1/*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc.  All rights reserved.
7 *
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
10 *
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25 *
26 */
27
28/*
29 * sata_mv TODO list:
30 *
31 * --> Develop a low-power-consumption strategy, and implement it.
32 *
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
34 *
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 *       mode to cross-connect two Linux boxes with Marvell cards?  If so,
37 *       creating LibATA target mode support would be very interesting.
38 *
39 *       Target mode, for those without docs, is the ability to directly
40 *       connect two SATA ports.
41 */
42
43/*
44 * 80x1-B2 errata PCI#11:
45 *
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher.  The chips may not
49 * work correctly otherwise  (note: this is a pretty rare condition).
50 */
51
52#include <linux/kernel.h>
53#include <linux/module.h>
54#include <linux/pci.h>
55#include <linux/init.h>
56#include <linux/blkdev.h>
57#include <linux/delay.h>
58#include <linux/interrupt.h>
59#include <linux/dmapool.h>
60#include <linux/dma-mapping.h>
61#include <linux/device.h>
62#include <linux/clk.h>
63#include <linux/phy/phy.h>
64#include <linux/platform_device.h>
65#include <linux/ata_platform.h>
66#include <linux/mbus.h>
67#include <linux/bitops.h>
68#include <linux/gfp.h>
69#include <linux/of.h>
70#include <linux/of_irq.h>
71#include <scsi/scsi_host.h>
72#include <scsi/scsi_cmnd.h>
73#include <scsi/scsi_device.h>
74#include <linux/libata.h>
75
76#define DRV_NAME	"sata_mv"
77#define DRV_VERSION	"1.28"
78
79/*
80 * module options
81 */
82
83#ifdef CONFIG_PCI
84static int msi;
85module_param(msi, int, S_IRUGO);
86MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
87#endif
88
89static int irq_coalescing_io_count;
90module_param(irq_coalescing_io_count, int, S_IRUGO);
91MODULE_PARM_DESC(irq_coalescing_io_count,
92		 "IRQ coalescing I/O count threshold (0..255)");
93
94static int irq_coalescing_usecs;
95module_param(irq_coalescing_usecs, int, S_IRUGO);
96MODULE_PARM_DESC(irq_coalescing_usecs,
97		 "IRQ coalescing time threshold in usecs");
98
99enum {
100	/* BAR's are enumerated in terms of pci_resource_start() terms */
101	MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */
102	MV_IO_BAR		= 2,	/* offset 0x18: IO space */
103	MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */
104
105	MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */
106	MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */
107
108	/* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
109	COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */
110	MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */
111	MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */
112
113	MV_PCI_REG_BASE		= 0,
114
115	/*
116	 * Per-chip ("all ports") interrupt coalescing feature.
117	 * This is only for GEN_II / GEN_IIE hardware.
118	 *
119	 * Coalescing defers the interrupt until either the IO_THRESHOLD
120	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
121	 */
122	COAL_REG_BASE		= 0x18000,
123	IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08),
124	ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */
125
126	IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc),
127	IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
128
129	/*
130	 * Registers for the (unused here) transaction coalescing feature:
131	 */
132	TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88),
133	TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c),
134
135	SATAHC0_REG_BASE	= 0x20000,
136	FLASH_CTL		= 0x1046c,
137	GPIO_PORT_CTL		= 0x104f0,
138	RESET_CFG		= 0x180d8,
139
140	MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ,
141	MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ,
142	MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */
143	MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ,
144
145	MV_MAX_Q_DEPTH		= 32,
146	MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1,
147
148	/* CRQB needs alignment on a 1KB boundary. Size == 1KB
149	 * CRPB needs alignment on a 256B boundary. Size == 256B
150	 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
151	 */
152	MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH),
153	MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH),
154	MV_MAX_SG_CT		= 256,
155	MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT),
156
157	/* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
158	MV_PORT_HC_SHIFT	= 2,
159	MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */
160	/* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
161	MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */
162
163	/* Host Flags */
164	MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */
165
166	MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING,
167
168	MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
169
170	MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ |
171				  ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
172
173	MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN,
174
175	CRQB_FLAG_READ		= (1 << 0),
176	CRQB_TAG_SHIFT		= 1,
177	CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */
178	CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */
179	CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */
180	CRQB_CMD_ADDR_SHIFT	= 8,
181	CRQB_CMD_CS		= (0x2 << 11),
182	CRQB_CMD_LAST		= (1 << 15),
183
184	CRPB_FLAG_STATUS_SHIFT	= 8,
185	CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */
186	CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */
187
188	EPRD_FLAG_END_OF_TBL	= (1 << 31),
189
190	/* PCI interface registers */
191
192	MV_PCI_COMMAND		= 0xc00,
193	MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */
194	MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */
195
196	PCI_MAIN_CMD_STS	= 0xd30,
197	STOP_PCI_MASTER		= (1 << 2),
198	PCI_MASTER_EMPTY	= (1 << 3),
199	GLOB_SFT_RST		= (1 << 4),
200
201	MV_PCI_MODE		= 0xd00,
202	MV_PCI_MODE_MASK	= 0x30,
203
204	MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c,
205	MV_PCI_DISC_TIMER	= 0xd04,
206	MV_PCI_MSI_TRIGGER	= 0xc38,
207	MV_PCI_SERR_MASK	= 0xc28,
208	MV_PCI_XBAR_TMOUT	= 0x1d04,
209	MV_PCI_ERR_LOW_ADDRESS	= 0x1d40,
210	MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44,
211	MV_PCI_ERR_ATTRIBUTE	= 0x1d48,
212	MV_PCI_ERR_COMMAND	= 0x1d50,
213
214	PCI_IRQ_CAUSE		= 0x1d58,
215	PCI_IRQ_MASK		= 0x1d5c,
216	PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */
217
218	PCIE_IRQ_CAUSE		= 0x1900,
219	PCIE_IRQ_MASK		= 0x1910,
220	PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */
221
222	/* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
223	PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60,
224	PCI_HC_MAIN_IRQ_MASK	= 0x1d64,
225	SOC_HC_MAIN_IRQ_CAUSE	= 0x20020,
226	SOC_HC_MAIN_IRQ_MASK	= 0x20024,
227	ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */
228	DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */
229	HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */
230	HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */
231	DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */
232	DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */
233	PCI_ERR			= (1 << 18),
234	TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */
235	TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */
236	PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */
237	PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */
238	ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */
239	GPIO_INT		= (1 << 22),
240	SELF_INT		= (1 << 23),
241	TWSI_INT		= (1 << 24),
242	HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */
243	HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */
244	HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */
245
246	/* SATAHC registers */
247	HC_CFG			= 0x00,
248
249	HC_IRQ_CAUSE		= 0x14,
250	DMA_IRQ			= (1 << 0),	/* shift by port # */
251	HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */
252	DEV_IRQ			= (1 << 8),	/* shift by port # */
253
254	/*
255	 * Per-HC (Host-Controller) interrupt coalescing feature.
256	 * This is present on all chip generations.
257	 *
258	 * Coalescing defers the interrupt until either the IO_THRESHOLD
259	 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
260	 */
261	HC_IRQ_COAL_IO_THRESHOLD	= 0x000c,
262	HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010,
263
264	SOC_LED_CTRL		= 0x2c,
265	SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */
266	SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */
267						/*  with dev activity LED */
268
269	/* Shadow block registers */
270	SHD_BLK			= 0x100,
271	SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */
272
273	/* SATA registers */
274	SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */
275	SATA_ACTIVE		= 0x350,
276	FIS_IRQ_CAUSE		= 0x364,
277	FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */
278
279	LTMODE			= 0x30c,	/* requires read-after-write */
280	LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */
281
282	PHY_MODE2		= 0x330,
283	PHY_MODE3		= 0x310,
284
285	PHY_MODE4		= 0x314,	/* requires read-after-write */
286	PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */
287	PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */
288	PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */
289	PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */
290
291	SATA_IFCTL		= 0x344,
292	SATA_TESTCTL		= 0x348,
293	SATA_IFSTAT		= 0x34c,
294	VENDOR_UNIQUE_FIS	= 0x35c,
295
296	FISCFG			= 0x360,
297	FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */
298	FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */
299
300	PHY_MODE9_GEN2		= 0x398,
301	PHY_MODE9_GEN1		= 0x39c,
302	PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */
303
304	MV5_PHY_MODE		= 0x74,
305	MV5_LTMODE		= 0x30,
306	MV5_PHY_CTL		= 0x0C,
307	SATA_IFCFG		= 0x050,
308	LP_PHY_CTL		= 0x058,
309	LP_PHY_CTL_PIN_PU_PLL   = (1 << 0),
310	LP_PHY_CTL_PIN_PU_RX    = (1 << 1),
311	LP_PHY_CTL_PIN_PU_TX    = (1 << 2),
312	LP_PHY_CTL_GEN_TX_3G    = (1 << 5),
313	LP_PHY_CTL_GEN_RX_3G    = (1 << 9),
314
315	MV_M2_PREAMP_MASK	= 0x7e0,
316
317	/* Port registers */
318	EDMA_CFG		= 0,
319	EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */
320	EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */
321	EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */
322	EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */
323	EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */
324	EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */
325	EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */
326
327	EDMA_ERR_IRQ_CAUSE	= 0x8,
328	EDMA_ERR_IRQ_MASK	= 0xc,
329	EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */
330	EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */
331	EDMA_ERR_DEV		= (1 << 2),	/* device error */
332	EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */
333	EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */
334	EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */
335	EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */
336	EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */
337	EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */
338	EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */
339	EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */
340	EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */
341	EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */
342	EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */
343
344	EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */
345	EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */
346	EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */
347	EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */
348	EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */
349
350	EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */
351
352	EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */
353	EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */
354	EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */
355	EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */
356	EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */
357	EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */
358
359	EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */
360
361	EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */
362	EDMA_ERR_OVERRUN_5	= (1 << 5),
363	EDMA_ERR_UNDERRUN_5	= (1 << 6),
364
365	EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 |
366				  EDMA_ERR_LNK_CTRL_RX_1 |
367				  EDMA_ERR_LNK_CTRL_RX_3 |
368				  EDMA_ERR_LNK_CTRL_TX,
369
370	EDMA_EH_FREEZE		= EDMA_ERR_D_PAR |
371				  EDMA_ERR_PRD_PAR |
372				  EDMA_ERR_DEV_DCON |
373				  EDMA_ERR_DEV_CON |
374				  EDMA_ERR_SERR |
375				  EDMA_ERR_SELF_DIS |
376				  EDMA_ERR_CRQB_PAR |
377				  EDMA_ERR_CRPB_PAR |
378				  EDMA_ERR_INTRL_PAR |
379				  EDMA_ERR_IORDY |
380				  EDMA_ERR_LNK_CTRL_RX_2 |
381				  EDMA_ERR_LNK_DATA_RX |
382				  EDMA_ERR_LNK_DATA_TX |
383				  EDMA_ERR_TRANS_PROTO,
384
385	EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR |
386				  EDMA_ERR_PRD_PAR |
387				  EDMA_ERR_DEV_DCON |
388				  EDMA_ERR_DEV_CON |
389				  EDMA_ERR_OVERRUN_5 |
390				  EDMA_ERR_UNDERRUN_5 |
391				  EDMA_ERR_SELF_DIS_5 |
392				  EDMA_ERR_CRQB_PAR |
393				  EDMA_ERR_CRPB_PAR |
394				  EDMA_ERR_INTRL_PAR |
395				  EDMA_ERR_IORDY,
396
397	EDMA_REQ_Q_BASE_HI	= 0x10,
398	EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */
399
400	EDMA_REQ_Q_OUT_PTR	= 0x18,
401	EDMA_REQ_Q_PTR_SHIFT	= 5,
402
403	EDMA_RSP_Q_BASE_HI	= 0x1c,
404	EDMA_RSP_Q_IN_PTR	= 0x20,
405	EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */
406	EDMA_RSP_Q_PTR_SHIFT	= 3,
407
408	EDMA_CMD		= 0x28,		/* EDMA command register */
409	EDMA_EN			= (1 << 0),	/* enable EDMA */
410	EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */
411	EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */
412
413	EDMA_STATUS		= 0x30,		/* EDMA engine status */
414	EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */
415	EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */
416
417	EDMA_IORDY_TMOUT	= 0x34,
418	EDMA_ARB_CFG		= 0x38,
419
420	EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */
421	EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */
422
423	BMDMA_CMD		= 0x224,	/* bmdma command register */
424	BMDMA_STATUS		= 0x228,	/* bmdma status register */
425	BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */
426	BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */
427
428	/* Host private flags (hp_flags) */
429	MV_HP_FLAG_MSI		= (1 << 0),
430	MV_HP_ERRATA_50XXB0	= (1 << 1),
431	MV_HP_ERRATA_50XXB2	= (1 << 2),
432	MV_HP_ERRATA_60X1B2	= (1 << 3),
433	MV_HP_ERRATA_60X1C0	= (1 << 4),
434	MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */
435	MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */
436	MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */
437	MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */
438	MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */
439	MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */
440	MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */
441	MV_HP_FIX_LP_PHY_CTL	= (1 << 13),	/* fix speed in LP_PHY_CTL ? */
442
443	/* Port private flags (pp_flags) */
444	MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */
445	MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */
446	MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */
447	MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */
448	MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */
449};
450
451#define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
452#define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
453#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
454#define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
455#define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
456
457#define WINDOW_CTRL(i)		(0x20030 + ((i) << 4))
458#define WINDOW_BASE(i)		(0x20034 + ((i) << 4))
459
460enum {
461	/* DMA boundary 0xffff is required by the s/g splitting
462	 * we need on /length/ in mv_fill-sg().
463	 */
464	MV_DMA_BOUNDARY		= 0xffffU,
465
466	/* mask of register bits containing lower 32 bits
467	 * of EDMA request queue DMA address
468	 */
469	EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U,
470
471	/* ditto, for response queue */
472	EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U,
473};
474
475enum chip_type {
476	chip_504x,
477	chip_508x,
478	chip_5080,
479	chip_604x,
480	chip_608x,
481	chip_6042,
482	chip_7042,
483	chip_soc,
484};
485
486/* Command ReQuest Block: 32B */
487struct mv_crqb {
488	__le32			sg_addr;
489	__le32			sg_addr_hi;
490	__le16			ctrl_flags;
491	__le16			ata_cmd[11];
492};
493
494struct mv_crqb_iie {
495	__le32			addr;
496	__le32			addr_hi;
497	__le32			flags;
498	__le32			len;
499	__le32			ata_cmd[4];
500};
501
502/* Command ResPonse Block: 8B */
503struct mv_crpb {
504	__le16			id;
505	__le16			flags;
506	__le32			tmstmp;
507};
508
509/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
510struct mv_sg {
511	__le32			addr;
512	__le32			flags_size;
513	__le32			addr_hi;
514	__le32			reserved;
515};
516
517/*
518 * We keep a local cache of a few frequently accessed port
519 * registers here, to avoid having to read them (very slow)
520 * when switching between EDMA and non-EDMA modes.
521 */
522struct mv_cached_regs {
523	u32			fiscfg;
524	u32			ltmode;
525	u32			haltcond;
526	u32			unknown_rsvd;
527};
528
529struct mv_port_priv {
530	struct mv_crqb		*crqb;
531	dma_addr_t		crqb_dma;
532	struct mv_crpb		*crpb;
533	dma_addr_t		crpb_dma;
534	struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH];
535	dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH];
536
537	unsigned int		req_idx;
538	unsigned int		resp_idx;
539
540	u32			pp_flags;
541	struct mv_cached_regs	cached;
542	unsigned int		delayed_eh_pmp_map;
543};
544
545struct mv_port_signal {
546	u32			amps;
547	u32			pre;
548};
549
550struct mv_host_priv {
551	u32			hp_flags;
552	unsigned int 		board_idx;
553	u32			main_irq_mask;
554	struct mv_port_signal	signal[8];
555	const struct mv_hw_ops	*ops;
556	int			n_ports;
557	void __iomem		*base;
558	void __iomem		*main_irq_cause_addr;
559	void __iomem		*main_irq_mask_addr;
560	u32			irq_cause_offset;
561	u32			irq_mask_offset;
562	u32			unmask_all_irqs;
563
564	/*
565	 * Needed on some devices that require their clocks to be enabled.
566	 * These are optional: if the platform device does not have any
567	 * clocks, they won't be used.  Also, if the underlying hardware
568	 * does not support the common clock framework (CONFIG_HAVE_CLK=n),
569	 * all the clock operations become no-ops (see clk.h).
570	 */
571	struct clk		*clk;
572	struct clk              **port_clks;
573	/*
574	 * Some devices have a SATA PHY which can be enabled/disabled
575	 * in order to save power. These are optional: if the platform
576	 * devices does not have any phy, they won't be used.
577	 */
578	struct phy		**port_phys;
579	/*
580	 * These consistent DMA memory pools give us guaranteed
581	 * alignment for hardware-accessed data structures,
582	 * and less memory waste in accomplishing the alignment.
