1/*
2 *  libata-sff.c - helper library for PCI IDE BMDMA
3 *
4 *  Maintained by:  Tejun Heo <tj@kernel.org>
5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
6 *		    on emails.
7 *
8 *  Copyright 2003-2006 Red Hat, Inc.  All rights reserved.
9 *  Copyright 2003-2006 Jeff Garzik
10 *
11 *
12 *  This program is free software; you can redistribute it and/or modify
13 *  it under the terms of the GNU General Public License as published by
14 *  the Free Software Foundation; either version 2, or (at your option)
15 *  any later version.
16 *
17 *  This program is distributed in the hope that it will be useful,
18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 *  GNU General Public License for more details.
21 *
22 *  You should have received a copy of the GNU General Public License
23 *  along with this program; see the file COPYING.  If not, write to
24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 *  libata documentation is available via 'make {ps|pdf}docs',
28 *  as Documentation/DocBook/libata.*
29 *
30 *  Hardware documentation available from http://www.t13.org/ and
31 *  http://www.sata-io.org/
32 *
33 */
34
35#include <linux/kernel.h>
36#include <linux/gfp.h>
37#include <linux/pci.h>
38#include <linux/module.h>
39#include <linux/libata.h>
40#include <linux/highmem.h>
41
42#include "libata.h"
43
44static struct workqueue_struct *ata_sff_wq;
45
46const struct ata_port_operations ata_sff_port_ops = {
47	.inherits		= &ata_base_port_ops,
48
49	.qc_prep		= ata_noop_qc_prep,
50	.qc_issue		= ata_sff_qc_issue,
51	.qc_fill_rtf		= ata_sff_qc_fill_rtf,
52
53	.freeze			= ata_sff_freeze,
54	.thaw			= ata_sff_thaw,
55	.prereset		= ata_sff_prereset,
56	.softreset		= ata_sff_softreset,
57	.hardreset		= sata_sff_hardreset,
58	.postreset		= ata_sff_postreset,
59	.error_handler		= ata_sff_error_handler,
60
61	.sff_dev_select		= ata_sff_dev_select,
62	.sff_check_status	= ata_sff_check_status,
63	.sff_tf_load		= ata_sff_tf_load,
64	.sff_tf_read		= ata_sff_tf_read,
65	.sff_exec_command	= ata_sff_exec_command,
66	.sff_data_xfer		= ata_sff_data_xfer,
67	.sff_drain_fifo		= ata_sff_drain_fifo,
68
69	.lost_interrupt		= ata_sff_lost_interrupt,
70};
71EXPORT_SYMBOL_GPL(ata_sff_port_ops);
72
73/**
74 *	ata_sff_check_status - Read device status reg & clear interrupt
75 *	@ap: port where the device is
76 *
77 *	Reads ATA taskfile status register for currently-selected device
78 *	and return its value. This also clears pending interrupts
79 *      from this device
80 *
81 *	LOCKING:
82 *	Inherited from caller.
83 */
84u8 ata_sff_check_status(struct ata_port *ap)
85{
86	return ioread8(ap->ioaddr.status_addr);
87}
88EXPORT_SYMBOL_GPL(ata_sff_check_status);
89
90/**
91 *	ata_sff_altstatus - Read device alternate status reg
92 *	@ap: port where the device is
93 *
94 *	Reads ATA taskfile alternate status register for
95 *	currently-selected device and return its value.
96 *
97 *	Note: may NOT be used as the check_altstatus() entry in
98 *	ata_port_operations.
99 *
100 *	LOCKING:
101 *	Inherited from caller.
102 */
103static u8 ata_sff_altstatus(struct ata_port *ap)
104{
105	if (ap->ops->sff_check_altstatus)
106		return ap->ops->sff_check_altstatus(ap);
107
108	return ioread8(ap->ioaddr.altstatus_addr);
109}
110
111/**
112 *	ata_sff_irq_status - Check if the device is busy
113 *	@ap: port where the device is
114 *
115 *	Determine if the port is currently busy. Uses altstatus
116 *	if available in order to avoid clearing shared IRQ status
117 *	when finding an IRQ source. Non ctl capable devices don't
118 *	share interrupt lines fortunately for us.
119 *
120 *	LOCKING:
121 *	Inherited from caller.
122 */
123static u8 ata_sff_irq_status(struct ata_port *ap)
124{
125	u8 status;
126
127	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
128		status = ata_sff_altstatus(ap);
129		/* Not us: We are busy */
130		if (status & ATA_BUSY)
131			return status;
132	}
133	/* Clear INTRQ latch */
134	status = ap->ops->sff_check_status(ap);
135	return status;
136}
137
138/**
139 *	ata_sff_sync - Flush writes
140 *	@ap: Port to wait for.
141 *
142 *	CAUTION:
143 *	If we have an mmio device with no ctl and no altstatus
144 *	method this will fail. No such devices are known to exist.
145 *
146 *	LOCKING:
147 *	Inherited from caller.
148 */
149
150static void ata_sff_sync(struct ata_port *ap)
151{
152	if (ap->ops->sff_check_altstatus)
153		ap->ops->sff_check_altstatus(ap);
154	else if (ap->ioaddr.altstatus_addr)
155		ioread8(ap->ioaddr.altstatus_addr);
156}
157
158/**
159 *	ata_sff_pause		-	Flush writes and wait 400nS
160 *	@ap: Port to pause for.
161 *
162 *	CAUTION:
163 *	If we have an mmio device with no ctl and no altstatus
164 *	method this will fail. No such devices are known to exist.
165 *
166 *	LOCKING:
167 *	Inherited from caller.
168 */
169
170void ata_sff_pause(struct ata_port *ap)
171{
172	ata_sff_sync(ap);
173	ndelay(400);
174}
175EXPORT_SYMBOL_GPL(ata_sff_pause);
176
177/**
178 *	ata_sff_dma_pause	-	Pause before commencing DMA
179 *	@ap: Port to pause for.
180 *
181 *	Perform I/O fencing and ensure sufficient cycle delays occur
182 *	for the HDMA1:0 transition
183 */
184
185void ata_sff_dma_pause(struct ata_port *ap)
186{
187	if (ap->ops->sff_check_altstatus || ap->ioaddr.altstatus_addr) {
188		/* An altstatus read will cause the needed delay without
189		   messing up the IRQ status */
190		ata_sff_altstatus(ap);
191		return;
192	}
193	/* There are no DMA controllers without ctl. BUG here to ensure
194	   we never violate the HDMA1:0 transition timing and risk
195	   corruption. */
196	BUG();
197}
198EXPORT_SYMBOL_GPL(ata_sff_dma_pause);
199
200/**
201 *	ata_sff_busy_sleep - sleep until BSY clears, or timeout
202 *	@ap: port containing status register to be polled
203 *	@tmout_pat: impatience timeout in msecs
204 *	@tmout: overall timeout in msecs
205 *
206 *	Sleep until ATA Status register bit BSY clears,
207 *	or a timeout occurs.
208 *
209 *	LOCKING:
210 *	Kernel thread context (may sleep).
211 *
212 *	RETURNS:
213 *	0 on success, -errno otherwise.
214 */
215int ata_sff_busy_sleep(struct ata_port *ap,
216		       unsigned long tmout_pat, unsigned long tmout)
217{
218	unsigned long timer_start, timeout;
219	u8 status;
220
221	status = ata_sff_busy_wait(ap, ATA_BUSY, 300);
222	timer_start = jiffies;
223	timeout = ata_deadline(timer_start, tmout_pat);
224	while (status != 0xff && (status & ATA_BUSY) &&
225	       time_before(jiffies, timeout)) {
226		ata_msleep(ap, 50);
227		status = ata_sff_busy_wait(ap, ATA_BUSY, 3);
228	}
229
230	if (status != 0xff && (status & ATA_BUSY))
231		ata_port_warn(ap,
232			      "port is slow to respond, please be patient (Status 0x%x)\n",
233			      status);
234
235	timeout = ata_deadline(timer_start, tmout);
236	while (status != 0xff && (status & ATA_BUSY) &&
237	       time_before(jiffies, timeout)) {
238		ata_msleep(ap, 50);
239		status = ap->ops->sff_check_status(ap);
240	}
241
242	if (status == 0xff)
243		return -ENODEV;
244
245	if (status & ATA_BUSY) {
246		ata_port_err(ap,
247			     "port failed to respond (%lu secs, Status 0x%x)\n",
248			     DIV_ROUND_UP(tmout, 1000), status);
249		return -EBUSY;
250	}
251
252	return 0;
253}
254EXPORT_SYMBOL_GPL(ata_sff_busy_sleep);
255
256static int ata_sff_check_ready(struct ata_link *link)
257{
258	u8 status = link->ap->ops->sff_check_status(link->ap);
259
260	return ata_check_ready(status);
261}
262
263/**
264 *	ata_sff_wait_ready - sleep until BSY clears, or timeout
265 *	@link: SFF link to wait ready status for
266 *	@deadline: deadline jiffies for the operation
267 *
268 *	Sleep until ATA Status register bit BSY clears, or timeout
269 *	occurs.
270 *
271 *	LOCKING:
272 *	Kernel thread context (may sleep).
273 *
274 *	RETURNS:
275 *	0 on success, -errno otherwise.
276 */
277int ata_sff_wait_ready(struct ata_link *link, unsigned long deadline)
278{
279	return ata_wait_ready(link, deadline, ata_sff_check_ready);
280}
281EXPORT_SYMBOL_GPL(ata_sff_wait_ready);
282
283/**
284 *	ata_sff_set_devctl - Write device control reg
285 *	@ap: port where the device is
286 *	@ctl: value to write
287 *
288 *	Writes ATA taskfile device control register.
289 *
290 *	Note: may NOT be used as the sff_set_devctl() entry in
291 *	ata_port_operations.
292 *
293 *	LOCKING:
294 *	Inherited from caller.
295 */
296static void ata_sff_set_devctl(struct ata_port *ap, u8 ctl)
297{
298	if (ap->ops->sff_set_devctl)
299		ap->ops->sff_set_devctl(ap, ctl);
300	else
301		iowrite8(ctl, ap->ioaddr.ctl_addr);
302}
303
304/**
305 *	ata_sff_dev_select - Select device 0/1 on ATA bus
306 *	@ap: ATA channel to manipulate
307 *	@device: ATA device (numbered from zero) to select
308 *
309 *	Use the method defined in the ATA specification to
310 *	make either device 0, or device 1, active on the
311 *	ATA channel.  Works with both PIO and MMIO.
312 *
313 *	May be used as the dev_select() entry in ata_port_operations.
314 *
315 *	LOCKING:
316 *	caller.
317 */
318void ata_sff_dev_select(struct ata_port *ap, unsigned int device)
319{
320	u8 tmp;
321
322	if (device == 0)
323		tmp = ATA_DEVICE_OBS;
324	else
325		tmp = ATA_DEVICE_OBS | ATA_DEV1;
326
327	iowrite8(tmp, ap->ioaddr.device_addr);
328	ata_sff_pause(ap);	/* needed; also flushes, for mmio */
329}
330EXPORT_SYMBOL_GPL(ata_sff_dev_select);
331
332/**
333 *	ata_dev_select - Select device 0/1 on ATA bus
334 *	@ap: ATA channel to manipulate
335 *	@device: ATA device (numbered from zero) to select
336 *	@wait: non-zero to wait for Status register BSY bit to clear
337 *	@can_sleep: non-zero if context allows sleeping
338 *
339 *	Use the method defined in the ATA specification to
340 *	make either device 0, or device 1, active on the
341 *	ATA channel.
342 *
343 *	This is a high-level version of ata_sff_dev_select(), which
344 *	additionally provides the services of inserting the proper
345 *	pauses and status polling, where needed.
346 *
347 *	LOCKING:
348 *	caller.
349 */
350static void ata_dev_select(struct ata_port *ap, unsigned int device,
351			   unsigned int wait, unsigned int can_sleep)
352{
353	if (ata_msg_probe(ap))
354		ata_port_info(ap, "ata_dev_select: ENTER, device %u, wait %u\n",
355			      device, wait);
356
357	if (wait)
358		ata_wait_idle(ap);
359
360	ap->ops->sff_dev_select(ap, device);
361
362	if (wait) {
363		if (can_sleep && ap->link.device[device].class == ATA_DEV_ATAPI)
364			ata_msleep(ap, 150);
365		ata_wait_idle(ap);
366	}
367}
368
369/**
370 *	ata_sff_irq_on - Enable interrupts on a port.
371 *	@ap: Port on which interrupts are enabled.
372 *
373 *	Enable interrupts on a legacy IDE device using MMIO or PIO,
374 *	wait for idle, clear any pending interrupts.
375 *
376 *	Note: may NOT be used as the sff_irq_on() entry in
377 *	ata_port_operations.
378 *
379 *	LOCKING:
380 *	Inherited from caller.
381 */
382void ata_sff_irq_on(struct ata_port *ap)
383{
384	struct ata_ioports *ioaddr = &ap->ioaddr;
385
386	if (ap->ops->sff_irq_on) {
387		ap->ops->sff_irq_on(ap);
388		return;
389	}
390
391	ap->ctl &= ~ATA_NIEN;
392	ap->last_ctl = ap->ctl;
393
394	if (ap->ops->sff_set_devctl || ioaddr->ctl_addr)
395		ata_sff_set_devctl(ap, ap->ctl);
396	ata_wait_idle(ap);
397
398	if (ap->ops->sff_irq_clear)
399		ap->ops->sff_irq_clear(ap);
400}
401EXPORT_SYMBOL_GPL(ata_sff_irq_on);
402
403/**
404 *	ata_sff_tf_load - send taskfile registers to host controller
405 *	@ap: Port to which output is sent
406 *	@tf: ATA taskfile register set
407 *
408 *	Outputs ATA taskfile to standard ATA host controller.
409 *
410 *	LOCKING:
411 *	Inherited from caller.
