check_status(ap) & ATA_BUSY)) 1648 retry |= true; 1649 /* 1650 * With command in flight, we can't do 1651 * sff_irq_clear() w/o racing with completion. 1652 */ 1653 } 1654 } 1655 1656 if (retry) { 1657 retried = true; 1658 goto retry; 1659 } 1660 } 1661 1662 spin_unlock_irqrestore(&host->lock, flags); 1663 1664 return IRQ_RETVAL(handled); 1665} 1666 1667/** 1668 * ata_sff_interrupt - Default SFF ATA host interrupt handler 1669 * @irq: irq line (unused) 1670 * @dev_instance: pointer to our ata_host information structure 1671 * 1672 * Default interrupt handler for PCI IDE devices. Calls 1673 * ata_sff_port_intr() for each port that is not disabled. 1674 * 1675 * LOCKING: 1676 * Obtains host lock during operation. 1677 * 1678 * RETURNS: 1679 * IRQ_NONE or IRQ_HANDLED. 1680 */ 1681irqreturn_t ata_sff_interrupt(int irq, void *dev_instance) 1682{ 1683 return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr); 1684} 1685EXPORT_SYMBOL_GPL(ata_sff_interrupt); 1686 1687/** 1688 * ata_sff_lost_interrupt - Check for an apparent lost interrupt 1689 * @ap: port that appears to have timed out 1690 * 1691 * Called from the libata error handlers when the core code suspects 1692 * an interrupt has been lost. If it has complete anything we can and 1693 * then return. Interface must support altstatus for this faster 1694 * recovery to occur. 1695 * 1696 * Locking: 1697 * Caller holds host lock 1698 */ 1699 1700void ata_sff_lost_interrupt(struct ata_port *ap) 1701{ 1702 u8 status; 1703 struct ata_queued_cmd *qc; 1704 1705 /* Only one outstanding command per SFF channel */ 1706 qc = ata_qc_from_tag(ap, ap->link.active_tag); 1707 /* We cannot lose an interrupt on a non-existent or polled command */ 1708 if (!qc || qc->tf.flags & ATA_TFLAG_POLLING) 1709 return; 1710 /* See if the controller thinks it is still busy - if so the command 1711 isn't a lost IRQ but is still in progress */ 1712 status = ata_sff_altstatus(ap); 1713 if (status & ATA_BUSY) 1714 return; 1715 1716 /* There was a command running, we are no longer busy and we have 1717 no interrupt. */ 1718 ata_port_warn(ap, "lost interrupt (Status 0x%x)\n", 1719 status); 1720 /* Run the host interrupt logic as if the interrupt had not been 1721 lost */ 1722 ata_sff_port_intr(ap, qc); 1723} 1724EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt); 1725 1726/** 1727 * ata_sff_freeze - Freeze SFF controller port 1728 * @ap: port to freeze 1729 * 1730 * Freeze SFF controller port. 1731 * 1732 * LOCKING: 1733 * Inherited from caller. 1734 */ 1735void ata_sff_freeze(struct ata_port *ap) 1736{ 1737 ap->ctl |= ATA_NIEN; 1738 ap->last_ctl = ap->ctl; 1739 1740 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) 1741 ata_sff_set_devctl(ap, ap->ctl); 1742 1743 /* Under certain circumstances, some controllers raise IRQ on 1744 * ATA_NIEN manipulation. Also, many controllers fail to mask 1745 * previously pending IRQ on ATA_NIEN assertion. Clear it. 1746 */ 1747 ap->ops->sff_check_status(ap); 1748 1749 if (ap->ops->sff_irq_clear) 1750 ap->ops->sff_irq_clear(ap); 1751} 1752EXPORT_SYMBOL_GPL(ata_sff_freeze); 1753 1754/** 1755 * ata_sff_thaw - Thaw SFF controller port 1756 * @ap: port to thaw 1757 * 1758 * Thaw SFF controller port. 1759 * 1760 * LOCKING: 1761 * Inherited from caller. 1762 */ 1763void ata_sff_thaw(struct ata_port *ap) 1764{ 1765 /* clear & re-enable interrupts */ 1766 ap->ops->sff_check_status(ap); 1767 if (ap->ops->sff_irq_clear) 1768 ap->ops->sff_irq_clear(ap); 1769 ata_sff_irq_on(ap); 1770} 1771EXPORT_SYMBOL_GPL(ata_sff_thaw); 1772 1773/** 1774 * ata_sff_prereset - prepare SFF link for reset 1775 * @link: SFF link to be reset 1776 * @deadline: deadline jiffies for the operation 1777 * 1778 * SFF link @link is about to be reset. Initialize it. It first 1779 * calls ata_std_prereset() and wait for !BSY if the port is 1780 * being softreset. 1781 * 1782 * LOCKING: 1783 * Kernel thread context (may sleep) 1784 * 1785 * RETURNS: 1786 * 0 on success, -errno otherwise. 1787 */ 1788int ata_sff_prereset(struct ata_link *link, unsigned long deadline) 1789{ 1790 struct ata_eh_context *ehc = &link->eh_context; 1791 int rc; 1792 1793 rc = ata_std_prereset(link, deadline); 1794 if (rc) 1795 return rc; 1796 1797 /* if we're about to do hardreset, nothing more to do */ 1798 if (ehc->i.action & ATA_EH_HARDRESET) 1799 return 0; 1800 1801 /* wait for !BSY if we don't know that no device is attached */ 1802 if (!ata_link_offline(link)) { 1803 rc = ata_sff_wait_ready(link, deadline); 1804 if (rc && rc != -ENODEV) { 1805 ata_link_warn(link, 1806 "device not ready (errno=%d), forcing hardreset\n", 1807 rc); 1808 ehc->i.action |= ATA_EH_HARDRESET; 1809 } 1810 } 1811 1812 return 0; 1813} 1814EXPORT_SYMBOL_GPL(ata_sff_prereset); 1815 1816/** 1817 * ata_devchk - PATA device presence detection 1818 * @ap: ATA channel to examine 1819 * @device: Device to examine (starting at zero) 1820 * 1821 * This technique was originally described in 1822 * Hale Landis's ATADRVR (www.ata-atapi.com), and 1823 * later found its way into the ATA/ATAPI spec. 1824 * 1825 * Write a pattern to the ATA shadow registers, 1826 * and if a device is present, it will respond by 1827 * correctly storing and echoing back the 1828 * ATA shadow register contents. 1829 * 1830 * LOCKING: 1831 * caller. 1832 */ 1833static unsigned int ata_devchk(struct ata_port *ap, unsigned int device) 1834{ 1835 struct ata_ioports *ioaddr = &ap->ioaddr; 1836 u8 nsect, lbal; 1837 1838 ap->ops->sff_dev_select(ap, device); 1839 1840 iowrite8(0x55, ioaddr->nsect_addr); 1841 iowrite8(0xaa, ioaddr->lbal_addr); 1842 1843 iowrite8(0xaa, ioaddr->nsect_addr); 1844 iowrite8(0x55, ioaddr->lbal_addr); 1845 1846 iowrite8(0x55, ioaddr->nsect_addr); 1847 iowrite8(0xaa, ioaddr->lbal_addr); 1848 1849 nsect = ioread8(ioaddr->nsect_addr); 1850 lbal = ioread8(ioaddr->lbal_addr); 1851 1852 if ((nsect == 0x55) && (lbal == 0xaa)) 1853 return 1; /* we found a device */ 1854 1855 return 0; /* nothing found */ 1856} 1857 1858/** 1859 * ata_sff_dev_classify - Parse returned ATA device signature 1860 * @dev: ATA device to classify (starting at zero) 1861 * @present: device seems present 1862 * @r_err: Value of error register on completion 1863 * 1864 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs, 1865 * an ATA/ATAPI-defined set of values is placed in the ATA 1866 * shadow registers, indicating the results of device detection 1867 * and diagnostics. 