583	 */
584	struct dma_pool		*crqb_pool;
585	struct dma_pool		*crpb_pool;
586	struct dma_pool		*sg_tbl_pool;
587};
588
589struct mv_hw_ops {
590	void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
591			   unsigned int port);
592	void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
593	void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
594			   void __iomem *mmio);
595	int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
596			unsigned int n_hc);
597	void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
598	void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
599};
600
601static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
602static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
603static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
604static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
605static int mv_port_start(struct ata_port *ap);
606static void mv_port_stop(struct ata_port *ap);
607static int mv_qc_defer(struct ata_queued_cmd *qc);
608static void mv_qc_prep(struct ata_queued_cmd *qc);
609static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
610static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
611static int mv_hardreset(struct ata_link *link, unsigned int *class,
612			unsigned long deadline);
613static void mv_eh_freeze(struct ata_port *ap);
614static void mv_eh_thaw(struct ata_port *ap);
615static void mv6_dev_config(struct ata_device *dev);
616
617static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
618			   unsigned int port);
619static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
620static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
621			   void __iomem *mmio);
622static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
623			unsigned int n_hc);
624static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
625static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
626
627static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
628			   unsigned int port);
629static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
630static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
631			   void __iomem *mmio);
632static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
633			unsigned int n_hc);
634static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
635static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
636				      void __iomem *mmio);
637static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
638				      void __iomem *mmio);
639static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
640				  void __iomem *mmio, unsigned int n_hc);
641static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
642				      void __iomem *mmio);
643static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
644static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
645				  void __iomem *mmio, unsigned int port);
646static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
647static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
648			     unsigned int port_no);
649static int mv_stop_edma(struct ata_port *ap);
650static int mv_stop_edma_engine(void __iomem *port_mmio);
651static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
652
653static void mv_pmp_select(struct ata_port *ap, int pmp);
654static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
655				unsigned long deadline);
656static int  mv_softreset(struct ata_link *link, unsigned int *class,
657				unsigned long deadline);
658static void mv_pmp_error_handler(struct ata_port *ap);
659static void mv_process_crpb_entries(struct ata_port *ap,
660					struct mv_port_priv *pp);
661
662static void mv_sff_irq_clear(struct ata_port *ap);
663static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
664static void mv_bmdma_setup(struct ata_queued_cmd *qc);
665static void mv_bmdma_start(struct ata_queued_cmd *qc);
666static void mv_bmdma_stop(struct ata_queued_cmd *qc);
667static u8   mv_bmdma_status(struct ata_port *ap);
668static u8 mv_sff_check_status(struct ata_port *ap);
669
670/* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
671 * because we have to allow room for worst case splitting of
672 * PRDs for 64K boundaries in mv_fill_sg().
673 */
674#ifdef CONFIG_PCI
675static struct scsi_host_template mv5_sht = {
676	ATA_BASE_SHT(DRV_NAME),
677	.sg_tablesize		= MV_MAX_SG_CT / 2,
678	.dma_boundary		= MV_DMA_BOUNDARY,
679};
680#endif
681static struct scsi_host_template mv6_sht = {
682	ATA_NCQ_SHT(DRV_NAME),
683	.can_queue		= MV_MAX_Q_DEPTH - 1,
684	.sg_tablesize		= MV_MAX_SG_CT / 2,
685	.dma_boundary		= MV_DMA_BOUNDARY,
686};
687
688static struct ata_port_operations mv5_ops = {
689	.inherits		= &ata_sff_port_ops,
690
691	.lost_interrupt		= ATA_OP_NULL,
692
693	.qc_defer		= mv_qc_defer,
694	.qc_prep		= mv_qc_prep,
695	.qc_issue		= mv_qc_issue,
696
697	.freeze			= mv_eh_freeze,
698	.thaw			= mv_eh_thaw,
699	.hardreset		= mv_hardreset,
700
701	.scr_read		= mv5_scr_read,
702	.scr_write		= mv5_scr_write,
703
704	.port_start		= mv_port_start,
705	.port_stop		= mv_port_stop,
706};
707
708static struct ata_port_operations mv6_ops = {
709	.inherits		= &ata_bmdma_port_ops,
710
711	.lost_interrupt		= ATA_OP_NULL,
712
713	.qc_defer		= mv_qc_defer,
714	.qc_prep		= mv_qc_prep,
715	.qc_issue		= mv_qc_issue,
716
717	.dev_config             = mv6_dev_config,
718
719	.freeze			= mv_eh_freeze,
720	.thaw			= mv_eh_thaw,
721	.hardreset		= mv_hardreset,
722	.softreset		= mv_softreset,
723	.pmp_hardreset		= mv_pmp_hardreset,
724	.pmp_softreset		= mv_softreset,
725	.error_handler		= mv_pmp_error_handler,
726
727	.scr_read		= mv_scr_read,
728	.scr_write		= mv_scr_write,
729
730	.sff_check_status	= mv_sff_check_status,
731	.sff_irq_clear		= mv_sff_irq_clear,
732	.check_atapi_dma	= mv_check_atapi_dma,
733	.bmdma_setup		= mv_bmdma_setup,
734	.bmdma_start		= mv_bmdma_start,
735	.bmdma_stop		= mv_bmdma_stop,
736	.bmdma_status		= mv_bmdma_status,
737
738	.port_start		= mv_port_start,
739	.port_stop		= mv_port_stop,
740};
741
742static struct ata_port_operations mv_iie_ops = {
743	.inherits		= &mv6_ops,
744	.dev_config		= ATA_OP_NULL,
745	.qc_prep		= mv_qc_prep_iie,
746};
747
748static const struct ata_port_info mv_port_info[] = {
749	{  /* chip_504x */
750		.flags		= MV_GEN_I_FLAGS,
751		.pio_mask	= ATA_PIO4,
752		.udma_mask	= ATA_UDMA6,
753		.port_ops	= &mv5_ops,
754	},
755	{  /* chip_508x */
756		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
757		.pio_mask	= ATA_PIO4,
758		.udma_mask	= ATA_UDMA6,
759		.port_ops	= &mv5_ops,
760	},
761	{  /* chip_5080 */
762		.flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
763		.pio_mask	= ATA_PIO4,
764		.udma_mask	= ATA_UDMA6,
765		.port_ops	= &mv5_ops,
766	},
767	{  /* chip_604x */
768		.flags		= MV_GEN_II_FLAGS,
769		.pio_mask	= ATA_PIO4,
770		.udma_mask	= ATA_UDMA6,
771		.port_ops	= &mv6_ops,
772	},
773	{  /* chip_608x */
774		.flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
775		.pio_mask	= ATA_PIO4,
776		.udma_mask	= ATA_UDMA6,
777		.port_ops	= &mv6_ops,
778	},
779	{  /* chip_6042 */
780		.flags		= MV_GEN_IIE_FLAGS,
781		.pio_mask	= ATA_PIO4,
782		.udma_mask	= ATA_UDMA6,
783		.port_ops	= &mv_iie_ops,
784	},
785	{  /* chip_7042 */
786		.flags		= MV_GEN_IIE_FLAGS,
787		.pio_mask	= ATA_PIO4,
788		.udma_mask	= ATA_UDMA6,
789		.port_ops	= &mv_iie_ops,
790	},
791	{  /* chip_soc */
792		.flags		= MV_GEN_IIE_FLAGS,
793		.pio_mask	= ATA_PIO4,
794		.udma_mask	= ATA_UDMA6,
795		.port_ops	= &mv_iie_ops,
796	},
797};
798
799static const struct pci_device_id mv_pci_tbl[] = {
800	{ PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
801	{ PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
802	{ PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
803	{ PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
804	/* RocketRAID 1720/174x have different identifiers */
805	{ PCI_VDEVICE(TTI, 0x1720), chip_6042 },
806	{ PCI_VDEVICE(TTI, 0x1740), chip_6042 },
807	{ PCI_VDEVICE(TTI, 0x1742), chip_6042 },
808
809	{ PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
810	{ PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
811	{ PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
812	{ PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
813	{ PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
814
815	{ PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
816
817	/* Adaptec 1430SA */
818	{ PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
819
820	/* Marvell 7042 support */
821	{ PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
822
823	/* Highpoint RocketRAID PCIe series */
824	{ PCI_VDEVICE(TTI, 0x2300), chip_7042 },
825	{ PCI_VDEVICE(TTI, 0x2310), chip_7042 },
826
827	{ }			/* terminate list */
828};
829
830static const struct mv_hw_ops mv5xxx_ops = {
831	.phy_errata		= mv5_phy_errata,
832	.enable_leds		= mv5_enable_leds,
833	.read_preamp		= mv5_read_preamp,
834	.reset_hc		= mv5_reset_hc,
835	.reset_flash		= mv5_reset_flash,
836	.reset_bus		= mv5_reset_bus,
837};
838
839static const struct mv_hw_ops mv6xxx_ops = {
840	.phy_errata		= mv6_phy_errata,
841	.enable_leds		= mv6_enable_leds,
842	.read_preamp		= mv6_read_preamp,
843	.reset_hc		= mv6_reset_hc,
844	.reset_flash		= mv6_reset_flash,
845	.reset_bus		= mv_reset_pci_bus,
846};
847
848static const struct mv_hw_ops mv_soc_ops = {
849	.phy_errata		= mv6_phy_errata,
850	.enable_leds		= mv_soc_enable_leds,
851	.read_preamp		= mv_soc_read_preamp,
852	.reset_hc		= mv_soc_reset_hc,
853	.reset_flash		= mv_soc_reset_flash,
854	.reset_bus		= mv_soc_reset_bus,
855};
856
857static const struct mv_hw_ops mv_soc_65n_ops = {
858	.phy_errata		= mv_soc_65n_phy_errata,
859	.enable_leds		= mv_soc_enable_leds,
860	.reset_hc		= mv_soc_reset_hc,
861	.reset_flash		= mv_soc_reset_flash,
862	.reset_bus		= mv_soc_reset_bus,
863};
864
865/*
866 * Functions
867 */
868
869static inline void writelfl(unsigned long data, void __iomem *addr)
870{
871	writel(data, addr);
872	(void) readl(addr);	/* flush to avoid PCI posted write */
873}
874
875static inline unsigned int mv_hc_from_port(unsigned int port)
876{
877	return port >> MV_PORT_HC_SHIFT;
878}
879
880static inline unsigned int mv_hardport_from_port(unsigned int port)
881{
882	return port & MV_PORT_MASK;
883}
884
885/*
886 * Consolidate some rather tricky bit shift calculations.
887 * This is hot-path stuff, so not a function.
888 * Simple code, with two return values, so macro rather than inline.
889 *
890 * port is the sole input, in range 0..7.
891 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
892 * hardport is the other output, in range 0..3.
893 *
894 * Note that port and hardport may be the same variable in some cases.
895 */
896#define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\
897{								\
898	shift    = mv_hc_from_port(port) * HC_SHIFT;		\
899	hardport = mv_hardport_from_port(port);			\
900	shift   += hardport * 2;				\
901}
902
903static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
904{
905	return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
906}
907
908static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
909						 unsigned int port)
910{
911	return mv_hc_base(base, mv_hc_from_port(port));
912}
913
914static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
915{
916	return  mv_hc_base_from_port(base, port) +
917		MV_SATAHC_ARBTR_REG_SZ +
918		(mv_hardport_from_port(port) * MV_PORT_REG_SZ);
919}
920
921static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
922{
923	void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
924	unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
925
926	return hc_mmio + ofs;
927}
928
929static inline void __iomem *mv_host_base(struct ata_host *host)
930{
931	struct mv_host_priv *hpriv = host->private_data;
932	return hpriv->base;
933}
934
935static inline void __iomem *mv_ap_base(struct ata_port *ap)
936{
937	return mv_port_base(mv_host_base(ap->host), ap->port_no);
938}
939
940static inline int mv_get_hc_count(unsigned long port_flags)
941{
942	return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
943}
944
945/**
946 *      mv_save_cached_regs - (re-)initialize cached port registers
947 *      @ap: the port whose registers we are caching
948 *
949 *	Initialize the local cache of port registers,
950 *	so that reading them over and over again can
951 *	be avoided on the hotter paths of this driver.
952 *	This saves a few microseconds each time we switch
953 *	to/from EDMA mode to perform (eg.) a drive cache flush.
954 */
955static void mv_save_cached_regs(struct ata_port *ap)
956{
957	void __iomem *port_mmio = mv_ap_base(ap);
958	struct mv_port_priv *pp = ap->private_data;
959
960	pp->cached.fiscfg = readl(port_mmio + FISCFG);
961	pp->cached.ltmode = readl(port_mmio + LTMODE);
962	pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
963	pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
964}
965
966/**
967 *      mv_write_cached_reg - write to a cached port register
968 *      @addr: hardware address of the register
969 *      @old: pointer to cached value of the register
970 *      @new: new value for the register
971 *
972 *	Write a new value to a cached register,
973 *	but only if the value is different from before.
974 */
975static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
976{
977	if (new != *old) {
978		unsigned long laddr;
979		*old = new;
980		/*
981		 * Workaround for 88SX60x1-B2 FEr SATA#13:
982		 * Read-after-write is needed to prevent generating 64-bit
983		 * write cycles on the PCI bus for SATA interface registers
984		 * at offsets ending in 0x4 or 0xc.
985		 *
986		 * Looks like a lot of fuss, but it avoids an unnecessary
987		 * +1 usec read-after-write delay for unaffected registers.
988		 */
989		laddr = (long)addr & 0xffff;
990		if (laddr >= 0x300 && laddr <= 0x33c) {
991			laddr &= 0x000f;
992			if (laddr == 0x4 || laddr == 0xc) {
993				writelfl(new, addr); /* read after write */
994				return;
995			}
996		}
997		writel(new, addr); /* unaffected by the errata */
998	}
999}
1000
1001static void mv_set_edma_ptrs(void __iomem *port_mmio,
1002			     struct mv_host_priv *hpriv,
1003			     struct mv_port_priv *pp)
1004{
1005	u32 index;
1006
1007	/*
1008	 * initialize request queue
1009	 */
1010	pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1011	index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
1012
1013	WARN_ON(pp->crqb_dma & 0x3ff);
1014	writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
1015	writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
1016		 port_mmio + EDMA_REQ_Q_IN_PTR);
1017	writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
1018
1019	/*
1020	 * initialize response queue
1021	 */
1022	pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */
1023	index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1024
1025	WARN_ON(pp->crpb_dma & 0xff);
1026	writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1027	writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1028	writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1029		 port_mmio + EDMA_RSP_Q_OUT_PTR);
1030}
1031
1032static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1033{
1034	/*
1035	 * When writing to the main_irq_mask in hardware,
1036	 * we must ensure exclusivity between the interrupt coalescing bits
1037	 * and the corresponding individual port DONE_IRQ bits.
1038	 *
1039	 * Note that this register is really an "IRQ enable" register,
1040	 * not an "IRQ mask" register as Marvell's naming might suggest.
1041	 */
1042	if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1043		mask &= ~DONE_IRQ_0_3;
1044	if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1045		mask &= ~DONE_IRQ_4_7;
1046	writelfl(mask, hpriv->main_irq_mask_addr);
1047}
1048
1049static void mv_set_main_irq_mask(struct ata_host *host,
1050				 u32 disable_bits, u32 enable_bits)
1051{
1052	struct mv_host_priv *hpriv = host->private_data;
1053	u32 old_mask, new_mask;
1054
1055	old_mask = hpriv->main_irq_mask;
1056	new_mask = (old_mask & ~disable_bits) | enable_bits;
1057	if (new_mask != old_mask) {
1058		hpriv->main_irq_mask = new_mask;
1059		mv_write_main_irq_mask(new_mask, hpriv);
1060	}
1061}
1062
1063static void mv_enable_port_irqs(struct ata_port *ap,
1064				     unsigned int port_bits)
1065{
1066	unsigned int shift, hardport, port = ap->port_no;
1067	u32 disable_bits, enable_bits;
1068
1069	MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1070
1071	disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1072	enable_bits  = port_bits << shift;
1073	mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1074}
1075
1076static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1077					  void __iomem *port_mmio,
1078					  unsigned int port_irqs)
1079{
1080	struct mv_host_priv *hpriv = ap->host->private_data;
1081	int hardport = mv_hardport_from_port(ap->port_no);
1082	void __iomem *hc_mmio = mv_hc_base_from_port(
1083				mv_host_base(ap->host), ap->port_no);
1084	u32 hc_irq_cause;
1085
1086	/* clear EDMA event indicators, if any */
1087	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1088
1089	/* clear pending irq events */
1090	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1091	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1092
1093	/* clear FIS IRQ Cause */
1094	if (IS_GEN_IIE(hpriv))
1095		writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1096
1097	mv_enable_port_irqs(ap, port_irqs);
1098}
1099
1100static void mv_set_irq_coalescing(struct ata_host *host,
1101				  unsigned int count, unsigned int usecs)
1102{
1103	struct mv_host_priv *hpriv = host->private_data;
1104	void __iomem *mmio = hpriv->base, *hc_mmio;
1105	u32 coal_enable = 0;
1106	unsigned long flags;
1107	unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1108	const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1109							ALL_PORTS_COAL_DONE;
1110
1111	/* Disable IRQ coalescing if either threshold is zero */
1112	if (!usecs || !count) {
1113		clks = count = 0;
1114	} else {
1115		/* Respect maximum limits of the hardware */
1116		clks = usecs * COAL_CLOCKS_PER_USEC;
1117		if (clks > MAX_COAL_TIME_THRESHOLD)
1118			clks = MAX_COAL_TIME_THRESHOLD;
1119		if (count > MAX_COAL_IO_COUNT)
1120			count = MAX_COAL_IO_COUNT;
1121	}
1122
1123	spin_lock_irqsave(&host->lock, flags);
1124	mv_set_main_irq_mask(host, coal_disable, 0);
1125
1126	if (is_dual_hc && !IS_GEN_I(hpriv)) {
1127		/*
1128		 * GEN_II/GEN_IIE with dual host controllers:
1129		 * one set of global thresholds for the entire chip.
1130		 */
1131		writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD);
1132		writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1133		/* clear leftover coal IRQ bit */
1134		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1135		if (count)
1136			coal_enable = ALL_PORTS_COAL_DONE;
1137		clks = count = 0; /* force clearing of regular regs below */
1138	}
1139
1140	/*
1141	 * All chips: independent thresholds for each HC on the chip.