412 */
413void ata_sff_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
414{
415	struct ata_ioports *ioaddr = &ap->ioaddr;
416	unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
417
418	if (tf->ctl != ap->last_ctl) {
419		if (ioaddr->ctl_addr)
420			iowrite8(tf->ctl, ioaddr->ctl_addr);
421		ap->last_ctl = tf->ctl;
422		ata_wait_idle(ap);
423	}
424
425	if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
426		WARN_ON_ONCE(!ioaddr->ctl_addr);
427		iowrite8(tf->hob_feature, ioaddr->feature_addr);
428		iowrite8(tf->hob_nsect, ioaddr->nsect_addr);
429		iowrite8(tf->hob_lbal, ioaddr->lbal_addr);
430		iowrite8(tf->hob_lbam, ioaddr->lbam_addr);
431		iowrite8(tf->hob_lbah, ioaddr->lbah_addr);
432		VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
433			tf->hob_feature,
434			tf->hob_nsect,
435			tf->hob_lbal,
436			tf->hob_lbam,
437			tf->hob_lbah);
438	}
439
440	if (is_addr) {
441		iowrite8(tf->feature, ioaddr->feature_addr);
442		iowrite8(tf->nsect, ioaddr->nsect_addr);
443		iowrite8(tf->lbal, ioaddr->lbal_addr);
444		iowrite8(tf->lbam, ioaddr->lbam_addr);
445		iowrite8(tf->lbah, ioaddr->lbah_addr);
446		VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
447			tf->feature,
448			tf->nsect,
449			tf->lbal,
450			tf->lbam,
451			tf->lbah);
452	}
453
454	if (tf->flags & ATA_TFLAG_DEVICE) {
455		iowrite8(tf->device, ioaddr->device_addr);
456		VPRINTK("device 0x%X\n", tf->device);
457	}
458
459	ata_wait_idle(ap);
460}
461EXPORT_SYMBOL_GPL(ata_sff_tf_load);
462
463/**
464 *	ata_sff_tf_read - input device's ATA taskfile shadow registers
465 *	@ap: Port from which input is read
466 *	@tf: ATA taskfile register set for storing input
467 *
468 *	Reads ATA taskfile registers for currently-selected device
469 *	into @tf. Assumes the device has a fully SFF compliant task file
470 *	layout and behaviour. If you device does not (eg has a different
471 *	status method) then you will need to provide a replacement tf_read
472 *
473 *	LOCKING:
474 *	Inherited from caller.
475 */
476void ata_sff_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
477{
478	struct ata_ioports *ioaddr = &ap->ioaddr;
479
480	tf->command = ata_sff_check_status(ap);
481	tf->feature = ioread8(ioaddr->error_addr);
482	tf->nsect = ioread8(ioaddr->nsect_addr);
483	tf->lbal = ioread8(ioaddr->lbal_addr);
484	tf->lbam = ioread8(ioaddr->lbam_addr);
485	tf->lbah = ioread8(ioaddr->lbah_addr);
486	tf->device = ioread8(ioaddr->device_addr);
487
488	if (tf->flags & ATA_TFLAG_LBA48) {
489		if (likely(ioaddr->ctl_addr)) {
490			iowrite8(tf->ctl | ATA_HOB, ioaddr->ctl_addr);
491			tf->hob_feature = ioread8(ioaddr->error_addr);
492			tf->hob_nsect = ioread8(ioaddr->nsect_addr);
493			tf->hob_lbal = ioread8(ioaddr->lbal_addr);
494			tf->hob_lbam = ioread8(ioaddr->lbam_addr);
495			tf->hob_lbah = ioread8(ioaddr->lbah_addr);
496			iowrite8(tf->ctl, ioaddr->ctl_addr);
497			ap->last_ctl = tf->ctl;
498		} else
499			WARN_ON_ONCE(1);
500	}
501}
502EXPORT_SYMBOL_GPL(ata_sff_tf_read);
503
504/**
505 *	ata_sff_exec_command - issue ATA command to host controller
506 *	@ap: port to which command is being issued
507 *	@tf: ATA taskfile register set
508 *
509 *	Issues ATA command, with proper synchronization with interrupt
510 *	handler / other threads.
511 *
512 *	LOCKING:
513 *	spin_lock_irqsave(host lock)
514 */
515void ata_sff_exec_command(struct ata_port *ap, const struct ata_taskfile *tf)
516{
517	DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
518
519	iowrite8(tf->command, ap->ioaddr.command_addr);
520	ata_sff_pause(ap);
521}
522EXPORT_SYMBOL_GPL(ata_sff_exec_command);
523
524/**
525 *	ata_tf_to_host - issue ATA taskfile to host controller
526 *	@ap: port to which command is being issued
527 *	@tf: ATA taskfile register set
528 *
529 *	Issues ATA taskfile register set to ATA host controller,
530 *	with proper synchronization with interrupt handler and
531 *	other threads.
532 *
533 *	LOCKING:
534 *	spin_lock_irqsave(host lock)
535 */
536static inline void ata_tf_to_host(struct ata_port *ap,
537				  const struct ata_taskfile *tf)
538{
539	ap->ops->sff_tf_load(ap, tf);
540	ap->ops->sff_exec_command(ap, tf);
541}
542
543/**
544 *	ata_sff_data_xfer - Transfer data by PIO
545 *	@dev: device to target
546 *	@buf: data buffer
547 *	@buflen: buffer length
548 *	@rw: read/write
549 *
550 *	Transfer data from/to the device data register by PIO.
551 *
552 *	LOCKING:
553 *	Inherited from caller.
554 *
555 *	RETURNS:
556 *	Bytes consumed.
557 */
558unsigned int ata_sff_data_xfer(struct ata_device *dev, unsigned char *buf,
559			       unsigned int buflen, int rw)
560{
561	struct ata_port *ap = dev->link->ap;
562	void __iomem *data_addr = ap->ioaddr.data_addr;
563	unsigned int words = buflen >> 1;
564
565	/* Transfer multiple of 2 bytes */
566	if (rw == READ)
567		ioread16_rep(data_addr, buf, words);
568	else
569		iowrite16_rep(data_addr, buf, words);
570
571	/* Transfer trailing byte, if any. */
572	if (unlikely(buflen & 0x01)) {
573		unsigned char pad[2] = { };
574
575		/* Point buf to the tail of buffer */
576		buf += buflen - 1;
577
578		/*
579		 * Use io*16_rep() accessors here as well to avoid pointlessly
580		 * swapping bytes to and from on the big endian machines...
581		 */
582		if (rw == READ) {
583			ioread16_rep(data_addr, pad, 1);
584			*buf = pad[0];
585		} else {
586			pad[0] = *buf;
587			iowrite16_rep(data_addr, pad, 1);
588		}
589		words++;
590	}
591
592	return words << 1;
593}
594EXPORT_SYMBOL_GPL(ata_sff_data_xfer);
595
596/**
597 *	ata_sff_data_xfer32 - Transfer data by PIO
598 *	@dev: device to target
599 *	@buf: data buffer
600 *	@buflen: buffer length
601 *	@rw: read/write
602 *
603 *	Transfer data from/to the device data register by PIO using 32bit
604 *	I/O operations.
605 *
606 *	LOCKING:
607 *	Inherited from caller.
608 *
609 *	RETURNS:
610 *	Bytes consumed.
611 */
612
613unsigned int ata_sff_data_xfer32(struct ata_device *dev, unsigned char *buf,
614			       unsigned int buflen, int rw)
615{
616	struct ata_port *ap = dev->link->ap;
617	void __iomem *data_addr = ap->ioaddr.data_addr;
618	unsigned int words = buflen >> 2;
619	int slop = buflen & 3;
620
621	if (!(ap->pflags & ATA_PFLAG_PIO32))
622		return ata_sff_data_xfer(dev, buf, buflen, rw);
623
624	/* Transfer multiple of 4 bytes */
625	if (rw == READ)
626		ioread32_rep(data_addr, buf, words);
627	else
628		iowrite32_rep(data_addr, buf, words);
629
630	/* Transfer trailing bytes, if any */
631	if (unlikely(slop)) {
632		unsigned char pad[4] = { };
633
634		/* Point buf to the tail of buffer */
635		buf += buflen - slop;
636
637		/*
638		 * Use io*_rep() accessors here as well to avoid pointlessly
639		 * swapping bytes to and from on the big endian machines...
640		 */
641		if (rw == READ) {
642			if (slop < 3)
643				ioread16_rep(data_addr, pad, 1);
644			else
645				ioread32_rep(data_addr, pad, 1);
646			memcpy(buf, pad, slop);
647		} else {
648			memcpy(pad, buf, slop);
649			if (slop < 3)
650				iowrite16_rep(data_addr, pad, 1);
651			else
652				iowrite32_rep(data_addr, pad, 1);
653		}
654	}
655	return (buflen + 1) & ~1;
656}
657EXPORT_SYMBOL_GPL(ata_sff_data_xfer32);
658
659/**
660 *	ata_sff_data_xfer_noirq - Transfer data by PIO
661 *	@dev: device to target
662 *	@buf: data buffer
663 *	@buflen: buffer length
664 *	@rw: read/write
665 *
666 *	Transfer data from/to the device data register by PIO. Do the
667 *	transfer with interrupts disabled.
668 *
669 *	LOCKING:
670 *	Inherited from caller.
671 *
672 *	RETURNS:
673 *	Bytes consumed.
674 */
675unsigned int ata_sff_data_xfer_noirq(struct ata_device *dev, unsigned char *buf,
676				     unsigned int buflen, int rw)
677{
678	unsigned long flags;
679	unsigned int consumed;
680
681	local_irq_save(flags);
682	consumed = ata_sff_data_xfer32(dev, buf, buflen, rw);
683	local_irq_restore(flags);
684
685	return consumed;
686}
687EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq);
688
689/**
690 *	ata_pio_sector - Transfer a sector of data.
691 *	@qc: Command on going
692 *
693 *	Transfer qc->sect_size bytes of data from/to the ATA device.
694 *
695 *	LOCKING:
696 *	Inherited from caller.
697 */
698static void ata_pio_sector(struct ata_queued_cmd *qc)
699{
700	int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
701	struct ata_port *ap = qc->ap;
702	struct page *page;
703	unsigned int offset;
704	unsigned char *buf;
705
706	if (qc->curbytes == qc->nbytes - qc->sect_size)
707		ap->hsm_task_state = HSM_ST_LAST;
708
709	page = sg_page(qc->cursg);
710	offset = qc->cursg->offset + qc->cursg_ofs;
711
712	/* get the current page and offset */
713	page = nth_page(page, (offset >> PAGE_SHIFT));
714	offset %= PAGE_SIZE;
715
716	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
717
718	if (PageHighMem(page)) {
719		unsigned long flags;
720
721		/* FIXME: use a bounce buffer */
722		local_irq_save(flags);
723		buf = kmap_atomic(page);
724
725		/* do the actual data transfer */
726		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
727				       do_write);
728
729		kunmap_atomic(buf);
730		local_irq_restore(flags);
731	} else {
732		buf = page_address(page);
733		ap->ops->sff_data_xfer(qc->dev, buf + offset, qc->sect_size,
734				       do_write);
735	}
736
737	if (!do_write && !PageSlab(page))
738		flush_dcache_page(page);
739
740	qc->curbytes += qc->sect_size;
741	qc->cursg_ofs += qc->sect_size;
742
743	if (qc->cursg_ofs == qc->cursg->length) {
744		qc->cursg = sg_next(qc->cursg);
745		qc->cursg_ofs = 0;
746	}
747}
748
749/**
750 *	ata_pio_sectors - Transfer one or many sectors.
751 *	@qc: Command on going
752 *
753 *	Transfer one or many sectors of data from/to the
754 *	ATA device for the DRQ request.
755 *
756 *	LOCKING:
757 *	Inherited from caller.
758 */
759static void ata_pio_sectors(struct ata_queued_cmd *qc)
760{
761	if (is_multi_taskfile(&qc->tf)) {
762		/* READ/WRITE MULTIPLE */
763		unsigned int nsect;
764
765		WARN_ON_ONCE(qc->dev->multi_count == 0);
766
767		nsect = min((qc->nbytes - qc->curbytes) / qc->sect_size,
768			    qc->dev->multi_count);
769		while (nsect--)
770			ata_pio_sector(qc);
771	} else
772		ata_pio_sector(qc);
773
774	ata_sff_sync(qc->ap); /* flush */
775}
776
777/**
778 *	atapi_send_cdb - Write CDB bytes to hardware
779 *	@ap: Port to which ATAPI device is attached.
780 *	@qc: Taskfile currently active
781 *
782 *	When device has indicated its readiness to accept
783 *	a CDB, this function is called.  Send the CDB.
784 *
785 *	LOCKING:
786 *	caller.
787 */
788static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
789{
790	/* send SCSI cdb */
791	DPRINTK("send cdb\n");
792	WARN_ON_ONCE(qc->dev->cdb_len < 12);
793
794	ap->ops->sff_data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
795	ata_sff_sync(ap);
796	/* FIXME: If the CDB is for DMA do we need to do the transition delay
797	   or is bmdma_start guaranteed to do it ? */
798	switch (qc->tf.protocol) {
799	case ATAPI_PROT_PIO:
800		ap->hsm_task_state = HSM_ST;
801		break;
802	case ATAPI_PROT_NODATA:
803		ap->hsm_task_state = HSM_ST_LAST;
804		break;
805#ifdef CONFIG_ATA_BMDMA
806	case ATAPI_PROT_DMA:
807		ap->hsm_task_state = HSM_ST_LAST;
808		/* initiate bmdma */
809		ap->ops->bmdma_start(qc);
810		break;
811#endif /* CONFIG_ATA_BMDMA */
812	default:
813		BUG();
814	}
815}
816
817/**
818 *	__atapi_pio_bytes - Transfer data from/to the ATAPI device.
819 *	@qc: Command on going
820 *	@bytes: number of bytes
821 *
822 *	Transfer Transfer data from/to the ATAPI device.
823 *
824 *	LOCKING:
825 *	Inherited from caller.
826 *
827 */
828static int __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
829{
830	int rw = (qc->tf.flags & ATA_TFLAG_WRITE) ? WRITE : READ;
831	struct ata_port *ap = qc->ap;
832	struct ata_device *dev = qc->dev;
833	struct ata_eh_info *ehi = &dev->link->eh_info;
834	struct scatterlist *sg;
835	struct page *page;
836	unsigned char *buf;
837	unsigned int offset, count, consumed;
838
839next_sg:
840	sg = qc->cursg;
841	if (unlikely(!sg)) {
842		ata_ehi_push_desc(ehi, "unexpected or too much trailing data "
843				  "buf=%u cur=%u bytes=%u",
844				  qc->nbytes, qc->curbytes, bytes);
845		return -1;
846	}
847
848	page = sg_page(sg);
849	offset = sg->offset + qc->cursg_ofs;
850
851	/* get the current page and offset */
852	page = nth_page(page, (offset >> PAGE_SHIFT));
853	offset %= PAGE_SIZE;
854
855	/* don't overrun current sg */
856	count = min(sg->length - qc->cursg_ofs, bytes);
857
858	/* don't cross page boundaries */
859	count = min(count, (unsigned int)PAGE_SIZE - offset);
860
861	DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
862
863	if (PageHighMem(page)) {
864		unsigned long flags;
865
866		/* FIXME: use bounce buffer */
867		local_irq_save(flags);
868		buf = kmap_atomic(page);
869
870		/* do the actual data transfer */
871		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
872								count, rw);
873
874		kunmap_atomic(buf);
875		local_irq_restore(flags);
876	} else {
877		buf = page_address(page);
878		consumed = ap->ops->sff_data_xfer(dev,  buf + offset,
879								count, rw);
880	}
881
882	bytes -= min(bytes, consumed);
883	qc->curbytes += count;
884	qc->cursg_ofs += count;
885
886	if (qc->cursg_ofs == sg->length) {
887		qc->cursg = sg_next(qc->cursg);
888		qc->cursg_ofs = 0;
889	}
890
891	/*
892	 * There used to be a  WARN_ON_ONCE(qc->cursg && count != consumed);
893	 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
894	 * check correctly as it doesn't know if it is the last request being
895	 * made. Somebody should implement a proper sanity check.
