1/*
2 * Register map access API
3 *
4 * Copyright 2011 Wolfson Microelectronics plc
5 *
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/export.h>
16#include <linux/mutex.h>
17#include <linux/err.h>
18#include <linux/of.h>
19#include <linux/rbtree.h>
20#include <linux/sched.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used.  For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35static int _regmap_update_bits(struct regmap *map, unsigned int reg,
36			       unsigned int mask, unsigned int val,
37			       bool *change);
38
39static int _regmap_bus_reg_read(void *context, unsigned int reg,
40				unsigned int *val);
41static int _regmap_bus_read(void *context, unsigned int reg,
42			    unsigned int *val);
43static int _regmap_bus_formatted_write(void *context, unsigned int reg,
44				       unsigned int val);
45static int _regmap_bus_reg_write(void *context, unsigned int reg,
46				 unsigned int val);
47static int _regmap_bus_raw_write(void *context, unsigned int reg,
48				 unsigned int val);
49
50bool regmap_reg_in_ranges(unsigned int reg,
51			  const struct regmap_range *ranges,
52			  unsigned int nranges)
53{
54	const struct regmap_range *r;
55	int i;
56
57	for (i = 0, r = ranges; i < nranges; i++, r++)
58		if (regmap_reg_in_range(reg, r))
59			return true;
60	return false;
61}
62EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
63
64bool regmap_check_range_table(struct regmap *map, unsigned int reg,
65			      const struct regmap_access_table *table)
66{
67	/* Check "no ranges" first */
68	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
69		return false;
70
71	/* In case zero "yes ranges" are supplied, any reg is OK */
72	if (!table->n_yes_ranges)
73		return true;
74
75	return regmap_reg_in_ranges(reg, table->yes_ranges,
76				    table->n_yes_ranges);
77}
78EXPORT_SYMBOL_GPL(regmap_check_range_table);
79
80bool regmap_writeable(struct regmap *map, unsigned int reg)
81{
82	if (map->max_register && reg > map->max_register)
83		return false;
84
85	if (map->writeable_reg)
86		return map->writeable_reg(map->dev, reg);
87
88	if (map->wr_table)
89		return regmap_check_range_table(map, reg, map->wr_table);
90
91	return true;
92}
93
94bool regmap_readable(struct regmap *map, unsigned int reg)
95{
96	if (map->max_register && reg > map->max_register)
97		return false;
98
99	if (map->format.format_write)
100		return false;
101
102	if (map->readable_reg)
103		return map->readable_reg(map->dev, reg);
104
105	if (map->rd_table)
106		return regmap_check_range_table(map, reg, map->rd_table);
107
108	return true;
109}
110
111bool regmap_volatile(struct regmap *map, unsigned int reg)
112{
113	if (!map->format.format_write && !regmap_readable(map, reg))
114		return false;
115
116	if (map->volatile_reg)
117		return map->volatile_reg(map->dev, reg);
118
119	if (map->volatile_table)
120		return regmap_check_range_table(map, reg, map->volatile_table);
121
122	if (map->cache_ops)
123		return false;
124	else
125		return true;
126}
127
128bool regmap_precious(struct regmap *map, unsigned int reg)
129{
130	if (!regmap_readable(map, reg))
131		return false;
132
133	if (map->precious_reg)
134		return map->precious_reg(map->dev, reg);
135
136	if (map->precious_table)
137		return regmap_check_range_table(map, reg, map->precious_table);
138
139	return false;
140}
141
142static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
143	size_t num)
144{
145	unsigned int i;
146
147	for (i = 0; i < num; i++)
148		if (!regmap_volatile(map, reg + i))
149			return false;
150
151	return true;
152}
153
154static void regmap_format_2_6_write(struct regmap *map,
155				     unsigned int reg, unsigned int val)
156{
157	u8 *out = map->work_buf;
158
159	*out = (reg << 6) | val;
160}
161
162static void regmap_format_4_12_write(struct regmap *map,
163				     unsigned int reg, unsigned int val)
164{
165	__be16 *out = map->work_buf;
166	*out = cpu_to_be16((reg << 12) | val);
167}
168
169static void regmap_format_7_9_write(struct regmap *map,
170				    unsigned int reg, unsigned int val)
171{
172	__be16 *out = map->work_buf;
173	*out = cpu_to_be16((reg << 9) | val);
174}
175
176static void regmap_format_10_14_write(struct regmap *map,
177				    unsigned int reg, unsigned int val)
178{
179	u8 *out = map->work_buf;
180
181	out[2] = val;
182	out[1] = (val >> 8) | (reg << 6);
183	out[0] = reg >> 2;
184}
185
186static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
187{
188	u8 *b = buf;
189
190	b[0] = val << shift;
191}
192
193static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
194{
195	__be16 *b = buf;
196
197	b[0] = cpu_to_be16(val << shift);
198}
199
200static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
201{
202	__le16 *b = buf;
203
204	b[0] = cpu_to_le16(val << shift);
205}
206
207static void regmap_format_16_native(void *buf, unsigned int val,
208				    unsigned int shift)
209{
210	*(u16 *)buf = val << shift;
211}
212
213static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
214{
215	u8 *b = buf;
216
217	val <<= shift;
218
219	b[0] = val >> 16;
220	b[1] = val >> 8;
221	b[2] = val;
222}
223
224static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
225{
226	__be32 *b = buf;
227
228	b[0] = cpu_to_be32(val << shift);
229}
230
231static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
232{
233	__le32 *b = buf;
234
235	b[0] = cpu_to_le32(val << shift);
236}
237
238static void regmap_format_32_native(void *buf, unsigned int val,
239				    unsigned int shift)
240{
241	*(u32 *)buf = val << shift;
242}
243
244static void regmap_parse_inplace_noop(void *buf)
245{
246}
247
248static unsigned int regmap_parse_8(const void *buf)
249{
250	const u8 *b = buf;
251
252	return b[0];
253}
254
255static unsigned int regmap_parse_16_be(const void *buf)
256{
257	const __be16 *b = buf;
258
259	return be16_to_cpu(b[0]);
260}
261
262static unsigned int regmap_parse_16_le(const void *buf)
263{
264	const __le16 *b = buf;
265
266	return le16_to_cpu(b[0]);
267}
268
269static void regmap_parse_16_be_inplace(void *buf)
270{
271	__be16 *b = buf;
272
273	b[0] = be16_to_cpu(b[0]);
274}
275
276static void regmap_parse_16_le_inplace(void *buf)
277{
278	__le16 *b = buf;
279
280	b[0] = le16_to_cpu(b[0]);
281}
282
283static unsigned int regmap_parse_16_native(const void *buf)
284{
285	return *(u16 *)buf;
286}
287
288static unsigned int regmap_parse_24(const void *buf)
289{
290	const u8 *b = buf;
291	unsigned int ret = b[2];
292	ret |= ((unsigned int)b[1]) << 8;
293	ret |= ((unsigned int)b[0]) << 16;
294
295	return ret;
296}
297
298static unsigned int regmap_parse_32_be(const void *buf)
299{
300	const __be32 *b = buf;
301
302	return be32_to_cpu(b[0]);
303}
304
305static unsigned int regmap_parse_32_le(const void *buf)
306{
307	const __le32 *b = buf;
308
309	return le32_to_cpu(b[0]);
310}
311
312static void regmap_parse_32_be_inplace(void *buf)
313{
314	__be32 *b = buf;
315
316	b[0] = be32_to_cpu(b[0]);
317}
318
319static void regmap_parse_32_le_inplace(void *buf)
320{
321	__le32 *b = buf;
322
323	b[0] = le32_to_cpu(b[0]);
324}
325
326static unsigned int regmap_parse_32_native(const void *buf)
327{
328	return *(u32 *)buf;
329}
330
331static void regmap_lock_mutex(void *__map)
332{
333	struct regmap *map = __map;
334	mutex_lock(&map->mutex);
335}
336
337static void regmap_unlock_mutex(void *__map)
338{
339	struct regmap *map = __map;
340	mutex_unlock(&map->mutex);
341}
342
343static void regmap_lock_spinlock(void *__map)
344__acquires(&map->spinlock)
345{
346	struct regmap *map = __map;
347	unsigned long flags;
348
349	spin_lock_irqsave(&map->spinlock, flags);
350	map->spinlock_flags = flags;
351}
352
353static void regmap_unlock_spinlock(void *__map)
354__releases(&map->spinlock)
355{
356	struct regmap *map = __map;
357	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
358}
359
360static void dev_get_regmap_release(struct device *dev, void *res)
361{
362	/*
363	 * We don't actually have anything to do here; the goal here
364	 * is not to manage the regmap but to provide a simple way to
365	 * get the regmap back given a struct device.