1142	 */
1143	hc_mmio = mv_hc_base_from_port(mmio, 0);
1144	writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1145	writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1146	writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1147	if (count)
1148		coal_enable |= PORTS_0_3_COAL_DONE;
1149	if (is_dual_hc) {
1150		hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1151		writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1152		writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1153		writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1154		if (count)
1155			coal_enable |= PORTS_4_7_COAL_DONE;
1156	}
1157
1158	mv_set_main_irq_mask(host, 0, coal_enable);
1159	spin_unlock_irqrestore(&host->lock, flags);
1160}
1161
1162/**
1163 *      mv_start_edma - Enable eDMA engine
1164 *      @base: port base address
1165 *      @pp: port private data
1166 *
1167 *      Verify the local cache of the eDMA state is accurate with a
1168 *      WARN_ON.
1169 *
1170 *      LOCKING:
1171 *      Inherited from caller.
1172 */
1173static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1174			 struct mv_port_priv *pp, u8 protocol)
1175{
1176	int want_ncq = (protocol == ATA_PROT_NCQ);
1177
1178	if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1179		int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1180		if (want_ncq != using_ncq)
1181			mv_stop_edma(ap);
1182	}
1183	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1184		struct mv_host_priv *hpriv = ap->host->private_data;
1185
1186		mv_edma_cfg(ap, want_ncq, 1);
1187
1188		mv_set_edma_ptrs(port_mmio, hpriv, pp);
1189		mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1190
1191		writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1192		pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1193	}
1194}
1195
1196static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1197{
1198	void __iomem *port_mmio = mv_ap_base(ap);
1199	const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1200	const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1201	int i;
1202
1203	/*
1204	 * Wait for the EDMA engine to finish transactions in progress.
1205	 * No idea what a good "timeout" value might be, but measurements
1206	 * indicate that it often requires hundreds of microseconds
1207	 * with two drives in-use.  So we use the 15msec value above
1208	 * as a rough guess at what even more drives might require.
1209	 */
1210	for (i = 0; i < timeout; ++i) {
1211		u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1212		if ((edma_stat & empty_idle) == empty_idle)
1213			break;
1214		udelay(per_loop);
1215	}
1216	/* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */
1217}
1218
1219/**
1220 *      mv_stop_edma_engine - Disable eDMA engine
1221 *      @port_mmio: io base address
1222 *
1223 *      LOCKING:
1224 *      Inherited from caller.
1225 */
1226static int mv_stop_edma_engine(void __iomem *port_mmio)
1227{
1228	int i;
1229
1230	/* Disable eDMA.  The disable bit auto clears. */
1231	writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1232
1233	/* Wait for the chip to confirm eDMA is off. */
1234	for (i = 10000; i > 0; i--) {
1235		u32 reg = readl(port_mmio + EDMA_CMD);
1236		if (!(reg & EDMA_EN))
1237			return 0;
1238		udelay(10);
1239	}
1240	return -EIO;
1241}
1242
1243static int mv_stop_edma(struct ata_port *ap)
1244{
1245	void __iomem *port_mmio = mv_ap_base(ap);
1246	struct mv_port_priv *pp = ap->private_data;
1247	int err = 0;
1248
1249	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1250		return 0;
1251	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1252	mv_wait_for_edma_empty_idle(ap);
1253	if (mv_stop_edma_engine(port_mmio)) {
1254		ata_port_err(ap, "Unable to stop eDMA\n");
1255		err = -EIO;
1256	}
1257	mv_edma_cfg(ap, 0, 0);
1258	return err;
1259}
1260
1261#ifdef ATA_DEBUG
1262static void mv_dump_mem(void __iomem *start, unsigned bytes)
1263{
1264	int b, w;
1265	for (b = 0; b < bytes; ) {
1266		DPRINTK("%p: ", start + b);
1267		for (w = 0; b < bytes && w < 4; w++) {
1268			printk("%08x ", readl(start + b));
1269			b += sizeof(u32);
1270		}
1271		printk("\n");
1272	}
1273}
1274#endif
1275#if defined(ATA_DEBUG) || defined(CONFIG_PCI)
1276static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1277{
1278#ifdef ATA_DEBUG
1279	int b, w;
1280	u32 dw;
1281	for (b = 0; b < bytes; ) {
1282		DPRINTK("%02x: ", b);
1283		for (w = 0; b < bytes && w < 4; w++) {
1284			(void) pci_read_config_dword(pdev, b, &dw);
1285			printk("%08x ", dw);
1286			b += sizeof(u32);
1287		}
1288		printk("\n");
1289	}
1290#endif
1291}
1292#endif
1293static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1294			     struct pci_dev *pdev)
1295{
1296#ifdef ATA_DEBUG
1297	void __iomem *hc_base = mv_hc_base(mmio_base,
1298					   port >> MV_PORT_HC_SHIFT);
1299	void __iomem *port_base;
1300	int start_port, num_ports, p, start_hc, num_hcs, hc;
1301
1302	if (0 > port) {
1303		start_hc = start_port = 0;
1304		num_ports = 8;		/* shld be benign for 4 port devs */
1305		num_hcs = 2;
1306	} else {
1307		start_hc = port >> MV_PORT_HC_SHIFT;
1308		start_port = port;
1309		num_ports = num_hcs = 1;
1310	}
1311	DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1312		num_ports > 1 ? num_ports - 1 : start_port);
1313
1314	if (NULL != pdev) {
1315		DPRINTK("PCI config space regs:\n");
1316		mv_dump_pci_cfg(pdev, 0x68);
1317	}
1318	DPRINTK("PCI regs:\n");
1319	mv_dump_mem(mmio_base+0xc00, 0x3c);
1320	mv_dump_mem(mmio_base+0xd00, 0x34);
1321	mv_dump_mem(mmio_base+0xf00, 0x4);
1322	mv_dump_mem(mmio_base+0x1d00, 0x6c);
1323	for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1324		hc_base = mv_hc_base(mmio_base, hc);
1325		DPRINTK("HC regs (HC %i):\n", hc);
1326		mv_dump_mem(hc_base, 0x1c);
1327	}
1328	for (p = start_port; p < start_port + num_ports; p++) {
1329		port_base = mv_port_base(mmio_base, p);
1330		DPRINTK("EDMA regs (port %i):\n", p);
1331		mv_dump_mem(port_base, 0x54);
1332		DPRINTK("SATA regs (port %i):\n", p);
1333		mv_dump_mem(port_base+0x300, 0x60);
1334	}
1335#endif
1336}
1337
1338static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1339{
1340	unsigned int ofs;
1341
1342	switch (sc_reg_in) {
1343	case SCR_STATUS:
1344	case SCR_CONTROL:
1345	case SCR_ERROR:
1346		ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1347		break;
1348	case SCR_ACTIVE:
1349		ofs = SATA_ACTIVE;   /* active is not with the others */
1350		break;
1351	default:
1352		ofs = 0xffffffffU;
1353		break;
1354	}
1355	return ofs;
1356}
1357
1358static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1359{
1360	unsigned int ofs = mv_scr_offset(sc_reg_in);
1361
1362	if (ofs != 0xffffffffU) {
1363		*val = readl(mv_ap_base(link->ap) + ofs);
1364		return 0;
1365	} else
1366		return -EINVAL;
1367}
1368
1369static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1370{
1371	unsigned int ofs = mv_scr_offset(sc_reg_in);
1372
1373	if (ofs != 0xffffffffU) {
1374		void __iomem *addr = mv_ap_base(link->ap) + ofs;
1375		struct mv_host_priv *hpriv = link->ap->host->private_data;
1376		if (sc_reg_in == SCR_CONTROL) {
1377			/*
1378			 * Workaround for 88SX60x1 FEr SATA#26:
1379			 *
1380			 * COMRESETs have to take care not to accidentally
1381			 * put the drive to sleep when writing SCR_CONTROL.
1382			 * Setting bits 12..15 prevents this problem.
1383			 *
1384			 * So if we see an outbound COMMRESET, set those bits.
1385			 * Ditto for the followup write that clears the reset.
1386			 *
1387			 * The proprietary driver does this for
1388			 * all chip versions, and so do we.
1389			 */
1390			if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1391				val |= 0xf000;
1392
1393			if (hpriv->hp_flags & MV_HP_FIX_LP_PHY_CTL) {
1394				void __iomem *lp_phy_addr =
1395					mv_ap_base(link->ap) + LP_PHY_CTL;
1396				/*
1397				 * Set PHY speed according to SControl speed.
1398				 */
1399				u32 lp_phy_val =
1400					LP_PHY_CTL_PIN_PU_PLL |
1401					LP_PHY_CTL_PIN_PU_RX  |
1402					LP_PHY_CTL_PIN_PU_TX;
1403
1404				if ((val & 0xf0) != 0x10)
1405					lp_phy_val |=
1406						LP_PHY_CTL_GEN_TX_3G |
1407						LP_PHY_CTL_GEN_RX_3G;
1408
1409				writelfl(lp_phy_val, lp_phy_addr);
1410			}
1411		}
1412		writelfl(val, addr);
1413		return 0;
1414	} else
1415		return -EINVAL;
1416}
1417
1418static void mv6_dev_config(struct ata_device *adev)
1419{
1420	/*
1421	 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1422	 *
1423	 * Gen-II does not support NCQ over a port multiplier
1424	 *  (no FIS-based switching).
1425	 */
1426	if (adev->flags & ATA_DFLAG_NCQ) {
1427		if (sata_pmp_attached(adev->link->ap)) {
1428			adev->flags &= ~ATA_DFLAG_NCQ;
1429			ata_dev_info(adev,
1430				"NCQ disabled for command-based switching\n");
1431		}
1432	}
1433}
1434
1435static int mv_qc_defer(struct ata_queued_cmd *qc)
1436{
1437	struct ata_link *link = qc->dev->link;
1438	struct ata_port *ap = link->ap;
1439	struct mv_port_priv *pp = ap->private_data;
1440
1441	/*
1442	 * Don't allow new commands if we're in a delayed EH state
1443	 * for NCQ and/or FIS-based switching.
1444	 */
1445	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1446		return ATA_DEFER_PORT;
1447
1448	/* PIO commands need exclusive link: no other commands [DMA or PIO]
1449	 * can run concurrently.
1450	 * set excl_link when we want to send a PIO command in DMA mode
1451	 * or a non-NCQ command in NCQ mode.
1452	 * When we receive a command from that link, and there are no
1453	 * outstanding commands, mark a flag to clear excl_link and let
1454	 * the command go through.
1455	 */
1456	if (unlikely(ap->excl_link)) {
1457		if (link == ap->excl_link) {
1458			if (ap->nr_active_links)
1459				return ATA_DEFER_PORT;
1460			qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1461			return 0;
1462		} else
1463			return ATA_DEFER_PORT;
1464	}
1465
1466	/*
1467	 * If the port is completely idle, then allow the new qc.
1468	 */
1469	if (ap->nr_active_links == 0)
1470		return 0;
1471
1472	/*
1473	 * The port is operating in host queuing mode (EDMA) with NCQ
1474	 * enabled, allow multiple NCQ commands.  EDMA also allows
1475	 * queueing multiple DMA commands but libata core currently
1476	 * doesn't allow it.
1477	 */
1478	if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1479	    (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1480		if (ata_is_ncq(qc->tf.protocol))
1481			return 0;
1482		else {
1483			ap->excl_link = link;
1484			return ATA_DEFER_PORT;
1485		}
1486	}
1487
1488	return ATA_DEFER_PORT;
1489}
1490
1491static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1492{
1493	struct mv_port_priv *pp = ap->private_data;
1494	void __iomem *port_mmio;
1495
1496	u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg;
1497	u32 ltmode,   *old_ltmode   = &pp->cached.ltmode;
1498	u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1499
1500	ltmode   = *old_ltmode & ~LTMODE_BIT8;
1501	haltcond = *old_haltcond | EDMA_ERR_DEV;
1502
1503	if (want_fbs) {
1504		fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1505		ltmode = *old_ltmode | LTMODE_BIT8;
1506		if (want_ncq)
1507			haltcond &= ~EDMA_ERR_DEV;
1508		else
1509			fiscfg |=  FISCFG_WAIT_DEV_ERR;
1510	} else {
1511		fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1512	}
1513
1514	port_mmio = mv_ap_base(ap);
1515	mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1516	mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1517	mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1518}
1519
1520static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1521{
1522	struct mv_host_priv *hpriv = ap->host->private_data;
1523	u32 old, new;
1524
1525	/* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1526	old = readl(hpriv->base + GPIO_PORT_CTL);
1527	if (want_ncq)
1528		new = old | (1 << 22);
1529	else
1530		new = old & ~(1 << 22);
1531	if (new != old)
1532		writel(new, hpriv->base + GPIO_PORT_CTL);
1533}
1534
1535/**
1536 *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1537 *	@ap: Port being initialized
1538 *
1539 *	There are two DMA modes on these chips:  basic DMA, and EDMA.
1540 *
1541 *	Bit-0 of the "EDMA RESERVED" register enables/disables use
1542 *	of basic DMA on the GEN_IIE versions of the chips.
1543 *
1544 *	This bit survives EDMA resets, and must be set for basic DMA
1545 *	to function, and should be cleared when EDMA is active.
1546 */
1547static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1548{
1549	struct mv_port_priv *pp = ap->private_data;
1550	u32 new, *old = &pp->cached.unknown_rsvd;
1551
1552	if (enable_bmdma)
1553		new = *old | 1;
1554	else
1555		new = *old & ~1;
1556	mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1557}
1558
1559/*
1560 * SOC chips have an issue whereby the HDD LEDs don't always blink
1561 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1562 * of the SOC takes care of it, generating a steady blink rate when
1563 * any drive on the chip is active.
1564 *
1565 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1566 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1567 *
1568 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1569 * LED operation works then, and provides better (more accurate) feedback.
1570 *
1571 * Note that this code assumes that an SOC never has more than one HC onboard.
1572 */
1573static void mv_soc_led_blink_enable(struct ata_port *ap)
1574{
1575	struct ata_host *host = ap->host;
1576	struct mv_host_priv *hpriv = host->private_data;
1577	void __iomem *hc_mmio;
1578	u32 led_ctrl;
1579
1580	if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1581		return;
1582	hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1583	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1584	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1585	writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1586}
1587
1588static void mv_soc_led_blink_disable(struct ata_port *ap)
1589{
1590	struct ata_host *host = ap->host;
1591	struct mv_host_priv *hpriv = host->private_data;
1592	void __iomem *hc_mmio;
1593	u32 led_ctrl;
1594	unsigned int port;
1595
1596	if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1597		return;
1598
1599	/* disable led-blink only if no ports are using NCQ */
1600	for (port = 0; port < hpriv->n_ports; port++) {
1601		struct ata_port *this_ap = host->ports[port];
1602		struct mv_port_priv *pp = this_ap->private_data;
1603
1604		if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1605			return;
1606	}
1607
1608	hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1609	hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1610	led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1611	writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1612}
1613
1614static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1615{
1616	u32 cfg;
1617	struct mv_port_priv *pp    = ap->private_data;
1618	struct mv_host_priv *hpriv = ap->host->private_data;
1619	void __iomem *port_mmio    = mv_ap_base(ap);
1620
1621	/* set up non-NCQ EDMA configuration */
1622	cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */
1623	pp->pp_flags &=
1624	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1625
1626	if (IS_GEN_I(hpriv))
1627		cfg |= (1 << 8);	/* enab config burst size mask */
1628
1629	else if (IS_GEN_II(hpriv)) {
1630		cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1631		mv_60x1_errata_sata25(ap, want_ncq);
1632
1633	} else if (IS_GEN_IIE(hpriv)) {
1634		int want_fbs = sata_pmp_attached(ap);
1635		/*
1636		 * Possible future enhancement:
1637		 *
1638		 * The chip can use FBS with non-NCQ, if we allow it,
1639		 * But first we need to have the error handling in place
1640		 * for this mode (datasheet section 7.3.15.4.2.3).
1641		 * So disallow non-NCQ FBS for now.
1642		 */
1643		want_fbs &= want_ncq;
1644
1645		mv_config_fbs(ap, want_ncq, want_fbs);
1646
1647		if (want_fbs) {
1648			pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1649			cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1650		}
1651
1652		cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */
1653		if (want_edma) {
1654			cfg |= (1 << 22); /* enab 4-entry host queue cache */
1655			if (!IS_SOC(hpriv))
1656				cfg |= (1 << 18); /* enab early completion */
1657		}
1658		if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1659			cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1660		mv_bmdma_enable_iie(ap, !want_edma);
1661
1662		if (IS_SOC(hpriv)) {
1663			if (want_ncq)
1664				mv_soc_led_blink_enable(ap);
1665			else
1666				mv_soc_led_blink_disable(ap);
1667		}
1668	}
1669
1670	if (want_ncq) {
1671		cfg |= EDMA_CFG_NCQ;
1672		pp->pp_flags |=  MV_PP_FLAG_NCQ_EN;
1673	}
1674
1675	writelfl(cfg, port_mmio + EDMA_CFG);
1676}
1677
1678static void mv_port_free_dma_mem(struct ata_port *ap)
1679{
1680	struct mv_host_priv *hpriv = ap->host->private_data;
1681	struct mv_port_priv *pp = ap->private_data;
1682	int tag;
1683
1684	if (pp->crqb) {
1685		dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1686		pp->crqb = NULL;
1687	}
1688	if (pp->crpb) {
1689		dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1690		pp->crpb = NULL;
1691	}
1692	/*
1693	 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1694	 * For later hardware, we have one unique sg_tbl per NCQ tag.
1695	 */
1696	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1697		if (pp->sg_tbl[tag]) {
1698			if (tag == 0 || !IS_GEN_I(hpriv))
1699				dma_pool_free(hpriv->sg_tbl_pool,
1700					      pp->sg_tbl[tag],
1701					      pp->sg_tbl_dma[tag]);
1702			pp->sg_tbl[tag] = NULL;
1703		}
1704	}
1705}
1706
1707/**
1708 *      mv_port_start - Port specific init/start routine.
1709 *      @ap: ATA channel to manipulate
1710 *
1711 *      Allocate and point to DMA memory, init port private memory,
1712 *      zero indices.
1713 *
1714 *      LOCKING:
1715 *      Inherited from caller.