896	 */
897	if (bytes)
898		goto next_sg;
899	return 0;
900}
901
902/**
903 *	atapi_pio_bytes - Transfer data from/to the ATAPI device.
904 *	@qc: Command on going
905 *
906 *	Transfer Transfer data from/to the ATAPI device.
907 *
908 *	LOCKING:
909 *	Inherited from caller.
910 */
911static void atapi_pio_bytes(struct ata_queued_cmd *qc)
912{
913	struct ata_port *ap = qc->ap;
914	struct ata_device *dev = qc->dev;
915	struct ata_eh_info *ehi = &dev->link->eh_info;
916	unsigned int ireason, bc_lo, bc_hi, bytes;
917	int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
918
919	/* Abuse qc->result_tf for temp storage of intermediate TF
920	 * here to save some kernel stack usage.
921	 * For normal completion, qc->result_tf is not relevant. For
922	 * error, qc->result_tf is later overwritten by ata_qc_complete().
923	 * So, the correctness of qc->result_tf is not affected.
924	 */
925	ap->ops->sff_tf_read(ap, &qc->result_tf);
926	ireason = qc->result_tf.nsect;
927	bc_lo = qc->result_tf.lbam;
928	bc_hi = qc->result_tf.lbah;
929	bytes = (bc_hi << 8) | bc_lo;
930
931	/* shall be cleared to zero, indicating xfer of data */
932	if (unlikely(ireason & ATAPI_COD))
933		goto atapi_check;
934
935	/* make sure transfer direction matches expected */
936	i_write = ((ireason & ATAPI_IO) == 0) ? 1 : 0;
937	if (unlikely(do_write != i_write))
938		goto atapi_check;
939
940	if (unlikely(!bytes))
941		goto atapi_check;
942
943	VPRINTK("ata%u: xfering %d bytes\n", ap->print_id, bytes);
944
945	if (unlikely(__atapi_pio_bytes(qc, bytes)))
946		goto err_out;
947	ata_sff_sync(ap); /* flush */
948
949	return;
950
951 atapi_check:
952	ata_ehi_push_desc(ehi, "ATAPI check failed (ireason=0x%x bytes=%u)",
953			  ireason, bytes);
954 err_out:
955	qc->err_mask |= AC_ERR_HSM;
956	ap->hsm_task_state = HSM_ST_ERR;
957}
958
959/**
960 *	ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
961 *	@ap: the target ata_port
962 *	@qc: qc on going
963 *
964 *	RETURNS:
965 *	1 if ok in workqueue, 0 otherwise.
966 */
967static inline int ata_hsm_ok_in_wq(struct ata_port *ap,
968						struct ata_queued_cmd *qc)
969{
970	if (qc->tf.flags & ATA_TFLAG_POLLING)
971		return 1;
972
973	if (ap->hsm_task_state == HSM_ST_FIRST) {
974		if (qc->tf.protocol == ATA_PROT_PIO &&
975		   (qc->tf.flags & ATA_TFLAG_WRITE))
976		    return 1;
977
978		if (ata_is_atapi(qc->tf.protocol) &&
979		   !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
980			return 1;
981	}
982
983	return 0;
984}
985
986/**
987 *	ata_hsm_qc_complete - finish a qc running on standard HSM
988 *	@qc: Command to complete
989 *	@in_wq: 1 if called from workqueue, 0 otherwise
990 *
991 *	Finish @qc which is running on standard HSM.
992 *
993 *	LOCKING:
994 *	If @in_wq is zero, spin_lock_irqsave(host lock).
995 *	Otherwise, none on entry and grabs host lock.
996 */
997static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
998{
999	struct ata_port *ap = qc->ap;
1000
1001	if (ap->ops->error_handler) {
1002		if (in_wq) {
1003			/* EH might have kicked in while host lock is
1004			 * released.
1005			 */
1006			qc = ata_qc_from_tag(ap, qc->tag);
1007			if (qc) {
1008				if (likely(!(qc->err_mask & AC_ERR_HSM))) {
1009					ata_sff_irq_on(ap);
1010					ata_qc_complete(qc);
1011				} else
1012					ata_port_freeze(ap);
1013			}
1014		} else {
1015			if (likely(!(qc->err_mask & AC_ERR_HSM)))
1016				ata_qc_complete(qc);
1017			else
1018				ata_port_freeze(ap);
1019		}
1020	} else {
1021		if (in_wq) {
1022			ata_sff_irq_on(ap);
1023			ata_qc_complete(qc);
1024		} else
1025			ata_qc_complete(qc);
1026	}
1027}
1028
1029/**
1030 *	ata_sff_hsm_move - move the HSM to the next state.
1031 *	@ap: the target ata_port
1032 *	@qc: qc on going
1033 *	@status: current device status
1034 *	@in_wq: 1 if called from workqueue, 0 otherwise
1035 *
1036 *	RETURNS:
1037 *	1 when poll next status needed, 0 otherwise.
1038 */
1039int ata_sff_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
1040		     u8 status, int in_wq)
1041{
1042	struct ata_link *link = qc->dev->link;
1043	struct ata_eh_info *ehi = &link->eh_info;
1044	int poll_next;
1045
1046	lockdep_assert_held(ap->lock);
1047
1048	WARN_ON_ONCE((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
1049
1050	/* Make sure ata_sff_qc_issue() does not throw things
1051	 * like DMA polling into the workqueue. Notice that
1052	 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1053	 */
1054	WARN_ON_ONCE(in_wq != ata_hsm_ok_in_wq(ap, qc));
1055
1056fsm_start:
1057	DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1058		ap->print_id, qc->tf.protocol, ap->hsm_task_state, status);
1059
1060	switch (ap->hsm_task_state) {
1061	case HSM_ST_FIRST:
1062		/* Send first data block or PACKET CDB */
1063
1064		/* If polling, we will stay in the work queue after
1065		 * sending the data. Otherwise, interrupt handler
1066		 * takes over after sending the data.
1067		 */
1068		poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
1069
1070		/* check device status */
1071		if (unlikely((status & ATA_DRQ) == 0)) {
1072			/* handle BSY=0, DRQ=0 as error */
1073			if (likely(status & (ATA_ERR | ATA_DF)))
1074				/* device stops HSM for abort/error */
1075				qc->err_mask |= AC_ERR_DEV;
1076			else {
1077				/* HSM violation. Let EH handle this */
1078				ata_ehi_push_desc(ehi,
1079					"ST_FIRST: !(DRQ|ERR|DF)");
1080				qc->err_mask |= AC_ERR_HSM;
1081			}
1082
1083			ap->hsm_task_state = HSM_ST_ERR;
1084			goto fsm_start;
1085		}
1086
1087		/* Device should not ask for data transfer (DRQ=1)
1088		 * when it finds something wrong.
1089		 * We ignore DRQ here and stop the HSM by
1090		 * changing hsm_task_state to HSM_ST_ERR and
1091		 * let the EH abort the command or reset the device.
1092		 */
1093		if (unlikely(status & (ATA_ERR | ATA_DF))) {
1094			/* Some ATAPI tape drives forget to clear the ERR bit
1095			 * when doing the next command (mostly request sense).
1096			 * We ignore ERR here to workaround and proceed sending
1097			 * the CDB.
1098			 */
1099			if (!(qc->dev->horkage & ATA_HORKAGE_STUCK_ERR)) {
1100				ata_ehi_push_desc(ehi, "ST_FIRST: "
1101					"DRQ=1 with device error, "
1102					"dev_stat 0x%X", status);
1103				qc->err_mask |= AC_ERR_HSM;
1104				ap->hsm_task_state = HSM_ST_ERR;
1105				goto fsm_start;
1106			}
1107		}
1108
1109		if (qc->tf.protocol == ATA_PROT_PIO) {
1110			/* PIO data out protocol.
1111			 * send first data block.
1112			 */
1113
1114			/* ata_pio_sectors() might change the state
1115			 * to HSM_ST_LAST. so, the state is changed here
1116			 * before ata_pio_sectors().
1117			 */
1118			ap->hsm_task_state = HSM_ST;
1119			ata_pio_sectors(qc);
1120		} else
1121			/* send CDB */
1122			atapi_send_cdb(ap, qc);
1123
1124		/* if polling, ata_sff_pio_task() handles the rest.
1125		 * otherwise, interrupt handler takes over from here.
1126		 */
1127		break;
1128
1129	case HSM_ST:
1130		/* complete command or read/write the data register */
1131		if (qc->tf.protocol == ATAPI_PROT_PIO) {
1132			/* ATAPI PIO protocol */
1133			if ((status & ATA_DRQ) == 0) {
1134				/* No more data to transfer or device error.
1135				 * Device error will be tagged in HSM_ST_LAST.
1136				 */
1137				ap->hsm_task_state = HSM_ST_LAST;
1138				goto fsm_start;
1139			}
1140
1141			/* Device should not ask for data transfer (DRQ=1)
1142			 * when it finds something wrong.
1143			 * We ignore DRQ here and stop the HSM by
1144			 * changing hsm_task_state to HSM_ST_ERR and
1145			 * let the EH abort the command or reset the device.
1146			 */
1147			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1148				ata_ehi_push_desc(ehi, "ST-ATAPI: "
1149					"DRQ=1 with device error, "
1150					"dev_stat 0x%X", status);
1151				qc->err_mask |= AC_ERR_HSM;
1152				ap->hsm_task_state = HSM_ST_ERR;
1153				goto fsm_start;
1154			}
1155
1156			atapi_pio_bytes(qc);
1157
1158			if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
1159				/* bad ireason reported by device */
1160				goto fsm_start;
1161
1162		} else {
1163			/* ATA PIO protocol */
1164			if (unlikely((status & ATA_DRQ) == 0)) {
1165				/* handle BSY=0, DRQ=0 as error */
1166				if (likely(status & (ATA_ERR | ATA_DF))) {
1167					/* device stops HSM for abort/error */
1168					qc->err_mask |= AC_ERR_DEV;
1169
1170					/* If diagnostic failed and this is
1171					 * IDENTIFY, it's likely a phantom
1172					 * device.  Mark hint.
1173					 */
1174					if (qc->dev->horkage &
1175					    ATA_HORKAGE_DIAGNOSTIC)
1176						qc->err_mask |=
1177							AC_ERR_NODEV_HINT;
1178				} else {
1179					/* HSM violation. Let EH handle this.
1180					 * Phantom devices also trigger this
1181					 * condition.  Mark hint.
1182					 */
1183					ata_ehi_push_desc(ehi, "ST-ATA: "
1184						"DRQ=0 without device error, "
1185						"dev_stat 0x%X", status);
1186					qc->err_mask |= AC_ERR_HSM |
1187							AC_ERR_NODEV_HINT;
1188				}
1189
1190				ap->hsm_task_state = HSM_ST_ERR;
1191				goto fsm_start;
1192			}
1193
1194			/* For PIO reads, some devices may ask for
1195			 * data transfer (DRQ=1) alone with ERR=1.
1196			 * We respect DRQ here and transfer one
1197			 * block of junk data before changing the
1198			 * hsm_task_state to HSM_ST_ERR.
1199			 *
1200			 * For PIO writes, ERR=1 DRQ=1 doesn't make
1201			 * sense since the data block has been
1202			 * transferred to the device.
1203			 */
1204			if (unlikely(status & (ATA_ERR | ATA_DF))) {
1205				/* data might be corrputed */
1206				qc->err_mask |= AC_ERR_DEV;
1207
1208				if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
1209					ata_pio_sectors(qc);
1210					status = ata_wait_idle(ap);
1211				}
1212
1213				if (status & (ATA_BUSY | ATA_DRQ)) {
1214					ata_ehi_push_desc(ehi, "ST-ATA: "
1215						"BUSY|DRQ persists on ERR|DF, "
1216						"dev_stat 0x%X", status);
1217					qc->err_mask |= AC_ERR_HSM;
1218				}
1219
1220				/* There are oddball controllers with
1221				 * status register stuck at 0x7f and
1222				 * lbal/m/h at zero which makes it
1223				 * pass all other presence detection
1224				 * mechanisms we have.  Set NODEV_HINT
1225				 * for it.  Kernel bz#7241.
1226				 */
1227				if (status == 0x7f)
1228					qc->err_mask |= AC_ERR_NODEV_HINT;
1229
1230				/* ata_pio_sectors() might change the
1231				 * state to HSM_ST_LAST. so, the state
1232				 * is changed after ata_pio_sectors().