366	 */
367}
368
369static bool _regmap_range_add(struct regmap *map,
370			      struct regmap_range_node *data)
371{
372	struct rb_root *root = &map->range_tree;
373	struct rb_node **new = &(root->rb_node), *parent = NULL;
374
375	while (*new) {
376		struct regmap_range_node *this =
377			container_of(*new, struct regmap_range_node, node);
378
379		parent = *new;
380		if (data->range_max < this->range_min)
381			new = &((*new)->rb_left);
382		else if (data->range_min > this->range_max)
383			new = &((*new)->rb_right);
384		else
385			return false;
386	}
387
388	rb_link_node(&data->node, parent, new);
389	rb_insert_color(&data->node, root);
390
391	return true;
392}
393
394static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
395						      unsigned int reg)
396{
397	struct rb_node *node = map->range_tree.rb_node;
398
399	while (node) {
400		struct regmap_range_node *this =
401			container_of(node, struct regmap_range_node, node);
402
403		if (reg < this->range_min)
404			node = node->rb_left;
405		else if (reg > this->range_max)
406			node = node->rb_right;
407		else
408			return this;
409	}
410
411	return NULL;
412}
413
414static void regmap_range_exit(struct regmap *map)
415{
416	struct rb_node *next;
417	struct regmap_range_node *range_node;
418
419	next = rb_first(&map->range_tree);
420	while (next) {
421		range_node = rb_entry(next, struct regmap_range_node, node);
422		next = rb_next(&range_node->node);
423		rb_erase(&range_node->node, &map->range_tree);
424		kfree(range_node);
425	}
426
427	kfree(map->selector_work_buf);
428}
429
430int regmap_attach_dev(struct device *dev, struct regmap *map,
431		      const struct regmap_config *config)
432{
433	struct regmap **m;
434
435	map->dev = dev;
436
437	regmap_debugfs_init(map, config->name);
438
439	/* Add a devres resource for dev_get_regmap() */
440	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
441	if (!m) {
442		regmap_debugfs_exit(map);
443		return -ENOMEM;
444	}
445	*m = map;
446	devres_add(dev, m);
447
448	return 0;
449}
450EXPORT_SYMBOL_GPL(regmap_attach_dev);
451
452static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
453					const struct regmap_config *config)
454{
455	enum regmap_endian endian;
456
457	/* Retrieve the endianness specification from the regmap config */
458	endian = config->reg_format_endian;
459
460	/* If the regmap config specified a non-default value, use that */
461	if (endian != REGMAP_ENDIAN_DEFAULT)
462		return endian;
463
464	/* Retrieve the endianness specification from the bus config */
465	if (bus && bus->reg_format_endian_default)
466		endian = bus->reg_format_endian_default;
467
468	/* If the bus specified a non-default value, use that */
469	if (endian != REGMAP_ENDIAN_DEFAULT)
470		return endian;
471
472	/* Use this if no other value was found */
473	return REGMAP_ENDIAN_BIG;
474}
475
476enum regmap_endian regmap_get_val_endian(struct device *dev,
477					 const struct regmap_bus *bus,
478					 const struct regmap_config *config)
479{
480	struct device_node *np;
481	enum regmap_endian endian;
482
483	/* Retrieve the endianness specification from the regmap config */
484	endian = config->val_format_endian;
485
486	/* If the regmap config specified a non-default value, use that */
487	if (endian != REGMAP_ENDIAN_DEFAULT)
488		return endian;
489
490	/* If the dev and dev->of_node exist try to get endianness from DT */
491	if (dev && dev->of_node) {
492		np = dev->of_node;
493
494		/* Parse the device's DT node for an endianness specification */
495		if (of_property_read_bool(np, "big-endian"))
496			endian = REGMAP_ENDIAN_BIG;
497		else if (of_property_read_bool(np, "little-endian"))
498			endian = REGMAP_ENDIAN_LITTLE;
499
500		/* If the endianness was specified in DT, use that */
501		if (endian != REGMAP_ENDIAN_DEFAULT)
502			return endian;
503	}
504
505	/* Retrieve the endianness specification from the bus config */
506	if (bus && bus->val_format_endian_default)
507		endian = bus->val_format_endian_default;
508
509	/* If the bus specified a non-default value, use that */
510	if (endian != REGMAP_ENDIAN_DEFAULT)
511		return endian;
512
513	/* Use this if no other value was found */
514	return REGMAP_ENDIAN_BIG;
515}
516EXPORT_SYMBOL_GPL(regmap_get_val_endian);
517
518/**
519 * regmap_init(): Initialise register map
520 *
521 * @dev: Device that will be interacted with
522 * @bus: Bus-specific callbacks to use with device
523 * @bus_context: Data passed to bus-specific callbacks
524 * @config: Configuration for register map
525 *
526 * The return value will be an ERR_PTR() on error or a valid pointer to
527 * a struct regmap.  This function should generally not be called
528 * directly, it should be called by bus-specific init functions.
529 */
530struct regmap *regmap_init(struct device *dev,
531			   const struct regmap_bus *bus,
532			   void *bus_context,
533			   const struct regmap_config *config)
534{
535	struct regmap *map;
536	int ret = -EINVAL;
537	enum regmap_endian reg_endian, val_endian;
538	int i, j;
539
540	if (!config)
541		goto err;
542
543	map = kzalloc(sizeof(*map), GFP_KERNEL);
544	if (map == NULL) {
545		ret = -ENOMEM;
546		goto err;
547	}
548
549	if (config->lock && config->unlock) {
550		map->lock = config->lock;
551		map->unlock = config->unlock;
552		map->lock_arg = config->lock_arg;
553	} else {
554		if ((bus && bus->fast_io) ||
555		    config->fast_io) {
556			spin_lock_init(&map->spinlock);
557			map->lock = regmap_lock_spinlock;
558			map->unlock = regmap_unlock_spinlock;
559		} else {
560			mutex_init(&map->mutex);
561			map->lock = regmap_lock_mutex;
562			map->unlock = regmap_unlock_mutex;
563		}
564		map->lock_arg = map;
565	}
566	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
567	map->format.pad_bytes = config->pad_bits / 8;
568	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
569	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
570			config->val_bits + config->pad_bits, 8);
571	map->reg_shift = config->pad_bits % 8;
572	if (config->reg_stride)
573		map->reg_stride = config->reg_stride;
574	else
575		map->reg_stride = 1;
576	map->use_single_rw = config->use_single_rw;
577	map->can_multi_write = config->can_multi_write;
578	map->dev = dev;
579	map->bus = bus;
580	map->bus_context = bus_context;
581	map->max_register = config->max_register;
582	map->wr_table = config->wr_table;
583	map->rd_table = config->rd_table;
584	map->volatile_table = config->volatile_table;
585	map->precious_table = config->precious_table;
586	map->writeable_reg = config->writeable_reg;
587	map->readable_reg = config->readable_reg;
588	map->volatile_reg = config->volatile_reg;
589	map->precious_reg = config->precious_reg;
590	map->cache_type = config->cache_type;
591	map->name = config->name;
592
593	spin_lock_init(&map->async_lock);
594	INIT_LIST_HEAD(&map->async_list);
595	INIT_LIST_HEAD(&map->async_free);
596	init_waitqueue_head(&map->async_waitq);
597
598	if (config->read_flag_mask || config->write_flag_mask) {
599		map->read_flag_mask = config->read_flag_mask;
600		map->write_flag_mask = config->write_flag_mask;
601	} else if (bus) {
602		map->read_flag_mask = bus->read_flag_mask;
603	}
604
605	if (!bus) {
606		map->reg_read  = config->reg_read;
607		map->reg_write = config->reg_write;
608
609		map->defer_caching = false;
610		goto skip_format_initialization;
611	} else if (!bus->read || !bus->write) {
612		map->reg_read = _regmap_bus_reg_read;
613		map->reg_write = _regmap_bus_reg_write;
614
615		map->defer_caching = false;
616		goto skip_format_initialization;
617	} else {
618		map->reg_read  = _regmap_bus_read;
619	}
620
621	reg_endian = regmap_get_reg_endian(bus, config);
622	val_endian = regmap_get_val_endian(dev, bus, config);
623
624	switch (config->reg_bits + map->reg_shift) {
625	case 2:
626		switch (config->val_bits) {
627		case 6:
628			map->format.format_write = regmap_format_2_6_write;
629			break;
630		default:
631			goto err_map;
632		}
633		break;
634
635	case 4:
636		switch (config->val_bits) {
637		case 12:
638			map->format.format_write = regmap_format_4_12_write;
639			break;
640		default:
641			goto err_map;
642		}
643		break;
644
645	case 7:
646		switch (config->val_bits) {
647		case 9:
648			map->format.format_write = regmap_format_7_9_write;
649			break;
650		default:
651			goto err_map;
652		}
653		break;
654
655	case 10:
656		switch (config->val_bits) {
657		case 14:
658			map->format.format_write = regmap_format_10_14_write;
659			break;
660		default:
661			goto err_map;
662		}
663		break;
664
665	case 8:
666		map->format.format_reg = regmap_format_8;
667		break;
668
669	case 16:
670		switch (reg_endian) {
671		case REGMAP_ENDIAN_BIG:
672			map->format.format_reg = regmap_format_16_be;
673			break;
674		case REGMAP_ENDIAN_NATIVE:
675			map->format.format_reg = regmap_format_16_native;
676			break;
677		default:
678			goto err_map;
679		}
680		break;
681
682	case 24:
683		if (reg_endian != REGMAP_ENDIAN_BIG)