1716 */
1717static int mv_port_start(struct ata_port *ap)
1718{
1719	struct device *dev = ap->host->dev;
1720	struct mv_host_priv *hpriv = ap->host->private_data;
1721	struct mv_port_priv *pp;
1722	unsigned long flags;
1723	int tag;
1724
1725	pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1726	if (!pp)
1727		return -ENOMEM;
1728	ap->private_data = pp;
1729
1730	pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1731	if (!pp->crqb)
1732		return -ENOMEM;
1733	memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1734
1735	pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1736	if (!pp->crpb)
1737		goto out_port_free_dma_mem;
1738	memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1739
1740	/* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1741	if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1742		ap->flags |= ATA_FLAG_AN;
1743	/*
1744	 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1745	 * For later hardware, we need one unique sg_tbl per NCQ tag.
1746	 */
1747	for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1748		if (tag == 0 || !IS_GEN_I(hpriv)) {
1749			pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1750					      GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1751			if (!pp->sg_tbl[tag])
1752				goto out_port_free_dma_mem;
1753		} else {
1754			pp->sg_tbl[tag]     = pp->sg_tbl[0];
1755			pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1756		}
1757	}
1758
1759	spin_lock_irqsave(ap->lock, flags);
1760	mv_save_cached_regs(ap);
1761	mv_edma_cfg(ap, 0, 0);
1762	spin_unlock_irqrestore(ap->lock, flags);
1763
1764	return 0;
1765
1766out_port_free_dma_mem:
1767	mv_port_free_dma_mem(ap);
1768	return -ENOMEM;
1769}
1770
1771/**
1772 *      mv_port_stop - Port specific cleanup/stop routine.
1773 *      @ap: ATA channel to manipulate
1774 *
1775 *      Stop DMA, cleanup port memory.
1776 *
1777 *      LOCKING:
1778 *      This routine uses the host lock to protect the DMA stop.
1779 */
1780static void mv_port_stop(struct ata_port *ap)
1781{
1782	unsigned long flags;
1783
1784	spin_lock_irqsave(ap->lock, flags);
1785	mv_stop_edma(ap);
1786	mv_enable_port_irqs(ap, 0);
1787	spin_unlock_irqrestore(ap->lock, flags);
1788	mv_port_free_dma_mem(ap);
1789}
1790
1791/**
1792 *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1793 *      @qc: queued command whose SG list to source from
1794 *
1795 *      Populate the SG list and mark the last entry.
1796 *
1797 *      LOCKING:
1798 *      Inherited from caller.
1799 */
1800static void mv_fill_sg(struct ata_queued_cmd *qc)
1801{
1802	struct mv_port_priv *pp = qc->ap->private_data;
1803	struct scatterlist *sg;
1804	struct mv_sg *mv_sg, *last_sg = NULL;
1805	unsigned int si;
1806
1807	mv_sg = pp->sg_tbl[qc->tag];
1808	for_each_sg(qc->sg, sg, qc->n_elem, si) {
1809		dma_addr_t addr = sg_dma_address(sg);
1810		u32 sg_len = sg_dma_len(sg);
1811
1812		while (sg_len) {
1813			u32 offset = addr & 0xffff;
1814			u32 len = sg_len;
1815
1816			if (offset + len > 0x10000)
1817				len = 0x10000 - offset;
1818
1819			mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1820			mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1821			mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1822			mv_sg->reserved = 0;
1823
1824			sg_len -= len;
1825			addr += len;
1826
1827			last_sg = mv_sg;
1828			mv_sg++;
1829		}
1830	}
1831
1832	if (likely(last_sg))
1833		last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1834	mb(); /* ensure data structure is visible to the chipset */
1835}
1836
1837static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1838{
1839	u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1840		(last ? CRQB_CMD_LAST : 0);
1841	*cmdw = cpu_to_le16(tmp);
1842}
1843
1844/**
1845 *	mv_sff_irq_clear - Clear hardware interrupt after DMA.
1846 *	@ap: Port associated with this ATA transaction.
1847 *
1848 *	We need this only for ATAPI bmdma transactions,
1849 *	as otherwise we experience spurious interrupts
1850 *	after libata-sff handles the bmdma interrupts.
1851 */
1852static void mv_sff_irq_clear(struct ata_port *ap)
1853{
1854	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1855}
1856
1857/**
1858 *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1859 *	@qc: queued command to check for chipset/DMA compatibility.
1860 *
1861 *	The bmdma engines cannot handle speculative data sizes
1862 *	(bytecount under/over flow).  So only allow DMA for
1863 *	data transfer commands with known data sizes.
1864 *
1865 *	LOCKING:
1866 *	Inherited from caller.
1867 */
1868static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1869{
1870	struct scsi_cmnd *scmd = qc->scsicmd;
1871
1872	if (scmd) {
1873		switch (scmd->cmnd[0]) {
1874		case READ_6:
1875		case READ_10:
1876		case READ_12:
1877		case WRITE_6:
1878		case WRITE_10:
1879		case WRITE_12:
1880		case GPCMD_READ_CD:
1881		case GPCMD_SEND_DVD_STRUCTURE:
1882		case GPCMD_SEND_CUE_SHEET:
1883			return 0; /* DMA is safe */
1884		}
1885	}
1886	return -EOPNOTSUPP; /* use PIO instead */
1887}
1888
1889/**
1890 *	mv_bmdma_setup - Set up BMDMA transaction
1891 *	@qc: queued command to prepare DMA for.
1892 *
1893 *	LOCKING:
1894 *	Inherited from caller.
1895 */
1896static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1897{
1898	struct ata_port *ap = qc->ap;
1899	void __iomem *port_mmio = mv_ap_base(ap);
1900	struct mv_port_priv *pp = ap->private_data;
1901
1902	mv_fill_sg(qc);
1903
1904	/* clear all DMA cmd bits */
1905	writel(0, port_mmio + BMDMA_CMD);
1906
1907	/* load PRD table addr. */
1908	writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1909		port_mmio + BMDMA_PRD_HIGH);
1910	writelfl(pp->sg_tbl_dma[qc->tag],
1911		port_mmio + BMDMA_PRD_LOW);
1912
1913	/* issue r/w command */
1914	ap->ops->sff_exec_command(ap, &qc->tf);
1915}
1916
1917/**
1918 *	mv_bmdma_start - Start a BMDMA transaction
1919 *	@qc: queued command to start DMA on.
1920 *
1921 *	LOCKING:
1922 *	Inherited from caller.
1923 */
1924static void mv_bmdma_start(struct ata_queued_cmd *qc)
1925{
1926	struct ata_port *ap = qc->ap;
1927	void __iomem *port_mmio = mv_ap_base(ap);
1928	unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1929	u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1930
1931	/* start host DMA transaction */
1932	writelfl(cmd, port_mmio + BMDMA_CMD);
1933}
1934
1935/**
1936 *	mv_bmdma_stop - Stop BMDMA transfer
1937 *	@qc: queued command to stop DMA on.
1938 *
1939 *	Clears the ATA_DMA_START flag in the bmdma control register
1940 *
1941 *	LOCKING:
1942 *	Inherited from caller.
1943 */
1944static void mv_bmdma_stop_ap(struct ata_port *ap)
1945{
1946	void __iomem *port_mmio = mv_ap_base(ap);
1947	u32 cmd;
1948
1949	/* clear start/stop bit */
1950	cmd = readl(port_mmio + BMDMA_CMD);
1951	if (cmd & ATA_DMA_START) {
1952		cmd &= ~ATA_DMA_START;
1953		writelfl(cmd, port_mmio + BMDMA_CMD);
1954
1955		/* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1956		ata_sff_dma_pause(ap);
1957	}
1958}
1959
1960static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1961{
1962	mv_bmdma_stop_ap(qc->ap);
1963}
1964
1965/**
1966 *	mv_bmdma_status - Read BMDMA status
1967 *	@ap: port for which to retrieve DMA status.
1968 *
1969 *	Read and return equivalent of the sff BMDMA status register.
1970 *
1971 *	LOCKING:
1972 *	Inherited from caller.
1973 */
1974static u8 mv_bmdma_status(struct ata_port *ap)
1975{
1976	void __iomem *port_mmio = mv_ap_base(ap);
1977	u32 reg, status;
1978
1979	/*
1980	 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1981	 * and the ATA_DMA_INTR bit doesn't exist.
1982	 */
1983	reg = readl(port_mmio + BMDMA_STATUS);
1984	if (reg & ATA_DMA_ACTIVE)
1985		status = ATA_DMA_ACTIVE;
1986	else if (reg & ATA_DMA_ERR)
1987		status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1988	else {
1989		/*
1990		 * Just because DMA_ACTIVE is 0 (DMA completed),
1991		 * this does _not_ mean the device is "done".
1992		 * So we should not yet be signalling ATA_DMA_INTR
1993		 * in some cases.  Eg. DSM/TRIM, and perhaps others.
1994		 */
1995		mv_bmdma_stop_ap(ap);
1996		if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY)
1997			status = 0;
1998		else
1999			status = ATA_DMA_INTR;
2000	}
2001	return status;
2002}
2003
2004static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
2005{
2006	struct ata_taskfile *tf = &qc->tf;
2007	/*
2008	 * Workaround for 88SX60x1 FEr SATA#24.
2009	 *
2010	 * Chip may corrupt WRITEs if multi_count >= 4kB.
2011	 * Note that READs are unaffected.
2012	 *
2013	 * It's not clear if this errata really means "4K bytes",
2014	 * or if it always happens for multi_count > 7
2015	 * regardless of device sector_size.
2016	 *
2017	 * So, for safety, any write with multi_count > 7
2018	 * gets converted here into a regular PIO write instead:
2019	 */
2020	if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
2021		if (qc->dev->multi_count > 7) {
2022			switch (tf->command) {
2023			case ATA_CMD_WRITE_MULTI:
2024				tf->command = ATA_CMD_PIO_WRITE;
2025				break;
2026			case ATA_CMD_WRITE_MULTI_FUA_EXT:
2027				tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
2028				/* fall through */
2029			case ATA_CMD_WRITE_MULTI_EXT:
2030				tf->command = ATA_CMD_PIO_WRITE_EXT;
2031				break;
2032			}
2033		}
2034	}
2035}
2036
2037/**
2038 *      mv_qc_prep - Host specific command preparation.
2039 *      @qc: queued command to prepare
2040 *
2041 *      This routine simply redirects to the general purpose routine
2042 *      if command is not DMA.  Else, it handles prep of the CRQB
2043 *      (command request block), does some sanity checking, and calls
2044 *      the SG load routine.
2045 *
2046 *      LOCKING:
2047 *      Inherited from caller.
2048 */
2049static void mv_qc_prep(struct ata_queued_cmd *qc)
2050{
2051	struct ata_port *ap = qc->ap;
2052	struct mv_port_priv *pp = ap->private_data;
2053	__le16 *cw;
2054	struct ata_taskfile *tf = &qc->tf;
2055	u16 flags = 0;
2056	unsigned in_index;
2057
2058	switch (tf->protocol) {
2059	case ATA_PROT_DMA:
2060		if (tf->command == ATA_CMD_DSM)
2061			return;
2062		/* fall-thru */
2063	case ATA_PROT_NCQ:
2064		break;	/* continue below */
2065	case ATA_PROT_PIO:
2066		mv_rw_multi_errata_sata24(qc);
2067		return;
2068	default:
2069		return;
2070	}
2071
2072	/* Fill in command request block
2073	 */
2074	if (!(tf->flags & ATA_TFLAG_WRITE))
2075		flags |= CRQB_FLAG_READ;
2076	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2077	flags |= qc->tag << CRQB_TAG_SHIFT;
2078	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2079
2080	/* get current queue index from software */
2081	in_index = pp->req_idx;
2082
2083	pp->crqb[in_index].sg_addr =
2084		cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2085	pp->crqb[in_index].sg_addr_hi =
2086		cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2087	pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2088
2089	cw = &pp->crqb[in_index].ata_cmd[0];
2090
2091	/* Sadly, the CRQB cannot accommodate all registers--there are
2092	 * only 11 bytes...so we must pick and choose required
2093	 * registers based on the command.  So, we drop feature and
2094	 * hob_feature for [RW] DMA commands, but they are needed for
2095	 * NCQ.  NCQ will drop hob_nsect, which is not needed there
2096	 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2097	 */
2098	switch (tf->command) {
2099	case ATA_CMD_READ:
2100	case ATA_CMD_READ_EXT:
2101	case ATA_CMD_WRITE:
2102	case ATA_CMD_WRITE_EXT:
2103	case ATA_CMD_WRITE_FUA_EXT:
2104		mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2105		break;
2106	case ATA_CMD_FPDMA_READ:
2107	case ATA_CMD_FPDMA_WRITE:
2108		mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2109		mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2110		break;
2111	default:
2112		/* The only other commands EDMA supports in non-queued and
2113		 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2114		 * of which are defined/used by Linux.  If we get here, this
2115		 * driver needs work.
2116		 *
2117		 * FIXME: modify libata to give qc_prep a return value and
2118		 * return error here.
2119		 */
2120		BUG_ON(tf->command);
2121		break;
2122	}
2123	mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2124	mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2125	mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2126	mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2127	mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2128	mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2129	mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2130	mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2131	mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */
2132
2133	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2134		return;
2135	mv_fill_sg(qc);
2136}
2137
2138/**
2139 *      mv_qc_prep_iie - Host specific command preparation.
2140 *      @qc: queued command to prepare
2141 *
2142 *      This routine simply redirects to the general purpose routine
2143 *      if command is not DMA.  Else, it handles prep of the CRQB
2144 *      (command request block), does some sanity checking, and calls
2145 *      the SG load routine.
2146 *
2147 *      LOCKING:
2148 *      Inherited from caller.
2149 */
2150static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2151{
2152	struct ata_port *ap = qc->ap;
2153	struct mv_port_priv *pp = ap->private_data;
2154	struct mv_crqb_iie *crqb;
2155	struct ata_taskfile *tf = &qc->tf;
2156	unsigned in_index;
2157	u32 flags = 0;
2158
2159	if ((tf->protocol != ATA_PROT_DMA) &&
2160	    (tf->protocol != ATA_PROT_NCQ))
2161		return;
2162	if (tf->command == ATA_CMD_DSM)
2163		return;  /* use bmdma for this */
2164
2165	/* Fill in Gen IIE command request block */
2166	if (!(tf->flags & ATA_TFLAG_WRITE))
2167		flags |= CRQB_FLAG_READ;
2168
2169	WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2170	flags |= qc->tag << CRQB_TAG_SHIFT;
2171	flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2172	flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2173
2174	/* get current queue index from software */
2175	in_index = pp->req_idx;
2176
2177	crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2178	crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2179	crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2180	crqb->flags = cpu_to_le32(flags);
2181
2182	crqb->ata_cmd[0] = cpu_to_le32(
2183			(tf->command << 16) |
2184			(tf->feature << 24)
2185		);
2186	crqb->ata_cmd[1] = cpu_to_le32(
2187			(tf->lbal << 0) |
2188			(tf->lbam << 8) |
2189			(tf->lbah << 16) |
2190			(tf->device << 24)
2191		);
2192	crqb->ata_cmd[2] = cpu_to_le32(
2193			(tf->hob_lbal << 0) |
2194			(tf->hob_lbam << 8) |
2195			(tf->hob_lbah << 16) |
2196			(tf->hob_feature << 24)
2197		);
2198	crqb->ata_cmd[3] = cpu_to_le32(
2199			(tf->nsect << 0) |
2200			(tf->hob_nsect << 8)
2201		);
2202
2203	if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2204		return;
2205	mv_fill_sg(qc);
2206}
2207
2208/**
2209 *	mv_sff_check_status - fetch device status, if valid
2210 *	@ap: ATA port to fetch status from
2211 *
2212 *	When using command issue via mv_qc_issue_fis(),
2213 *	the initial ATA_BUSY state does not show up in the
2214 *	ATA status (shadow) register.  This can confuse libata!
2215 *
2216 *	So we have a hook here to fake ATA_BUSY for that situation,
2217 *	until the first time a BUSY, DRQ, or ERR bit is seen.
2218 *
2219 *	The rest of the time, it simply returns the ATA status register.
2220 */
2221static u8 mv_sff_check_status(struct ata_port *ap)
2222{
2223	u8 stat = ioread8(ap->ioaddr.status_addr);
2224	struct mv_port_priv *pp = ap->private_data;
2225
2226	if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2227		if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2228			pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2229		else
2230			stat = ATA_BUSY;
2231	}
2232	return stat;
2233}
2234
2235/**
2236 *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2237 *	@fis: fis to be sent
2238 *	@nwords: number of 32-bit words in the fis
2239 */
2240static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2241{
2242	void __iomem *port_mmio = mv_ap_base(ap);
2243	u32 ifctl, old_ifctl, ifstat;
2244	int i, timeout = 200, final_word = nwords - 1;
2245
2246	/* Initiate FIS transmission mode */
2247	old_ifctl = readl(port_mmio + SATA_IFCTL);
2248	ifctl = 0x100 | (old_ifctl & 0xf);
2249	writelfl(ifctl, port_mmio + SATA_IFCTL);
2250
2251	/* Send all words of the FIS except for the final word */
2252	for (i = 0; i < final_word; ++i)
2253		writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2254
2255	/* Flag end-of-transmission, and then send the final word */
2256	writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2257	writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2258
2259	/*
2260	 * Wait for FIS transmission to complete.
2261	 * This typically takes just a single iteration.
2262	 */
2263	do {
2264		ifstat = readl(port_mmio + SATA_IFSTAT);
2265	} while (!(ifstat & 0x1000) && --timeout);
2266
2267	/* Restore original port configuration */
2268	writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2269
2270	/* See if it worked */
2271	if ((ifstat & 0x3000) != 0x1000) {
2272		ata_port_warn(ap, "%s transmission error, ifstat=%08x\n",
2273			      __func__, ifstat);
2274		return AC_ERR_OTHER;
2275	}
2276	return 0;
2277}
2278
2279/**
2280 *	mv_qc_issue_fis - Issue a command directly as a FIS
2281 *	@qc: queued command to start
2282 *
2283 *	Note that the ATA shadow registers are not updated
2284 *	after command issue, so the device will appear "READY"
2285 *	if polled, even while it is BUSY processing the command.