1233				 */
1234				ap->hsm_task_state = HSM_ST_ERR;
1235				goto fsm_start;
1236			}
1237
1238			ata_pio_sectors(qc);
1239
1240			if (ap->hsm_task_state == HSM_ST_LAST &&
1241			    (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
1242				/* all data read */
1243				status = ata_wait_idle(ap);
1244				goto fsm_start;
1245			}
1246		}
1247
1248		poll_next = 1;
1249		break;
1250
1251	case HSM_ST_LAST:
1252		if (unlikely(!ata_ok(status))) {
1253			qc->err_mask |= __ac_err_mask(status);
1254			ap->hsm_task_state = HSM_ST_ERR;
1255			goto fsm_start;
1256		}
1257
1258		/* no more data to transfer */
1259		DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1260			ap->print_id, qc->dev->devno, status);
1261
1262		WARN_ON_ONCE(qc->err_mask & (AC_ERR_DEV | AC_ERR_HSM));
1263
1264		ap->hsm_task_state = HSM_ST_IDLE;
1265
1266		/* complete taskfile transaction */
1267		ata_hsm_qc_complete(qc, in_wq);
1268
1269		poll_next = 0;
1270		break;
1271
1272	case HSM_ST_ERR:
1273		ap->hsm_task_state = HSM_ST_IDLE;
1274
1275		/* complete taskfile transaction */
1276		ata_hsm_qc_complete(qc, in_wq);
1277
1278		poll_next = 0;
1279		break;
1280	default:
1281		poll_next = 0;
1282		BUG();
1283	}
1284
1285	return poll_next;
1286}
1287EXPORT_SYMBOL_GPL(ata_sff_hsm_move);
1288
1289void ata_sff_queue_work(struct work_struct *work)
1290{
1291	queue_work(ata_sff_wq, work);
1292}
1293EXPORT_SYMBOL_GPL(ata_sff_queue_work);
1294
1295void ata_sff_queue_delayed_work(struct delayed_work *dwork, unsigned long delay)
1296{
1297	queue_delayed_work(ata_sff_wq, dwork, delay);
1298}
1299EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work);
1300
1301void ata_sff_queue_pio_task(struct ata_link *link, unsigned long delay)
1302{
1303	struct ata_port *ap = link->ap;
1304
1305	WARN_ON((ap->sff_pio_task_link != NULL) &&
1306		(ap->sff_pio_task_link != link));
1307	ap->sff_pio_task_link = link;
1308
1309	/* may fail if ata_sff_flush_pio_task() in progress */
1310	ata_sff_queue_delayed_work(&ap->sff_pio_task, msecs_to_jiffies(delay));
1311}
1312EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task);
1313
1314void ata_sff_flush_pio_task(struct ata_port *ap)
1315{
1316	DPRINTK("ENTER\n");
1317
1318	cancel_delayed_work_sync(&ap->sff_pio_task);
1319
1320	/*
1321	 * We wanna reset the HSM state to IDLE.  If we do so without
1322	 * grabbing the port lock, critical sections protected by it which
1323	 * expect the HSM state to stay stable may get surprised.  For
1324	 * example, we may set IDLE in between the time
1325	 * __ata_sff_port_intr() checks for HSM_ST_IDLE and before it calls
1326	 * ata_sff_hsm_move() causing ata_sff_hsm_move() to BUG().
1327	 */
1328	spin_lock_irq(ap->lock);
1329	ap->hsm_task_state = HSM_ST_IDLE;
1330	spin_unlock_irq(ap->lock);
1331
1332	ap->sff_pio_task_link = NULL;
1333
1334	if (ata_msg_ctl(ap))
1335		ata_port_dbg(ap, "%s: EXIT\n", __func__);
1336}
1337
1338static void ata_sff_pio_task(struct work_struct *work)
1339{
1340	struct ata_port *ap =
1341		container_of(work, struct ata_port, sff_pio_task.work);
1342	struct ata_link *link = ap->sff_pio_task_link;
1343	struct ata_queued_cmd *qc;
1344	u8 status;
1345	int poll_next;
1346
1347	spin_lock_irq(ap->lock);
1348
1349	BUG_ON(ap->sff_pio_task_link == NULL);
1350	/* qc can be NULL if timeout occurred */
1351	qc = ata_qc_from_tag(ap, link->active_tag);
1352	if (!qc) {
1353		ap->sff_pio_task_link = NULL;
1354		goto out_unlock;
1355	}
1356
1357fsm_start:
1358	WARN_ON_ONCE(ap->hsm_task_state == HSM_ST_IDLE);
1359
1360	/*
1361	 * This is purely heuristic.  This is a fast path.
1362	 * Sometimes when we enter, BSY will be cleared in
1363	 * a chk-status or two.  If not, the drive is probably seeking
1364	 * or something.  Snooze for a couple msecs, then
1365	 * chk-status again.  If still busy, queue delayed work.
1366	 */
1367	status = ata_sff_busy_wait(ap, ATA_BUSY, 5);
1368	if (status & ATA_BUSY) {
1369		spin_unlock_irq(ap->lock);
1370		ata_msleep(ap, 2);
1371		spin_lock_irq(ap->lock);
1372
1373		status = ata_sff_busy_wait(ap, ATA_BUSY, 10);
1374		if (status & ATA_BUSY) {
1375			ata_sff_queue_pio_task(link, ATA_SHORT_PAUSE);
1376			goto out_unlock;
1377		}
1378	}
1379
1380	/*
1381	 * hsm_move() may trigger another command to be processed.
1382	 * clean the link beforehand.
1383	 */
1384	ap->sff_pio_task_link = NULL;
1385	/* move the HSM */
1386	poll_next = ata_sff_hsm_move(ap, qc, status, 1);
1387
1388	/* another command or interrupt handler
1389	 * may be running at this point.
1390	 */
1391	if (poll_next)
1392		goto fsm_start;
1393out_unlock:
1394	spin_unlock_irq(ap->lock);
1395}
1396
1397/**
1398 *	ata_sff_qc_issue - issue taskfile to a SFF controller
1399 *	@qc: command to issue to device
1400 *
1401 *	This function issues a PIO or NODATA command to a SFF
1402 *	controller.
1403 *
1404 *	LOCKING:
1405 *	spin_lock_irqsave(host lock)
1406 *
1407 *	RETURNS:
1408 *	Zero on success, AC_ERR_* mask on failure
1409 */
1410unsigned int ata_sff_qc_issue(struct ata_queued_cmd *qc)
1411{
1412	struct ata_port *ap = qc->ap;
1413	struct ata_link *link = qc->dev->link;
1414
1415	/* Use polling pio if the LLD doesn't handle
1416	 * interrupt driven pio and atapi CDB interrupt.
1417	 */
1418	if (ap->flags & ATA_FLAG_PIO_POLLING)
1419		qc->tf.flags |= ATA_TFLAG_POLLING;
1420
1421	/* select the device */
1422	ata_dev_select(ap, qc->dev->devno, 1, 0);
1423
1424	/* start the command */
1425	switch (qc->tf.protocol) {
1426	case ATA_PROT_NODATA:
1427		if (qc->tf.flags & ATA_TFLAG_POLLING)
1428			ata_qc_set_polling(qc);
1429
1430		ata_tf_to_host(ap, &qc->tf);
1431		ap->hsm_task_state = HSM_ST_LAST;
1432
1433		if (qc->tf.flags & ATA_TFLAG_POLLING)
1434			ata_sff_queue_pio_task(link, 0);
1435
1436		break;
1437
1438	case ATA_PROT_PIO:
1439		if (qc->tf.flags & ATA_TFLAG_POLLING)
1440			ata_qc_set_polling(qc);
1441
1442		ata_tf_to_host(ap, &qc->tf);
1443
1444		if (qc->tf.flags & ATA_TFLAG_WRITE) {
1445			/* PIO data out protocol */
1446			ap->hsm_task_state = HSM_ST_FIRST;
1447			ata_sff_queue_pio_task(link, 0);
1448
1449			/* always send first data block using the
1450			 * ata_sff_pio_task() codepath.
1451			 */
1452		} else {
1453			/* PIO data in protocol */
1454			ap->hsm_task_state = HSM_ST;
1455
1456			if (qc->tf.flags & ATA_TFLAG_POLLING)
1457				ata_sff_queue_pio_task(link, 0);
1458
1459			/* if polling, ata_sff_pio_task() handles the
1460			 * rest.  otherwise, interrupt handler takes
1461			 * over from here.
1462			 */
1463		}
1464
1465		break;
1466
1467	case ATAPI_PROT_PIO:
1468	case ATAPI_PROT_NODATA:
1469		if (qc->tf.flags & ATA_TFLAG_POLLING)
1470			ata_qc_set_polling(qc);
1471
1472		ata_tf_to_host(ap, &qc->tf);
1473
1474		ap->hsm_task_state = HSM_ST_FIRST;
1475
1476		/* send cdb by polling if no cdb interrupt */
1477		if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
1478		    (qc->tf.flags & ATA_TFLAG_POLLING))
1479			ata_sff_queue_pio_task(link, 0);
1480		break;
1481
1482	default:
1483		WARN_ON_ONCE(1);
1484		return AC_ERR_SYSTEM;
1485	}
1486
1487	return 0;
1488}
1489EXPORT_SYMBOL_GPL(ata_sff_qc_issue);
1490
1491/**
1492 *	ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1493 *	@qc: qc to fill result TF for
1494 *
1495 *	@qc is finished and result TF needs to be filled.  Fill it
1496 *	using ->sff_tf_read.
1497 *
1498 *	LOCKING:
1499 *	spin_lock_irqsave(host lock)
1500 *
1501 *	RETURNS:
1502 *	true indicating that result TF is successfully filled.
1503 */
1504bool ata_sff_qc_fill_rtf(struct ata_queued_cmd *qc)
1505{
1506	qc->ap->ops->sff_tf_read(qc->ap, &qc->result_tf);
1507	return true;
1508}
1509EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf);
1510
1511static unsigned int ata_sff_idle_irq(struct ata_port *ap)
1512{
1513	ap->stats.idle_irq++;
1514
1515#ifdef ATA_IRQ_TRAP
1516	if ((ap->stats.idle_irq % 1000) == 0) {
1517		ap->ops->sff_check_status(ap);
1518		if (ap->ops->sff_irq_clear)
1519			ap->ops->sff_irq_clear(ap);
1520		ata_port_warn(ap, "irq trap\n");
1521		return 1;
1522	}
1523#endif
1524	return 0;	/* irq not handled */
1525}
1526
1527static unsigned int __ata_sff_port_intr(struct ata_port *ap,
1528					struct ata_queued_cmd *qc,
1529					bool hsmv_on_idle)
1530{
1531	u8 status;
1532
1533	VPRINTK("ata%u: protocol %d task_state %d\n",
1534		ap->print_id, qc->tf.protocol, ap->hsm_task_state);
1535
1536	/* Check whether we are expecting interrupt in this state */
1537	switch (ap->hsm_task_state) {
1538	case HSM_ST_FIRST:
1539		/* Some pre-ATAPI-4 devices assert INTRQ
1540		 * at this state when ready to receive CDB.
1541		 */
1542
1543		/* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1544		 * The flag was turned on only for atapi devices.  No
1545		 * need to check ata_is_atapi(qc->tf.protocol) again.
1546		 */
1547		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1548			return ata_sff_idle_irq(ap);
1549		break;
1550	case HSM_ST_IDLE:
1551		return ata_sff_idle_irq(ap);
1552	default:
1553		break;
1554	}
1555
1556	/* check main status, clearing INTRQ if needed */
1557	status = ata_sff_irq_status(ap);
1558	if (status & ATA_BUSY) {
1559		if (hsmv_on_idle) {
1560			/* BMDMA engine is already stopped, we're screwed */
1561			qc->err_mask |= AC_ERR_HSM;
1562			ap->hsm_task_state = HSM_ST_ERR;
1563		} else
1564			return ata_sff_idle_irq(ap);
1565	}
1566
1567	/* clear irq events */
1568	if (ap->ops->sff_irq_clear)
1569		ap->ops->sff_irq_clear(ap);
1570
1571	ata_sff_hsm_move(ap, qc, status, 0);
1572
1573	return 1;	/* irq handled */
1574}
1575
1576/**
1577 *	ata_sff_port_intr - Handle SFF port interrupt
1578 *	@ap: Port on which interrupt arrived (possibly...)
1579 *	@qc: Taskfile currently active in engine
1580 *
1581 *	Handle port interrupt for given queued command.
1582 *
1583 *	LOCKING:
1584 *	spin_lock_irqsave(host lock)
1585 *
1586 *	RETURNS:
1587 *	One if interrupt was handled, zero if not (shared irq).
1588 */
1589unsigned int ata_sff_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
1590{
1591	return __ata_sff_port_intr(ap, qc, false);
1592}
1593EXPORT_SYMBOL_GPL(ata_sff_port_intr);
1594
1595static inline irqreturn_t __ata_sff_interrupt(int irq, void *dev_instance,
1596	unsigned int (*port_intr)(struct ata_port *, struct ata_queued_cmd *))
1597{
1598	struct ata_host *host = dev_instance;
1599	bool retried = false;
1600	unsigned int i;
1601	unsigned int handled, idle, polling;
1602	unsigned long flags;
1603
1604	/* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1605	spin_lock_irqsave(&host->lock, flags);
1606
1607retry:
1608	handled = idle = polling = 0;
1609	for (i = 0; i < host->n_ports; i++) {
1610		struct ata_port *ap = host->ports[i];
1611		struct ata_queued_cmd *qc;
1612
1613		qc = ata_qc_from_tag(ap, ap->link.active_tag);
1614		if (qc) {
1615			if (!(qc->tf.flags & ATA_TFLAG_POLLING))
1616				handled |= port_intr(ap, qc);
1617			else
1618				polling |= 1 << i;
1619		} else
1620			idle |= 1 << i;
1621	}
1622
1623	/*
1624	 * If no port was expecting IRQ but the controller is actually
1625	 * asserting IRQ line, nobody cared will ensue.  Check IRQ
1626	 * pending status if available and clear spurious IRQ.
1627	 */
1628	if (!handled && !retried) {
1629		bool retry = false;
1630
1631		for (i = 0; i < host->n_ports; i++) {
1632			struct ata_port *ap = host->ports[i];
1633
1634			if (polling & (1 << i))
1635				continue;
1636
1637			if (!ap->ops->sff_irq_check ||
1638			    !ap->ops->sff_irq_check(ap))
1639				continue;
1640
1641			if (idle & (1 << i)) {
1642				ap->ops->sff_check_status(ap);
1643				if (ap->ops->sff_irq_clear)
1644					ap->ops->sff_irq_clear(ap);
1645			} else {
1646				/* clear INTRQ and check if BUSY cleared */
1647				if (!(ap->ops->sff_check_status(ap) & ATA_BUSY))
1648					retry |= true;
1649				/*
1650				 * With command in flight, we can't do
1651				 * sff_irq_clear() w/o racing with completion.
1652				 */
1653			}
1654		}
1655
1656		if (retry) {
1657			retried = true;
1658			goto retry;
1659		}
1660	}
1661
1662	spin_unlock_irqrestore(&host->lock, flags);
1663
1664	return IRQ_RETVAL(handled);
1665}
1666
1667/**
1668 *	ata_sff_interrupt - Default SFF ATA host interrupt handler
1669 *	@irq: irq line (unused)
1670 *	@dev_instance: pointer to our ata_host information structure
1671 *
1672 *	Default interrupt handler for PCI IDE devices.  Calls
1673 *	ata_sff_port_intr() for each port that is not disabled.
1674 *
1675 *	LOCKING:
1676 *	Obtains host lock during operation.
1677 *
1678 *	RETURNS:
1679 *	IRQ_NONE or IRQ_HANDLED.