684			goto err_map;
685		map->format.format_reg = regmap_format_24;
686		break;
687
688	case 32:
689		switch (reg_endian) {
690		case REGMAP_ENDIAN_BIG:
691			map->format.format_reg = regmap_format_32_be;
692			break;
693		case REGMAP_ENDIAN_NATIVE:
694			map->format.format_reg = regmap_format_32_native;
695			break;
696		default:
697			goto err_map;
698		}
699		break;
700
701	default:
702		goto err_map;
703	}
704
705	if (val_endian == REGMAP_ENDIAN_NATIVE)
706		map->format.parse_inplace = regmap_parse_inplace_noop;
707
708	switch (config->val_bits) {
709	case 8:
710		map->format.format_val = regmap_format_8;
711		map->format.parse_val = regmap_parse_8;
712		map->format.parse_inplace = regmap_parse_inplace_noop;
713		break;
714	case 16:
715		switch (val_endian) {
716		case REGMAP_ENDIAN_BIG:
717			map->format.format_val = regmap_format_16_be;
718			map->format.parse_val = regmap_parse_16_be;
719			map->format.parse_inplace = regmap_parse_16_be_inplace;
720			break;
721		case REGMAP_ENDIAN_LITTLE:
722			map->format.format_val = regmap_format_16_le;
723			map->format.parse_val = regmap_parse_16_le;
724			map->format.parse_inplace = regmap_parse_16_le_inplace;
725			break;
726		case REGMAP_ENDIAN_NATIVE:
727			map->format.format_val = regmap_format_16_native;
728			map->format.parse_val = regmap_parse_16_native;
729			break;
730		default:
731			goto err_map;
732		}
733		break;
734	case 24:
735		if (val_endian != REGMAP_ENDIAN_BIG)
736			goto err_map;
737		map->format.format_val = regmap_format_24;
738		map->format.parse_val = regmap_parse_24;
739		break;
740	case 32:
741		switch (val_endian) {
742		case REGMAP_ENDIAN_BIG:
743			map->format.format_val = regmap_format_32_be;
744			map->format.parse_val = regmap_parse_32_be;
745			map->format.parse_inplace = regmap_parse_32_be_inplace;
746			break;
747		case REGMAP_ENDIAN_LITTLE:
748			map->format.format_val = regmap_format_32_le;
749			map->format.parse_val = regmap_parse_32_le;
750			map->format.parse_inplace = regmap_parse_32_le_inplace;
751			break;
752		case REGMAP_ENDIAN_NATIVE:
753			map->format.format_val = regmap_format_32_native;
754			map->format.parse_val = regmap_parse_32_native;
755			break;
756		default:
757			goto err_map;
758		}
759		break;
760	}
761
762	if (map->format.format_write) {
763		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
764		    (val_endian != REGMAP_ENDIAN_BIG))
765			goto err_map;
766		map->use_single_rw = true;
767	}
768
769	if (!map->format.format_write &&
770	    !(map->format.format_reg && map->format.format_val))
771		goto err_map;
772
773	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
774	if (map->work_buf == NULL) {
775		ret = -ENOMEM;
776		goto err_map;
777	}
778
779	if (map->format.format_write) {
780		map->defer_caching = false;
781		map->reg_write = _regmap_bus_formatted_write;
782	} else if (map->format.format_val) {
783		map->defer_caching = true;
784		map->reg_write = _regmap_bus_raw_write;
785	}
786
787skip_format_initialization:
788
789	map->range_tree = RB_ROOT;
790	for (i = 0; i < config->num_ranges; i++) {
791		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
792		struct regmap_range_node *new;
793
794		/* Sanity check */
795		if (range_cfg->range_max < range_cfg->range_min) {
796			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
797				range_cfg->range_max, range_cfg->range_min);
798			goto err_range;
799		}
800
801		if (range_cfg->range_max > map->max_register) {
802			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
803				range_cfg->range_max, map->max_register);
804			goto err_range;
805		}
806
807		if (range_cfg->selector_reg > map->max_register) {
808			dev_err(map->dev,
809				"Invalid range %d: selector out of map\n", i);
810			goto err_range;
811		}
812
813		if (range_cfg->window_len == 0) {
814			dev_err(map->dev, "Invalid range %d: window_len 0\n",
815				i);
816			goto err_range;
817		}
818
819		/* Make sure, that this register range has no selector
820		   or data window within its boundary */
821		for (j = 0; j < config->num_ranges; j++) {
822			unsigned sel_reg = config->ranges[j].selector_reg;
823			unsigned win_min = config->ranges[j].window_start;
824			unsigned win_max = win_min +
825					   config->ranges[j].window_len - 1;
826
827			/* Allow data window inside its own virtual range */
828			if (j == i)
829				continue;
830
831			if (range_cfg->range_min <= sel_reg &&
832			    sel_reg <= range_cfg->range_max) {
833				dev_err(map->dev,
834					"Range %d: selector for %d in window\n",
835					i, j);
836				goto err_range;
837			}
838
839			if (!(win_max < range_cfg->range_min ||
840			      win_min > range_cfg->range_max)) {
841				dev_err(map->dev,
842					"Range %d: window for %d in window\n",
843					i, j);
844				goto err_range;
845			}
846		}
847
848		new = kzalloc(sizeof(*new), GFP_KERNEL);
849		if (new == NULL) {
850			ret = -ENOMEM;
851			goto err_range;
852		}
853
854		new->map = map;
855		new->name = range_cfg->name;
856		new->range_min = range_cfg->range_min;
857		new->range_max = range_cfg->range_max;
858		new->selector_reg = range_cfg->selector_reg;
859		new->selector_mask = range_cfg->selector_mask;
860		new->selector_shift = range_cfg->selector_shift;
861		new->window_start = range_cfg->window_start;
862		new->window_len = range_cfg->window_len;
863
864		if (!_regmap_range_add(map, new)) {
865			dev_err(map->dev, "Failed to add range %d\n", i);
866			kfree(new);
867			goto err_range;
868		}
869
870		if (map->selector_work_buf == NULL) {
871			map->selector_work_buf =
872				kzalloc(map->format.buf_size, GFP_KERNEL);
873			if (map->selector_work_buf == NULL) {
874				ret = -ENOMEM;
875				goto err_range;
876			}
877		}
878	}
879
880	ret = regcache_init(map, config);
881	if (ret != 0)
882		goto err_range;
883
884	if (dev) {
885		ret = regmap_attach_dev(dev, map, config);
886		if (ret != 0)
887			goto err_regcache;
888	}
889
890	return map;
891
892err_regcache:
893	regcache_exit(map);
894err_range:
895	regmap_range_exit(map);
896	kfree(map->work_buf);
897err_map:
898	kfree(map);
899err:
900	return ERR_PTR(ret);
901}
902EXPORT_SYMBOL_GPL(regmap_init);
903
904static void devm_regmap_release(struct device *dev, void *res)
905{
906	regmap_exit(*(struct regmap **)res);
907}
908
909/**
910 * devm_regmap_init(): Initialise managed register map
911 *
912 * @dev: Device that will be interacted with
913 * @bus: Bus-specific callbacks to use with device
914 * @bus_context: Data passed to bus-specific callbacks
915 * @config: Configuration for register map
916 *
917 * The return value will be an ERR_PTR() on error or a valid pointer
918 * to a struct regmap.  This function should generally not be called
919 * directly, it should be called by bus-specific init functions.  The
920 * map will be automatically freed by the device management code.
921 */
922struct regmap *devm_regmap_init(struct device *dev,
923				const struct regmap_bus *bus,
924				void *bus_context,
925				const struct regmap_config *config)
926{
927	struct regmap **ptr, *regmap;
928
929	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
930	if (!ptr)
931		return ERR_PTR(-ENOMEM);
932
933	regmap = regmap_init(dev, bus, bus_context, config);
934	if (!IS_ERR(regmap)) {
935		*ptr = regmap;
936		devres_add(dev, ptr);
937	} else {
938		devres_free(ptr);
939	}
940
941	return regmap;
942}
943EXPORT_SYMBOL_GPL(devm_regmap_init);
944
945static void regmap_field_init(struct regmap_field *rm_field,
946	struct regmap *regmap, struct reg_field reg_field)
947{
948	rm_field->regmap = regmap;
949	rm_field->reg = reg_field.reg;
950	rm_field->shift = reg_field.lsb;
951	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
952	rm_field->id_size = reg_field.id_size;
953	rm_field->id_offset = reg_field.id_offset;
954}
955
956/**
957 * devm_regmap_field_alloc(): Allocate and initialise a register field
958 * in a register map.
959 *
960 * @dev: Device that will be interacted with
961 * @regmap: regmap bank in which this register field is located.
962 * @reg_field: Register field with in the bank.
963 *
964 * The return value will be an ERR_PTR() on error or a valid pointer
965 * to a struct regmap_field. The regmap_field will be automatically freed
966 * by the device management code.
967 */
968struct regmap_field *devm_regmap_field_alloc(struct device *dev,
969		struct regmap *regmap, struct reg_field reg_field)
970{
971	struct regmap_field *rm_field = devm_kzalloc(dev,
972					sizeof(*rm_field), GFP_KERNEL);
973	if (!rm_field)
974		return ERR_PTR(-ENOMEM);
975
976	regmap_field_init(rm_field, regmap, reg_field);
977
978	return rm_field;
979
980}
981EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
982
983/**
984 * devm_regmap_field_free(): Free register field allocated using
985 * devm_regmap_field_alloc. Usally drivers need not call this function,
986 * as the memory allocated via devm will be freed as per device-driver
987 * life-cyle.