2286 *
2287 *	So we use a status hook to fake ATA_BUSY until the drive changes state.
2288 *
2289 *	Note: we don't get updated shadow regs on *completion*
2290 *	of non-data commands. So avoid sending them via this function,
2291 *	as they will appear to have completed immediately.
2292 *
2293 *	GEN_IIE has special registers that we could get the result tf from,
2294 *	but earlier chipsets do not.  For now, we ignore those registers.
2295 */
2296static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2297{
2298	struct ata_port *ap = qc->ap;
2299	struct mv_port_priv *pp = ap->private_data;
2300	struct ata_link *link = qc->dev->link;
2301	u32 fis[5];
2302	int err = 0;
2303
2304	ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2305	err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2306	if (err)
2307		return err;
2308
2309	switch (qc->tf.protocol) {
2310	case ATAPI_PROT_PIO:
2311		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2312		/* fall through */
2313	case ATAPI_PROT_NODATA:
2314		ap->hsm_task_state = HSM_ST_FIRST;
2315		break;
2316	case ATA_PROT_PIO:
2317		pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2318		if (qc->tf.flags & ATA_TFLAG_WRITE)
2319			ap->hsm_task_state = HSM_ST_FIRST;
2320		else
2321			ap->hsm_task_state = HSM_ST;
2322		break;
2323	default:
2324		ap->hsm_task_state = HSM_ST_LAST;
2325		break;
2326	}
2327
2328	if (qc->tf.flags & ATA_TFLAG_POLLING)
2329		ata_sff_queue_pio_task(link, 0);
2330	return 0;
2331}
2332
2333/**
2334 *      mv_qc_issue - Initiate a command to the host
2335 *      @qc: queued command to start
2336 *
2337 *      This routine simply redirects to the general purpose routine
2338 *      if command is not DMA.  Else, it sanity checks our local
2339 *      caches of the request producer/consumer indices then enables
2340 *      DMA and bumps the request producer index.
2341 *
2342 *      LOCKING:
2343 *      Inherited from caller.
2344 */
2345static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2346{
2347	static int limit_warnings = 10;
2348	struct ata_port *ap = qc->ap;
2349	void __iomem *port_mmio = mv_ap_base(ap);
2350	struct mv_port_priv *pp = ap->private_data;
2351	u32 in_index;
2352	unsigned int port_irqs;
2353
2354	pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2355
2356	switch (qc->tf.protocol) {
2357	case ATA_PROT_DMA:
2358		if (qc->tf.command == ATA_CMD_DSM) {
2359			if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */
2360				return AC_ERR_OTHER;
2361			break;  /* use bmdma for this */
2362		}
2363		/* fall thru */
2364	case ATA_PROT_NCQ:
2365		mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2366		pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2367		in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2368
2369		/* Write the request in pointer to kick the EDMA to life */
2370		writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2371					port_mmio + EDMA_REQ_Q_IN_PTR);
2372		return 0;
2373
2374	case ATA_PROT_PIO:
2375		/*
2376		 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2377		 *
2378		 * Someday, we might implement special polling workarounds
2379		 * for these, but it all seems rather unnecessary since we
2380		 * normally use only DMA for commands which transfer more
2381		 * than a single block of data.
2382		 *
2383		 * Much of the time, this could just work regardless.
2384		 * So for now, just log the incident, and allow the attempt.
2385		 */
2386		if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2387			--limit_warnings;
2388			ata_link_warn(qc->dev->link, DRV_NAME
2389				      ": attempting PIO w/multiple DRQ: "
2390				      "this may fail due to h/w errata\n");
2391		}
2392		/* drop through */
2393	case ATA_PROT_NODATA:
2394	case ATAPI_PROT_PIO:
2395	case ATAPI_PROT_NODATA:
2396		if (ap->flags & ATA_FLAG_PIO_POLLING)
2397			qc->tf.flags |= ATA_TFLAG_POLLING;
2398		break;
2399	}
2400
2401	if (qc->tf.flags & ATA_TFLAG_POLLING)
2402		port_irqs = ERR_IRQ;	/* mask device interrupt when polling */
2403	else
2404		port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */
2405
2406	/*
2407	 * We're about to send a non-EDMA capable command to the
2408	 * port.  Turn off EDMA so there won't be problems accessing
2409	 * shadow block, etc registers.
2410	 */
2411	mv_stop_edma(ap);
2412	mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2413	mv_pmp_select(ap, qc->dev->link->pmp);
2414
2415	if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2416		struct mv_host_priv *hpriv = ap->host->private_data;
2417		/*
2418		 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2419		 *
2420		 * After any NCQ error, the READ_LOG_EXT command
2421		 * from libata-eh *must* use mv_qc_issue_fis().
2422		 * Otherwise it might fail, due to chip errata.
2423		 *
2424		 * Rather than special-case it, we'll just *always*
2425		 * use this method here for READ_LOG_EXT, making for
2426		 * easier testing.
2427		 */
2428		if (IS_GEN_II(hpriv))
2429			return mv_qc_issue_fis(qc);
2430	}
2431	return ata_bmdma_qc_issue(qc);
2432}
2433
2434static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2435{
2436	struct mv_port_priv *pp = ap->private_data;
2437	struct ata_queued_cmd *qc;
2438
2439	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2440		return NULL;
2441	qc = ata_qc_from_tag(ap, ap->link.active_tag);
2442	if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2443		return qc;
2444	return NULL;
2445}
2446
2447static void mv_pmp_error_handler(struct ata_port *ap)
2448{
2449	unsigned int pmp, pmp_map;
2450	struct mv_port_priv *pp = ap->private_data;
2451
2452	if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2453		/*
2454		 * Perform NCQ error analysis on failed PMPs
2455		 * before we freeze the port entirely.
2456		 *
2457		 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2458		 */
2459		pmp_map = pp->delayed_eh_pmp_map;
2460		pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2461		for (pmp = 0; pmp_map != 0; pmp++) {
2462			unsigned int this_pmp = (1 << pmp);
2463			if (pmp_map & this_pmp) {
2464				struct ata_link *link = &ap->pmp_link[pmp];
2465				pmp_map &= ~this_pmp;
2466				ata_eh_analyze_ncq_error(link);
2467			}
2468		}
2469		ata_port_freeze(ap);
2470	}
2471	sata_pmp_error_handler(ap);
2472}
2473
2474static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2475{
2476	void __iomem *port_mmio = mv_ap_base(ap);
2477
2478	return readl(port_mmio + SATA_TESTCTL) >> 16;
2479}
2480
2481static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2482{
2483	struct ata_eh_info *ehi;
2484	unsigned int pmp;
2485
2486	/*
2487	 * Initialize EH info for PMPs which saw device errors
2488	 */
2489	ehi = &ap->link.eh_info;
2490	for (pmp = 0; pmp_map != 0; pmp++) {
2491		unsigned int this_pmp = (1 << pmp);
2492		if (pmp_map & this_pmp) {
2493			struct ata_link *link = &ap->pmp_link[pmp];
2494
2495			pmp_map &= ~this_pmp;
2496			ehi = &link->eh_info;
2497			ata_ehi_clear_desc(ehi);
2498			ata_ehi_push_desc(ehi, "dev err");
2499			ehi->err_mask |= AC_ERR_DEV;
2500			ehi->action |= ATA_EH_RESET;
2501			ata_link_abort(link);
2502		}
2503	}
2504}
2505
2506static int mv_req_q_empty(struct ata_port *ap)
2507{
2508	void __iomem *port_mmio = mv_ap_base(ap);
2509	u32 in_ptr, out_ptr;
2510
2511	in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2512			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2513	out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2514			>> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2515	return (in_ptr == out_ptr);	/* 1 == queue_is_empty */
2516}
2517
2518static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2519{
2520	struct mv_port_priv *pp = ap->private_data;
2521	int failed_links;
2522	unsigned int old_map, new_map;
2523
2524	/*
2525	 * Device error during FBS+NCQ operation:
2526	 *
2527	 * Set a port flag to prevent further I/O being enqueued.
2528	 * Leave the EDMA running to drain outstanding commands from this port.
2529	 * Perform the post-mortem/EH only when all responses are complete.
2530	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2531	 */
2532	if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2533		pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2534		pp->delayed_eh_pmp_map = 0;
2535	}
2536	old_map = pp->delayed_eh_pmp_map;
2537	new_map = old_map | mv_get_err_pmp_map(ap);
2538
2539	if (old_map != new_map) {
2540		pp->delayed_eh_pmp_map = new_map;
2541		mv_pmp_eh_prep(ap, new_map & ~old_map);
2542	}
2543	failed_links = hweight16(new_map);
2544
2545	ata_port_info(ap,
2546		      "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n",
2547		      __func__, pp->delayed_eh_pmp_map,
2548		      ap->qc_active, failed_links,
2549		      ap->nr_active_links);
2550
2551	if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2552		mv_process_crpb_entries(ap, pp);
2553		mv_stop_edma(ap);
2554		mv_eh_freeze(ap);
2555		ata_port_info(ap, "%s: done\n", __func__);
2556		return 1;	/* handled */
2557	}
2558	ata_port_info(ap, "%s: waiting\n", __func__);
2559	return 1;	/* handled */
2560}
2561
2562static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2563{
2564	/*
2565	 * Possible future enhancement:
2566	 *
2567	 * FBS+non-NCQ operation is not yet implemented.
2568	 * See related notes in mv_edma_cfg().
2569	 *
2570	 * Device error during FBS+non-NCQ operation:
2571	 *
2572	 * We need to snapshot the shadow registers for each failed command.
2573	 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2574	 */
2575	return 0;	/* not handled */
2576}
2577
2578static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2579{
2580	struct mv_port_priv *pp = ap->private_data;
2581
2582	if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2583		return 0;	/* EDMA was not active: not handled */
2584	if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2585		return 0;	/* FBS was not active: not handled */
2586
2587	if (!(edma_err_cause & EDMA_ERR_DEV))
2588		return 0;	/* non DEV error: not handled */
2589	edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2590	if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2591		return 0;	/* other problems: not handled */
2592
2593	if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2594		/*
2595		 * EDMA should NOT have self-disabled for this case.
2596		 * If it did, then something is wrong elsewhere,
2597		 * and we cannot handle it here.
2598		 */
2599		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2600			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2601				      __func__, edma_err_cause, pp->pp_flags);
2602			return 0; /* not handled */
2603		}
2604		return mv_handle_fbs_ncq_dev_err(ap);
2605	} else {
2606		/*
2607		 * EDMA should have self-disabled for this case.
2608		 * If it did not, then something is wrong elsewhere,
2609		 * and we cannot handle it here.
2610		 */
2611		if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2612			ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n",
2613				      __func__, edma_err_cause, pp->pp_flags);
2614			return 0; /* not handled */
2615		}
2616		return mv_handle_fbs_non_ncq_dev_err(ap);
2617	}
2618	return 0;	/* not handled */
2619}
2620
2621static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2622{
2623	struct ata_eh_info *ehi = &ap->link.eh_info;
2624	char *when = "idle";
2625
2626	ata_ehi_clear_desc(ehi);
2627	if (edma_was_enabled) {
2628		when = "EDMA enabled";
2629	} else {
2630		struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2631		if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2632			when = "polling";
2633	}
2634	ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2635	ehi->err_mask |= AC_ERR_OTHER;
2636	ehi->action   |= ATA_EH_RESET;
2637	ata_port_freeze(ap);
2638}
2639
2640/**
2641 *      mv_err_intr - Handle error interrupts on the port
2642 *      @ap: ATA channel to manipulate
2643 *
2644 *      Most cases require a full reset of the chip's state machine,
2645 *      which also performs a COMRESET.
2646 *      Also, if the port disabled DMA, update our cached copy to match.
2647 *
2648 *      LOCKING:
2649 *      Inherited from caller.
2650 */
2651static void mv_err_intr(struct ata_port *ap)
2652{
2653	void __iomem *port_mmio = mv_ap_base(ap);
2654	u32 edma_err_cause, eh_freeze_mask, serr = 0;
2655	u32 fis_cause = 0;
2656	struct mv_port_priv *pp = ap->private_data;
2657	struct mv_host_priv *hpriv = ap->host->private_data;
2658	unsigned int action = 0, err_mask = 0;
2659	struct ata_eh_info *ehi = &ap->link.eh_info;
2660	struct ata_queued_cmd *qc;
2661	int abort = 0;
2662
2663	/*
2664	 * Read and clear the SError and err_cause bits.
2665	 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2666	 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2667	 */
2668	sata_scr_read(&ap->link, SCR_ERROR, &serr);
2669	sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2670
2671	edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2672	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2673		fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2674		writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2675	}
2676	writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2677
2678	if (edma_err_cause & EDMA_ERR_DEV) {
2679		/*
2680		 * Device errors during FIS-based switching operation
2681		 * require special handling.
2682		 */
2683		if (mv_handle_dev_err(ap, edma_err_cause))
2684			return;
2685	}
2686
2687	qc = mv_get_active_qc(ap);
2688	ata_ehi_clear_desc(ehi);
2689	ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2690			  edma_err_cause, pp->pp_flags);
2691
2692	if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2693		ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2694		if (fis_cause & FIS_IRQ_CAUSE_AN) {
2695			u32 ec = edma_err_cause &
2696			       ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2697			sata_async_notification(ap);
2698			if (!ec)
2699				return; /* Just an AN; no need for the nukes */
2700			ata_ehi_push_desc(ehi, "SDB notify");
2701		}
2702	}
2703	/*
2704	 * All generations share these EDMA error cause bits:
2705	 */
2706	if (edma_err_cause & EDMA_ERR_DEV) {
2707		err_mask |= AC_ERR_DEV;
2708		action |= ATA_EH_RESET;
2709		ata_ehi_push_desc(ehi, "dev error");
2710	}
2711	if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2712			EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2713			EDMA_ERR_INTRL_PAR)) {
2714		err_mask |= AC_ERR_ATA_BUS;
2715		action |= ATA_EH_RESET;
2716		ata_ehi_push_desc(ehi, "parity error");
2717	}
2718	if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2719		ata_ehi_hotplugged(ehi);
2720		ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2721			"dev disconnect" : "dev connect");
2722		action |= ATA_EH_RESET;
2723	}
2724
2725	/*
2726	 * Gen-I has a different SELF_DIS bit,
2727	 * different FREEZE bits, and no SERR bit:
2728	 */
2729	if (IS_GEN_I(hpriv)) {
2730		eh_freeze_mask = EDMA_EH_FREEZE_5;
2731		if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2732			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2733			ata_ehi_push_desc(ehi, "EDMA self-disable");
2734		}
2735	} else {
2736		eh_freeze_mask = EDMA_EH_FREEZE;
2737		if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2738			pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2739			ata_ehi_push_desc(ehi, "EDMA self-disable");
2740		}
2741		if (edma_err_cause & EDMA_ERR_SERR) {
2742			ata_ehi_push_desc(ehi, "SError=%08x", serr);
2743			err_mask |= AC_ERR_ATA_BUS;
2744			action |= ATA_EH_RESET;
2745		}
2746	}
2747
2748	if (!err_mask) {
2749		err_mask = AC_ERR_OTHER;
2750		action |= ATA_EH_RESET;
2751	}
2752
2753	ehi->serror |= serr;
2754	ehi->action |= action;
2755
2756	if (qc)
2757		qc->err_mask |= err_mask;
2758	else
2759		ehi->err_mask |= err_mask;
2760
2761	if (err_mask == AC_ERR_DEV) {
2762		/*
2763		 * Cannot do ata_port_freeze() here,
2764		 * because it would kill PIO access,
2765		 * which is needed for further diagnosis.
2766		 */
2767		mv_eh_freeze(ap);
2768		abort = 1;
2769	} else if (edma_err_cause & eh_freeze_mask) {
2770		/*
2771		 * Note to self: ata_port_freeze() calls ata_port_abort()
2772		 */
2773		ata_port_freeze(ap);
2774	} else {
2775		abort = 1;
2776	}
2777
2778	if (abort) {
2779		if (qc)
2780			ata_link_abort(qc->dev->link);
2781		else
2782			ata_port_abort(ap);
2783	}
2784}
2785
2786static bool mv_process_crpb_response(struct ata_port *ap,
2787		struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2788{
2789	u8 ata_status;
2790	u16 edma_status = le16_to_cpu(response->flags);
2791
2792	/*
2793	 * edma_status from a response queue entry:
2794	 *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2795	 *   MSB is saved ATA status from command completion.
2796	 */
2797	if (!ncq_enabled) {
2798		u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2799		if (err_cause) {
2800			/*
2801			 * Error will be seen/handled by
2802			 * mv_err_intr().  So do nothing at all here.
2803			 */
2804			return false;
2805		}
2806	}
2807	ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2808	if (!ac_err_mask(ata_status))
2809		return true;
2810	/* else: leave it for mv_err_intr() */
2811	return false;
2812}
2813
2814static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2815{
2816	void __iomem *port_mmio = mv_ap_base(ap);
2817	struct mv_host_priv *hpriv = ap->host->private_data;
2818	u32 in_index;
2819	bool work_done = false;
2820	u32 done_mask = 0;
2821	int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2822
2823	/* Get the hardware queue position index */
2824	in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2825			>> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2826
2827	/* Process new responses from since the last time we looked */
2828	while (in_index != pp->resp_idx) {
2829		unsigned int tag;
2830		struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2831
2832		pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2833
2834		if (IS_GEN_I(hpriv)) {
2835			/* 50xx: no NCQ, only one command active at a time */
2836			tag = ap->link.active_tag;
2837		} else {
2838			/* Gen II/IIE: get command tag from CRPB entry */
2839			tag = le16_to_cpu(response->id) & 0x1f;
2840		}
2841		if (mv_process_crpb_response(ap, response, tag, ncq_enabled))
2842			done_mask |= 1 << tag;
2843		work_done = true;
2844	}
2845
2846	if (work_done) {
2847		ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask);
2848
2849		/* Update the software queue position index in hardware */
2850		writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2851			 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2852			 port_mmio + EDMA_RSP_Q_OUT_PTR);
2853	}
2854}
2855
2856static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2857{
2858	struct mv_port_priv *pp;
2859	int edma_was_enabled;
2860
2861	/*
2862	 * Grab a snapshot of the EDMA_EN flag setting,
2863	 * so that we have a consistent view for this port,
2864	 * even if something we call of our routines changes it.