1680 */
1681irqreturn_t ata_sff_interrupt(int irq, void *dev_instance)
1682{
1683	return __ata_sff_interrupt(irq, dev_instance, ata_sff_port_intr);
1684}
1685EXPORT_SYMBOL_GPL(ata_sff_interrupt);
1686
1687/**
1688 *	ata_sff_lost_interrupt	-	Check for an apparent lost interrupt
1689 *	@ap: port that appears to have timed out
1690 *
1691 *	Called from the libata error handlers when the core code suspects
1692 *	an interrupt has been lost. If it has complete anything we can and
1693 *	then return. Interface must support altstatus for this faster
1694 *	recovery to occur.
1695 *
1696 *	Locking:
1697 *	Caller holds host lock
1698 */
1699
1700void ata_sff_lost_interrupt(struct ata_port *ap)
1701{
1702	u8 status;
1703	struct ata_queued_cmd *qc;
1704
1705	/* Only one outstanding command per SFF channel */
1706	qc = ata_qc_from_tag(ap, ap->link.active_tag);
1707	/* We cannot lose an interrupt on a non-existent or polled command */
1708	if (!qc || qc->tf.flags & ATA_TFLAG_POLLING)
1709		return;
1710	/* See if the controller thinks it is still busy - if so the command
1711	   isn't a lost IRQ but is still in progress */
1712	status = ata_sff_altstatus(ap);
1713	if (status & ATA_BUSY)
1714		return;
1715
1716	/* There was a command running, we are no longer busy and we have
1717	   no interrupt. */
1718	ata_port_warn(ap, "lost interrupt (Status 0x%x)\n",
1719								status);
1720	/* Run the host interrupt logic as if the interrupt had not been
1721	   lost */
1722	ata_sff_port_intr(ap, qc);
1723}
1724EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt);
1725
1726/**
1727 *	ata_sff_freeze - Freeze SFF controller port
1728 *	@ap: port to freeze
1729 *
1730 *	Freeze SFF controller port.
1731 *
1732 *	LOCKING:
1733 *	Inherited from caller.
1734 */
1735void ata_sff_freeze(struct ata_port *ap)
1736{
1737	ap->ctl |= ATA_NIEN;
1738	ap->last_ctl = ap->ctl;
1739
1740	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr)
1741		ata_sff_set_devctl(ap, ap->ctl);
1742
1743	/* Under certain circumstances, some controllers raise IRQ on
1744	 * ATA_NIEN manipulation.  Also, many controllers fail to mask
1745	 * previously pending IRQ on ATA_NIEN assertion.  Clear it.
1746	 */
1747	ap->ops->sff_check_status(ap);
1748
1749	if (ap->ops->sff_irq_clear)
1750		ap->ops->sff_irq_clear(ap);
1751}
1752EXPORT_SYMBOL_GPL(ata_sff_freeze);
1753
1754/**
1755 *	ata_sff_thaw - Thaw SFF controller port
1756 *	@ap: port to thaw
1757 *
1758 *	Thaw SFF controller port.
1759 *
1760 *	LOCKING:
1761 *	Inherited from caller.
1762 */
1763void ata_sff_thaw(struct ata_port *ap)
1764{
1765	/* clear & re-enable interrupts */
1766	ap->ops->sff_check_status(ap);
1767	if (ap->ops->sff_irq_clear)
1768		ap->ops->sff_irq_clear(ap);
1769	ata_sff_irq_on(ap);
1770}
1771EXPORT_SYMBOL_GPL(ata_sff_thaw);
1772
1773/**
1774 *	ata_sff_prereset - prepare SFF link for reset
1775 *	@link: SFF link to be reset
1776 *	@deadline: deadline jiffies for the operation
1777 *
1778 *	SFF link @link is about to be reset.  Initialize it.  It first
1779 *	calls ata_std_prereset() and wait for !BSY if the port is
1780 *	being softreset.
1781 *
1782 *	LOCKING:
1783 *	Kernel thread context (may sleep)
1784 *
1785 *	RETURNS:
1786 *	0 on success, -errno otherwise.
1787 */
1788int ata_sff_prereset(struct ata_link *link, unsigned long deadline)
1789{
1790	struct ata_eh_context *ehc = &link->eh_context;
1791	int rc;
1792
1793	rc = ata_std_prereset(link, deadline);
1794	if (rc)
1795		return rc;
1796
1797	/* if we're about to do hardreset, nothing more to do */
1798	if (ehc->i.action & ATA_EH_HARDRESET)
1799		return 0;
1800
1801	/* wait for !BSY if we don't know that no device is attached */
1802	if (!ata_link_offline(link)) {
1803		rc = ata_sff_wait_ready(link, deadline);
1804		if (rc && rc != -ENODEV) {
1805			ata_link_warn(link,
1806				      "device not ready (errno=%d), forcing hardreset\n",
1807				      rc);
1808			ehc->i.action |= ATA_EH_HARDRESET;
1809		}
1810	}
1811
1812	return 0;
1813}
1814EXPORT_SYMBOL_GPL(ata_sff_prereset);
1815
1816/**
1817 *	ata_devchk - PATA device presence detection
1818 *	@ap: ATA channel to examine
1819 *	@device: Device to examine (starting at zero)
1820 *
1821 *	This technique was originally described in
1822 *	Hale Landis's ATADRVR (www.ata-atapi.com), and
1823 *	later found its way into the ATA/ATAPI spec.
1824 *
1825 *	Write a pattern to the ATA shadow registers,
1826 *	and if a device is present, it will respond by
1827 *	correctly storing and echoing back the
1828 *	ATA shadow register contents.
1829 *
1830 *	LOCKING:
1831 *	caller.
1832 */
1833static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
1834{
1835	struct ata_ioports *ioaddr = &ap->ioaddr;
1836	u8 nsect, lbal;
1837
1838	ap->ops->sff_dev_select(ap, device);
1839
1840	iowrite8(0x55, ioaddr->nsect_addr);
1841	iowrite8(0xaa, ioaddr->lbal_addr);
1842
1843	iowrite8(0xaa, ioaddr->nsect_addr);
1844	iowrite8(0x55, ioaddr->lbal_addr);
1845
1846	iowrite8(0x55, ioaddr->nsect_addr);
1847	iowrite8(0xaa, ioaddr->lbal_addr);
1848
1849	nsect = ioread8(ioaddr->nsect_addr);
1850	lbal = ioread8(ioaddr->lbal_addr);
1851
1852	if ((nsect == 0x55) && (lbal == 0xaa))
1853		return 1;	/* we found a device */
1854
1855	return 0;		/* nothing found */
1856}
1857
1858/**
1859 *	ata_sff_dev_classify - Parse returned ATA device signature
1860 *	@dev: ATA device to classify (starting at zero)
1861 *	@present: device seems present
1862 *	@r_err: Value of error register on completion
1863 *
1864 *	After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1865 *	an ATA/ATAPI-defined set of values is placed in the ATA
1866 *	shadow registers, indicating the results of device detection
1867 *	and diagnostics.
1868 *
1869 *	Select the ATA device, and read the values from the ATA shadow
1870 *	registers.  Then parse according to the Error register value,
1871 *	and the spec-defined values examined by ata_dev_classify().
1872 *
1873 *	LOCKING:
1874 *	caller.
1875 *
1876 *	RETURNS:
1877 *	Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1878 */
1879unsigned int ata_sff_dev_classify(struct ata_device *dev, int present,
1880				  u8 *r_err)
1881{
1882	struct ata_port *ap = dev->link->ap;
1883	struct ata_taskfile tf;
1884	unsigned int class;
1885	u8 err;
1886
1887	ap->ops->sff_dev_select(ap, dev->devno);
1888
1889	memset(&tf, 0, sizeof(tf));
1890
1891	ap->ops->sff_tf_read(ap, &tf);
1892	err = tf.feature;
1893	if (r_err)
1894		*r_err = err;
1895
1896	/* see if device passed diags: continue and warn later */
1897	if (err == 0)
1898		/* diagnostic fail : do nothing _YET_ */
1899		dev->horkage |= ATA_HORKAGE_DIAGNOSTIC;
1900	else if (err == 1)
1901		/* do nothing */ ;
1902	else if ((dev->devno == 0) && (err == 0x81))
1903		/* do nothing */ ;
1904	else
1905		return ATA_DEV_NONE;
1906
1907	/* determine if device is ATA or ATAPI */
1908	class = ata_dev_classify(&tf);
1909
1910	if (class == ATA_DEV_UNKNOWN) {
1911		/* If the device failed diagnostic, it's likely to
1912		 * have reported incorrect device signature too.
1913		 * Assume ATA device if the device seems present but
1914		 * device signature is invalid with diagnostic
1915		 * failure.
1916		 */
1917		if (present && (dev->horkage & ATA_HORKAGE_DIAGNOSTIC))
1918			class = ATA_DEV_ATA;
1919		else
1920			class = ATA_DEV_NONE;
1921	} else if ((class == ATA_DEV_ATA) &&
1922		   (ap->ops->sff_check_status(ap) == 0))
1923		class = ATA_DEV_NONE;
1924
1925	return class;
1926}
1927EXPORT_SYMBOL_GPL(ata_sff_dev_classify);
1928
1929/**
1930 *	ata_sff_wait_after_reset - wait for devices to become ready after reset
1931 *	@link: SFF link which is just reset
1932 *	@devmask: mask of present devices
1933 *	@deadline: deadline jiffies for the operation
1934 *
1935 *	Wait devices attached to SFF @link to become ready after
1936 *	reset.  It contains preceding 150ms wait to avoid accessing TF
1937 *	status register too early.
1938 *
1939 *	LOCKING:
1940 *	Kernel thread context (may sleep).
1941 *
1942 *	RETURNS:
1943 *	0 on success, -ENODEV if some or all of devices in @devmask
1944 *	don't seem to exist.  -errno on other errors.
1945 */
1946int ata_sff_wait_after_reset(struct ata_link *link, unsigned int devmask,
1947			     unsigned long deadline)
1948{
1949	struct ata_port *ap = link->ap;
1950	struct ata_ioports *ioaddr = &ap->ioaddr;
1951	unsigned int dev0 = devmask & (1 << 0);
1952	unsigned int dev1 = devmask & (1 << 1);
1953	int rc, ret = 0;
1954
1955	ata_msleep(ap, ATA_WAIT_AFTER_RESET);
1956
1957	/* always check readiness of the master device */
1958	rc = ata_sff_wait_ready(link, deadline);
1959	/* -ENODEV means the odd clown forgot the D7 pulldown resistor
1960	 * and TF status is 0xff, bail out on it too.
1961	 */
1962	if (rc)
1963		return rc;
1964
1965	/* if device 1 was found in ata_devchk, wait for register
1966	 * access briefly, then wait for BSY to clear.
1967	 */
1968	if (dev1) {
1969		int i;
1970
1971		ap->ops->sff_dev_select(ap, 1);
1972
1973		/* Wait for register access.  Some ATAPI devices fail
1974		 * to set nsect/lbal after reset, so don't waste too
1975		 * much time on it.  We're gonna wait for !BSY anyway.
1976		 */
1977		for (i = 0; i < 2; i++) {
1978			u8 nsect, lbal;
1979
1980			nsect = ioread8(ioaddr->nsect_addr);
1981			lbal = ioread8(ioaddr->lbal_addr);
1982			if ((nsect == 1) && (lbal == 1))
1983				break;
1984			ata_msleep(ap, 50);	/* give drive a breather */
1985		}
1986
1987		rc = ata_sff_wait_ready(link, deadline);
1988		if (rc) {
1989			if (rc != -ENODEV)
1990				return rc;
1991			ret = rc;
1992		}
1993	}
1994
1995	/* is all this really necessary? */
1996	ap->ops->sff_dev_select(ap, 0);
1997	if (dev1)
1998		ap->ops->sff_dev_select(ap, 1);
1999	if (dev0)
2000		ap->ops->sff_dev_select(ap, 0);
2001
2002	return ret;
2003}
2004EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset);
2005
2006static int ata_bus_softreset(struct ata_port *ap, unsigned int devmask,
2007			     unsigned long deadline)
2008{
2009	struct ata_ioports *ioaddr = &ap->ioaddr;
2010
2011	DPRINTK("ata%u: bus reset via SRST\n", ap->print_id);
2012
2013	if (ap->ioaddr.ctl_addr) {
2014		/* software reset.  causes dev0 to be selected */
2015		iowrite8(ap->ctl, ioaddr->ctl_addr);
2016		udelay(20);	/* FIXME: flush */
2017		iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2018		udelay(20);	/* FIXME: flush */
2019		iowrite8(ap->ctl, ioaddr->ctl_addr);
2020		ap->last_ctl = ap->ctl;
2021	}
2022
2023	/* wait the port to become ready */
2024	return ata_sff_wait_after_reset(&ap->link, devmask, deadline);
2025}
2026
2027/**
2028 *	ata_sff_softreset - reset host port via ATA SRST
2029 *	@link: ATA link to reset
2030 *	@classes: resulting classes of attached devices
2031 *	@deadline: deadline jiffies for the operation
2032 *
2033 *	Reset host port using ATA SRST.
2034 *
2035 *	LOCKING:
2036 *	Kernel thread context (may sleep)
2037 *
2038 *	RETURNS:
2039 *	0 on success, -errno otherwise.
2040 */
2041int ata_sff_softreset(struct ata_link *link, unsigned int *classes,
2042		      unsigned long deadline)
2043{
2044	struct ata_port *ap = link->ap;
2045	unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2046	unsigned int devmask = 0;
2047	int rc;
2048	u8 err;
2049
2050	DPRINTK("ENTER\n");
2051
2052	/* determine if device 0/1 are present */
2053	if (ata_devchk(ap, 0))
2054		devmask |= (1 << 0);
2055	if (slave_possible && ata_devchk(ap, 1))
2056		devmask |= (1 << 1);
2057
2058	/* select device 0 again */
2059	ap->ops->sff_dev_select(ap, 0);
2060
2061	/* issue bus reset */
2062	DPRINTK("about to softreset, devmask=%x\n", devmask);
2063	rc = ata_bus_softreset(ap, devmask, deadline);
2064	/* if link is occupied, -ENODEV too is an error */
2065	if (rc && (rc != -ENODEV || sata_scr_valid(link))) {
2066		ata_link_err(link, "SRST failed (errno=%d)\n", rc);
2067		return rc;
2068	}
2069
2070	/* determine by signature whether we have ATA or ATAPI devices */
2071	classes[0] = ata_sff_dev_classify(&link->device[0],
2072					  devmask & (1 << 0), &err);
2073	if (slave_possible && err != 0x81)
2074		classes[1] = ata_sff_dev_classify(&link->device[1],
2075						  devmask & (1 << 1), &err);
2076
2077	DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2078	return 0;
2079}
2080EXPORT_SYMBOL_GPL(ata_sff_softreset);
2081
2082/**
2083 *	sata_sff_hardreset - reset host port via SATA phy reset
2084 *	@link: link to reset
2085 *	@class: resulting class of attached device
2086 *	@deadline: deadline jiffies for the operation
2087 *
2088 *	SATA phy-reset host port using DET bits of SControl register,
2089 *	wait for !BSY and classify the attached device.