988 *
989 * @dev: Device that will be interacted with
990 * @field: regmap field which should be freed.
991 */
992void devm_regmap_field_free(struct device *dev,
993	struct regmap_field *field)
994{
995	devm_kfree(dev, field);
996}
997EXPORT_SYMBOL_GPL(devm_regmap_field_free);
998
999/**
1000 * regmap_field_alloc(): Allocate and initialise a register field
1001 * in a register map.
1002 *
1003 * @regmap: regmap bank in which this register field is located.
1004 * @reg_field: Register field with in the bank.
1005 *
1006 * The return value will be an ERR_PTR() on error or a valid pointer
1007 * to a struct regmap_field. The regmap_field should be freed by the
1008 * user once its finished working with it using regmap_field_free().
1009 */
1010struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1011		struct reg_field reg_field)
1012{
1013	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1014
1015	if (!rm_field)
1016		return ERR_PTR(-ENOMEM);
1017
1018	regmap_field_init(rm_field, regmap, reg_field);
1019
1020	return rm_field;
1021}
1022EXPORT_SYMBOL_GPL(regmap_field_alloc);
1023
1024/**
1025 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1026 *
1027 * @field: regmap field which should be freed.
1028 */
1029void regmap_field_free(struct regmap_field *field)
1030{
1031	kfree(field);
1032}
1033EXPORT_SYMBOL_GPL(regmap_field_free);
1034
1035/**
1036 * regmap_reinit_cache(): Reinitialise the current register cache
1037 *
1038 * @map: Register map to operate on.
1039 * @config: New configuration.  Only the cache data will be used.
1040 *
1041 * Discard any existing register cache for the map and initialize a
1042 * new cache.  This can be used to restore the cache to defaults or to
1043 * update the cache configuration to reflect runtime discovery of the
1044 * hardware.
1045 *
1046 * No explicit locking is done here, the user needs to ensure that
1047 * this function will not race with other calls to regmap.
1048 */
1049int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1050{
1051	regcache_exit(map);
1052	regmap_debugfs_exit(map);
1053
1054	map->max_register = config->max_register;
1055	map->writeable_reg = config->writeable_reg;
1056	map->readable_reg = config->readable_reg;
1057	map->volatile_reg = config->volatile_reg;
1058	map->precious_reg = config->precious_reg;
1059	map->cache_type = config->cache_type;
1060
1061	regmap_debugfs_init(map, config->name);
1062
1063	map->cache_bypass = false;
1064	map->cache_only = false;
1065
1066	return regcache_init(map, config);
1067}
1068EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1069
1070/**
1071 * regmap_exit(): Free a previously allocated register map
1072 */
1073void regmap_exit(struct regmap *map)
1074{
1075	struct regmap_async *async;
1076
1077	regcache_exit(map);
1078	regmap_debugfs_exit(map);
1079	regmap_range_exit(map);
1080	if (map->bus && map->bus->free_context)
1081		map->bus->free_context(map->bus_context);
1082	kfree(map->work_buf);
1083	while (!list_empty(&map->async_free)) {
1084		async = list_first_entry_or_null(&map->async_free,
1085						 struct regmap_async,
1086						 list);
1087		list_del(&async->list);
1088		kfree(async->work_buf);
1089		kfree(async);
1090	}
1091	kfree(map);
1092}
1093EXPORT_SYMBOL_GPL(regmap_exit);
1094
1095static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1096{
1097	struct regmap **r = res;
1098	if (!r || !*r) {
1099		WARN_ON(!r || !*r);
1100		return 0;
1101	}
1102
1103	/* If the user didn't specify a name match any */
1104	if (data)
1105		return (*r)->name == data;
1106	else
1107		return 1;
1108}
1109
1110/**
1111 * dev_get_regmap(): Obtain the regmap (if any) for a device
1112 *
1113 * @dev: Device to retrieve the map for
1114 * @name: Optional name for the register map, usually NULL.
1115 *
1116 * Returns the regmap for the device if one is present, or NULL.  If
1117 * name is specified then it must match the name specified when
1118 * registering the device, if it is NULL then the first regmap found
1119 * will be used.  Devices with multiple register maps are very rare,
1120 * generic code should normally not need to specify a name.
1121 */
1122struct regmap *dev_get_regmap(struct device *dev, const char *name)
1123{
1124	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1125					dev_get_regmap_match, (void *)name);
1126
1127	if (!r)
1128		return NULL;
1129	return *r;
1130}
1131EXPORT_SYMBOL_GPL(dev_get_regmap);
1132
1133/**
1134 * regmap_get_device(): Obtain the device from a regmap
1135 *
1136 * @map: Register map to operate on.
1137 *
1138 * Returns the underlying device that the regmap has been created for.
1139 */
1140struct device *regmap_get_device(struct regmap *map)
1141{
1142	return map->dev;
1143}
1144EXPORT_SYMBOL_GPL(regmap_get_device);
1145
1146static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1147			       struct regmap_range_node *range,
1148			       unsigned int val_num)
1149{
1150	void *orig_work_buf;
1151	unsigned int win_offset;
1152	unsigned int win_page;
1153	bool page_chg;
1154	int ret;
1155
1156	win_offset = (*reg - range->range_min) % range->window_len;
1157	win_page = (*reg - range->range_min) / range->window_len;
1158
1159	if (val_num > 1) {
1160		/* Bulk write shouldn't cross range boundary */
1161		if (*reg + val_num - 1 > range->range_max)
1162			return -EINVAL;
1163
1164		/* ... or single page boundary */
1165		if (val_num > range->window_len - win_offset)
1166			return -EINVAL;
1167	}
1168
1169	/* It is possible to have selector register inside data window.
1170	   In that case, selector register is located on every page and
1171	   it needs no page switching, when accessed alone. */
1172	if (val_num > 1 ||
1173	    range->window_start + win_offset != range->selector_reg) {
1174		/* Use separate work_buf during page switching */
1175		orig_work_buf = map->work_buf;
1176		map->work_buf = map->selector_work_buf;
1177
1178		ret = _regmap_update_bits(map, range->selector_reg,
1179					  range->selector_mask,
1180					  win_page << range->selector_shift,
1181					  &page_chg);
1182
1183		map->work_buf = orig_work_buf;
1184
1185		if (ret != 0)
1186			return ret;
1187	}
1188
1189	*reg = range->window_start + win_offset;
1190
1191	return 0;
1192}
1193
1194int _regmap_raw_write(struct regmap *map, unsigned int reg,
1195		      const void *val, size_t val_len)
1196{
1197	struct regmap_range_node *range;
1198	unsigned long flags;
1199	u8 *u8 = map->work_buf;
1200	void *work_val = map->work_buf + map->format.reg_bytes +
1201		map->format.pad_bytes;
1202	void *buf;
1203	int ret = -ENOTSUPP;
1204	size_t len;
1205	int i;
1206
1207	WARN_ON(!map->bus);
1208
1209	/* Check for unwritable registers before we start */
1210	if (map->writeable_reg)
1211		for (i = 0; i < val_len / map->format.val_bytes; i++)
1212			if (!map->writeable_reg(map->dev,
1213						reg + (i * map->reg_stride)))
1214				return -EINVAL;
1215
1216	if (!map->cache_bypass && map->format.parse_val) {
1217		unsigned int ival;
1218		int val_bytes = map->format.val_bytes;
1219		for (i = 0; i < val_len / val_bytes; i++) {
1220			ival = map->format.parse_val(val + (i * val_bytes));
1221			ret = regcache_write(map, reg + (i * map->reg_stride),
1222					     ival);
1223			if (ret) {
1224				dev_err(map->dev,
1225					"Error in caching of register: %x ret: %d\n",
1226					reg + i, ret);
1227				return ret;
1228			}
1229		}
1230		if (map->cache_only) {
1231			map->cache_dirty = true;
1232			return 0;
1233		}
1234	}
1235
1236	range = _regmap_range_lookup(map, reg);
1237	if (range) {
1238		int val_num = val_len / map->format.val_bytes;
1239		int win_offset = (reg - range->range_min) % range->window_len;
1240		int win_residue = range->window_len - win_offset;
1241
1242		/* If the write goes beyond the end of the window split it */
1243		while (val_num > win_residue) {
1244			dev_dbg(map->dev, "Writing window %d/%zu\n",
1245				win_residue, val_len / map->format.val_bytes);
1246			ret = _regmap_raw_write(map, reg, val, win_residue *
1247						map->format.val_bytes);
1248			if (ret != 0)
1249				return ret;
1250
1251			reg += win_residue;
1252			val_num -= win_residue;
1253			val += win_residue * map->format.val_bytes;
1254			val_len -= win_residue * map->format.val_bytes;
1255
1256			win_offset = (reg - range->range_min) %
1257				range->window_len;
1258			win_residue = range->window_len - win_offset;
1259		}
1260
1261		ret = _regmap_select_page(map, &reg, range, val_num);
1262		if (ret != 0)
1263			return ret;
1264	}
1265
1266	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1267
1268	u8[0] |= map->write_flag_mask;
1269
1270	/*
1271	 * Essentially all I/O mechanisms will be faster with a single
1272	 * buffer to write.  Since register syncs often generate raw
1273	 * writes of single registers optimise that case.