1868 * 1869 * Select the ATA device, and read the values from the ATA shadow 1870 * registers. Then parse according to the Error register value, 1871 * and the spec-defined values examined by ata_dev_classify(). 1872 * 1873 * LOCKING: 1874 * caller. 1875 * 1876 * RETURNS: 1877 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE. 1878 */ 1879unsigned int ata_sff_dev_classify(struct ata_device *dev, int present, 1880 u8 *r_err) 1881{ 1882 struct ata_port *ap = dev->link->ap; 1883 struct ata_taskfile tf; 1884 unsigned int class; 1885 u8 err; 1886 1887 ap->ops->sff_dev_select(ap, dev->devno); 1888 1889 memset(&tf, 0, sizeof(tf)); 1890 1891 ap->ops->sff_tf_read(ap, &tf); 1892 err = tf.feature; 1893 if (r_err) 1894 *r_err = err; 1895 1896 /* see if device passed diags: continue and warn later */ 1897 if (err == 0) 1898 /* diagnostic fail : do nothing _YET_ */ 1899 dev->horkage |= ATA_HORKAGE_DIAGNOSTIC; 1900 else if (err == 1) 1901 /* do nothing */ ; 1902 else if ((dev->devno == 0) && (err == 0x81)) 1903 /* do nothing */ ; 1904 else 1905 return ATA_DEV_NONE; 1906 1907 /* determine if device is ATA or ATAPI */ 1908 class = ata_dev_classify(&tf); 1909 1910 if (class == ATA_DEV_UNKNOWN) { 1911 /* If the device failed diagnostic, it's likely to 1912 * have reported incorrect device signature too. 1913 * Assume ATA device if the device seems present but 1914 * device signature is invalid with diagnostic 1915 * failure. 1916 */ 1917 if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC)) 1918 class = ATA_DEV_ATA; 1919 else 1920 class = ATA_DEV_NONE; 1921 } else if ((class == ATA_DEV_ATA) && 1922 (ap->ops->sff_check_status(ap) == 0)) 1923 class = ATA_DEV_NONE; 1924 1925 return class; 1926} 1927EXPORT_SYMBOL_GPL(ata_sff_dev_classify); 1928 1929/** 1930 * ata_sff_wait_after_reset - wait for devices to become ready after reset 1931 * @link: SFF link which is just reset 1932 * @devmask: mask of present devices 1933 * @deadline: deadline jiffies for the operation 1934 * 1935 * Wait devices attached to SFF @link to become ready after 1936 * reset. It contains preceding 150ms wait to avoid accessing TF 1937 * status register too early. 1938 * 1939 * LOCKING: 1940 * Kernel thread context (may sleep). 1941 * 1942 * RETURNS: 1943 * 0 on success, -ENODEV if some or all of devices in @devmask 1944 * don't seem to exist. -errno on other errors. 1945 */ 1946int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask, 1947 unsigned long deadline) 1948{ 1949 struct ata_port *ap = link->ap; 1950 struct ata_ioports *ioaddr = &ap->ioaddr; 1951 unsigned int dev0 = devmask & (1 << 0); 1952 unsigned int dev1 = devmask & (1 << 1); 1953 int rc, ret = 0; 1954 1955 ata_msleep(ap, ATA_WAIT_AFTER_RESET); 1956 1957 /* always check readiness of the master device */ 1958 rc = ata_sff_wait_ready(link, deadline); 1959 /* -ENODEV means the odd clown forgot the D7 pulldown resistor 1960 * and TF status is 0xff, bail out on it too. 1961 */ 1962 if (rc) 1963 return rc; 1964 1965 /* if device 1 was found in ata_devchk, wait for register 1966 * access briefly, then wait for BSY to clear. 1967 */ 1968 if (dev1) { 1969 int i; 1970 1971 ap->ops->sff_dev_select(ap, 1); 1972 1973 /* Wait for register access. Some ATAPI devices fail 1974 * to set nsect/lbal after reset, so don't waste too 1975 * much time on it. We're gonna wait for !BSY anyway. 1976 */ 1977 for (i = 0; i < 2; i++) { 1978 u8 nsect, lbal; 1979 1980 nsect = ioread8(ioaddr->nsect_addr); 1981 lbal = ioread8(ioaddr->lbal_addr); 1982 if ((nsect == 1) && (lbal == 1)) 1983 break; 1984 ata_msleep(ap, 50); /* give drive a breather */ 1985 } 1986 1987 rc = ata_sff_wait_ready(link, deadline); 1988 if (rc) { 1989 if (rc != -ENODEV) 1990 return rc; 1991 ret = rc; 1992 } 1993 } 1994 1995 /* is all this really necessary? */ 1996 ap->ops->sff_dev_select(ap, 0); 1997 if (dev1) 1998 ap->ops->sff_dev_select(ap, 1); 1999 if (dev0) 2000 ap->ops->sff_dev_select(ap, 0); 2001 2002 return ret; 2003} 2004EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset); 2005 2006static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask, 2007 unsigned long deadline) 2008{ 2009 struct ata_ioports *ioaddr = &ap->ioaddr; 2010 2011 DPRINTK("ata%u: bus reset via SRST\n", ap->print_id); 2012 2013 if (ap->ioaddr.ctl_addr) { 2014 /* software reset. causes dev0 to be selected */ 2015 iowrite8(ap->ctl, ioaddr->ctl_addr); 2016 udelay(20); /* FIXME: flush */ 2017 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr); 2018 udelay(20); /* FIXME: flush */ 2019 iowrite8(ap->ctl, ioaddr->ctl_addr); 2020 ap->last_ctl = ap->ctl; 2021 } 2022 2023 /* wait the port to become ready */ 2024 return ata_sff_wait_after_reset(&ap->link, devmask, deadline); 2025} 2026 2027/** 2028 * ata_sff_softreset - reset host port via ATA SRST 2029 * @link: ATA link to reset 2030 * @classes: resulting classes of attached devices 2031 * @deadline: deadline jiffies for the operation 2032 * 2033 * Reset host port using ATA SRST. 2034 * 2035 * LOCKING: 2036 * Kernel thread context (may sleep) 2037 * 2038 * RETURNS: 2039 * 0 on success, -errno otherwise. 2040 */ 2041int ata_sff_softreset(struct ata_link *link, unsigned int *classes, 2042 unsigned long deadline) 2043{ 2044 struct ata_port *ap = link->ap; 2045 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS; 2046 unsigned int devmask = 0; 2047 int rc; 2048 u8 err; 2049 2050 DPRINTK("ENTER\n"); 2051 2052 /* determine if device 0/1 are present */ 2053 if (ata_devchk(ap, 0)) 2054 devmask |= (1 << 0); 2055 if (slave_possible && ata_devchk(ap, 1)) 2056 devmask |= (1 << 1); 2057 2058 /* select device 0 again */ 2059 ap->ops->sff_dev_select(ap, 0); 2060 2061 /* issue bus reset */ 2062 DPRINTK("about to softreset, devmask=%x\n", devmask); 2063 rc = ata_bus_softreset(ap, devmask, deadline); 2064 /* if link is occupied, -ENODEV too is an error */ 2065 if (rc && (rc != -ENODEV || sata_scr_valid(link))) { 2066 ata_link_err(link, "SRST failed (errno=%d)\n", rc); 2067 return rc; 2068 } 2069 2070 /* determine by signature whether we have ATA or ATAPI devices */ 2071 classes[0] = ata_sff_dev_classify(&link->device[0], 2072 devmask & (1 << 0), &err); 2073 if (slave_possible && err != 0x81) 2074 classes[1] = ata_sff_dev_classify(&link->device[1], 2075 devmask & (1 << 1), &err); 2076 2077 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]); 2078 return 0; 2079} 2080EXPORT_SYMBOL_GPL(ata_sff_softreset); 2081 2082/** 2083 * sata_sff_hardreset - reset host port via SATA phy reset 2084 * @link: link to reset 2085 * @class: resulting class of attached device 2086 * @deadline: deadline jiffies for the operation 2087 * 2088 * SATA phy-reset host port using DET bits of SControl register, 2089 * wait for !BSY and classify the attached device. 