2090 *
2091 *	LOCKING:
2092 *	Kernel thread context (may sleep)
2093 *
2094 *	RETURNS:
2095 *	0 on success, -errno otherwise.
2096 */
2097int sata_sff_hardreset(struct ata_link *link, unsigned int *class,
2098		       unsigned long deadline)
2099{
2100	struct ata_eh_context *ehc = &link->eh_context;
2101	const unsigned long *timing = sata_ehc_deb_timing(ehc);
2102	bool online;
2103	int rc;
2104
2105	rc = sata_link_hardreset(link, timing, deadline, &online,
2106				 ata_sff_check_ready);
2107	if (online)
2108		*class = ata_sff_dev_classify(link->device, 1, NULL);
2109
2110	DPRINTK("EXIT, class=%u\n", *class);
2111	return rc;
2112}
2113EXPORT_SYMBOL_GPL(sata_sff_hardreset);
2114
2115/**
2116 *	ata_sff_postreset - SFF postreset callback
2117 *	@link: the target SFF ata_link
2118 *	@classes: classes of attached devices
2119 *
2120 *	This function is invoked after a successful reset.  It first
2121 *	calls ata_std_postreset() and performs SFF specific postreset
2122 *	processing.
2123 *
2124 *	LOCKING:
2125 *	Kernel thread context (may sleep)
2126 */
2127void ata_sff_postreset(struct ata_link *link, unsigned int *classes)
2128{
2129	struct ata_port *ap = link->ap;
2130
2131	ata_std_postreset(link, classes);
2132
2133	/* is double-select really necessary? */
2134	if (classes[0] != ATA_DEV_NONE)
2135		ap->ops->sff_dev_select(ap, 1);
2136	if (classes[1] != ATA_DEV_NONE)
2137		ap->ops->sff_dev_select(ap, 0);
2138
2139	/* bail out if no device is present */
2140	if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2141		DPRINTK("EXIT, no device\n");
2142		return;
2143	}
2144
2145	/* set up device control */
2146	if (ap->ops->sff_set_devctl || ap->ioaddr.ctl_addr) {
2147		ata_sff_set_devctl(ap, ap->ctl);
2148		ap->last_ctl = ap->ctl;
2149	}
2150}
2151EXPORT_SYMBOL_GPL(ata_sff_postreset);
2152
2153/**
2154 *	ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2155 *	@qc: command
2156 *
2157 *	Drain the FIFO and device of any stuck data following a command
2158 *	failing to complete. In some cases this is necessary before a
2159 *	reset will recover the device.
2160 *
2161 */
2162
2163void ata_sff_drain_fifo(struct ata_queued_cmd *qc)
2164{
2165	int count;
2166	struct ata_port *ap;
2167
2168	/* We only need to flush incoming data when a command was running */
2169	if (qc == NULL || qc->dma_dir == DMA_TO_DEVICE)
2170		return;
2171
2172	ap = qc->ap;
2173	/* Drain up to 64K of data before we give up this recovery method */
2174	for (count = 0; (ap->ops->sff_check_status(ap) & ATA_DRQ)
2175						&& count < 65536; count += 2)
2176		ioread16(ap->ioaddr.data_addr);
2177
2178	/* Can become DEBUG later */
2179	if (count)
2180		ata_port_dbg(ap, "drained %d bytes to clear DRQ\n", count);
2181
2182}
2183EXPORT_SYMBOL_GPL(ata_sff_drain_fifo);
2184
2185/**
2186 *	ata_sff_error_handler - Stock error handler for SFF controller
2187 *	@ap: port to handle error for
2188 *
2189 *	Stock error handler for SFF controller.  It can handle both
2190 *	PATA and SATA controllers.  Many controllers should be able to
2191 *	use this EH as-is or with some added handling before and
2192 *	after.
2193 *
2194 *	LOCKING:
2195 *	Kernel thread context (may sleep)
2196 */
2197void ata_sff_error_handler(struct ata_port *ap)
2198{
2199	ata_reset_fn_t softreset = ap->ops->softreset;
2200	ata_reset_fn_t hardreset = ap->ops->hardreset;
2201	struct ata_queued_cmd *qc;
2202	unsigned long flags;
2203
2204	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2205	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2206		qc = NULL;
2207
2208	spin_lock_irqsave(ap->lock, flags);
2209
2210	/*
2211	 * We *MUST* do FIFO draining before we issue a reset as
2212	 * several devices helpfully clear their internal state and
2213	 * will lock solid if we touch the data port post reset. Pass
2214	 * qc in case anyone wants to do different PIO/DMA recovery or
2215	 * has per command fixups
2216	 */
2217	if (ap->ops->sff_drain_fifo)
2218		ap->ops->sff_drain_fifo(qc);
2219
2220	spin_unlock_irqrestore(ap->lock, flags);
2221
2222	/* ignore built-in hardresets if SCR access is not available */
2223	if ((hardreset == sata_std_hardreset ||
2224	     hardreset == sata_sff_hardreset) && !sata_scr_valid(&ap->link))
2225		hardreset = NULL;
2226
2227	ata_do_eh(ap, ap->ops->prereset, softreset, hardreset,
2228		  ap->ops->postreset);
2229}
2230EXPORT_SYMBOL_GPL(ata_sff_error_handler);
2231
2232/**
2233 *	ata_sff_std_ports - initialize ioaddr with standard port offsets.
2234 *	@ioaddr: IO address structure to be initialized
2235 *
2236 *	Utility function which initializes data_addr, error_addr,
2237 *	feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2238 *	device_addr, status_addr, and command_addr to standard offsets
2239 *	relative to cmd_addr.
2240 *
2241 *	Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2242 */
2243void ata_sff_std_ports(struct ata_ioports *ioaddr)
2244{
2245	ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
2246	ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
2247	ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
2248	ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
2249	ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
2250	ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
2251	ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
2252	ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
2253	ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
2254	ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
2255}
2256EXPORT_SYMBOL_GPL(ata_sff_std_ports);
2257
2258#ifdef CONFIG_PCI
2259
2260static int ata_resources_present(struct pci_dev *pdev, int port)
2261{
2262	int i;
2263
2264	/* Check the PCI resources for this channel are enabled */
2265	port = port * 2;
2266	for (i = 0; i < 2; i++) {
2267		if (pci_resource_start(pdev, port + i) == 0 ||
2268		    pci_resource_len(pdev, port + i) == 0)
2269			return 0;
2270	}
2271	return 1;
2272}
2273
2274/**
2275 *	ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2276 *	@host: target ATA host
2277 *
2278 *	Acquire native PCI ATA resources for @host and initialize the
2279 *	first two ports of @host accordingly.  Ports marked dummy are
2280 *	skipped and allocation failure makes the port dummy.
2281 *
2282 *	Note that native PCI resources are valid even for legacy hosts
2283 *	as we fix up pdev resources array early in boot, so this
2284 *	function can be used for both native and legacy SFF hosts.
2285 *
2286 *	LOCKING:
2287 *	Inherited from calling layer (may sleep).
2288 *
2289 *	RETURNS:
2290 *	0 if at least one port is initialized, -ENODEV if no port is
2291 *	available.
2292 */
2293int ata_pci_sff_init_host(struct ata_host *host)
2294{
2295	struct device *gdev = host->dev;
2296	struct pci_dev *pdev = to_pci_dev(gdev);
2297	unsigned int mask = 0;
2298	int i, rc;
2299
2300	/* request, iomap BARs and init port addresses accordingly */
2301	for (i = 0; i < 2; i++) {
2302		struct ata_port *ap = host->ports[i];
2303		int base = i * 2;
2304		void __iomem * const *iomap;
2305
2306		if (ata_port_is_dummy(ap))
2307			continue;
2308
2309		/* Discard disabled ports.  Some controllers show
2310		 * their unused channels this way.  Disabled ports are
2311		 * made dummy.
2312		 */
2313		if (!ata_resources_present(pdev, i)) {
2314			ap->ops = &ata_dummy_port_ops;
2315			continue;
2316		}
2317
2318		rc = pcim_iomap_regions(pdev, 0x3 << base,
2319					dev_driver_string(gdev));
2320		if (rc) {
2321			dev_warn(gdev,
2322				 "failed to request/iomap BARs for port %d (errno=%d)\n",
2323				 i, rc);
2324			if (rc == -EBUSY)
2325				pcim_pin_device(pdev);
2326			ap->ops = &ata_dummy_port_ops;
2327			continue;
2328		}
2329		host->iomap = iomap = pcim_iomap_table(pdev);
2330
2331		ap->ioaddr.cmd_addr = iomap[base];
2332		ap->ioaddr.altstatus_addr =
2333		ap->ioaddr.ctl_addr = (void __iomem *)
2334			((unsigned long)iomap[base + 1] | ATA_PCI_CTL_OFS);
2335		ata_sff_std_ports(&ap->ioaddr);
2336
2337		ata_port_desc(ap, "cmd 0x%llx ctl 0x%llx",
2338			(unsigned long long)pci_resource_start(pdev, base),
2339			(unsigned long long)pci_resource_start(pdev, base + 1));
2340
2341		mask |= 1 << i;
2342	}
2343
2344	if (!mask) {
2345		dev_err(gdev, "no available native port\n");
2346		return -ENODEV;
2347	}
2348
2349	return 0;
2350}
2351EXPORT_SYMBOL_GPL(ata_pci_sff_init_host);
2352
2353/**
2354 *	ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2355 *	@pdev: target PCI device
2356 *	@ppi: array of port_info, must be enough for two ports
2357 *	@r_host: out argument for the initialized ATA host
2358 *
2359 *	Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2360 *	all PCI resources and initialize it accordingly in one go.
2361 *
2362 *	LOCKING:
2363 *	Inherited from calling layer (may sleep).
2364 *
2365 *	RETURNS:
2366 *	0 on success, -errno otherwise.
2367 */
2368int ata_pci_sff_prepare_host(struct pci_dev *pdev,
2369			     const struct ata_port_info * const *ppi,
2370			     struct ata_host **r_host)
2371{
2372	struct ata_host *host;
2373	int rc;
2374
2375	if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL))
2376		return -ENOMEM;
2377
2378	host = ata_host_alloc_pinfo(&pdev->dev, ppi, 2);
2379	if (!host) {
2380		dev_err(&pdev->dev, "failed to allocate ATA host\n");
2381		rc = -ENOMEM;
2382		goto err_out;
2383	}
2384
2385	rc = ata_pci_sff_init_host(host);
2386	if (rc)
2387		goto err_out;
2388
2389	devres_remove_group(&pdev->dev, NULL);
2390	*r_host = host;
2391	return 0;
2392
2393err_out:
2394	devres_release_group(&pdev->dev, NULL);
2395	return rc;
2396}
2397EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host);
2398
2399/**
2400 *	ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2401 *	@host: target SFF ATA host
2402 *	@irq_handler: irq_handler used when requesting IRQ(s)
2403 *	@sht: scsi_host_template to use when registering the host
2404 *
2405 *	This is the counterpart of ata_host_activate() for SFF ATA
2406 *	hosts.  This separate helper is necessary because SFF hosts
2407 *	use two separate interrupts in legacy mode.
2408 *
2409 *	LOCKING:
2410 *	Inherited from calling layer (may sleep).
2411 *
2412 *	RETURNS:
2413 *	0 on success, -errno otherwise.
2414 */
2415int ata_pci_sff_activate_host(struct ata_host *host,
2416			      irq_handler_t irq_handler,
2417			      struct scsi_host_template *sht)
2418{
2419	struct device *dev = host->dev;
2420	struct pci_dev *pdev = to_pci_dev(dev);
2421	const char *drv_name = dev_driver_string(host->dev);
2422	int legacy_mode = 0, rc;
2423
2424	rc = ata_host_start(host);
2425	if (rc)
2426		return rc;
2427
2428	if ((pdev->class >> 8) == PCI_CLASS_STORAGE_IDE) {
2429		u8 tmp8, mask;
2430
2431		/* TODO: What if one channel is in native mode ... */
2432		pci_read_config_byte(pdev, PCI_CLASS_PROG, &tmp8);
2433		mask = (1 << 2) | (1 << 0);
2434		if ((tmp8 & mask) != mask)
2435			legacy_mode = 1;
2436	}
2437
2438	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2439		return -ENOMEM;
2440
2441	if (!legacy_mode && pdev->irq) {
2442		int i;
2443
2444		rc = devm_request_irq(dev, pdev->irq, irq_handler,
2445				      IRQF_SHARED, drv_name, host);
2446		if (rc)
2447			goto out;
2448
2449		for (i = 0; i < 2; i++) {
2450			if (ata_port_is_dummy(host->ports[i]))
2451				continue;
2452			ata_port_desc(host->ports[i], "irq %d", pdev->irq);
2453		}
2454	} else if (legacy_mode) {
2455		if (!ata_port_is_dummy(host->ports[0])) {
2456			rc = devm_request_irq(dev, ATA_PRIMARY_IRQ(pdev),
2457					      irq_handler, IRQF_SHARED,
2458					      drv_name, host);
2459			if (rc)
2460				goto out;
2461
2462			ata_port_desc(host->ports[0], "irq %d",
2463				      ATA_PRIMARY_IRQ(pdev));
2464		}
2465
2466		if (!ata_port_is_dummy(host->ports[1])) {
2467			rc = devm_request_irq(dev, ATA_SECONDARY_IRQ(pdev),
2468					      irq_handler, IRQF_SHARED,
2469					      drv_name, host);
2470			if (rc)
2471				goto out;
2472
2473			ata_port_desc(host->ports[1], "irq %d",
2474				      ATA_SECONDARY_IRQ(pdev));
2475		}
2476	}
2477
2478	rc = ata_host_register(host, sht);
2479out:
2480	if (rc == 0)
2481		devres_remove_group(dev, NULL);
2482	else
2483		devres_release_group(dev, NULL);
2484
2485	return rc;
2486}
2487EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host);
2488
2489static const struct ata_port_info *ata_sff_find_valid_pi(
2490					const struct ata_port_info * const *ppi)
2491{
2492	int i;
2493
2494	/* look up the first valid port_info */
2495	for (i = 0; i < 2 && ppi[i]; i++)
2496		if (ppi[i]->port_ops != &ata_dummy_port_ops)
2497			return ppi[i];
2498
2499	return NULL;
2500}
2501
2502static int ata_pci_init_one(struct pci_dev *pdev,
2503		const struct ata_port_info * const *ppi,
2504		struct scsi_host_template *sht, void *host_priv,
2505		int hflags, bool bmdma)
2506{
2507	struct device *dev = &pdev->dev;
2508	const struct ata_port_info *pi;
2509	struct ata_host *host = NULL;
2510	int rc;
2511
2512	DPRINTK("ENTER\n");
2513
2514	pi = ata_sff_find_valid_pi(ppi);
2515	if (!pi) {
2516		dev_err(&pdev->dev, "no valid port_info specified\n");
2517		return -EINVAL;
2518	}
2519
2520	if (!devres_open_group(dev, NULL, GFP_KERNEL))
2521		return -ENOMEM;
2522
2523	rc = pcim_enable_device(pdev);
2524	if (rc)
2525		goto out;
2526
2527#ifdef CONFIG_ATA_BMDMA
2528	if (bmdma)
2529		/* prepare and activate BMDMA host */
2530		rc = ata_pci_bmdma_prepare_host(pdev, ppi, &host);
2531	else
2532#endif
2533		/* prepare and activate SFF host */
2534		rc = ata_pci_sff_prepare_host(pdev, ppi, &host);
2535	if (rc)
2536		goto out;
2537	host->private_data = host_priv;
2538	host->flags |= hflags;
2539
2540#ifdef CONFIG_ATA_BMDMA
2541	if (bmdma) {
2542		pci_set_master(pdev);
2543		rc = ata_pci_sff_activate_host(host, ata_bmdma_interrupt, sht);
2544	} else
2545#endif
2546		rc = ata_pci_sff_activate_host(host, ata_sff_interrupt, sht);
2547out:
2548	if (rc == 0)
2549		devres_remove_group(&pdev->dev, NULL);
2550	else
2551		devres_release_group(&pdev->dev, NULL);
2552
2553	return rc;
2554}
2555
2556/**
2557 *	ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2558 *	@pdev: Controller to be initialized
2559 *	@ppi: array of port_info, must be enough for two ports
2560 *	@sht: scsi_host_template to use when registering the host
2561 *	@host_priv: host private_data
2562 *	@hflag: host flags
2563 *
2564 *	This is a helper function which can be called from a driver's
2565 *	xxx_init_one() probe function if the hardware uses traditional
2566 *	IDE taskfile registers and is PIO only.