2865	 */
2866	pp = ap->private_data;
2867	edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2868	/*
2869	 * Process completed CRPB response(s) before other events.
2870	 */
2871	if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2872		mv_process_crpb_entries(ap, pp);
2873		if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2874			mv_handle_fbs_ncq_dev_err(ap);
2875	}
2876	/*
2877	 * Handle chip-reported errors, or continue on to handle PIO.
2878	 */
2879	if (unlikely(port_cause & ERR_IRQ)) {
2880		mv_err_intr(ap);
2881	} else if (!edma_was_enabled) {
2882		struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2883		if (qc)
2884			ata_bmdma_port_intr(ap, qc);
2885		else
2886			mv_unexpected_intr(ap, edma_was_enabled);
2887	}
2888}
2889
2890/**
2891 *      mv_host_intr - Handle all interrupts on the given host controller
2892 *      @host: host specific structure
2893 *      @main_irq_cause: Main interrupt cause register for the chip.
2894 *
2895 *      LOCKING:
2896 *      Inherited from caller.
2897 */
2898static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2899{
2900	struct mv_host_priv *hpriv = host->private_data;
2901	void __iomem *mmio = hpriv->base, *hc_mmio;
2902	unsigned int handled = 0, port;
2903
2904	/* If asserted, clear the "all ports" IRQ coalescing bit */
2905	if (main_irq_cause & ALL_PORTS_COAL_DONE)
2906		writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2907
2908	for (port = 0; port < hpriv->n_ports; port++) {
2909		struct ata_port *ap = host->ports[port];
2910		unsigned int p, shift, hardport, port_cause;
2911
2912		MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2913		/*
2914		 * Each hc within the host has its own hc_irq_cause register,
2915		 * where the interrupting ports bits get ack'd.
2916		 */
2917		if (hardport == 0) {	/* first port on this hc ? */
2918			u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2919			u32 port_mask, ack_irqs;
2920			/*
2921			 * Skip this entire hc if nothing pending for any ports
2922			 */
2923			if (!hc_cause) {
2924				port += MV_PORTS_PER_HC - 1;
2925				continue;
2926			}
2927			/*
2928			 * We don't need/want to read the hc_irq_cause register,
2929			 * because doing so hurts performance, and
2930			 * main_irq_cause already gives us everything we need.
2931			 *
2932			 * But we do have to *write* to the hc_irq_cause to ack
2933			 * the ports that we are handling this time through.
2934			 *
2935			 * This requires that we create a bitmap for those
2936			 * ports which interrupted us, and use that bitmap
2937			 * to ack (only) those ports via hc_irq_cause.
2938			 */
2939			ack_irqs = 0;
2940			if (hc_cause & PORTS_0_3_COAL_DONE)
2941				ack_irqs = HC_COAL_IRQ;
2942			for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2943				if ((port + p) >= hpriv->n_ports)
2944					break;
2945				port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2946				if (hc_cause & port_mask)
2947					ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2948			}
2949			hc_mmio = mv_hc_base_from_port(mmio, port);
2950			writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2951			handled = 1;
2952		}
2953		/*
2954		 * Handle interrupts signalled for this port:
2955		 */
2956		port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2957		if (port_cause)
2958			mv_port_intr(ap, port_cause);
2959	}
2960	return handled;
2961}
2962
2963static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2964{
2965	struct mv_host_priv *hpriv = host->private_data;
2966	struct ata_port *ap;
2967	struct ata_queued_cmd *qc;
2968	struct ata_eh_info *ehi;
2969	unsigned int i, err_mask, printed = 0;
2970	u32 err_cause;
2971
2972	err_cause = readl(mmio + hpriv->irq_cause_offset);
2973
2974	dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause);
2975
2976	DPRINTK("All regs @ PCI error\n");
2977	mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2978
2979	writelfl(0, mmio + hpriv->irq_cause_offset);
2980
2981	for (i = 0; i < host->n_ports; i++) {
2982		ap = host->ports[i];
2983		if (!ata_link_offline(&ap->link)) {
2984			ehi = &ap->link.eh_info;
2985			ata_ehi_clear_desc(ehi);
2986			if (!printed++)
2987				ata_ehi_push_desc(ehi,
2988					"PCI err cause 0x%08x", err_cause);
2989			err_mask = AC_ERR_HOST_BUS;
2990			ehi->action = ATA_EH_RESET;
2991			qc = ata_qc_from_tag(ap, ap->link.active_tag);
2992			if (qc)
2993				qc->err_mask |= err_mask;
2994			else
2995				ehi->err_mask |= err_mask;
2996
2997			ata_port_freeze(ap);
2998		}
2999	}
3000	return 1;	/* handled */
3001}
3002
3003/**
3004 *      mv_interrupt - Main interrupt event handler
3005 *      @irq: unused
3006 *      @dev_instance: private data; in this case the host structure
3007 *
3008 *      Read the read only register to determine if any host
3009 *      controllers have pending interrupts.  If so, call lower level
3010 *      routine to handle.  Also check for PCI errors which are only
3011 *      reported here.
3012 *
3013 *      LOCKING:
3014 *      This routine holds the host lock while processing pending
3015 *      interrupts.
3016 */
3017static irqreturn_t mv_interrupt(int irq, void *dev_instance)
3018{
3019	struct ata_host *host = dev_instance;
3020	struct mv_host_priv *hpriv = host->private_data;
3021	unsigned int handled = 0;
3022	int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
3023	u32 main_irq_cause, pending_irqs;
3024
3025	spin_lock(&host->lock);
3026
3027	/* for MSI:  block new interrupts while in here */
3028	if (using_msi)
3029		mv_write_main_irq_mask(0, hpriv);
3030
3031	main_irq_cause = readl(hpriv->main_irq_cause_addr);
3032	pending_irqs   = main_irq_cause & hpriv->main_irq_mask;
3033	/*
3034	 * Deal with cases where we either have nothing pending, or have read
3035	 * a bogus register value which can indicate HW removal or PCI fault.
3036	 */
3037	if (pending_irqs && main_irq_cause != 0xffffffffU) {
3038		if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
3039			handled = mv_pci_error(host, hpriv->base);
3040		else
3041			handled = mv_host_intr(host, pending_irqs);
3042	}
3043
3044	/* for MSI: unmask; interrupt cause bits will retrigger now */
3045	if (using_msi)
3046		mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
3047
3048	spin_unlock(&host->lock);
3049
3050	return IRQ_RETVAL(handled);
3051}
3052
3053static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
3054{
3055	unsigned int ofs;
3056
3057	switch (sc_reg_in) {
3058	case SCR_STATUS:
3059	case SCR_ERROR:
3060	case SCR_CONTROL:
3061		ofs = sc_reg_in * sizeof(u32);
3062		break;
3063	default:
3064		ofs = 0xffffffffU;
3065		break;
3066	}
3067	return ofs;
3068}
3069
3070static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3071{
3072	struct mv_host_priv *hpriv = link->ap->host->private_data;
3073	void __iomem *mmio = hpriv->base;
3074	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3075	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3076
3077	if (ofs != 0xffffffffU) {
3078		*val = readl(addr + ofs);
3079		return 0;
3080	} else
3081		return -EINVAL;
3082}
3083
3084static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3085{
3086	struct mv_host_priv *hpriv = link->ap->host->private_data;
3087	void __iomem *mmio = hpriv->base;
3088	void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3089	unsigned int ofs = mv5_scr_offset(sc_reg_in);
3090
3091	if (ofs != 0xffffffffU) {
3092		writelfl(val, addr + ofs);
3093		return 0;
3094	} else
3095		return -EINVAL;
3096}
3097
3098static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3099{
3100	struct pci_dev *pdev = to_pci_dev(host->dev);
3101	int early_5080;
3102
3103	early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3104
3105	if (!early_5080) {
3106		u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3107		tmp |= (1 << 0);
3108		writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3109	}
3110
3111	mv_reset_pci_bus(host, mmio);
3112}
3113
3114static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3115{
3116	writel(0x0fcfffff, mmio + FLASH_CTL);
3117}
3118
3119static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3120			   void __iomem *mmio)
3121{
3122	void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3123	u32 tmp;
3124
3125	tmp = readl(phy_mmio + MV5_PHY_MODE);
3126
3127	hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */
3128	hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */
3129}
3130
3131static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3132{
3133	u32 tmp;
3134
3135	writel(0, mmio + GPIO_PORT_CTL);
3136
3137	/* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3138
3139	tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3140	tmp |= ~(1 << 0);
3141	writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3142}
3143
3144static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3145			   unsigned int port)
3146{
3147	void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3148	const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3149	u32 tmp;
3150	int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3151
3152	if (fix_apm_sq) {
3153		tmp = readl(phy_mmio + MV5_LTMODE);
3154		tmp |= (1 << 19);
3155		writel(tmp, phy_mmio + MV5_LTMODE);
3156
3157		tmp = readl(phy_mmio + MV5_PHY_CTL);
3158		tmp &= ~0x3;
3159		tmp |= 0x1;
3160		writel(tmp, phy_mmio + MV5_PHY_CTL);
3161	}
3162
3163	tmp = readl(phy_mmio + MV5_PHY_MODE);
3164	tmp &= ~mask;
3165	tmp |= hpriv->signal[port].pre;
3166	tmp |= hpriv->signal[port].amps;
3167	writel(tmp, phy_mmio + MV5_PHY_MODE);
3168}
3169
3170
3171#undef ZERO
3172#define ZERO(reg) writel(0, port_mmio + (reg))
3173static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3174			     unsigned int port)
3175{
3176	void __iomem *port_mmio = mv_port_base(mmio, port);
3177
3178	mv_reset_channel(hpriv, mmio, port);
3179
3180	ZERO(0x028);	/* command */
3181	writel(0x11f, port_mmio + EDMA_CFG);
3182	ZERO(0x004);	/* timer */
3183	ZERO(0x008);	/* irq err cause */
3184	ZERO(0x00c);	/* irq err mask */
3185	ZERO(0x010);	/* rq bah */
3186	ZERO(0x014);	/* rq inp */
3187	ZERO(0x018);	/* rq outp */
3188	ZERO(0x01c);	/* respq bah */
3189	ZERO(0x024);	/* respq outp */
3190	ZERO(0x020);	/* respq inp */
3191	ZERO(0x02c);	/* test control */
3192	writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3193}
3194#undef ZERO
3195
3196#define ZERO(reg) writel(0, hc_mmio + (reg))
3197static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3198			unsigned int hc)
3199{
3200	void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3201	u32 tmp;
3202
3203	ZERO(0x00c);
3204	ZERO(0x010);
3205	ZERO(0x014);
3206	ZERO(0x018);
3207
3208	tmp = readl(hc_mmio + 0x20);
3209	tmp &= 0x1c1c1c1c;
3210	tmp |= 0x03030303;
3211	writel(tmp, hc_mmio + 0x20);
3212}
3213#undef ZERO
3214
3215static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3216			unsigned int n_hc)
3217{
3218	unsigned int hc, port;
3219
3220	for (hc = 0; hc < n_hc; hc++) {
3221		for (port = 0; port < MV_PORTS_PER_HC; port++)
3222			mv5_reset_hc_port(hpriv, mmio,
3223					  (hc * MV_PORTS_PER_HC) + port);
3224
3225		mv5_reset_one_hc(hpriv, mmio, hc);
3226	}
3227
3228	return 0;
3229}
3230
3231#undef ZERO
3232#define ZERO(reg) writel(0, mmio + (reg))
3233static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3234{
3235	struct mv_host_priv *hpriv = host->private_data;
3236	u32 tmp;
3237
3238	tmp = readl(mmio + MV_PCI_MODE);
3239	tmp &= 0xff00ffff;
3240	writel(tmp, mmio + MV_PCI_MODE);
3241
3242	ZERO(MV_PCI_DISC_TIMER);
3243	ZERO(MV_PCI_MSI_TRIGGER);
3244	writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3245	ZERO(MV_PCI_SERR_MASK);
3246	ZERO(hpriv->irq_cause_offset);
3247	ZERO(hpriv->irq_mask_offset);
3248	ZERO(MV_PCI_ERR_LOW_ADDRESS);
3249	ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3250	ZERO(MV_PCI_ERR_ATTRIBUTE);
3251	ZERO(MV_PCI_ERR_COMMAND);
3252}
3253#undef ZERO
3254
3255static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3256{
3257	u32 tmp;
3258
3259	mv5_reset_flash(hpriv, mmio);
3260
3261	tmp = readl(mmio + GPIO_PORT_CTL);
3262	tmp &= 0x3;
3263	tmp |= (1 << 5) | (1 << 6);
3264	writel(tmp, mmio + GPIO_PORT_CTL);
3265}
3266
3267/**
3268 *      mv6_reset_hc - Perform the 6xxx global soft reset
3269 *      @mmio: base address of the HBA
3270 *
3271 *      This routine only applies to 6xxx parts.
3272 *
3273 *      LOCKING:
3274 *      Inherited from caller.
3275 */
3276static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3277			unsigned int n_hc)
3278{
3279	void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3280	int i, rc = 0;
3281	u32 t;
3282
3283	/* Following procedure defined in PCI "main command and status
3284	 * register" table.
3285	 */
3286	t = readl(reg);
3287	writel(t | STOP_PCI_MASTER, reg);
3288
3289	for (i = 0; i < 1000; i++) {
3290		udelay(1);
3291		t = readl(reg);
3292		if (PCI_MASTER_EMPTY & t)
3293			break;
3294	}
3295	if (!(PCI_MASTER_EMPTY & t)) {
3296		printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3297		rc = 1;
3298		goto done;
3299	}
3300
3301	/* set reset */
3302	i = 5;
3303	do {
3304		writel(t | GLOB_SFT_RST, reg);
3305		t = readl(reg);
3306		udelay(1);
3307	} while (!(GLOB_SFT_RST & t) && (i-- > 0));
3308
3309	if (!(GLOB_SFT_RST & t)) {
3310		printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3311		rc = 1;
3312		goto done;
3313	}
3314
3315	/* clear reset and *reenable the PCI master* (not mentioned in spec) */
3316	i = 5;
3317	do {
3318		writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3319		t = readl(reg);
3320		udelay(1);
3321	} while ((GLOB_SFT_RST & t) && (i-- > 0));
3322
3323	if (GLOB_SFT_RST & t) {
3324		printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3325		rc = 1;
3326	}
3327done:
3328	return rc;
3329}
3330
3331static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3332			   void __iomem *mmio)
3333{
3334	void __iomem *port_mmio;
3335	u32 tmp;
3336
3337	tmp = readl(mmio + RESET_CFG);
3338	if ((tmp & (1 << 0)) == 0) {
3339		hpriv->signal[idx].amps = 0x7 << 8;
3340		hpriv->signal[idx].pre = 0x1 << 5;
3341		return;
3342	}
3343
3344	port_mmio = mv_port_base(mmio, idx);
3345	tmp = readl(port_mmio + PHY_MODE2);
3346
3347	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3348	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3349}
3350
3351static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3352{
3353	writel(0x00000060, mmio + GPIO_PORT_CTL);
3354}
3355
3356static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3357			   unsigned int port)
3358{
3359	void __iomem *port_mmio = mv_port_base(mmio, port);
3360
3361	u32 hp_flags = hpriv->hp_flags;
3362	int fix_phy_mode2 =
3363		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3364	int fix_phy_mode4 =
3365		hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3366	u32 m2, m3;
3367
3368	if (fix_phy_mode2) {
3369		m2 = readl(port_mmio + PHY_MODE2);
3370		m2 &= ~(1 << 16);
3371		m2 |= (1 << 31);
3372		writel(m2, port_mmio + PHY_MODE2);
3373
3374		udelay(200);
3375
3376		m2 = readl(port_mmio + PHY_MODE2);
3377		m2 &= ~((1 << 16) | (1 << 31));
3378		writel(m2, port_mmio + PHY_MODE2);
3379
3380		udelay(200);
3381	}
3382
3383	/*
3384	 * Gen-II/IIe PHY_MODE3 errata RM#2:
3385	 * Achieves better receiver noise performance than the h/w default:
3386	 */
3387	m3 = readl(port_mmio + PHY_MODE3);
3388	m3 = (m3 & 0x1f) | (0x5555601 << 5);
3389
3390	/* Guideline 88F5182 (GL# SATA-S11) */
3391	if (IS_SOC(hpriv))
3392		m3 &= ~0x1c;
3393
3394	if (fix_phy_mode4) {
3395		u32 m4 = readl(port_mmio + PHY_MODE4);
3396		/*
3397		 * Enforce reserved-bit restrictions on GenIIe devices only.
3398		 * For earlier chipsets, force only the internal config field
3399		 *  (workaround for errata FEr SATA#10 part 1).
3400		 */
3401		if (IS_GEN_IIE(hpriv))
3402			m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3403		else
3404			m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3405		writel(m4, port_mmio + PHY_MODE4);
3406	}
3407	/*
3408	 * Workaround for 60x1-B2 errata SATA#13:
3409	 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3410	 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3411	 * Or ensure we use writelfl() when writing PHY_MODE4.