2090 * 2091 * LOCKING: 2092 * Kernel thread context (may sleep) 2093 * 2094 * RETURNS: 2095 * 0 on success, -errno otherwise. 2096 */ 2097int sata_sff_hardreset(struct ata_link *link, unsigned int *class, 2098 unsigned long deadline) 2099{ 2100 struct ata_eh_context *ehc = &link->eh_context; 2101 const unsigned long *timing = sata_ehc_deb_timing(ehc); 2102 bool online; 2103 int rc; 2104 2105 rc = sata_link_hardreset(link, timing, deadline, &online, 2106 ata_sff_check_ready); 2107 if (online) 2108 *class = ata_sff_dev_classify(link->device, 1, NULL); 2109 2110 DPRINTK("EXIT, class=%u\n", *class); 2111 return rc; 2112} 2113EXPORT_SYMBOL_GPL(sata_sff_hardreset); 2114 2115/** 2116 * ata_sff_postreset - SFF postreset callback 2117 * @link: the target SFF ata_link 2118 * @classes: classes of attached devices 2119 * 2120 * This function is invoked after a successful reset. It first 2121 * calls ata_std_postreset() and performs SFF specific postreset 2122 * processing. 2123 * 2124 * LOCKING: 2125 * Kernel thread context (may sleep) 2126 */ 2127void ata_sff_postreset(struct ata_link *link, unsigned int *classes) 2128{ 2129 struct ata_port *ap = link->ap; 2130 2131 ata_std_postreset(link, classes); 2132 2133 /* is double-select really necessary? */ 2134 if (classes[0] != ATA_DEV_NONE) 2135 ap->ops->sff_dev_select(ap, 1); 2136 if (classes[1] != ATA_DEV_NONE) 2137 ap->ops->sff_dev_select(ap, 0); 2138 2139 /* bail out if no device is present */ 2140 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { 2141 DPRINTK("EXIT, no device\n"); 2142 return; 2143 } 2144 2145 /* set up device control */ 2146 if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) { 2147 ata_sff_set_devctl(ap, ap->ctl); 2148 ap->last_ctl = ap->ctl; 2149 } 2150} 2151EXPORT_SYMBOL_GPL(ata_sff_postreset); 2152 2153/** 2154 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers 2155 * @qc: command 2156 * 2157 * Drain the FIFO and device of any stuck data following a command 2158 * failing to complete. In some cases this is necessary before a 2159 * reset will recover the device. 2160 * 2161 */ 2162 2163void ata_sff_drain_fifo(struct ata_queued_cmd *qc) 2164{ 2165 int count; 2166 struct ata_port *ap; 2167 2168 /* We only need to flush incoming data when a command was running */ 2169 if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE) 2170 return; 2171 2172 ap = qc->ap; 2173 /* Drain up to 64K of data before we give up this recovery method */ 2174 for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ) 2175 && count < 65536; count += 2) 2176 ioread16(ap->ioaddr.data_addr); 2177 2178 /* Can become DEBUG later */ 2179 if (count) 2180 ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count); 2181 2182} 2183EXPORT_SYMBOL_GPL(ata_sff_drain_fifo); 2184 2185/** 2186 * ata_sff_error_handler - Stock error handler for SFF controller 2187 * @ap: port to handle error for 2188 * 2189 * Stock error handler for SFF controller. It can handle both 2190 * PATA and SATA controllers. Many controllers should be able to 2191 * use this EH as-is or with some added handling before and 2192 * after. 2193 * 2194 * LOCKING: 2195 * Kernel thread context (may sleep) 2196 */ 2197void ata_sff_error_handler(struct ata_port *ap) 2198{ 2199 ata_reset_fn_t softreset = ap->ops->softreset; 2200 ata_reset_fn_t hardreset = ap->ops->hardreset; 2201 struct ata_queued_cmd *qc; 2202 unsigned long flags; 2203 2204 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2205 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2206 qc = NULL; 2207 2208 spin_lock_irqsave(ap->lock, flags); 2209 2210 /* 2211 * We *MUST* do FIFO draining before we issue a reset as 2212 * several devices helpfully clear their internal state and 2213 * will lock solid if we touch the data port post reset. Pass 2214 * qc in case anyone wants to do different PIO/DMA recovery or 2215 * has per command fixups 2216 */ 2217 if (ap->ops->sff_drain_fifo) 2218 ap->ops->sff_drain_fifo(qc); 2219 2220 spin_unlock_irqrestore(ap->lock, flags); 2221 2222 /* ignore built-in hardresets if SCR access is not available */ 2223 if ((hardreset == sata_std_hardreset || 2224 hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link)) 2225 hardreset = NULL; 2226 2227 ata_do_eh(ap, ap->ops->prereset, softreset, hardreset, 2228 ap->ops->postreset); 2229} 2230EXPORT_SYMBOL_GPL(ata_sff_error_handler); 2231 2232/** 2233 * ata_sff_std_ports - initialize ioaddr with standard port offsets. 2234 * @ioaddr: IO address structure to be initialized 2235 * 2236 * Utility function which initializes data_addr, error_addr, 2237 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr, 2238 * device_addr, status_addr, and command_addr to standard offsets 2239 * relative to cmd_addr. 2240 * 2241 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr. 2242 */ 2243void ata_sff_std_ports(struct ata_ioports *ioaddr) 2244{ 2245 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA; 2246 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR; 2247 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE; 2248 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT; 2249 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL; 2250 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM; 2251 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH; 2252 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE; 2253 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS; 2254 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD; 2255} 2256EXPORT_SYMBOL_GPL(ata_sff_std_ports); 2257 2258#ifdef CONFIG_PCI 2259 2260static int ata_resources_present(struct pci_dev *pdev, int port) 2261{ 2262 int i; 2263 2264 /* Check the PCI resources for this channel are enabled */ 2265 port = port * 2; 2266 for (i = 0; i < 2; i++) { 2267 if (pci_resource_start(pdev, port + i) == 0 || 2268 pci_resource_len(pdev, port + i) == 0) 2269 return 0; 2270 } 2271 return 1; 2272} 2273 2274/** 2275 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host 2276 * @host: target ATA host 2277 * 2278 * Acquire native PCI ATA resources for @host and initialize the 2279 * first two ports of @host accordingly. Ports marked dummy are 2280 * skipped and allocation failure makes the port dummy. 