2567 *
2568 *	ASSUMPTION:
2569 *	Nobody makes a single channel controller that appears solely as
2570 *	the secondary legacy port on PCI.
2571 *
2572 *	LOCKING:
2573 *	Inherited from PCI layer (may sleep).
2574 *
2575 *	RETURNS:
2576 *	Zero on success, negative on errno-based value on error.
2577 */
2578int ata_pci_sff_init_one(struct pci_dev *pdev,
2579		 const struct ata_port_info * const *ppi,
2580		 struct scsi_host_template *sht, void *host_priv, int hflag)
2581{
2582	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflag, 0);
2583}
2584EXPORT_SYMBOL_GPL(ata_pci_sff_init_one);
2585
2586#endif /* CONFIG_PCI */
2587
2588/*
2589 *	BMDMA support
2590 */
2591
2592#ifdef CONFIG_ATA_BMDMA
2593
2594const struct ata_port_operations ata_bmdma_port_ops = {
2595	.inherits		= &ata_sff_port_ops,
2596
2597	.error_handler		= ata_bmdma_error_handler,
2598	.post_internal_cmd	= ata_bmdma_post_internal_cmd,
2599
2600	.qc_prep		= ata_bmdma_qc_prep,
2601	.qc_issue		= ata_bmdma_qc_issue,
2602
2603	.sff_irq_clear		= ata_bmdma_irq_clear,
2604	.bmdma_setup		= ata_bmdma_setup,
2605	.bmdma_start		= ata_bmdma_start,
2606	.bmdma_stop		= ata_bmdma_stop,
2607	.bmdma_status		= ata_bmdma_status,
2608
2609	.port_start		= ata_bmdma_port_start,
2610};
2611EXPORT_SYMBOL_GPL(ata_bmdma_port_ops);
2612
2613const struct ata_port_operations ata_bmdma32_port_ops = {
2614	.inherits		= &ata_bmdma_port_ops,
2615
2616	.sff_data_xfer		= ata_sff_data_xfer32,
2617	.port_start		= ata_bmdma_port_start32,
2618};
2619EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops);
2620
2621/**
2622 *	ata_bmdma_fill_sg - Fill PCI IDE PRD table
2623 *	@qc: Metadata associated with taskfile to be transferred
2624 *
2625 *	Fill PCI IDE PRD (scatter-gather) table with segments
2626 *	associated with the current disk command.
2627 *
2628 *	LOCKING:
2629 *	spin_lock_irqsave(host lock)
2630 *
2631 */
2632static void ata_bmdma_fill_sg(struct ata_queued_cmd *qc)
2633{
2634	struct ata_port *ap = qc->ap;
2635	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2636	struct scatterlist *sg;
2637	unsigned int si, pi;
2638
2639	pi = 0;
2640	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2641		u32 addr, offset;
2642		u32 sg_len, len;
2643
2644		/* determine if physical DMA addr spans 64K boundary.
2645		 * Note h/w doesn't support 64-bit, so we unconditionally
2646		 * truncate dma_addr_t to u32.
2647		 */
2648		addr = (u32) sg_dma_address(sg);
2649		sg_len = sg_dma_len(sg);
2650
2651		while (sg_len) {
2652			offset = addr & 0xffff;
2653			len = sg_len;
2654			if ((offset + sg_len) > 0x10000)
2655				len = 0x10000 - offset;
2656
2657			prd[pi].addr = cpu_to_le32(addr);
2658			prd[pi].flags_len = cpu_to_le32(len & 0xffff);
2659			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2660
2661			pi++;
2662			sg_len -= len;
2663			addr += len;
2664		}
2665	}
2666
2667	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2668}
2669
2670/**
2671 *	ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2672 *	@qc: Metadata associated with taskfile to be transferred
2673 *
2674 *	Fill PCI IDE PRD (scatter-gather) table with segments
2675 *	associated with the current disk command. Perform the fill
2676 *	so that we avoid writing any length 64K records for
2677 *	controllers that don't follow the spec.
2678 *
2679 *	LOCKING:
2680 *	spin_lock_irqsave(host lock)
2681 *
2682 */
2683static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd *qc)
2684{
2685	struct ata_port *ap = qc->ap;
2686	struct ata_bmdma_prd *prd = ap->bmdma_prd;
2687	struct scatterlist *sg;
2688	unsigned int si, pi;
2689
2690	pi = 0;
2691	for_each_sg(qc->sg, sg, qc->n_elem, si) {
2692		u32 addr, offset;
2693		u32 sg_len, len, blen;
2694
2695		/* determine if physical DMA addr spans 64K boundary.
2696		 * Note h/w doesn't support 64-bit, so we unconditionally
2697		 * truncate dma_addr_t to u32.
2698		 */
2699		addr = (u32) sg_dma_address(sg);
2700		sg_len = sg_dma_len(sg);
2701
2702		while (sg_len) {
2703			offset = addr & 0xffff;
2704			len = sg_len;
2705			if ((offset + sg_len) > 0x10000)
2706				len = 0x10000 - offset;
2707
2708			blen = len & 0xffff;
2709			prd[pi].addr = cpu_to_le32(addr);
2710			if (blen == 0) {
2711				/* Some PATA chipsets like the CS5530 can't
2712				   cope with 0x0000 meaning 64K as the spec
2713				   says */
2714				prd[pi].flags_len = cpu_to_le32(0x8000);
2715				blen = 0x8000;
2716				prd[++pi].addr = cpu_to_le32(addr + 0x8000);
2717			}
2718			prd[pi].flags_len = cpu_to_le32(blen);
2719			VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi, addr, len);
2720
2721			pi++;
2722			sg_len -= len;
2723			addr += len;
2724		}
2725	}
2726
2727	prd[pi - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2728}
2729
2730/**
2731 *	ata_bmdma_qc_prep - Prepare taskfile for submission
2732 *	@qc: Metadata associated with taskfile to be prepared
2733 *
2734 *	Prepare ATA taskfile for submission.
2735 *
2736 *	LOCKING:
2737 *	spin_lock_irqsave(host lock)
2738 */
2739void ata_bmdma_qc_prep(struct ata_queued_cmd *qc)
2740{
2741	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2742		return;
2743
2744	ata_bmdma_fill_sg(qc);
2745}
2746EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep);
2747
2748/**
2749 *	ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2750 *	@qc: Metadata associated with taskfile to be prepared
2751 *
2752 *	Prepare ATA taskfile for submission.
2753 *
2754 *	LOCKING:
2755 *	spin_lock_irqsave(host lock)
2756 */
2757void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd *qc)
2758{
2759	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2760		return;
2761
2762	ata_bmdma_fill_sg_dumb(qc);
2763}
2764EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep);
2765
2766/**
2767 *	ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2768 *	@qc: command to issue to device
2769 *
2770 *	This function issues a PIO, NODATA or DMA command to a
2771 *	SFF/BMDMA controller.  PIO and NODATA are handled by
2772 *	ata_sff_qc_issue().
2773 *
2774 *	LOCKING:
2775 *	spin_lock_irqsave(host lock)
2776 *
2777 *	RETURNS:
2778 *	Zero on success, AC_ERR_* mask on failure
2779 */
2780unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd *qc)
2781{
2782	struct ata_port *ap = qc->ap;
2783	struct ata_link *link = qc->dev->link;
2784
2785	/* defer PIO handling to sff_qc_issue */
2786	if (!ata_is_dma(qc->tf.protocol))
2787		return ata_sff_qc_issue(qc);
2788
2789	/* select the device */
2790	ata_dev_select(ap, qc->dev->devno, 1, 0);
2791
2792	/* start the command */
2793	switch (qc->tf.protocol) {
2794	case ATA_PROT_DMA:
2795		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2796
2797		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2798		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2799		ap->ops->bmdma_start(qc);	    /* initiate bmdma */
2800		ap->hsm_task_state = HSM_ST_LAST;
2801		break;
2802
2803	case ATAPI_PROT_DMA:
2804		WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
2805
2806		ap->ops->sff_tf_load(ap, &qc->tf);  /* load tf registers */
2807		ap->ops->bmdma_setup(qc);	    /* set up bmdma */
2808		ap->hsm_task_state = HSM_ST_FIRST;
2809
2810		/* send cdb by polling if no cdb interrupt */
2811		if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
2812			ata_sff_queue_pio_task(link, 0);
2813		break;
2814
2815	default:
2816		WARN_ON(1);
2817		return AC_ERR_SYSTEM;
2818	}
2819
2820	return 0;
2821}
2822EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue);
2823
2824/**
2825 *	ata_bmdma_port_intr - Handle BMDMA port interrupt
2826 *	@ap: Port on which interrupt arrived (possibly...)
2827 *	@qc: Taskfile currently active in engine
2828 *
2829 *	Handle port interrupt for given queued command.
2830 *
2831 *	LOCKING:
2832 *	spin_lock_irqsave(host lock)
2833 *
2834 *	RETURNS:
2835 *	One if interrupt was handled, zero if not (shared irq).
2836 */
2837unsigned int ata_bmdma_port_intr(struct ata_port *ap, struct ata_queued_cmd *qc)
2838{
2839	struct ata_eh_info *ehi = &ap->link.eh_info;
2840	u8 host_stat = 0;
2841	bool bmdma_stopped = false;
2842	unsigned int handled;
2843
2844	if (ap->hsm_task_state == HSM_ST_LAST && ata_is_dma(qc->tf.protocol)) {
2845		/* check status of DMA engine */
2846		host_stat = ap->ops->bmdma_status(ap);
2847		VPRINTK("ata%u: host_stat 0x%X\n", ap->print_id, host_stat);
2848
2849		/* if it's not our irq... */
2850		if (!(host_stat & ATA_DMA_INTR))
2851			return ata_sff_idle_irq(ap);
2852
2853		/* before we do anything else, clear DMA-Start bit */
2854		ap->ops->bmdma_stop(qc);
2855		bmdma_stopped = true;
2856
2857		if (unlikely(host_stat & ATA_DMA_ERR)) {
2858			/* error when transferring data to/from memory */
2859			qc->err_mask |= AC_ERR_HOST_BUS;
2860			ap->hsm_task_state = HSM_ST_ERR;
2861		}
2862	}
2863
2864	handled = __ata_sff_port_intr(ap, qc, bmdma_stopped);
2865
2866	if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
2867		ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
2868
2869	return handled;
2870}
2871EXPORT_SYMBOL_GPL(ata_bmdma_port_intr);
2872
2873/**
2874 *	ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2875 *	@irq: irq line (unused)
2876 *	@dev_instance: pointer to our ata_host information structure
2877 *
2878 *	Default interrupt handler for PCI IDE devices.  Calls
2879 *	ata_bmdma_port_intr() for each port that is not disabled.
2880 *
2881 *	LOCKING:
2882 *	Obtains host lock during operation.
2883 *
2884 *	RETURNS:
2885 *	IRQ_NONE or IRQ_HANDLED.
2886 */
2887irqreturn_t ata_bmdma_interrupt(int irq, void *dev_instance)
2888{
2889	return __ata_sff_interrupt(irq, dev_instance, ata_bmdma_port_intr);
2890}
2891EXPORT_SYMBOL_GPL(ata_bmdma_interrupt);
2892
2893/**
2894 *	ata_bmdma_error_handler - Stock error handler for BMDMA controller
2895 *	@ap: port to handle error for
2896 *
2897 *	Stock error handler for BMDMA controller.  It can handle both
2898 *	PATA and SATA controllers.  Most BMDMA controllers should be
2899 *	able to use this EH as-is or with some added handling before
2900 *	and after.
2901 *
2902 *	LOCKING:
2903 *	Kernel thread context (may sleep)
2904 */
2905void ata_bmdma_error_handler(struct ata_port *ap)
2906{
2907	struct ata_queued_cmd *qc;
2908	unsigned long flags;
2909	bool thaw = false;
2910
2911	qc = __ata_qc_from_tag(ap, ap->link.active_tag);
2912	if (qc && !(qc->flags & ATA_QCFLAG_FAILED))
2913		qc = NULL;
2914
2915	/* reset PIO HSM and stop DMA engine */
2916	spin_lock_irqsave(ap->lock, flags);
2917
2918	if (qc && ata_is_dma(qc->tf.protocol)) {
2919		u8 host_stat;
2920
2921		host_stat = ap->ops->bmdma_status(ap);
2922
2923		/* BMDMA controllers indicate host bus error by
2924		 * setting DMA_ERR bit and timing out.  As it wasn't
2925		 * really a timeout event, adjust error mask and
2926		 * cancel frozen state.