1274	 */
1275	if (val != work_val && val_len == map->format.val_bytes) {
1276		memcpy(work_val, val, map->format.val_bytes);
1277		val = work_val;
1278	}
1279
1280	if (map->async && map->bus->async_write) {
1281		struct regmap_async *async;
1282
1283		trace_regmap_async_write_start(map, reg, val_len);
1284
1285		spin_lock_irqsave(&map->async_lock, flags);
1286		async = list_first_entry_or_null(&map->async_free,
1287						 struct regmap_async,
1288						 list);
1289		if (async)
1290			list_del(&async->list);
1291		spin_unlock_irqrestore(&map->async_lock, flags);
1292
1293		if (!async) {
1294			async = map->bus->async_alloc();
1295			if (!async)
1296				return -ENOMEM;
1297
1298			async->work_buf = kzalloc(map->format.buf_size,
1299						  GFP_KERNEL | GFP_DMA);
1300			if (!async->work_buf) {
1301				kfree(async);
1302				return -ENOMEM;
1303			}
1304		}
1305
1306		async->map = map;
1307
1308		/* If the caller supplied the value we can use it safely. */
1309		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1310		       map->format.reg_bytes + map->format.val_bytes);
1311
1312		spin_lock_irqsave(&map->async_lock, flags);
1313		list_add_tail(&async->list, &map->async_list);
1314		spin_unlock_irqrestore(&map->async_lock, flags);
1315
1316		if (val != work_val)
1317			ret = map->bus->async_write(map->bus_context,
1318						    async->work_buf,
1319						    map->format.reg_bytes +
1320						    map->format.pad_bytes,
1321						    val, val_len, async);
1322		else
1323			ret = map->bus->async_write(map->bus_context,
1324						    async->work_buf,
1325						    map->format.reg_bytes +
1326						    map->format.pad_bytes +
1327						    val_len, NULL, 0, async);
1328
1329		if (ret != 0) {
1330			dev_err(map->dev, "Failed to schedule write: %d\n",
1331				ret);
1332
1333			spin_lock_irqsave(&map->async_lock, flags);
1334			list_move(&async->list, &map->async_free);
1335			spin_unlock_irqrestore(&map->async_lock, flags);
1336		}
1337
1338		return ret;
1339	}
1340
1341	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1342
1343	/* If we're doing a single register write we can probably just
1344	 * send the work_buf directly, otherwise try to do a gather
1345	 * write.
1346	 */
1347	if (val == work_val)
1348		ret = map->bus->write(map->bus_context, map->work_buf,
1349				      map->format.reg_bytes +
1350				      map->format.pad_bytes +
1351				      val_len);
1352	else if (map->bus->gather_write)
1353		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1354					     map->format.reg_bytes +
1355					     map->format.pad_bytes,
1356					     val, val_len);
1357
1358	/* If that didn't work fall back on linearising by hand. */
1359	if (ret == -ENOTSUPP) {
1360		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1361		buf = kzalloc(len, GFP_KERNEL);
1362		if (!buf)
1363			return -ENOMEM;
1364
1365		memcpy(buf, map->work_buf, map->format.reg_bytes);
1366		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1367		       val, val_len);
1368		ret = map->bus->write(map->bus_context, buf, len);
1369
1370		kfree(buf);
1371	}
1372
1373	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1374
1375	return ret;
1376}
1377
1378/**
1379 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1380 *
1381 * @map: Map to check.
1382 */
1383bool regmap_can_raw_write(struct regmap *map)
1384{
1385	return map->bus && map->format.format_val && map->format.format_reg;
1386}
1387EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1388
1389static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1390				       unsigned int val)
1391{
1392	int ret;
1393	struct regmap_range_node *range;
1394	struct regmap *map = context;
1395
1396	WARN_ON(!map->bus || !map->format.format_write);
1397
1398	range = _regmap_range_lookup(map, reg);
1399	if (range) {
1400		ret = _regmap_select_page(map, &reg, range, 1);
1401		if (ret != 0)
1402			return ret;
1403	}
1404
1405	map->format.format_write(map, reg, val);
1406
1407	trace_regmap_hw_write_start(map, reg, 1);
1408
1409	ret = map->bus->write(map->bus_context, map->work_buf,
1410			      map->format.buf_size);
1411
1412	trace_regmap_hw_write_done(map, reg, 1);
1413
1414	return ret;
1415}
1416
1417static int _regmap_bus_reg_write(void *context, unsigned int reg,
1418				 unsigned int val)
1419{
1420	struct regmap *map = context;
1421
1422	return map->bus->reg_write(map->bus_context, reg, val);
1423}
1424
1425static int _regmap_bus_raw_write(void *context, unsigned int reg,
1426				 unsigned int val)
1427{
1428	struct regmap *map = context;
1429
1430	WARN_ON(!map->bus || !map->format.format_val);
1431
1432	map->format.format_val(map->work_buf + map->format.reg_bytes
1433			       + map->format.pad_bytes, val, 0);
1434	return _regmap_raw_write(map, reg,
1435				 map->work_buf +
1436				 map->format.reg_bytes +
1437				 map->format.pad_bytes,
1438				 map->format.val_bytes);
1439}
1440
1441static inline void *_regmap_map_get_context(struct regmap *map)
1442{
1443	return (map->bus) ? map : map->bus_context;
1444}
1445
1446int _regmap_write(struct regmap *map, unsigned int reg,
1447		  unsigned int val)
1448{
1449	int ret;
1450	void *context = _regmap_map_get_context(map);
1451
1452	if (!regmap_writeable(map, reg))
1453		return -EIO;
1454
1455	if (!map->cache_bypass && !map->defer_caching) {
1456		ret = regcache_write(map, reg, val);
1457		if (ret != 0)
1458			return ret;
1459		if (map->cache_only) {
1460			map->cache_dirty = true;
1461			return 0;
1462		}
1463	}
1464
1465#ifdef LOG_DEVICE
1466	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1467		dev_info(map->dev, "%x <= %x\n", reg, val);
1468#endif
1469
1470	trace_regmap_reg_write(map, reg, val);
1471
1472	return map->reg_write(context, reg, val);
1473}
1474
1475/**
1476 * regmap_write(): Write a value to a single register
1477 *
1478 * @map: Register map to write to
1479 * @reg: Register to write to
1480 * @val: Value to be written
1481 *
1482 * A value of zero will be returned on success, a negative errno will
1483 * be returned in error cases.
1484 */
1485int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1486{
1487	int ret;
1488
1489	if (reg % map->reg_stride)
1490		return -EINVAL;
1491
1492	map->lock(map->lock_arg);
1493
1494	ret = _regmap_write(map, reg, val);
1495
1496	map->unlock(map->lock_arg);
1497
1498	return ret;
1499}
1500EXPORT_SYMBOL_GPL(regmap_write);
1501
1502/**
1503 * regmap_write_async(): Write a value to a single register asynchronously
1504 *
1505 * @map: Register map to write to
1506 * @reg: Register to write to
1507 * @val: Value to be written
1508 *
1509 * A value of zero will be returned on success, a negative errno will
1510 * be returned in error cases.
1511 */
1512int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1513{
1514	int ret;
1515
1516	if (reg % map->reg_stride)
1517		return -EINVAL;
1518
1519	map->lock(map->lock_arg);
1520
1521	map->async = true;
1522
1523	ret = _regmap_write(map, reg, val);
1524
1525	map->async = false;
1526
1527	map->unlock(map->lock_arg);
1528
1529	return ret;
1530}
1531EXPORT_SYMBOL_GPL(regmap_write_async);
1532
1533/**
1534 * regmap_raw_write(): Write raw values to one or more registers
1535 *
1536 * @map: Register map to write to
1537 * @reg: Initial register to write to
1538 * @val: Block of data to be written, laid out for direct transmission to the
1539 *       device
1540 * @val_len: Length of data pointed to by val.
1541 *
1542 * This function is intended to be used for things like firmware
1543 * download where a large block of data needs to be transferred to the
1544 * device.  No formatting will be done on the data provided.
1545 *
1546 * A value of zero will be returned on success, a negative errno will
1547 * be returned in error cases.
1548 */
1549int regmap_raw_write(struct regmap *map, unsigned int reg,
1550		     const void *val, size_t val_len)
1551{
1552	int ret;
1553
1554	if (!regmap_can_raw_write(map))
1555		return -EINVAL;
1556	if (val_len % map->format.val_bytes)
1557		return -EINVAL;
1558
1559	map->lock(map->lock_arg);
1560
1561	ret = _regmap_raw_write(map, reg, val, val_len);
1562
1563	map->unlock(map->lock_arg);
1564
1565	return ret;
1566}
1567EXPORT_SYMBOL_GPL(regmap_raw_write);
1568
1569/**
1570 * regmap_field_write(): Write a value to a single register field
1571 *
1572 * @field: Register field to write to
1573 * @val: Value to be written
1574 *
1575 * A value of zero will be returned on success, a negative errno will
1576 * be returned in error cases.