2281 * 2282 * Note that native PCI resources are valid even for legacy hosts 2283 * as we fix up pdev resources array early in boot, so this 2284 * function can be used for both native and legacy SFF hosts. 2285 * 2286 * LOCKING: 2287 * Inherited from calling layer (may sleep). 2288 * 2289 * RETURNS: 2290 * 0 if at least one port is initialized, -ENODEV if no port is 2291 * available. 2292 */ 2293int ata_pci_sff_init_host(struct ata_host *host) 2294{ 2295 struct device *gdev = host->dev; 2296 struct pci_dev *pdev = to_pci_dev(gdev); 2297 unsigned int mask = 0; 2298 int i, rc; 2299 2300 /* request, iomap BARs and init port addresses accordingly */ 2301 for (i = 0; i < 2; i++) { 2302 struct ata_port *ap = host->ports[i]; 2303 int base = i * 2; 2304 void __iomem * const *iomap; 2305 2306 if (ata_port_is_dummy(ap)) 2307 continue; 2308 2309 /* Discard disabled ports. Some controllers show 2310 * their unused channels this way. Disabled ports are 2311 * made dummy. 2312 */ 2313 if (!ata_resources_present(pdev, i)) { 2314 ap->ops = &ata_dummy_port_ops; 2315 continue; 2316 } 2317 2318 rc = pcim_iomap_regions(pdev, 0x3 << base, 2319 dev_driver_string(gdev)); 2320 if (rc) { 2321 dev_warn(gdev, 2322 "failed to request/iomap BARs for port %d (errno=%d)\n", 2323 i, rc); 2324 if (rc == -EBUSY) 2325 pcim_pin_device(pdev); 2326 ap->ops = &ata_dummy_port_ops; 2327 continue; 2328 } 2329 host->iomap = iomap = pcim_iomap_table(pdev); 2330 2331 ap->ioaddr.cmd_addr = iomap[base]; 2332 ap->ioaddr.altstatus_addr = 2333 ap->ioaddr.ctl_addr = (void __iomem *) 2334 ((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS); 2335 ata_sff_std_ports(&ap->ioaddr); 2336 2337 ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx", 2338 (unsigned long long)pci_resource_start(pdev, base), 2339 (unsigned long long)pci_resource_start(pdev, base + 1)); 2340 2341 mask |= 1 << i; 2342 } 2343 2344 if (!mask) { 2345 dev_err(gdev, "no available native port\n"); 2346 return -ENODEV; 2347 } 2348 2349 return 0; 2350} 2351EXPORT_SYMBOL_GPL(ata_pci_sff_init_host); 2352 2353/** 2354 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host 2355 * @pdev: target PCI device 2356 * @ppi: array of port_info, must be enough for two ports 2357 * @r_host: out argument for the initialized ATA host 2358 * 2359 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire 2360 * all PCI resources and initialize it accordingly in one go. 2361 * 2362 * LOCKING: 2363 * Inherited from calling layer (may sleep). 2364 * 2365 * RETURNS: 2366 * 0 on success, -errno otherwise. 2367 */ 2368int ata_pci_sff_prepare_host(struct pci_dev *pdev, 2369 const struct ata_port_info * const *ppi, 2370 struct ata_host **r_host) 2371{ 2372 struct ata_host *host; 2373 int rc; 2374 2375 if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) 2376 return -ENOMEM; 2377 2378 host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2); 2379 if (!host) { 2380 dev_err(&pdev->dev, "failed to allocate ATA host\n"); 2381 rc = -ENOMEM; 2382 goto err_out; 2383 } 2384 2385 rc = ata_pci_sff_init_host(host); 2386 if (rc) 2387 goto err_out; 2388 2389 devres_remove_group(&pdev->dev, NULL); 2390 *r_host = host; 2391 return 0; 2392 2393err_out: 2394 devres_release_group(&pdev->dev, NULL); 2395 return rc; 2396} 2397EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host); 2398 2399/** 2400 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it 2401 * @host: target SFF ATA host 2402 * @irq_handler: irq_handler used when requesting IRQ(s) 2403 * @sht: scsi_host_template to use when registering the host 2404 * 2405 * This is the counterpart of ata_host_activate() for SFF ATA 2406 * hosts. This separate helper is necessary because SFF hosts 2407 * use two separate interrupts in legacy mode. 2408 * 2409 * LOCKING: 2410 * Inherited from calling layer (may sleep). 2411 * 2412 * RETURNS: 2413 * 0 on success, -errno otherwise. 2414 */ 2415int ata_pci_sff_activate_host(struct ata_host *host, 2416 irq_handler_t irq_handler, 2417 struct scsi_host_template *sht) 2418{ 2419 struct device *dev = host->dev; 2420 struct pci_dev *pdev = to_pci_dev(dev); 2421 const char *drv_name = dev_driver_string(host->dev); 2422 int legacy_mode = 0, rc; 2423 2424 rc = ata_host_start(host); 2425 if (rc) 2426 return rc; 2427 2428 if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) { 2429 u8 tmp8, mask; 2430 2431 /* TODO: What if one channel is in native mode ... */ 2432 pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8); 2433 mask = (1 << 2) | (1 << 0); 2434 if ((tmp8 & mask) != mask) 2435 legacy_mode = 1; 2436 } 2437 2438 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2439 return -ENOMEM; 2440 2441 if (!legacy_mode && pdev->irq) { 2442 int i; 2443 2444 rc = devm_request_irq(dev, pdev->irq, irq_handler, 2445 IRQF_SHARED, drv_name, host); 2446 if (rc) 2447 goto out; 2448 2449 for (i = 0; i < 2; i++) { 2450 if (ata_port_is_dummy(host->ports[i])) 2451 continue; 2452 ata_port_desc(host->ports[i], "irq %d", pdev->irq); 2453 } 2454 } else if (legacy_mode) { 2455 if (!ata_port_is_dummy(host->ports[0])) { 2456 rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev), 2457 irq_handler, IRQF_SHARED, 2458 drv_name, host); 2459 if (rc) 2460 goto out; 2461 2462 ata_port_desc(host->ports[0], "irq %d", 2463 ATA_PRIMARY_IRQ(pdev)); 2464 } 2465 2466 if (!ata_port_is_dummy(host->ports[1])) { 2467 rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev), 2468 irq_handler, IRQF_SHARED, 2469 drv_name, host); 2470 if (rc) 2471 goto out; 2472 2473 ata_port_desc(host->ports[1], "irq %d", 2474 ATA_SECONDARY_IRQ(pdev)); 