2927		 */
2928		if (qc->err_mask == AC_ERR_TIMEOUT && (host_stat & ATA_DMA_ERR)) {
2929			qc->err_mask = AC_ERR_HOST_BUS;
2930			thaw = true;
2931		}
2932
2933		ap->ops->bmdma_stop(qc);
2934
2935		/* if we're gonna thaw, make sure IRQ is clear */
2936		if (thaw) {
2937			ap->ops->sff_check_status(ap);
2938			if (ap->ops->sff_irq_clear)
2939				ap->ops->sff_irq_clear(ap);
2940		}
2941	}
2942
2943	spin_unlock_irqrestore(ap->lock, flags);
2944
2945	if (thaw)
2946		ata_eh_thaw_port(ap);
2947
2948	ata_sff_error_handler(ap);
2949}
2950EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
2951
2952/**
2953 *	ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2954 *	@qc: internal command to clean up
2955 *
2956 *	LOCKING:
2957 *	Kernel thread context (may sleep)
2958 */
2959void ata_bmdma_post_internal_cmd(struct ata_queued_cmd *qc)
2960{
2961	struct ata_port *ap = qc->ap;
2962	unsigned long flags;
2963
2964	if (ata_is_dma(qc->tf.protocol)) {
2965		spin_lock_irqsave(ap->lock, flags);
2966		ap->ops->bmdma_stop(qc);
2967		spin_unlock_irqrestore(ap->lock, flags);
2968	}
2969}
2970EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
2971
2972/**
2973 *	ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2974 *	@ap: Port associated with this ATA transaction.
2975 *
2976 *	Clear interrupt and error flags in DMA status register.
2977 *
2978 *	May be used as the irq_clear() entry in ata_port_operations.
2979 *
2980 *	LOCKING:
2981 *	spin_lock_irqsave(host lock)
2982 */
2983void ata_bmdma_irq_clear(struct ata_port *ap)
2984{
2985	void __iomem *mmio = ap->ioaddr.bmdma_addr;
2986
2987	if (!mmio)
2988		return;
2989
2990	iowrite8(ioread8(mmio + ATA_DMA_STATUS), mmio + ATA_DMA_STATUS);
2991}
2992EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
2993
2994/**
2995 *	ata_bmdma_setup - Set up PCI IDE BMDMA transaction
2996 *	@qc: Info associated with this ATA transaction.
2997 *
2998 *	LOCKING:
2999 *	spin_lock_irqsave(host lock)
3000 */
3001void ata_bmdma_setup(struct ata_queued_cmd *qc)
3002{
3003	struct ata_port *ap = qc->ap;
3004	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
3005	u8 dmactl;
3006
3007	/* load PRD table addr. */
3008	mb();	/* make sure PRD table writes are visible to controller */
3009	iowrite32(ap->bmdma_prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
3010
3011	/* specify data direction, triple-check start bit is clear */
3012	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3013	dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
3014	if (!rw)
3015		dmactl |= ATA_DMA_WR;
3016	iowrite8(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3017
3018	/* issue r/w command */
3019	ap->ops->sff_exec_command(ap, &qc->tf);
3020}
3021EXPORT_SYMBOL_GPL(ata_bmdma_setup);
3022
3023/**
3024 *	ata_bmdma_start - Start a PCI IDE BMDMA transaction
3025 *	@qc: Info associated with this ATA transaction.
3026 *
3027 *	LOCKING:
3028 *	spin_lock_irqsave(host lock)
3029 */
3030void ata_bmdma_start(struct ata_queued_cmd *qc)
3031{
3032	struct ata_port *ap = qc->ap;
3033	u8 dmactl;
3034
3035	/* start host DMA transaction */
3036	dmactl = ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3037	iowrite8(dmactl | ATA_DMA_START, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
3038
3039	/* Strictly, one may wish to issue an ioread8() here, to
3040	 * flush the mmio write.  However, control also passes
3041	 * to the hardware at this point, and it will interrupt
3042	 * us when we are to resume control.  So, in effect,
3043	 * we don't care when the mmio write flushes.
3044	 * Further, a read of the DMA status register _immediately_
3045	 * following the write may not be what certain flaky hardware
3046	 * is expected, so I think it is best to not add a readb()
3047	 * without first all the MMIO ATA cards/mobos.
3048	 * Or maybe I'm just being paranoid.
3049	 *
3050	 * FIXME: The posting of this write means I/O starts are
3051	 * unnecessarily delayed for MMIO
3052	 */
3053}
3054EXPORT_SYMBOL_GPL(ata_bmdma_start);
3055
3056/**
3057 *	ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3058 *	@qc: Command we are ending DMA for
3059 *
3060 *	Clears the ATA_DMA_START flag in the dma control register
3061 *
3062 *	May be used as the bmdma_stop() entry in ata_port_operations.
3063 *
3064 *	LOCKING:
3065 *	spin_lock_irqsave(host lock)
3066 */
3067void ata_bmdma_stop(struct ata_queued_cmd *qc)
3068{
3069	struct ata_port *ap = qc->ap;
3070	void __iomem *mmio = ap->ioaddr.bmdma_addr;
3071
3072	/* clear start/stop bit */
3073	iowrite8(ioread8(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
3074		 mmio + ATA_DMA_CMD);
3075
3076	/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3077	ata_sff_dma_pause(ap);
3078}
3079EXPORT_SYMBOL_GPL(ata_bmdma_stop);
3080
3081/**
3082 *	ata_bmdma_status - Read PCI IDE BMDMA status
3083 *	@ap: Port associated with this ATA transaction.
3084 *
3085 *	Read and return BMDMA status register.
3086 *
3087 *	May be used as the bmdma_status() entry in ata_port_operations.
3088 *
3089 *	LOCKING:
3090 *	spin_lock_irqsave(host lock)
3091 */
3092u8 ata_bmdma_status(struct ata_port *ap)
3093{
3094	return ioread8(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
3095}
3096EXPORT_SYMBOL_GPL(ata_bmdma_status);
3097
3098
3099/**
3100 *	ata_bmdma_port_start - Set port up for bmdma.
3101 *	@ap: Port to initialize
3102 *
3103 *	Called just after data structures for each port are
3104 *	initialized.  Allocates space for PRD table.
3105 *
3106 *	May be used as the port_start() entry in ata_port_operations.
3107 *
3108 *	LOCKING:
3109 *	Inherited from caller.
3110 */
3111int ata_bmdma_port_start(struct ata_port *ap)
3112{
3113	if (ap->mwdma_mask || ap->udma_mask) {
3114		ap->bmdma_prd =
3115			dmam_alloc_coherent(ap->host->dev, ATA_PRD_TBL_SZ,
3116					    &ap->bmdma_prd_dma, GFP_KERNEL);
3117		if (!ap->bmdma_prd)
3118			return -ENOMEM;
3119	}
3120
3121	return 0;
3122}
3123EXPORT_SYMBOL_GPL(ata_bmdma_port_start);
3124
3125/**
3126 *	ata_bmdma_port_start32 - Set port up for dma.
3127 *	@ap: Port to initialize
3128 *
3129 *	Called just after data structures for each port are
3130 *	initialized.  Enables 32bit PIO and allocates space for PRD
3131 *	table.
3132 *
3133 *	May be used as the port_start() entry in ata_port_operations for
3134 *	devices that are capable of 32bit PIO.
3135 *
3136 *	LOCKING:
3137 *	Inherited from caller.
3138 */
3139int ata_bmdma_port_start32(struct ata_port *ap)
3140{
3141	ap->pflags |= ATA_PFLAG_PIO32 | ATA_PFLAG_PIO32CHANGE;
3142	return ata_bmdma_port_start(ap);
3143}
3144EXPORT_SYMBOL_GPL(ata_bmdma_port_start32);
3145
3146#ifdef CONFIG_PCI
3147
3148/**
3149 *	ata_pci_bmdma_clear_simplex -	attempt to kick device out of simplex
3150 *	@pdev: PCI device
3151 *
3152 *	Some PCI ATA devices report simplex mode but in fact can be told to
3153 *	enter non simplex mode. This implements the necessary logic to
3154 *	perform the task on such devices. Calling it on other devices will
3155 *	have -undefined- behaviour.
3156 */
3157int ata_pci_bmdma_clear_simplex(struct pci_dev *pdev)
3158{
3159	unsigned long bmdma = pci_resource_start(pdev, 4);
3160	u8 simplex;
3161
3162	if (bmdma == 0)
3163		return -ENOENT;
3164
3165	simplex = inb(bmdma + 0x02);
3166	outb(simplex & 0x60, bmdma + 0x02);
3167	simplex = inb(bmdma + 0x02);
3168	if (simplex & 0x80)
3169		return -EOPNOTSUPP;
3170	return 0;
3171}
3172EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex);
3173
3174static void ata_bmdma_nodma(struct ata_host *host, const char *reason)
3175{
3176	int i;
3177
3178	dev_err(host->dev, "BMDMA: %s, falling back to PIO\n", reason);
3179
3180	for (i = 0; i < 2; i++) {
3181		host->ports[i]->mwdma_mask = 0;
3182		host->ports[i]->udma_mask = 0;
3183	}
3184}
3185
3186/**
3187 *	ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3188 *	@host: target ATA host
3189 *
3190 *	Acquire PCI BMDMA resources and initialize @host accordingly.
3191 *
3192 *	LOCKING:
3193 *	Inherited from calling layer (may sleep).
3194 */
3195void ata_pci_bmdma_init(struct ata_host *host)
3196{
3197	struct device *gdev = host->dev;
3198	struct pci_dev *pdev = to_pci_dev(gdev);
3199	int i, rc;
3200
3201	/* No BAR4 allocation: No DMA */
3202	if (pci_resource_start(pdev, 4) == 0) {
3203		ata_bmdma_nodma(host, "BAR4 is zero");
3204		return;
3205	}
3206
3207	/*
3208	 * Some controllers require BMDMA region to be initialized
3209	 * even if DMA is not in use to clear IRQ status via
3210	 * ->sff_irq_clear method.  Try to initialize bmdma_addr
3211	 * regardless of dma masks.
3212	 */
3213	rc = dma_set_mask(&pdev->dev, ATA_DMA_MASK);
3214	if (rc)
3215		ata_bmdma_nodma(host, "failed to set dma mask");
3216	if (!rc) {
3217		rc = dma_set_coherent_mask(&pdev->dev, ATA_DMA_MASK);
3218		if (rc)
3219			ata_bmdma_nodma(host,
3220					"failed to set consistent dma mask");
3221	}
3222
3223	/* request and iomap DMA region */
3224	rc = pcim_iomap_regions(pdev, 1 << 4, dev_driver_string(gdev));
3225	if (rc) {
3226		ata_bmdma_nodma(host, "failed to request/iomap BAR4");
3227		return;
3228	}
3229	host->iomap = pcim_iomap_table(pdev);
3230
3231	for (i = 0; i < 2; i++) {
3232		struct ata_port *ap = host->ports[i];
3233		void __iomem *bmdma = host->iomap[4] + 8 * i;
3234
3235		if (ata_port_is_dummy(ap))
3236			continue;
3237
3238		ap->ioaddr.bmdma_addr = bmdma;
3239		if ((!(ap->flags & ATA_FLAG_IGN_SIMPLEX)) &&
3240		    (ioread8(bmdma + 2) & 0x80))
3241			host->flags |= ATA_HOST_SIMPLEX;
3242
3243		ata_port_desc(ap, "bmdma 0x%llx",
3244		    (unsigned long long)pci_resource_start(pdev, 4) + 8 * i);
3245	}
3246}
3247EXPORT_SYMBOL_GPL(ata_pci_bmdma_init);
3248
3249/**
3250 *	ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3251 *	@pdev: target PCI device
3252 *	@ppi: array of port_info, must be enough for two ports
3253 *	@r_host: out argument for the initialized ATA host
3254 *
3255 *	Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3256 *	resources and initialize it accordingly in one go.
3257 *
3258 *	LOCKING:
3259 *	Inherited from calling layer (may sleep).
3260 *
3261 *	RETURNS:
3262 *	0 on success, -errno otherwise.
3263 */
3264int ata_pci_bmdma_prepare_host(struct pci_dev *pdev,
3265			       const struct ata_port_info * const * ppi,
3266			       struct ata_host **r_host)
3267{
3268	int rc;
3269
3270	rc = ata_pci_sff_prepare_host(pdev, ppi, r_host);
3271	if (rc)
3272		return rc;
3273
3274	ata_pci_bmdma_init(*r_host);
3275	return 0;
3276}
3277EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host);
3278
3279/**
3280 *	ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3281 *	@pdev: Controller to be initialized
3282 *	@ppi: array of port_info, must be enough for two ports
3283 *	@sht: scsi_host_template to use when registering the host
3284 *	@host_priv: host private_data
3285 *	@hflags: host flags
3286 *
3287 *	This function is similar to ata_pci_sff_init_one() but also
3288 *	takes care of BMDMA initialization.
3289 *
3290 *	LOCKING:
3291 *	Inherited from PCI layer (may sleep).
3292 *
3293 *	RETURNS:
3294 *	Zero on success, negative on errno-based value on error.
3295 */
3296int ata_pci_bmdma_init_one(struct pci_dev *pdev,
3297			   const struct ata_port_info * const * ppi,
3298			   struct scsi_host_template *sht, void *host_priv,
3299			   int hflags)
3300{
3301	return ata_pci_init_one(pdev, ppi, sht, host_priv, hflags, 1);
3302}
3303EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one);
3304
3305#endif /* CONFIG_PCI */
3306#endif /* CONFIG_ATA_BMDMA */
3307
3308/**
3309 *	ata_sff_port_init - Initialize SFF/BMDMA ATA port
3310 *	@ap: Port to initialize
3311 *
3312 *	Called on port allocation to initialize SFF/BMDMA specific
3313 *	fields.
3314 *
3315 *	LOCKING:
3316 *	None.
3317 */
3318void ata_sff_port_init(struct ata_port *ap)
3319{
3320	INIT_DELAYED_WORK(&ap->sff_pio_task, ata_sff_pio_task);
3321	ap->ctl = ATA_DEVCTL_OBS;
3322	ap->last_ctl = 0xFF;
3323}
3324
3325int __init ata_sff_init(void)
3326{
3327	ata_sff_wq = alloc_workqueue("ata_sff", WQ_MEM_RECLAIM, WQ_MAX_ACTIVE);
3328	if (!ata_sff_wq)
3329		return -ENOMEM;
3330
3331	return 0;
3332}
3333
3334void ata_sff_exit(void)
3335{
3336	destroy_workqueue(ata_sff_wq);
3337}
3338