1577 */
1578int regmap_field_write(struct regmap_field *field, unsigned int val)
1579{
1580	return regmap_update_bits(field->regmap, field->reg,
1581				field->mask, val << field->shift);
1582}
1583EXPORT_SYMBOL_GPL(regmap_field_write);
1584
1585/**
1586 * regmap_field_update_bits():	Perform a read/modify/write cycle
1587 *                              on the register field
1588 *
1589 * @field: Register field to write to
1590 * @mask: Bitmask to change
1591 * @val: Value to be written
1592 *
1593 * A value of zero will be returned on success, a negative errno will
1594 * be returned in error cases.
1595 */
1596int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1597{
1598	mask = (mask << field->shift) & field->mask;
1599
1600	return regmap_update_bits(field->regmap, field->reg,
1601				  mask, val << field->shift);
1602}
1603EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1604
1605/**
1606 * regmap_fields_write(): Write a value to a single register field with port ID
1607 *
1608 * @field: Register field to write to
1609 * @id: port ID
1610 * @val: Value to be written
1611 *
1612 * A value of zero will be returned on success, a negative errno will
1613 * be returned in error cases.
1614 */
1615int regmap_fields_write(struct regmap_field *field, unsigned int id,
1616			unsigned int val)
1617{
1618	if (id >= field->id_size)
1619		return -EINVAL;
1620
1621	return regmap_update_bits(field->regmap,
1622				  field->reg + (field->id_offset * id),
1623				  field->mask, val << field->shift);
1624}
1625EXPORT_SYMBOL_GPL(regmap_fields_write);
1626
1627/**
1628 * regmap_fields_update_bits():	Perform a read/modify/write cycle
1629 *                              on the register field
1630 *
1631 * @field: Register field to write to
1632 * @id: port ID
1633 * @mask: Bitmask to change
1634 * @val: Value to be written
1635 *
1636 * A value of zero will be returned on success, a negative errno will
1637 * be returned in error cases.
1638 */
1639int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1640			      unsigned int mask, unsigned int val)
1641{
1642	if (id >= field->id_size)
1643		return -EINVAL;
1644
1645	mask = (mask << field->shift) & field->mask;
1646
1647	return regmap_update_bits(field->regmap,
1648				  field->reg + (field->id_offset * id),
1649				  mask, val << field->shift);
1650}
1651EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1652
1653/*
1654 * regmap_bulk_write(): Write multiple registers to the device
1655 *
1656 * @map: Register map to write to
1657 * @reg: First register to be write from
1658 * @val: Block of data to be written, in native register size for device
1659 * @val_count: Number of registers to write
1660 *
1661 * This function is intended to be used for writing a large block of
1662 * data to the device either in single transfer or multiple transfer.
1663 *
1664 * A value of zero will be returned on success, a negative errno will
1665 * be returned in error cases.
1666 */
1667int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1668		     size_t val_count)
1669{
1670	int ret = 0, i;
1671	size_t val_bytes = map->format.val_bytes;
1672
1673	if (map->bus && !map->format.parse_inplace)
1674		return -EINVAL;
1675	if (reg % map->reg_stride)
1676		return -EINVAL;
1677
1678	/*
1679	 * Some devices don't support bulk write, for
1680	 * them we have a series of single write operations.
1681	 */
1682	if (!map->bus || map->use_single_rw) {
1683		map->lock(map->lock_arg);
1684		for (i = 0; i < val_count; i++) {
1685			unsigned int ival;
1686
1687			switch (val_bytes) {
1688			case 1:
1689				ival = *(u8 *)(val + (i * val_bytes));
1690				break;
1691			case 2:
1692				ival = *(u16 *)(val + (i * val_bytes));
1693				break;
1694			case 4:
1695				ival = *(u32 *)(val + (i * val_bytes));
1696				break;
1697#ifdef CONFIG_64BIT
1698			case 8:
1699				ival = *(u64 *)(val + (i * val_bytes));
1700				break;
1701#endif
1702			default:
1703				ret = -EINVAL;
1704				goto out;
1705			}
1706
1707			ret = _regmap_write(map, reg + (i * map->reg_stride),
1708					ival);
1709			if (ret != 0)
1710				goto out;
1711		}
1712out:
1713		map->unlock(map->lock_arg);
1714	} else {
1715		void *wval;
1716
1717		if (!val_count)
1718			return -EINVAL;
1719
1720		wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1721		if (!wval) {
1722			dev_err(map->dev, "Error in memory allocation\n");
1723			return -ENOMEM;
1724		}
1725		for (i = 0; i < val_count * val_bytes; i += val_bytes)
1726			map->format.parse_inplace(wval + i);
1727
1728		map->lock(map->lock_arg);
1729		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1730		map->unlock(map->lock_arg);
1731
1732		kfree(wval);
1733	}
1734	return ret;
1735}
1736EXPORT_SYMBOL_GPL(regmap_bulk_write);
1737
1738/*
1739 * _regmap_raw_multi_reg_write()
1740 *
1741 * the (register,newvalue) pairs in regs have not been formatted, but
1742 * they are all in the same page and have been changed to being page
1743 * relative. The page register has been written if that was neccessary.
1744 */
1745static int _regmap_raw_multi_reg_write(struct regmap *map,
1746				       const struct reg_default *regs,
1747				       size_t num_regs)
1748{
1749	int ret;
1750	void *buf;
1751	int i;
1752	u8 *u8;
1753	size_t val_bytes = map->format.val_bytes;
1754	size_t reg_bytes = map->format.reg_bytes;
1755	size_t pad_bytes = map->format.pad_bytes;
1756	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1757	size_t len = pair_size * num_regs;
1758
1759	if (!len)
1760		return -EINVAL;
1761
1762	buf = kzalloc(len, GFP_KERNEL);
1763	if (!buf)
1764		return -ENOMEM;
1765
1766	/* We have to linearise by hand. */
1767
1768	u8 = buf;
1769
1770	for (i = 0; i < num_regs; i++) {
1771		int reg = regs[i].reg;
1772		int val = regs[i].def;
1773		trace_regmap_hw_write_start(map, reg, 1);
1774		map->format.format_reg(u8, reg, map->reg_shift);
1775		u8 += reg_bytes + pad_bytes;
1776		map->format.format_val(u8, val, 0);
1777		u8 += val_bytes;
1778	}
1779	u8 = buf;
1780	*u8 |= map->write_flag_mask;
1781
1782	ret = map->bus->write(map->bus_context, buf, len);
1783
1784	kfree(buf);
1785
1786	for (i = 0; i < num_regs; i++) {
1787		int reg = regs[i].reg;
1788		trace_regmap_hw_write_done(map, reg, 1);
1789	}
1790	return ret;
1791}
1792
1793static unsigned int _regmap_register_page(struct regmap *map,
1794					  unsigned int reg,
1795					  struct regmap_range_node *range)
1796{
1797	unsigned int win_page = (reg - range->range_min) / range->window_len;
1798
1799	return win_page;
1800}
1801
1802static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1803					       struct reg_default *regs,
1804					       size_t num_regs)
1805{
1806	int ret;
1807	int i, n;
1808	struct reg_default *base;
1809	unsigned int this_page = 0;
1810	/*
1811	 * the set of registers are not neccessarily in order, but
1812	 * since the order of write must be preserved this algorithm
1813	 * chops the set each time the page changes
1814	 */
1815	base = regs;
1816	for (i = 0, n = 0; i < num_regs; i++, n++) {
1817		unsigned int reg = regs[i].reg;
1818		struct regmap_range_node *range;
1819
1820		range = _regmap_range_lookup(map, reg);
1821		if (range) {
1822			unsigned int win_page = _regmap_register_page(map, reg,
1823								      range);
1824
1825			if (i == 0)
1826				this_page = win_page;
1827			if (win_page != this_page) {
1828				this_page = win_page;
1829				ret = _regmap_raw_multi_reg_write(map, base, n);
1830				if (ret != 0)
1831					return ret;
1832				base += n;
1833				n = 0;
1834			}
1835			ret = _regmap_select_page(map, &base[n].reg, range, 1);
1836			if (ret != 0)
1837				return ret;
1838		}
1839	}
1840	if (n > 0)
1841		return _regmap_raw_multi_reg_write(map, base, n);
1842	return 0;
1843}
1844
1845static int _regmap_multi_reg_write(struct regmap *map,
1846				   const struct reg_default *regs,
1847				   size_t num_regs)
1848{
1849	int i;
1850	int ret;
1851
1852	if (!map->can_multi_write) {
1853		for (i = 0; i < num_regs; i++) {
1854			ret = _regmap_write(map, regs[i].reg, regs[i].def);
1855			if (ret != 0)
1856				return ret;
1857		}
1858		return 0;
1859	}
1860
1861	if (!map->format.parse_inplace)
1862		return -EINVAL;
1863
1864	if (map->writeable_reg)
1865		for (i = 0; i < num_regs; i++) {
1866			int reg = regs[i].reg;
1867			if (!map->writeable_reg(map->dev, reg))
1868				return -EINVAL;
1869			if (reg % map->reg_stride)
1870				return -EINVAL;
1871		}
1872
1873	if (!map->cache_bypass) {
1874		for (i = 0; i < num_regs; i++) {
1875			unsigned int val = regs[i].def;
1876			unsigned int reg = regs[i].reg;
1877			ret = regcache_write(map, reg, val);
1878			if (ret) {
1879				dev_err(map->dev,
1880				"Error in caching of register: %x ret: %d\n",
1881								reg, ret);
1882				return ret;
1883			}
1884		}
1885		if (map->cache_only) {
1886			map->cache_dirty = true;
1887			return 0;
1888		}
1889	}
1890
1891	WARN_ON(!map->bus);
1892
1893	for (i = 0; i < num_regs; i++) {
1894		unsigned int reg = regs[i].reg;
1895		struct regmap_range_node *range;
1896		range = _regmap_range_lookup(map, reg);
1897		if (range) {
1898			size_t len = sizeof(struct reg_default)*num_regs;
1899			struct reg_default *base = kmemdup(regs, len,
1900							   GFP_KERNEL);
1901			if (!base)
1902				return -ENOMEM;
1903			ret = _regmap_range_multi_paged_reg_write(map, base,
1904								  num_regs);
1905			kfree(base);
1906
1907			return ret;
1908		}
1909	}
1910	return _regmap_raw_multi_reg_write(map, regs, num_regs);
1911}
1912
1913/*
1914 * regmap_multi_reg_write(): Write multiple registers to the device
1915 *
1916 * where the set of register,value pairs are supplied in any order,
1917 * possibly not all in a single range.