2475 } 2476 } 2477 2478 rc = ata_host_register(host, sht); 2479out: 2480 if (rc == 0) 2481 devres_remove_group(dev, NULL); 2482 else 2483 devres_release_group(dev, NULL); 2484 2485 return rc; 2486} 2487EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host); 2488 2489static const struct ata_port_info *ata_sff_find_valid_pi( 2490 const struct ata_port_info * const *ppi) 2491{ 2492 int i; 2493 2494 /* look up the first valid port_info */ 2495 for (i = 0; i < 2 && ppi[i]; i++) 2496 if (ppi[i]->port_ops != &ata_dummy_port_ops) 2497 return ppi[i]; 2498 2499 return NULL; 2500} 2501 2502static int ata_pci_init_one(struct pci_dev *pdev, 2503 const struct ata_port_info * const *ppi, 2504 struct scsi_host_template *sht, void *host_priv, 2505 int hflags, bool bmdma) 2506{ 2507 struct device *dev = &pdev->dev; 2508 const struct ata_port_info *pi; 2509 struct ata_host *host = NULL; 2510 int rc; 2511 2512 DPRINTK("ENTER\n"); 2513 2514 pi = ata_sff_find_valid_pi(ppi); 2515 if (!pi) { 2516 dev_err(&pdev->dev, "no valid port_info specified\n"); 2517 return -EINVAL; 2518 } 2519 2520 if (!devres_open_group(dev, NULL, GFP_KERNEL)) 2521 return -ENOMEM; 2522 2523 rc = pcim_enable_device(pdev); 2524 if (rc) 2525 goto out; 2526 2527#ifdef CONFIG_ATA_BMDMA 2528 if (bmdma) 2529 /* prepare and activate BMDMA host */ 2530 rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host); 2531 else 2532#endif 2533 /* prepare and activate SFF host */ 2534 rc = ata_pci_sff_prepare_host(pdev, ppi, &host); 2535 if (rc) 2536 goto out; 2537 host->private_data = host_priv; 2538 host->flags |= hflags; 2539 2540#ifdef CONFIG_ATA_BMDMA 2541 if (bmdma) { 2542 pci_set_master(pdev); 2543 rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht); 2544 } else 2545#endif 2546 rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht); 2547out: 2548 if (rc == 0) 2549 devres_remove_group(&pdev->dev, NULL); 2550 else 2551 devres_release_group(&pdev->dev, NULL); 2552 2553 return rc; 2554} 2555 2556/** 2557 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller 2558 * @pdev: Controller to be initialized 2559 * @ppi: array of port_info, must be enough for two ports 2560 * @sht: scsi_host_template to use when registering the host 2561 * @host_priv: host private_data 2562 * @hflag: host flags 2563 * 2564 * This is a helper function which can be called from a driver's 2565 * xxx_init_one() probe function if the hardware uses traditional 2566 * IDE taskfile registers and is PIO only. 2567 * 2568 * ASSUMPTION: 2569 * Nobody makes a single channel controller that appears solely as 2570 * the secondary legacy port on PCI. 2571 * 2572 * LOCKING: 2573 * Inherited from PCI layer (may sleep). 2574 * 2575 * RETURNS: 2576 * Zero on success, negative on errno-based value on error. 2577 */ 2578int ata_pci_sff_init_one(struct pci_dev *pdev, 2579 const struct ata_port_info * const *ppi, 2580 struct scsi_host_template *sht, void *host_priv, int hflag) 2581{ 2582 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0); 2583} 2584EXPORT_SYMBOL_GPL(ata_pci_sff_init_one); 2585 2586#endif /* CONFIG_PCI */ 2587 2588/* 2589 * BMDMA support 2590 */ 2591 2592#ifdef CONFIG_ATA_BMDMA 2593 2594const struct ata_port_operations ata_bmdma_port_ops = { 2595 .inherits = &ata_sff_port_ops, 2596 2597 .error_handler = ata_bmdma_error_handler, 2598 .post_internal_cmd = ata_bmdma_post_internal_cmd, 2599 2600 .qc_prep = ata_bmdma_qc_prep, 2601 .qc_issue = ata_bmdma_qc_issue, 2602 2603 .sff_irq_clear = ata_bmdma_irq_clear, 2604 .bmdma_setup = ata_bmdma_setup, 2605 .bmdma_start = ata_bmdma_start, 2606 .bmdma_stop = ata_bmdma_stop, 2607 .bmdma_status = ata_bmdma_status, 2608 2609 .port_start = ata_bmdma_port_start, 2610}; 2611EXPORT_SYMBOL_GPL(ata_bmdma_port_ops); 2612 2613const struct ata_port_operations ata_bmdma32_port_ops = { 2614 .inherits = &ata_bmdma_port_ops, 2615 2616 .sff_data_xfer = ata_sff_data_xfer32, 2617 .port_start = ata_bmdma_port_start32, 2618}; 2619EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops); 2620 2621/** 2622 * ata_bmdma_fill_sg - Fill PCI IDE PRD table 2623 * @qc: Metadata associated with taskfile to be transferred 2624 * 2625 * Fill PCI IDE PRD (scatter-gather) table with segments 2626 * associated with the current disk command. 2627 * 2628 * LOCKING: 2629 * spin_lock_irqsave(host lock) 2630 * 2631 */ 2632static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc) 2633{ 2634 struct ata_port *ap = qc->ap; 2635 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2636 struct scatterlist *sg; 2637 unsigned int si, pi; 2638 2639 pi = 0; 2640 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2641 u32 addr, offset; 2642 u32 sg_len, len; 2643 2644 /* determine if physical DMA addr spans 64K boundary. 2645 * Note h/w doesn't support 64-bit, so we unconditionally 2646 * truncate dma_addr_t to u32. 2647 */ 2648 addr = (u32) sg_dma_address(sg); 2649 sg_len = sg_dma_len(sg); 2650 2651 while (sg_len) { 2652 offset = addr & 0xffff; 2653 len = sg_len; 2654 if ((offset + sg_len) > 0x10000) 2655 len = 0x10000 - offset; 2656 2657 prd[pi].addr = cpu_to_le32(addr); 2658 prd[pi].flags_len = cpu_to_le32(len & 0xffff); 2659 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2660 2661 pi++; 2662 sg_len -= len; 2663 addr += len; 2664 } 2665 } 2666 2667 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2668} 2669 2670/** 2671 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table 2672 * @qc: Metadata associated with taskfile to be transferred 2673 * 2674 * Fill PCI IDE PRD (scatter-gather) table with segments 2675 * associated with the current disk command. Perform the fill 2676 * so that we avoid writing any length 64K records for 2677 * controllers that don't follow the spec. 2678 * 2679 * LOCKING: 2680 * spin_lock_irqsave(host lock) 2681 * 2682 */ 2683static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc) 2684{ 2685 struct ata_port *ap = qc->ap; 2686 struct ata_bmdma_prd *prd = ap->bmdma_prd; 2687 struct scatterlist *sg; 2688 unsigned int si, pi; 2689 2690 pi = 0; 2691 for_each_sg(qc->sg, sg, qc->n_elem, si) { 2692 u32 addr, offset; 2693 u32 sg_len, len, blen; 2694 2695 /* determine if physical DMA addr spans 64K boundary. 2696 * Note h/w doesn't support 64-bit, so we unconditionally 2697 * truncate dma_addr_t to u32. 