3412	 */
3413	writel(m3, port_mmio + PHY_MODE3);
3414
3415	/* Revert values of pre-emphasis and signal amps to the saved ones */
3416	m2 = readl(port_mmio + PHY_MODE2);
3417
3418	m2 &= ~MV_M2_PREAMP_MASK;
3419	m2 |= hpriv->signal[port].amps;
3420	m2 |= hpriv->signal[port].pre;
3421	m2 &= ~(1 << 16);
3422
3423	/* according to mvSata 3.6.1, some IIE values are fixed */
3424	if (IS_GEN_IIE(hpriv)) {
3425		m2 &= ~0xC30FF01F;
3426		m2 |= 0x0000900F;
3427	}
3428
3429	writel(m2, port_mmio + PHY_MODE2);
3430}
3431
3432/* TODO: use the generic LED interface to configure the SATA Presence */
3433/* & Acitivy LEDs on the board */
3434static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3435				      void __iomem *mmio)
3436{
3437	return;
3438}
3439
3440static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3441			   void __iomem *mmio)
3442{
3443	void __iomem *port_mmio;
3444	u32 tmp;
3445
3446	port_mmio = mv_port_base(mmio, idx);
3447	tmp = readl(port_mmio + PHY_MODE2);
3448
3449	hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */
3450	hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */
3451}
3452
3453#undef ZERO
3454#define ZERO(reg) writel(0, port_mmio + (reg))
3455static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3456					void __iomem *mmio, unsigned int port)
3457{
3458	void __iomem *port_mmio = mv_port_base(mmio, port);
3459
3460	mv_reset_channel(hpriv, mmio, port);
3461
3462	ZERO(0x028);		/* command */
3463	writel(0x101f, port_mmio + EDMA_CFG);
3464	ZERO(0x004);		/* timer */
3465	ZERO(0x008);		/* irq err cause */
3466	ZERO(0x00c);		/* irq err mask */
3467	ZERO(0x010);		/* rq bah */
3468	ZERO(0x014);		/* rq inp */
3469	ZERO(0x018);		/* rq outp */
3470	ZERO(0x01c);		/* respq bah */
3471	ZERO(0x024);		/* respq outp */
3472	ZERO(0x020);		/* respq inp */
3473	ZERO(0x02c);		/* test control */
3474	writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3475}
3476
3477#undef ZERO
3478
3479#define ZERO(reg) writel(0, hc_mmio + (reg))
3480static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3481				       void __iomem *mmio)
3482{
3483	void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3484
3485	ZERO(0x00c);
3486	ZERO(0x010);
3487	ZERO(0x014);
3488
3489}
3490
3491#undef ZERO
3492
3493static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3494				  void __iomem *mmio, unsigned int n_hc)
3495{
3496	unsigned int port;
3497
3498	for (port = 0; port < hpriv->n_ports; port++)
3499		mv_soc_reset_hc_port(hpriv, mmio, port);
3500
3501	mv_soc_reset_one_hc(hpriv, mmio);
3502
3503	return 0;
3504}
3505
3506static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3507				      void __iomem *mmio)
3508{
3509	return;
3510}
3511
3512static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3513{
3514	return;
3515}
3516
3517static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3518				  void __iomem *mmio, unsigned int port)
3519{
3520	void __iomem *port_mmio = mv_port_base(mmio, port);
3521	u32	reg;
3522
3523	reg = readl(port_mmio + PHY_MODE3);
3524	reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */
3525	reg |= (0x1 << 27);
3526	reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */
3527	reg |= (0x1 << 29);
3528	writel(reg, port_mmio + PHY_MODE3);
3529
3530	reg = readl(port_mmio + PHY_MODE4);
3531	reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3532	reg |= (0x1 << 16);
3533	writel(reg, port_mmio + PHY_MODE4);
3534
3535	reg = readl(port_mmio + PHY_MODE9_GEN2);
3536	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3537	reg |= 0x8;
3538	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3539	writel(reg, port_mmio + PHY_MODE9_GEN2);
3540
3541	reg = readl(port_mmio + PHY_MODE9_GEN1);
3542	reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */
3543	reg |= 0x8;
3544	reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */
3545	writel(reg, port_mmio + PHY_MODE9_GEN1);
3546}
3547
3548/**
3549 *	soc_is_65 - check if the soc is 65 nano device
3550 *
3551 *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3552 *	register, this register should contain non-zero value and it exists only
3553 *	in the 65 nano devices, when reading it from older devices we get 0.
3554 */
3555static bool soc_is_65n(struct mv_host_priv *hpriv)
3556{
3557	void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3558
3559	if (readl(port0_mmio + PHYCFG_OFS))
3560		return true;
3561	return false;
3562}
3563
3564static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3565{
3566	u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3567
3568	ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */
3569	if (want_gen2i)
3570		ifcfg |= (1 << 7);		/* enable gen2i speed */
3571	writelfl(ifcfg, port_mmio + SATA_IFCFG);
3572}
3573
3574static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3575			     unsigned int port_no)
3576{
3577	void __iomem *port_mmio = mv_port_base(mmio, port_no);
3578
3579	/*
3580	 * The datasheet warns against setting EDMA_RESET when EDMA is active
3581	 * (but doesn't say what the problem might be).  So we first try
3582	 * to disable the EDMA engine before doing the EDMA_RESET operation.
3583	 */
3584	mv_stop_edma_engine(port_mmio);
3585	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3586
3587	if (!IS_GEN_I(hpriv)) {
3588		/* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3589		mv_setup_ifcfg(port_mmio, 1);
3590	}
3591	/*
3592	 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3593	 * link, and physical layers.  It resets all SATA interface registers
3594	 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3595	 */
3596	writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3597	udelay(25);	/* allow reset propagation */
3598	writelfl(0, port_mmio + EDMA_CMD);
3599
3600	hpriv->ops->phy_errata(hpriv, mmio, port_no);
3601
3602	if (IS_GEN_I(hpriv))
3603		mdelay(1);
3604}
3605
3606static void mv_pmp_select(struct ata_port *ap, int pmp)
3607{
3608	if (sata_pmp_supported(ap)) {
3609		void __iomem *port_mmio = mv_ap_base(ap);
3610		u32 reg = readl(port_mmio + SATA_IFCTL);
3611		int old = reg & 0xf;
3612
3613		if (old != pmp) {
3614			reg = (reg & ~0xf) | pmp;
3615			writelfl(reg, port_mmio + SATA_IFCTL);
3616		}
3617	}
3618}
3619
3620static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3621				unsigned long deadline)
3622{
3623	mv_pmp_select(link->ap, sata_srst_pmp(link));
3624	return sata_std_hardreset(link, class, deadline);
3625}
3626
3627static int mv_softreset(struct ata_link *link, unsigned int *class,
3628				unsigned long deadline)
3629{
3630	mv_pmp_select(link->ap, sata_srst_pmp(link));
3631	return ata_sff_softreset(link, class, deadline);
3632}
3633
3634static int mv_hardreset(struct ata_link *link, unsigned int *class,
3635			unsigned long deadline)
3636{
3637	struct ata_port *ap = link->ap;
3638	struct mv_host_priv *hpriv = ap->host->private_data;
3639	struct mv_port_priv *pp = ap->private_data;
3640	void __iomem *mmio = hpriv->base;
3641	int rc, attempts = 0, extra = 0;
3642	u32 sstatus;
3643	bool online;
3644
3645	mv_reset_channel(hpriv, mmio, ap->port_no);
3646	pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3647	pp->pp_flags &=
3648	  ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3649
3650	/* Workaround for errata FEr SATA#10 (part 2) */
3651	do {
3652		const unsigned long *timing =
3653				sata_ehc_deb_timing(&link->eh_context);
3654
3655		rc = sata_link_hardreset(link, timing, deadline + extra,
3656					 &online, NULL);
3657		rc = online ? -EAGAIN : rc;
3658		if (rc)
3659			return rc;
3660		sata_scr_read(link, SCR_STATUS, &sstatus);
3661		if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3662			/* Force 1.5gb/s link speed and try again */
3663			mv_setup_ifcfg(mv_ap_base(ap), 0);
3664			if (time_after(jiffies + HZ, deadline))
3665				extra = HZ; /* only extend it once, max */
3666		}
3667	} while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3668	mv_save_cached_regs(ap);
3669	mv_edma_cfg(ap, 0, 0);
3670
3671	return rc;
3672}
3673
3674static void mv_eh_freeze(struct ata_port *ap)
3675{
3676	mv_stop_edma(ap);
3677	mv_enable_port_irqs(ap, 0);
3678}
3679
3680static void mv_eh_thaw(struct ata_port *ap)
3681{
3682	struct mv_host_priv *hpriv = ap->host->private_data;
3683	unsigned int port = ap->port_no;
3684	unsigned int hardport = mv_hardport_from_port(port);
3685	void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3686	void __iomem *port_mmio = mv_ap_base(ap);
3687	u32 hc_irq_cause;
3688
3689	/* clear EDMA errors on this port */
3690	writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3691
3692	/* clear pending irq events */
3693	hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3694	writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3695
3696	mv_enable_port_irqs(ap, ERR_IRQ);
3697}
3698
3699/**
3700 *      mv_port_init - Perform some early initialization on a single port.
3701 *      @port: libata data structure storing shadow register addresses
3702 *      @port_mmio: base address of the port
3703 *
3704 *      Initialize shadow register mmio addresses, clear outstanding
3705 *      interrupts on the port, and unmask interrupts for the future
3706 *      start of the port.
3707 *
3708 *      LOCKING:
3709 *      Inherited from caller.
3710 */
3711static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio)
3712{
3713	void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3714
3715	/* PIO related setup
3716	 */
3717	port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3718	port->error_addr =
3719		port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3720	port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3721	port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3722	port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3723	port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3724	port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3725	port->status_addr =
3726		port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3727	/* special case: control/altstatus doesn't have ATA_REG_ address */
3728	port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3729
3730	/* Clear any currently outstanding port interrupt conditions */
3731	serr = port_mmio + mv_scr_offset(SCR_ERROR);
3732	writelfl(readl(serr), serr);
3733	writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3734
3735	/* unmask all non-transient EDMA error interrupts */
3736	writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3737
3738	VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3739		readl(port_mmio + EDMA_CFG),
3740		readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3741		readl(port_mmio + EDMA_ERR_IRQ_MASK));
3742}
3743
3744static unsigned int mv_in_pcix_mode(struct ata_host *host)
3745{
3746	struct mv_host_priv *hpriv = host->private_data;
3747	void __iomem *mmio = hpriv->base;
3748	u32 reg;
3749
3750	if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3751		return 0;	/* not PCI-X capable */
3752	reg = readl(mmio + MV_PCI_MODE);
3753	if ((reg & MV_PCI_MODE_MASK) == 0)
3754		return 0;	/* conventional PCI mode */
3755	return 1;	/* chip is in PCI-X mode */
3756}
3757
3758static int mv_pci_cut_through_okay(struct ata_host *host)
3759{
3760	struct mv_host_priv *hpriv = host->private_data;
3761	void __iomem *mmio = hpriv->base;
3762	u32 reg;
3763
3764	if (!mv_in_pcix_mode(host)) {
3765		reg = readl(mmio + MV_PCI_COMMAND);
3766		if (reg & MV_PCI_COMMAND_MRDTRIG)
3767			return 0; /* not okay */
3768	}
3769	return 1; /* okay */
3770}
3771
3772static void mv_60x1b2_errata_pci7(struct ata_host *host)
3773{
3774	struct mv_host_priv *hpriv = host->private_data;
3775	void __iomem *mmio = hpriv->base;
3776
3777	/* workaround for 60x1-B2 errata PCI#7 */
3778	if (mv_in_pcix_mode(host)) {
3779		u32 reg = readl(mmio + MV_PCI_COMMAND);
3780		writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3781	}
3782}
3783
3784static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3785{
3786	struct pci_dev *pdev = to_pci_dev(host->dev);
3787	struct mv_host_priv *hpriv = host->private_data;
3788	u32 hp_flags = hpriv->hp_flags;
3789
3790	switch (board_idx) {
3791	case chip_5080:
3792		hpriv->ops = &mv5xxx_ops;
3793		hp_flags |= MV_HP_GEN_I;
3794
3795		switch (pdev->revision) {
3796		case 0x1:
3797			hp_flags |= MV_HP_ERRATA_50XXB0;
3798			break;
3799		case 0x3:
3800			hp_flags |= MV_HP_ERRATA_50XXB2;
3801			break;
3802		default:
3803			dev_warn(&pdev->dev,
3804				 "Applying 50XXB2 workarounds to unknown rev\n");
3805			hp_flags |= MV_HP_ERRATA_50XXB2;
3806			break;
3807		}
3808		break;
3809
3810	case chip_504x:
3811	case chip_508x:
3812		hpriv->ops = &mv5xxx_ops;
3813		hp_flags |= MV_HP_GEN_I;
3814
3815		switch (pdev->revision) {
3816		case 0x0:
3817			hp_flags |= MV_HP_ERRATA_50XXB0;
3818			break;
3819		case 0x3:
3820			hp_flags |= MV_HP_ERRATA_50XXB2;
3821			break;
3822		default:
3823			dev_warn(&pdev->dev,
3824				 "Applying B2 workarounds to unknown rev\n");
3825			hp_flags |= MV_HP_ERRATA_50XXB2;
3826			break;
3827		}
3828		break;
3829
3830	case chip_604x:
3831	case chip_608x:
3832		hpriv->ops = &mv6xxx_ops;
3833		hp_flags |= MV_HP_GEN_II;
3834
3835		switch (pdev->revision) {
3836		case 0x7:
3837			mv_60x1b2_errata_pci7(host);
3838			hp_flags |= MV_HP_ERRATA_60X1B2;
3839			break;
3840		case 0x9:
3841			hp_flags |= MV_HP_ERRATA_60X1C0;
3842			break;
3843		default:
3844			dev_warn(&pdev->dev,
3845				 "Applying B2 workarounds to unknown rev\n");
3846			hp_flags |= MV_HP_ERRATA_60X1B2;
3847			break;
3848		}
3849		break;
3850
3851	case chip_7042:
3852		hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3853		if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3854		    (pdev->device == 0x2300 || pdev->device == 0x2310))
3855		{
3856			/*
3857			 * Highpoint RocketRAID PCIe 23xx series cards:
3858			 *
3859			 * Unconfigured drives are treated as "Legacy"
3860			 * by the BIOS, and it overwrites sector 8 with
3861			 * a "Lgcy" metadata block prior to Linux boot.
3862			 *
3863			 * Configured drives (RAID or JBOD) leave sector 8
3864			 * alone, but instead overwrite a high numbered
3865			 * sector for the RAID metadata.  This sector can
3866			 * be determined exactly, by truncating the physical
3867			 * drive capacity to a nice even GB value.
3868			 *
3869			 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3870			 *
3871			 * Warn the user, lest they think we're just buggy.
3872			 */
3873			printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3874				" BIOS CORRUPTS DATA on all attached drives,"
3875				" regardless of if/how they are configured."
3876				" BEWARE!\n");
3877			printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3878				" use sectors 8-9 on \"Legacy\" drives,"
3879				" and avoid the final two gigabytes on"
3880				" all RocketRAID BIOS initialized drives.\n");
3881		}
3882		/* drop through */
3883	case chip_6042:
3884		hpriv->ops = &mv6xxx_ops;
3885		hp_flags |= MV_HP_GEN_IIE;
3886		if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3887			hp_flags |= MV_HP_CUT_THROUGH;
3888
3889		switch (pdev->revision) {
3890		case 0x2: /* Rev.B0: the first/only public release */
3891			hp_flags |= MV_HP_ERRATA_60X1C0;
3892			break;
3893		default:
3894			dev_warn(&pdev->dev,
3895				 "Applying 60X1C0 workarounds to unknown rev\n");
3896			hp_flags |= MV_HP_ERRATA_60X1C0;
3897			break;
3898		}
3899		break;
3900	case chip_soc:
3901		if (soc_is_65n(hpriv))
3902			hpriv->ops = &mv_soc_65n_ops;
3903		else
3904			hpriv->ops = &mv_soc_ops;
3905		hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3906			MV_HP_ERRATA_60X1C0;
3907		break;
3908
3909	default:
3910		dev_err(host->dev, "BUG: invalid board index %u\n", board_idx);
3911		return 1;
3912	}
3913
3914	hpriv->hp_flags = hp_flags;
3915	if (hp_flags & MV_HP_PCIE) {
3916		hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE;
3917		hpriv->irq_mask_offset	= PCIE_IRQ_MASK;
3918		hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS;
3919	} else {
3920		hpriv->irq_cause_offset	= PCI_IRQ_CAUSE;
3921		hpriv->irq_mask_offset	= PCI_IRQ_MASK;
3922		hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS;
3923	}
3924
3925	return 0;
3926}
3927
3928/**
3929 *      mv_init_host - Perform some early initialization of the host.
3930 *	@host: ATA host to initialize
3931 *
3932 *      If possible, do an early global reset of the host.  Then do
3933 *      our port init and clear/unmask all/relevant host interrupts.
3934 *
3935 *      LOCKING:
3936 *      Inherited from caller.