1918 *
1919 * @map: Register map to write to
1920 * @regs: Array of structures containing register,value to be written
1921 * @num_regs: Number of registers to write
1922 *
1923 * The 'normal' block write mode will send ultimately send data on the
1924 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1925 * addressed. However, this alternative block multi write mode will send
1926 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1927 * must of course support the mode.
1928 *
1929 * A value of zero will be returned on success, a negative errno will be
1930 * returned in error cases.
1931 */
1932int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1933			   int num_regs)
1934{
1935	int ret;
1936
1937	map->lock(map->lock_arg);
1938
1939	ret = _regmap_multi_reg_write(map, regs, num_regs);
1940
1941	map->unlock(map->lock_arg);
1942
1943	return ret;
1944}
1945EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1946
1947/*
1948 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1949 *                                    device but not the cache
1950 *
1951 * where the set of register are supplied in any order
1952 *
1953 * @map: Register map to write to
1954 * @regs: Array of structures containing register,value to be written
1955 * @num_regs: Number of registers to write
1956 *
1957 * This function is intended to be used for writing a large block of data
1958 * atomically to the device in single transfer for those I2C client devices
1959 * that implement this alternative block write mode.
1960 *
1961 * A value of zero will be returned on success, a negative errno will
1962 * be returned in error cases.
1963 */
1964int regmap_multi_reg_write_bypassed(struct regmap *map,
1965				    const struct reg_default *regs,
1966				    int num_regs)
1967{
1968	int ret;
1969	bool bypass;
1970
1971	map->lock(map->lock_arg);
1972
1973	bypass = map->cache_bypass;
1974	map->cache_bypass = true;
1975
1976	ret = _regmap_multi_reg_write(map, regs, num_regs);
1977
1978	map->cache_bypass = bypass;
1979
1980	map->unlock(map->lock_arg);
1981
1982	return ret;
1983}
1984EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1985
1986/**
1987 * regmap_raw_write_async(): Write raw values to one or more registers
1988 *                           asynchronously
1989 *
1990 * @map: Register map to write to
1991 * @reg: Initial register to write to
1992 * @val: Block of data to be written, laid out for direct transmission to the
1993 *       device.  Must be valid until regmap_async_complete() is called.
1994 * @val_len: Length of data pointed to by val.
1995 *
1996 * This function is intended to be used for things like firmware
1997 * download where a large block of data needs to be transferred to the
1998 * device.  No formatting will be done on the data provided.
1999 *
2000 * If supported by the underlying bus the write will be scheduled
2001 * asynchronously, helping maximise I/O speed on higher speed buses
2002 * like SPI.  regmap_async_complete() can be called to ensure that all
2003 * asynchrnous writes have been completed.
2004 *
2005 * A value of zero will be returned on success, a negative errno will
2006 * be returned in error cases.
2007 */
2008int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2009			   const void *val, size_t val_len)
2010{
2011	int ret;
2012
2013	if (val_len % map->format.val_bytes)
2014		return -EINVAL;
2015	if (reg % map->reg_stride)
2016		return -EINVAL;
2017
2018	map->lock(map->lock_arg);
2019
2020	map->async = true;
2021
2022	ret = _regmap_raw_write(map, reg, val, val_len);
2023
2024	map->async = false;
2025
2026	map->unlock(map->lock_arg);
2027
2028	return ret;
2029}
2030EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2031
2032static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2033			    unsigned int val_len)
2034{
2035	struct regmap_range_node *range;
2036	u8 *u8 = map->work_buf;
2037	int ret;
2038
2039	WARN_ON(!map->bus);
2040
2041	range = _regmap_range_lookup(map, reg);
2042	if (range) {
2043		ret = _regmap_select_page(map, &reg, range,
2044					  val_len / map->format.val_bytes);
2045		if (ret != 0)
2046			return ret;
2047	}
2048
2049	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2050
2051	/*
2052	 * Some buses or devices flag reads by setting the high bits in the
2053	 * register addresss; since it's always the high bits for all
2054	 * current formats we can do this here rather than in
2055	 * formatting.  This may break if we get interesting formats.
2056	 */
2057	u8[0] |= map->read_flag_mask;
2058
2059	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2060
2061	ret = map->bus->read(map->bus_context, map->work_buf,
2062			     map->format.reg_bytes + map->format.pad_bytes,
2063			     val, val_len);
2064
2065	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2066
2067	return ret;
2068}
2069
2070static int _regmap_bus_reg_read(void *context, unsigned int reg,
2071				unsigned int *val)
2072{
2073	struct regmap *map = context;
2074
2075	return map->bus->reg_read(map->bus_context, reg, val);
2076}
2077
2078static int _regmap_bus_read(void *context, unsigned int reg,
2079			    unsigned int *val)
2080{
2081	int ret;
2082	struct regmap *map = context;
2083
2084	if (!map->format.parse_val)
2085		return -EINVAL;
2086
2087	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2088	if (ret == 0)
2089		*val = map->format.parse_val(map->work_buf);
2090
2091	return ret;
2092}
2093
2094static int _regmap_read(struct regmap *map, unsigned int reg,
2095			unsigned int *val)
2096{
2097	int ret;
2098	void *context = _regmap_map_get_context(map);
2099
2100	WARN_ON(!map->reg_read);
2101
2102	if (!map->cache_bypass) {
2103		ret = regcache_read(map, reg, val);
2104		if (ret == 0)
2105			return 0;
2106	}
2107
2108	if (map->cache_only)
2109		return -EBUSY;
2110
2111	if (!regmap_readable(map, reg))
2112		return -EIO;
2113
2114	ret = map->reg_read(context, reg, val);
2115	if (ret == 0) {
2116#ifdef LOG_DEVICE
2117		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2118			dev_info(map->dev, "%x => %x\n", reg, *val);
2119#endif
2120
2121		trace_regmap_reg_read(map, reg, *val);
2122
2123		if (!map->cache_bypass)
2124			regcache_write(map, reg, *val);
2125	}
2126
2127	return ret;
2128}
2129
2130/**
2131 * regmap_read(): Read a value from a single register
2132 *
2133 * @map: Register map to read from
2134 * @reg: Register to be read from
2135 * @val: Pointer to store read value
2136 *
2137 * A value of zero will be returned on success, a negative errno will
2138 * be returned in error cases.
2139 */
2140int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2141{
2142	int ret;
2143
2144	if (reg % map->reg_stride)
2145		return -EINVAL;
2146
2147	map->lock(map->lock_arg);
2148
2149	ret = _regmap_read(map, reg, val);
2150
2151	map->unlock(map->lock_arg);
2152
2153	return ret;
2154}
2155EXPORT_SYMBOL_GPL(regmap_read);
2156
2157/**
2158 * regmap_raw_read(): Read raw data from the device
2159 *
2160 * @map: Register map to read from
2161 * @reg: First register to be read from
2162 * @val: Pointer to store read value
2163 * @val_len: Size of data to read
2164 *
2165 * A value of zero will be returned on success, a negative errno will
2166 * be returned in error cases.
2167 */
2168int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2169		    size_t val_len)
2170{
2171	size_t val_bytes = map->format.val_bytes;
2172	size_t val_count = val_len / val_bytes;
2173	unsigned int v;
2174	int ret, i;
2175
2176	if (!map->bus)
2177		return -EINVAL;
2178	if (val_len % map->format.val_bytes)
2179		return -EINVAL;
2180	if (reg % map->reg_stride)
2181		return -EINVAL;
2182
2183	map->lock(map->lock_arg);
2184
2185	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2186	    map->cache_type == REGCACHE_NONE) {
2187		/* Physical block read if there's no cache involved */
2188		ret = _regmap_raw_read(map, reg, val, val_len);
2189
2190	} else {
2191		/* Otherwise go word by word for the cache; should be low
2192		 * cost as we expect to hit the cache.