2698 */ 2699 addr = (u32) sg_dma_address(sg); 2700 sg_len = sg_dma_len(sg); 2701 2702 while (sg_len) { 2703 offset = addr & 0xffff; 2704 len = sg_len; 2705 if ((offset + sg_len) > 0x10000) 2706 len = 0x10000 - offset; 2707 2708 blen = len & 0xffff; 2709 prd[pi].addr = cpu_to_le32(addr); 2710 if (blen == 0) { 2711 /* Some PATA chipsets like the CS5530 can't 2712 cope with 0x0000 meaning 64K as the spec 2713 says */ 2714 prd[pi].flags_len = cpu_to_le32(0x8000); 2715 blen = 0x8000; 2716 prd[++pi].addr = cpu_to_le32(addr + 0x8000); 2717 } 2718 prd[pi].flags_len = cpu_to_le32(blen); 2719 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len); 2720 2721 pi++; 2722 sg_len -= len; 2723 addr += len; 2724 } 2725 } 2726 2727 prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT); 2728} 2729 2730/** 2731 * ata_bmdma_qc_prep - Prepare taskfile for submission 2732 * @qc: Metadata associated with taskfile to be prepared 2733 * 2734 * Prepare ATA taskfile for submission. 2735 * 2736 * LOCKING: 2737 * spin_lock_irqsave(host lock) 2738 */ 2739void ata_bmdma_qc_prep(struct ata_queued_cmd *qc) 2740{ 2741 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2742 return; 2743 2744 ata_bmdma_fill_sg(qc); 2745} 2746EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep); 2747 2748/** 2749 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission 2750 * @qc: Metadata associated with taskfile to be prepared 2751 * 2752 * Prepare ATA taskfile for submission. 2753 * 2754 * LOCKING: 2755 * spin_lock_irqsave(host lock) 2756 */ 2757void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc) 2758{ 2759 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) 2760 return; 2761 2762 ata_bmdma_fill_sg_dumb(qc); 2763} 2764EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep); 2765 2766/** 2767 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller 2768 * @qc: command to issue to device 2769 * 2770 * This function issues a PIO, NODATA or DMA command to a 2771 * SFF/BMDMA controller. PIO and NODATA are handled by 2772 * ata_sff_qc_issue(). 2773 * 2774 * LOCKING: 2775 * spin_lock_irqsave(host lock) 2776 * 2777 * RETURNS: 2778 * Zero on success, AC_ERR_* mask on failure 2779 */ 2780unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc) 2781{ 2782 struct ata_port *ap = qc->ap; 2783 struct ata_link *link = qc->dev->link; 2784 2785 /* defer PIO handling to sff_qc_issue */ 2786 if (!ata_is_dma(qc->tf.protocol)) 2787 return ata_sff_qc_issue(qc); 2788 2789 /* select the device */ 2790 ata_dev_select(ap, qc->dev->devno, 1, 0); 2791 2792 /* start the command */ 2793 switch (qc->tf.protocol) { 2794 case ATA_PROT_DMA: 2795 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2796 2797 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2798 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2799 ap->ops->bmdma_start(qc); /* initiate bmdma */ 2800 ap->hsm_task_state = HSM_ST_LAST; 2801 break; 2802 2803 case ATAPI_PROT_DMA: 2804 WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING); 2805 2806 ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */ 2807 ap->ops->bmdma_setup(qc); /* set up bmdma */ 2808 ap->hsm_task_state = HSM_ST_FIRST; 2809 2810 /* send cdb by polling if no cdb interrupt */ 2811 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) 2812 ata_sff_queue_pio_task(link, 0); 2813 break; 2814 2815 default: 2816 WARN_ON(1); 2817 return AC_ERR_SYSTEM; 2818 } 2819 2820 return 0; 2821} 2822EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue); 2823 2824/** 2825 * ata_bmdma_port_intr - Handle BMDMA port interrupt 2826 * @ap: Port on which interrupt arrived (possibly...) 2827 * @qc: Taskfile currently active in engine 2828 * 2829 * Handle port interrupt for given queued command. 2830 * 2831 * LOCKING: 2832 * spin_lock_irqsave(host lock) 2833 * 2834 * RETURNS: 2835 * One if interrupt was handled, zero if not (shared irq). 2836 */ 2837unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc) 2838{ 2839 struct ata_eh_info *ehi = &ap->link.eh_info; 2840 u8 host_stat = 0; 2841 bool bmdma_stopped = false; 2842 unsigned int handled; 2843 2844 if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) { 2845 /* check status of DMA engine */ 2846 host_stat = ap->ops->bmdma_status(ap); 2847 VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat); 2848 2849 /* if it's not our irq... */ 2850 if (!(host_stat & ATA_DMA_INTR)) 2851 return ata_sff_idle_irq(ap); 2852 2853 /* before we do anything else, clear DMA-Start bit */ 2854 ap->ops->bmdma_stop(qc); 2855 bmdma_stopped = true; 2856 2857 if (unlikely(host_stat & ATA_DMA_ERR)) { 2858 /* error when transferring data to/from memory */ 2859 qc->err_mask |= AC_ERR_HOST_BUS; 2860 ap->hsm_task_state = HSM_ST_ERR; 2861 } 2862 } 2863 2864 handled = __ata_sff_port_intr(ap, qc, bmdma_stopped); 2865 2866 if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol)) 2867 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat); 2868 2869 return handled; 2870} 2871EXPORT_SYMBOL_GPL(ata_bmdma_port_intr); 2872 2873/** 2874 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler 2875 * @irq: irq line (unused) 2876 * @dev_instance: pointer to our ata_host information structure 2877 * 2878 * Default interrupt handler for PCI IDE devices. Calls 2879 * ata_bmdma_port_intr() for each port that is not disabled. 2880 * 2881 * LOCKING: 2882 * Obtains host lock during operation. 2883 * 2884 * RETURNS: 2885 * IRQ_NONE or IRQ_HANDLED. 2886 */ 2887irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance) 2888{ 2889 return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr); 2890} 2891EXPORT_SYMBOL_GPL(ata_bmdma_interrupt); 2892 2893/** 2894 * ata_bmdma_error_handler - Stock error handler for BMDMA controller 2895 * @ap: port to handle error for 2896 * 2897 * Stock error handler for BMDMA controller. It can handle both 2898 * PATA and SATA controllers. Most BMDMA controllers should be 2899 * able to use this EH as-is or with some added handling before 2900 * and after. 2901 * 2902 * LOCKING: 2903 * Kernel thread context (may sleep) 2904 */ 2905void ata_bmdma_error_handler(struct ata_port *ap) 2906{ 2907 struct ata_queued_cmd *qc; 2908 unsigned long flags; 2909 bool thaw = false; 2910 2911 qc = __ata_qc_from_tag(ap, ap->link.active_tag); 2912 if (qc && !