3937 */
3938static int mv_init_host(struct ata_host *host)
3939{
3940	int rc = 0, n_hc, port, hc;
3941	struct mv_host_priv *hpriv = host->private_data;
3942	void __iomem *mmio = hpriv->base;
3943
3944	rc = mv_chip_id(host, hpriv->board_idx);
3945	if (rc)
3946		goto done;
3947
3948	if (IS_SOC(hpriv)) {
3949		hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3950		hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK;
3951	} else {
3952		hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3953		hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK;
3954	}
3955
3956	/* initialize shadow irq mask with register's value */
3957	hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3958
3959	/* global interrupt mask: 0 == mask everything */
3960	mv_set_main_irq_mask(host, ~0, 0);
3961
3962	n_hc = mv_get_hc_count(host->ports[0]->flags);
3963
3964	for (port = 0; port < host->n_ports; port++)
3965		if (hpriv->ops->read_preamp)
3966			hpriv->ops->read_preamp(hpriv, port, mmio);
3967
3968	rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3969	if (rc)
3970		goto done;
3971
3972	hpriv->ops->reset_flash(hpriv, mmio);
3973	hpriv->ops->reset_bus(host, mmio);
3974	hpriv->ops->enable_leds(hpriv, mmio);
3975
3976	for (port = 0; port < host->n_ports; port++) {
3977		struct ata_port *ap = host->ports[port];
3978		void __iomem *port_mmio = mv_port_base(mmio, port);
3979
3980		mv_port_init(&ap->ioaddr, port_mmio);
3981	}
3982
3983	for (hc = 0; hc < n_hc; hc++) {
3984		void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3985
3986		VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3987			"(before clear)=0x%08x\n", hc,
3988			readl(hc_mmio + HC_CFG),
3989			readl(hc_mmio + HC_IRQ_CAUSE));
3990
3991		/* Clear any currently outstanding hc interrupt conditions */
3992		writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3993	}
3994
3995	if (!IS_SOC(hpriv)) {
3996		/* Clear any currently outstanding host interrupt conditions */
3997		writelfl(0, mmio + hpriv->irq_cause_offset);
3998
3999		/* and unmask interrupt generation for host regs */
4000		writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
4001	}
4002
4003	/*
4004	 * enable only global host interrupts for now.
4005	 * The per-port interrupts get done later as ports are set up.
4006	 */
4007	mv_set_main_irq_mask(host, 0, PCI_ERR);
4008	mv_set_irq_coalescing(host, irq_coalescing_io_count,
4009				    irq_coalescing_usecs);
4010done:
4011	return rc;
4012}
4013
4014static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
4015{
4016	hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
4017							     MV_CRQB_Q_SZ, 0);
4018	if (!hpriv->crqb_pool)
4019		return -ENOMEM;
4020
4021	hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
4022							     MV_CRPB_Q_SZ, 0);
4023	if (!hpriv->crpb_pool)
4024		return -ENOMEM;
4025
4026	hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
4027							     MV_SG_TBL_SZ, 0);
4028	if (!hpriv->sg_tbl_pool)
4029		return -ENOMEM;
4030
4031	return 0;
4032}
4033
4034static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
4035				 const struct mbus_dram_target_info *dram)
4036{
4037	int i;
4038
4039	for (i = 0; i < 4; i++) {
4040		writel(0, hpriv->base + WINDOW_CTRL(i));
4041		writel(0, hpriv->base + WINDOW_BASE(i));
4042	}
4043
4044	for (i = 0; i < dram->num_cs; i++) {
4045		const struct mbus_dram_window *cs = dram->cs + i;
4046
4047		writel(((cs->size - 1) & 0xffff0000) |
4048			(cs->mbus_attr << 8) |
4049			(dram->mbus_dram_target_id << 4) | 1,
4050			hpriv->base + WINDOW_CTRL(i));
4051		writel(cs->base, hpriv->base + WINDOW_BASE(i));
4052	}
4053}
4054
4055/**
4056 *      mv_platform_probe - handle a positive probe of an soc Marvell
4057 *      host
4058 *      @pdev: platform device found
4059 *
4060 *      LOCKING:
4061 *      Inherited from caller.
4062 */
4063static int mv_platform_probe(struct platform_device *pdev)
4064{
4065	const struct mv_sata_platform_data *mv_platform_data;
4066	const struct mbus_dram_target_info *dram;
4067	const struct ata_port_info *ppi[] =
4068	    { &mv_port_info[chip_soc], NULL };
4069	struct ata_host *host;
4070	struct mv_host_priv *hpriv;
4071	struct resource *res;
4072	int n_ports = 0, irq = 0;
4073	int rc;
4074	int port;
4075
4076	ata_print_version_once(&pdev->dev, DRV_VERSION);
4077
4078	/*
4079	 * Simple resource validation ..
4080	 */
4081	if (unlikely(pdev->num_resources != 2)) {
4082		dev_err(&pdev->dev, "invalid number of resources\n");
4083		return -EINVAL;
4084	}
4085
4086	/*
4087	 * Get the register base first
4088	 */
4089	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4090	if (res == NULL)
4091		return -EINVAL;
4092
4093	/* allocate host */
4094	if (pdev->dev.of_node) {
4095		of_property_read_u32(pdev->dev.of_node, "nr-ports", &n_ports);
4096		irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
4097	} else {
4098		mv_platform_data = dev_get_platdata(&pdev->dev);
4099		n_ports = mv_platform_data->n_ports;
4100		irq = platform_get_irq(pdev, 0);
4101	}
4102
4103	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4104	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4105
4106	if (!host || !hpriv)
4107		return -ENOMEM;
4108	hpriv->port_clks = devm_kzalloc(&pdev->dev,
4109					sizeof(struct clk *) * n_ports,
4110					GFP_KERNEL);
4111	if (!hpriv->port_clks)
4112		return -ENOMEM;
4113	hpriv->port_phys = devm_kzalloc(&pdev->dev,
4114					sizeof(struct phy *) * n_ports,
4115					GFP_KERNEL);
4116	if (!hpriv->port_phys)
4117		return -ENOMEM;
4118	host->private_data = hpriv;
4119	hpriv->board_idx = chip_soc;
4120
4121	host->iomap = NULL;
4122	hpriv->base = devm_ioremap(&pdev->dev, res->start,
4123				   resource_size(res));
4124	hpriv->base -= SATAHC0_REG_BASE;
4125
4126	hpriv->clk = clk_get(&pdev->dev, NULL);
4127	if (IS_ERR(hpriv->clk))
4128		dev_notice(&pdev->dev, "cannot get optional clkdev\n");
4129	else
4130		clk_prepare_enable(hpriv->clk);
4131
4132	for (port = 0; port < n_ports; port++) {
4133		char port_number[16];
4134		sprintf(port_number, "%d", port);
4135		hpriv->port_clks[port] = clk_get(&pdev->dev, port_number);
4136		if (!IS_ERR(hpriv->port_clks[port]))
4137			clk_prepare_enable(hpriv->port_clks[port]);
4138
4139		sprintf(port_number, "port%d", port);
4140		hpriv->port_phys[port] = devm_phy_optional_get(&pdev->dev,
4141							       port_number);
4142		if (IS_ERR(hpriv->port_phys[port])) {
4143			rc = PTR_ERR(hpriv->port_phys[port]);
4144			hpriv->port_phys[port] = NULL;
4145			if (rc != -EPROBE_DEFER)
4146				dev_warn(&pdev->dev, "error getting phy %d", rc);
4147
4148			/* Cleanup only the initialized ports */
4149			hpriv->n_ports = port;
4150			goto err;
4151		} else
4152			phy_power_on(hpriv->port_phys[port]);
4153	}
4154
4155	/* All the ports have been initialized */
4156	hpriv->n_ports = n_ports;
4157
4158	/*
4159	 * (Re-)program MBUS remapping windows if we are asked to.
4160	 */
4161	dram = mv_mbus_dram_info();
4162	if (dram)
4163		mv_conf_mbus_windows(hpriv, dram);
4164
4165	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4166	if (rc)
4167		goto err;
4168
4169	/*
4170	 * To allow disk hotplug on Armada 370/XP SoCs, the PHY speed must be
4171	 * updated in the LP_PHY_CTL register.
4172	 */
4173	if (pdev->dev.of_node &&
4174		of_device_is_compatible(pdev->dev.of_node,
4175					"marvell,armada-370-sata"))
4176		hpriv->hp_flags |= MV_HP_FIX_LP_PHY_CTL;
4177
4178	/* initialize adapter */
4179	rc = mv_init_host(host);
4180	if (rc)
4181		goto err;
4182
4183	dev_info(&pdev->dev, "slots %u ports %d\n",
4184		 (unsigned)MV_MAX_Q_DEPTH, host->n_ports);
4185
4186	rc = ata_host_activate(host, irq, mv_interrupt, IRQF_SHARED, &mv6_sht);
4187	if (!rc)
4188		return 0;
4189
4190err:
4191	if (!IS_ERR(hpriv->clk)) {
4192		clk_disable_unprepare(hpriv->clk);
4193		clk_put(hpriv->clk);
4194	}
4195	for (port = 0; port < hpriv->n_ports; port++) {
4196		if (!IS_ERR(hpriv->port_clks[port])) {
4197			clk_disable_unprepare(hpriv->port_clks[port]);
4198			clk_put(hpriv->port_clks[port]);
4199		}
4200		phy_power_off(hpriv->port_phys[port]);
4201	}
4202
4203	return rc;
4204}
4205
4206/*
4207 *
4208 *      mv_platform_remove    -       unplug a platform interface
4209 *      @pdev: platform device
4210 *
4211 *      A platform bus SATA device has been unplugged. Perform the needed
4212 *      cleanup. Also called on module unload for any active devices.
4213 */
4214static int mv_platform_remove(struct platform_device *pdev)
4215{
4216	struct ata_host *host = platform_get_drvdata(pdev);
4217	struct mv_host_priv *hpriv = host->private_data;
4218	int port;
4219	ata_host_detach(host);
4220
4221	if (!IS_ERR(hpriv->clk)) {
4222		clk_disable_unprepare(hpriv->clk);
4223		clk_put(hpriv->clk);
4224	}
4225	for (port = 0; port < host->n_ports; port++) {
4226		if (!IS_ERR(hpriv->port_clks[port])) {
4227			clk_disable_unprepare(hpriv->port_clks[port]);
4228			clk_put(hpriv->port_clks[port]);
4229		}
4230		phy_power_off(hpriv->port_phys[port]);
4231	}
4232	return 0;
4233}
4234
4235#ifdef CONFIG_PM_SLEEP
4236static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4237{
4238	struct ata_host *host = platform_get_drvdata(pdev);
4239	if (host)
4240		return ata_host_suspend(host, state);
4241	else
4242		return 0;
4243}
4244
4245static int mv_platform_resume(struct platform_device *pdev)
4246{
4247	struct ata_host *host = platform_get_drvdata(pdev);
4248	const struct mbus_dram_target_info *dram;
4249	int ret;
4250
4251	if (host) {
4252		struct mv_host_priv *hpriv = host->private_data;
4253
4254		/*
4255		 * (Re-)program MBUS remapping windows if we are asked to.
4256		 */
4257		dram = mv_mbus_dram_info();
4258		if (dram)
4259			mv_conf_mbus_windows(hpriv, dram);
4260
4261		/* initialize adapter */
4262		ret = mv_init_host(host);
4263		if (ret) {
4264			printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4265			return ret;
4266		}
4267		ata_host_resume(host);
4268	}
4269
4270	return 0;
4271}
4272#else
4273#define mv_platform_suspend NULL
4274#define mv_platform_resume NULL
4275#endif
4276
4277#ifdef CONFIG_OF
4278static struct of_device_id mv_sata_dt_ids[] = {
4279	{ .compatible = "marvell,armada-370-sata", },
4280	{ .compatible = "marvell,orion-sata", },
4281	{},
4282};
4283MODULE_DEVICE_TABLE(of, mv_sata_dt_ids);
4284#endif
4285
4286static struct platform_driver mv_platform_driver = {
4287	.probe		= mv_platform_probe,
4288	.remove		= mv_platform_remove,
4289	.suspend	= mv_platform_suspend,
4290	.resume		= mv_platform_resume,
4291	.driver		= {
4292		.name = DRV_NAME,
4293		.of_match_table = of_match_ptr(mv_sata_dt_ids),
4294	},
4295};
4296
4297
4298#ifdef CONFIG_PCI
4299static int mv_pci_init_one(struct pci_dev *pdev,
4300			   const struct pci_device_id *ent);
4301#ifdef CONFIG_PM_SLEEP
4302static int mv_pci_device_resume(struct pci_dev *pdev);
4303#endif
4304
4305
4306static struct pci_driver mv_pci_driver = {
4307	.name			= DRV_NAME,
4308	.id_table		= mv_pci_tbl,
4309	.probe			= mv_pci_init_one,
4310	.remove			= ata_pci_remove_one,
4311#ifdef CONFIG_PM_SLEEP
4312	.suspend		= ata_pci_device_suspend,
4313	.resume			= mv_pci_device_resume,
4314#endif
4315
4316};
4317
4318/* move to PCI layer or libata core? */
4319static int pci_go_64(struct pci_dev *pdev)
4320{
4321	int rc;
4322
4323	if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
4324		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
4325		if (rc) {
4326			rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
4327			if (rc) {
4328				dev_err(&pdev->dev,
4329					"64-bit DMA enable failed\n");
4330				return rc;
4331			}
4332		}
4333	} else {
4334		rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4335		if (rc) {
4336			dev_err(&pdev->dev, "32-bit DMA enable failed\n");
4337			return rc;
4338		}
4339		rc = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
4340		if (rc) {
4341			dev_err(&pdev->dev,
4342				"32-bit consistent DMA enable failed\n");
4343			return rc;
4344		}
4345	}
4346
4347	return rc;
4348}
4349
4350/**
4351 *      mv_print_info - Dump key info to kernel log for perusal.
4352 *      @host: ATA host to print info about
4353 *
4354 *      FIXME: complete this.
4355 *
4356 *      LOCKING:
4357 *      Inherited from caller.
4358 */
4359static void mv_print_info(struct ata_host *host)
4360{
4361	struct pci_dev *pdev = to_pci_dev(host->dev);
4362	struct mv_host_priv *hpriv = host->private_data;
4363	u8 scc;
4364	const char *scc_s, *gen;
4365
4366	/* Use this to determine the HW stepping of the chip so we know
4367	 * what errata to workaround
4368	 */
4369	pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4370	if (scc == 0)
4371		scc_s = "SCSI";
4372	else if (scc == 0x01)
4373		scc_s = "RAID";
4374	else
4375		scc_s = "?";
4376
4377	if (IS_GEN_I(hpriv))
4378		gen = "I";
4379	else if (IS_GEN_II(hpriv))
4380		gen = "II";
4381	else if (IS_GEN_IIE(hpriv))
4382		gen = "IIE";
4383	else
4384		gen = "?";
4385
4386	dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4387		 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4388		 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4389}
4390
4391/**
4392 *      mv_pci_init_one - handle a positive probe of a PCI Marvell host
4393 *      @pdev: PCI device found
4394 *      @ent: PCI device ID entry for the matched host
4395 *
4396 *      LOCKING:
4397 *      Inherited from caller.
4398 */
4399static int mv_pci_init_one(struct pci_dev *pdev,
4400			   const struct pci_device_id *ent)
4401{
4402	unsigned int board_idx = (unsigned int)ent->driver_data;
4403	const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4404	struct ata_host *host;
4405	struct mv_host_priv *hpriv;
4406	int n_ports, port, rc;
4407
4408	ata_print_version_once(&pdev->dev, DRV_VERSION);
4409
4410	/* allocate host */
4411	n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4412
4413	host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4414	hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4415	if (!host || !hpriv)
4416		return -ENOMEM;
4417	host->private_data = hpriv;
4418	hpriv->n_ports = n_ports;
4419	hpriv->board_idx = board_idx;
4420
4421	/* acquire resources */
4422	rc = pcim_enable_device(pdev);
4423	if (rc)
4424		return rc;
4425
4426	rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4427	if (rc == -EBUSY)
4428		pcim_pin_device(pdev);
4429	if (rc)
4430		return rc;
4431	host->iomap = pcim_iomap_table(pdev);
4432	hpriv->base = host->iomap[MV_PRIMARY_BAR];
4433
4434	rc = pci_go_64(pdev);
4435	if (rc)
4436		return rc;
4437
4438	rc = mv_create_dma_pools(hpriv, &pdev->dev);
4439	if (rc)
4440		return rc;
4441
4442	for (port = 0; port < host->n_ports; port++) {
4443		struct ata_port *ap = host->ports[port];
4444		void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4445		unsigned int offset = port_mmio - hpriv->base;
4446
4447		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4448		ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4449	}
4450
4451	/* initialize adapter */
4452	rc = mv_init_host(host);
4453	if (rc)
4454		return rc;
4455
4456	/* Enable message-switched interrupts, if requested */
4457	if (msi && pci_enable_msi(pdev) == 0)
4458		hpriv->hp_flags |= MV_HP_FLAG_MSI;
4459
4460	mv_dump_pci_cfg(pdev, 0x68);
4461	mv_print_info(host);
4462
4463	pci_set_master(pdev);
4464	pci_try_set_mwi(pdev);
4465	return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4466				 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4467}
4468
4469#ifdef CONFIG_PM_SLEEP
4470static int mv_pci_device_resume(struct pci_dev *pdev)
4471{
4472	struct ata_host *host = pci_get_drvdata(pdev);
4473	int rc;
4474
4475	rc = ata_pci_device_do_resume(pdev);
4476	if (rc)
4477		return rc;
4478
4479	/* initialize adapter */
4480	rc = mv_init_host(host);
4481	if (rc)
4482		return rc;
4483
4484	ata_host_resume(host);
4485
4486	return 0;
4487}
4488#endif
4489#endif
4490
4491static int __init mv_init(void)
4492{
4493	int rc = -ENODEV;
4494#ifdef CONFIG_PCI
4495	rc = pci_register_driver(&mv_pci_driver);
4496	if (rc < 0)
4497		return rc;
4498#endif
4499	rc = platform_driver_register(&mv_platform_driver);
4500
4501#ifdef CONFIG_PCI
4502	if (rc < 0)
4503		pci_unregister_driver(&mv_pci_driver);
4504#endif
4505	return rc;
4506}
4507
4508static void __exit mv_exit(void)
4509{
4510#ifdef CONFIG_PCI
4511	pci_unregister_driver(&mv_pci_driver);
4512#endif
4513	platform_driver_unregister(&mv_platform_driver);
4514}
4515
4516MODULE_AUTHOR("Brett Russ");
4517MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4518MODULE_LICENSE("GPL");
4519MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4520MODULE_VERSION(DRV_VERSION);
4521MODULE_ALIAS("platform:" DRV_NAME);
4522
4523module_init(mv_init);
4524module_exit(mv_exit);
4525