(qc->flags & ATA_QCFLAG_FAILED)) 2913 qc = NULL; 2914 2915 /* reset PIO HSM and stop DMA engine */ 2916 spin_lock_irqsave(ap->lock, flags); 2917 2918 if (qc && ata_is_dma(qc->tf.protocol)) { 2919 u8 host_stat; 2920 2921 host_stat = ap->ops->bmdma_status(ap); 2922 2923 /* BMDMA controllers indicate host bus error by 2924 * setting DMA_ERR bit and timing out. As it wasn't 2925 * really a timeout event, adjust error mask and 2926 * cancel frozen state. 2927 */ 2928 if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) { 2929 qc->err_mask = AC_ERR_HOST_BUS; 2930 thaw = true; 2931 } 2932 2933 ap->ops->bmdma_stop(qc); 2934 2935 /* if we're gonna thaw, make sure IRQ is clear */ 2936 if (thaw) { 2937 ap->ops->sff_check_status(ap); 2938 if (ap->ops->sff_irq_clear) 2939 ap->ops->sff_irq_clear(ap); 2940 } 2941 } 2942 2943 spin_unlock_irqrestore(ap->lock, flags); 2944 2945 if (thaw) 2946 ata_eh_thaw_port(ap); 2947 2948 ata_sff_error_handler(ap); 2949} 2950EXPORT_SYMBOL_GPL(ata_bmdma_error_handler); 2951 2952/** 2953 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA 2954 * @qc: internal command to clean up 2955 * 2956 * LOCKING: 2957 * Kernel thread context (may sleep) 2958 */ 2959void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc) 2960{ 2961 struct ata_port *ap = qc->ap; 2962 unsigned long flags; 2963 2964 if (ata_is_dma(qc->tf.protocol)) { 2965 spin_lock_irqsave(ap->lock, flags); 2966 ap->ops->bmdma_stop(qc); 2967 spin_unlock_irqrestore(ap->lock, flags); 2968 } 2969} 2970EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd); 2971 2972/** 2973 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt. 2974 * @ap: Port associated with this ATA transaction. 2975 * 2976 * Clear interrupt and error flags in DMA status register. 2977 * 2978 * May be used as the irq_clear() entry in ata_port_operations. 2979 * 2980 * LOCKING: 2981 * spin_lock_irqsave(host lock) 2982 */ 2983void ata_bmdma_irq_clear(struct ata_port *ap) 2984{ 2985 void __iomem *mmio = ap->ioaddr.bmdma_addr; 2986 2987 if (!mmio) 2988 return; 2989 2990 iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS); 2991} 2992EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear); 2993 2994/** 2995 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction 2996 * @qc: Info associated with this ATA transaction. 2997 * 2998 * LOCKING: 2999 * spin_lock_irqsave(host lock) 3000 */ 3001void ata_bmdma_setup(struct ata_queued_cmd *qc) 3002{ 3003 struct ata_port *ap = qc->ap; 3004 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); 3005 u8 dmactl; 3006 3007 /* load PRD table addr. */ 3008 mb(); /* make sure PRD table writes are visible to controller */ 3009 iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS); 3010 3011 /* specify data direction, triple-check start bit is clear */ 3012 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3013 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START); 3014 if (!rw) 3015 dmactl |= ATA_DMA_WR; 3016 iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3017 3018 /* issue r/w command */ 3019 ap->ops->sff_exec_command(ap, &qc->tf); 3020} 3021EXPORT_SYMBOL_GPL(ata_bmdma_setup); 3022 3023/** 3024 * ata_bmdma_start - Start a PCI IDE BMDMA transaction 3025 * @qc: Info associated with this ATA transaction. 3026 * 3027 * LOCKING: 3028 * spin_lock_irqsave(host lock) 3029 */ 3030void ata_bmdma_start(struct ata_queued_cmd *qc) 3031{ 3032 struct ata_port *ap = qc->ap; 3033 u8 dmactl; 3034 3035 /* start host DMA transaction */ 3036 dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3037 iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD); 3038 3039 /* Strictly, one may wish to issue an ioread8() here, to 3040 * flush the mmio write. However, control also passes 3041 * to the hardware at this point, and it will interrupt 3042 * us when we are to resume control. So, in effect, 3043 * we don't care when the mmio write flushes. 3044 * Further, a read of the DMA status register _immediately_ 3045 * following the write may not be what certain flaky hardware 3046 * is expected, so I think it is best to not add a readb() 3047 * without first all the MMIO ATA cards/mobos. 3048 * Or maybe I'm just being paranoid. 3049 * 3050 * FIXME: The posting of this write means I/O starts are 3051 * unnecessarily delayed for MMIO 3052 */ 3053} 3054EXPORT_SYMBOL_GPL(ata_bmdma_start); 3055 3056/** 3057 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer 3058 * @qc: Command we are ending DMA for 3059 * 3060 * Clears the ATA_DMA_START flag in the dma control register 3061 * 3062 * May be used as the bmdma_stop() entry in ata_port_operations. 3063 * 3064 * LOCKING: 3065 * spin_lock_irqsave(host lock) 3066 */ 3067void ata_bmdma_stop(struct ata_queued_cmd *qc) 3068{ 3069 struct ata_port *ap = qc->ap; 3070 void __iomem *mmio = ap->ioaddr.bmdma_addr; 3071 3072 /* clear start/stop bit */ 3073 iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START, 3074 mmio + ATA_DMA_CMD); 3075 3076 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ 3077 ata_sff_dma_pause(ap); 3078} 3079EXPORT_SYMBOL_GPL(ata_bmdma_stop); 3080 3081/** 3082 * ata_bmdma_status - Read PCI IDE BMDMA status 3083 * @ap: Port associated with this ATA transaction. 3084 * 3085 * Read and return BMDMA status register. 3086 * 3087 * May be used as the bmdma_status() entry in ata_port_operations. 3088 * 3089 * LOCKING: 3090 * spin_lock_irqsave(host lock) 3091 */ 3092u8 ata_bmdma_status(struct ata_port *ap) 3093{ 3094 return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS); 3095} 3096EXPORT_SYMBOL_GPL(ata_bmdma_status); 3097 3098 3099/** 3100 * ata_bmdma_port_start - Set port up for bmdma. 3101 * @ap: Port to initialize 3102 * 3103 * Called just after data structures for each port are 3104 * initialized. Allocates space for PRD table. 3105 * 3106 * May be used as the port_start() entry in ata_port_operations. 3107 * 3108 * LOCKING: 3109 * Inherited from caller. 3110 */ 3111int ata_bmdma_port_start(struct ata_port *ap) 3112{ 3113 if (ap->mwdma_mask || ap->udma_mask) { 3114 ap->bmdma_prd = 3115 dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ, 3116 &ap->bmdma_prd_dma, GFP_KERNEL); 3117 if (!ap->bmdma_prd) 3118 return -ENOMEM; 3119 } 3120 3121 return 0; 3122} 3123EXPORT_SYMBOL_GPL(ata_bmdma_port_start); 3124 3125/** 3126 * ata_bmdma_port_start32 - Set port up for dma. 3127 * @ap: Port to initialize 3128 * 3129 * Called just after data structures for each port are 3130 * initialized. Enables 32bit PIO and allocates space for PRD 3131 * table. 3132 * 3133 * May be used as the port_start() entry in ata_port_operations for 3134 * devices that are capable of 32bit PIO. 3135 * 3136 * LOCKING: 3137 * Inherited from caller. 3138 */ 3139int ata_bmdma_port_start32(struct ata_port *ap) 3140{ 3141 ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE; 3142 return ata_bmdma_port_start(ap); 3143} 3144EXPORT_SYMBOL_GPL(ata_bmdma_port_start32); 3145 3146#ifdef CONFIG_PCI 3147 3148/** 3149 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex 3150 * @pdev: PCI device 3151 * 3152 * Some PCI ATA devices report simplex mode but in fact can be told to 3153 * enter non simplex mode. This implements the necessary logic to 3154 * perform the task on such devices. Calling it on other devices will 3155 * have -undefined- behaviour. 3156 */ 3157int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev) 3158{ 3159 unsigned long bmdma = pci_resource_start(pdev, 4); 3160 u8 simplex; 3161 3162 if (bmdma == 0) 3163 return -ENOENT; 3164 3165 simplex = inb(bmdma + 0x02); 3166 outb(simplex & 0x60, bmdma + 0x02); 3167 simplex = inb(bmdma + 0x02); 3168 if (simplex & 0x80) 3169 return -EOPNOTSUPP; 3170 return 0; 3171} 3172EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex); 3173 3174static void ata_bmdma_nodma(struct ata_host *host, const char *reason) 3175{ 3176 int i; 3177 3178 dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason); 3179 3180 for (i = 0; i < 2; i++) { 3181 host->ports[i]->mwdma_mask = 0; 3182 host->ports[i]->udma_mask = 0; 3183 } 3184} 3185 3186/** 3187 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host 3188 * @host: target ATA host 3189 * 3190 * Acquire PCI BMDMA resources and initialize @host accordingly. 3191 * 3192 * LOCKING: 3193 * Inherited from calling layer (may sleep). 3194 */ 3195void ata_pci_bmdma_init(struct ata_host *host) 3196{ 3197 struct device *gdev = host->dev; 3198 struct pci_dev *pdev = to_pci_dev(gdev); 3199 int i, rc; 3200 3201 /* No BAR4 allocation: No DMA */ 3202 if (pci_resource_start(pdev, 4) == 0) { 3203 ata_bmdma_nodma(host, "BAR4 is zero"); 3204 return; 3205 } 3206 3207 /* 3208 * Some controllers require BMDMA region to be initialized 3209 * even if DMA is not in use to clear IRQ status via 3210 * ->sff_irq_clear method. Try to initialize bmdma_addr 3211 * regardless of dma masks. 3212 */ 3213 rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK); 3214 if (rc) 3215 ata_bmdma_nodma(host, "failed to set dma mask"); 3216 if (!rc) { 3217 rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK); 3218 if (rc) 3219 ata_bmdma_nodma(host, 3220 "failed to set consistent dma mask"); 3221 } 3222 3223 /* request and iomap DMA region */ 3224 rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev)); 3225 if (rc) { 3226 ata_bmdma_nodma(host, "failed to request/iomap BAR4"); 3227 return; 3228 } 3229 host->iomap = pcim_iomap_table(pdev); 3230 3231 for (i = 0; i < 2; i++) { 3232 struct ata_port *ap = host->ports[i]; 3233 void __iomem *bmdma = host->iomap[4] + 8 * i; 3234 3235 if (ata_port_is_dummy(ap)) 3236 continue; 3237 3238 ap->ioaddr.bmdma_addr = bmdma; 3239 if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) && 3240 (ioread8(bmdma + 2) & 0x80)) 3241 host->flags |= ATA_HOST_SIMPLEX; 3242 3243 ata_port_desc(ap, "bmdma 0x%llx", 3244 (unsigned long long)pci_resource_start(pdev, 4) + 8 * i); 3245 } 3246} 3247EXPORT_SYMBOL_GPL(ata_pci_bmdma_init); 3248 3249/** 3250 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host 3251 * @pdev: target PCI device 3252 * @ppi: array of port_info, must be enough for two ports 3253 * @r_host: out argument for the initialized ATA host 3254 * 3255 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI 3256 * resources and initialize it accordingly in one go. 3257 * 3258 * LOCKING: 3259 * Inherited from calling layer (may sleep). 3260 * 3261 * RETURNS: 3262 * 0 on success, -errno otherwise. 3263 */ 3264int ata_pci_bmdma_prepare_host(struct pci_dev *pdev, 3265 const struct ata_port_info * const * ppi, 3266 struct ata_host **r_host) 3267{ 3268 int rc; 3269 3270 rc = ata_pci_sff_prepare_host(pdev, ppi, r_host); 3271 if (rc) 3272 return rc; 3273 3274 ata_pci_bmdma_init(*r_host); 3275 return 0; 3276} 3277EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host); 3278 3279/** 3280 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller 3281 * @pdev: Controller to be initialized 3282 * @ppi: array of port_info, must be enough for two ports 3283 * @sht: scsi_host_template to use when registering the host 3284 * @host_priv: host private_data 3285 * @hflags: host flags 3286 * 3287 * This function is similar to ata_pci_sff_init_one() but also 3288 * takes care of BMDMA initialization. 3289 * 3290 * LOCKING: 3291 * Inherited from PCI layer (may sleep). 3292 * 3293 * RETURNS: 3294 * Zero on success, negative on errno-based value on error. 3295 */ 3296int ata_pci_bmdma_init_one(struct pci_dev *pdev, 3297 const struct ata_port_info * const * ppi, 3298 struct scsi_host_template *sht, void *host_priv, 3299 int hflags) 3300{ 3301 return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1); 3302} 3303EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one); 3304 3305#endif /* CONFIG_PCI */ 3306#endif /* CONFIG_ATA_BMDMA */ 3307 3308/** 3309 * ata_sff_port_init - Initialize SFF/BMDMA ATA port 3310 * @ap: Port to initialize 3311 * 3312 * Called on port allocation to initialize SFF/BMDMA specific 3313 * fields. 3314 * 3315 * LOCKING: 3316 * None. 3317 */ 3318void ata_sff_port_init(struct ata_port *ap) 3319{ 3320 INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task); 3321 ap->ctl = ATA_DEVCTL_OBS; 3322 ap->last_ctl = 0xFF; 3323} 3324 3325int __init ata_sff_init(void) 3326{ 3327 ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE); 3328 if (!ata_sff_wq) 3329 return -ENOMEM; 3330 3331 return 0; 3332} 3333 3334void ata_sff_exit(void) 3335{ 3336 destroy_workqueue(ata_sff_wq); 3337} 3338