2193		 */
2194		for (i = 0; i < val_count; i++) {
2195			ret = _regmap_read(map, reg + (i * map->reg_stride),
2196					   &v);
2197			if (ret != 0)
2198				goto out;
2199
2200			map->format.format_val(val + (i * val_bytes), v, 0);
2201		}
2202	}
2203
2204 out:
2205	map->unlock(map->lock_arg);
2206
2207	return ret;
2208}
2209EXPORT_SYMBOL_GPL(regmap_raw_read);
2210
2211/**
2212 * regmap_field_read(): Read a value to a single register field
2213 *
2214 * @field: Register field to read from
2215 * @val: Pointer to store read value
2216 *
2217 * A value of zero will be returned on success, a negative errno will
2218 * be returned in error cases.
2219 */
2220int regmap_field_read(struct regmap_field *field, unsigned int *val)
2221{
2222	int ret;
2223	unsigned int reg_val;
2224	ret = regmap_read(field->regmap, field->reg, &reg_val);
2225	if (ret != 0)
2226		return ret;
2227
2228	reg_val &= field->mask;
2229	reg_val >>= field->shift;
2230	*val = reg_val;
2231
2232	return ret;
2233}
2234EXPORT_SYMBOL_GPL(regmap_field_read);
2235
2236/**
2237 * regmap_fields_read(): Read a value to a single register field with port ID
2238 *
2239 * @field: Register field to read from
2240 * @id: port ID
2241 * @val: Pointer to store read value
2242 *
2243 * A value of zero will be returned on success, a negative errno will
2244 * be returned in error cases.
2245 */
2246int regmap_fields_read(struct regmap_field *field, unsigned int id,
2247		       unsigned int *val)
2248{
2249	int ret;
2250	unsigned int reg_val;
2251
2252	if (id >= field->id_size)
2253		return -EINVAL;
2254
2255	ret = regmap_read(field->regmap,
2256			  field->reg + (field->id_offset * id),
2257			  &reg_val);
2258	if (ret != 0)
2259		return ret;
2260
2261	reg_val &= field->mask;
2262	reg_val >>= field->shift;
2263	*val = reg_val;
2264
2265	return ret;
2266}
2267EXPORT_SYMBOL_GPL(regmap_fields_read);
2268
2269/**
2270 * regmap_bulk_read(): Read multiple registers from the device
2271 *
2272 * @map: Register map to read from
2273 * @reg: First register to be read from
2274 * @val: Pointer to store read value, in native register size for device
2275 * @val_count: Number of registers to read
2276 *
2277 * A value of zero will be returned on success, a negative errno will
2278 * be returned in error cases.
2279 */
2280int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2281		     size_t val_count)
2282{
2283	int ret, i;
2284	size_t val_bytes = map->format.val_bytes;
2285	bool vol = regmap_volatile_range(map, reg, val_count);
2286
2287	if (reg % map->reg_stride)
2288		return -EINVAL;
2289
2290	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2291		/*
2292		 * Some devices does not support bulk read, for
2293		 * them we have a series of single read operations.
2294		 */
2295		if (map->use_single_rw) {
2296			for (i = 0; i < val_count; i++) {
2297				ret = regmap_raw_read(map,
2298						reg + (i * map->reg_stride),
2299						val + (i * val_bytes),
2300						val_bytes);
2301				if (ret != 0)
2302					return ret;
2303			}
2304		} else {
2305			ret = regmap_raw_read(map, reg, val,
2306					      val_bytes * val_count);
2307			if (ret != 0)
2308				return ret;
2309		}
2310
2311		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2312			map->format.parse_inplace(val + i);
2313	} else {
2314		for (i = 0; i < val_count; i++) {
2315			unsigned int ival;
2316			ret = regmap_read(map, reg + (i * map->reg_stride),
2317					  &ival);
2318			if (ret != 0)
2319				return ret;
2320			map->format.format_val(val + (i * val_bytes), ival, 0);
2321		}
2322	}
2323
2324	return 0;
2325}
2326EXPORT_SYMBOL_GPL(regmap_bulk_read);
2327
2328static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2329			       unsigned int mask, unsigned int val,
2330			       bool *change)
2331{
2332	int ret;
2333	unsigned int tmp, orig;
2334
2335	ret = _regmap_read(map, reg, &orig);
2336	if (ret != 0)
2337		return ret;
2338
2339	tmp = orig & ~mask;
2340	tmp |= val & mask;
2341
2342	if (tmp != orig) {
2343		ret = _regmap_write(map, reg, tmp);
2344		if (change)
2345			*change = true;
2346	} else {
2347		if (change)
2348			*change = false;
2349	}
2350
2351	return ret;
2352}
2353
2354/**
2355 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2356 *
2357 * @map: Register map to update
2358 * @reg: Register to update
2359 * @mask: Bitmask to change
2360 * @val: New value for bitmask
2361 *
2362 * Returns zero for success, a negative number on error.
2363 */
2364int regmap_update_bits(struct regmap *map, unsigned int reg,
2365		       unsigned int mask, unsigned int val)
2366{
2367	int ret;
2368
2369	map->lock(map->lock_arg);
2370	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2371	map->unlock(map->lock_arg);
2372
2373	return ret;
2374}
2375EXPORT_SYMBOL_GPL(regmap_update_bits);
2376
2377/**
2378 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2379 *                           map asynchronously
2380 *
2381 * @map: Register map to update
2382 * @reg: Register to update
2383 * @mask: Bitmask to change
2384 * @val: New value for bitmask
2385 *
2386 * With most buses the read must be done synchronously so this is most
2387 * useful for devices with a cache which do not need to interact with
2388 * the hardware to determine the current register value.
2389 *
2390 * Returns zero for success, a negative number on error.
2391 */
2392int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2393			     unsigned int mask, unsigned int val)
2394{
2395	int ret;
2396
2397	map->lock(map->lock_arg);
2398
2399	map->async = true;
2400
2401	ret = _regmap_update_bits(map, reg, mask, val, NULL);
2402
2403	map->async = false;
2404
2405	map->unlock(map->lock_arg);
2406
2407	return ret;
2408}
2409EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2410
2411/**
2412 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2413 *                           register map and report if updated
2414 *
2415 * @map: Register map to update
2416 * @reg: Register to update
2417 * @mask: Bitmask to change
2418 * @val: New value for bitmask
2419 * @change: Boolean indicating if a write was done
2420 *
2421 * Returns zero for success, a negative number on error.
2422 */
2423int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2424			     unsigned int mask, unsigned int val,
2425			     bool *change)
2426{
2427	int ret;
2428
2429	map->lock(map->lock_arg);
2430	ret = _regmap_update_bits(map, reg, mask, val, change);
2431	map->unlock(map->lock_arg);
2432	return ret;
2433}
2434EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2435
2436/**
2437 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2438 *                                 register map asynchronously and report if
2439 *                                 updated
2440 *
2441 * @map: Register map to update
2442 * @reg: Register to update
2443 * @mask: Bitmask to change
2444 * @val: New value for bitmask
2445 * @change: Boolean indicating if a write was done
2446 *
2447 * With most buses the read must be done synchronously so this is most
2448 * useful for devices with a cache which do not need to interact with
2449 * the hardware to determine the current register value.
2450 *
2451 * Returns zero for success, a negative number on error.
2452 */
2453int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2454				   unsigned int mask, unsigned int val,
2455				   bool *change)
2456{
2457	int ret;
2458
2459	map->lock(map->lock_arg);
2460
2461	map->async = true;
2462
2463	ret = _regmap_update_bits(map, reg, mask, val, change);
2464
2465	map->async = false;
2466
2467	map->unlock(map->lock_arg);
2468
2469	return ret;
2470}
2471EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2472
2473void regmap_async_complete_cb(struct regmap_async *async, int ret)
2474{
2475	struct regmap *map = async->map;
2476	bool wake;
2477
2478	trace_regmap_async_io_complete(map);
2479
2480	spin_lock(&map->async_lock);
2481	list_move(&async->list, &map->async_free);
2482	wake = list_empty(&map->async_list);
2483
2484	if (ret != 0)
2485		map->async_ret = ret;
2486
2487	spin_unlock(&map->async_lock);
2488
2489	if (wake)
2490		wake_up(&map->async_waitq);
2491}
2492EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2493
2494static int regmap_async_is_done(struct regmap *map)
2495{
2496	unsigned long flags;
2497	int ret;
2498
2499	spin_lock_irqsave(&map->async_lock, flags);
2500	ret = list_empty(&map->async_list);
2501	spin_unlock_irqrestore(&map->async_lock, flags);
2502
2503	return ret;
2504}
2505
2506/**
2507 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2508 *
2509 * @map: Map to operate on.
2510 *
2511 * Blocks until any pending asynchronous I/O has completed.  Returns
2512 * an error code for any failed I/O operations.
2513 */
2514int regmap_async_complete(struct regmap *map)
2515{
2516	unsigned long flags;
2517	int ret;
2518
2519	/* Nothing to do with no async support */
2520	if (!map->bus || !map->bus->async_write)
2521		return 0;
2522
2523	trace_regmap_async_complete_start(map);
2524
2525	wait_event(map->async_waitq, regmap_async_is_done(map));
2526
2527	spin_lock_irqsave(&map->async_lock, flags);
2528	ret = map->async_ret;
2529	map->async_ret = 0;
2530	spin_unlock_irqrestore(&map->async_lock, flags);
2531
2532	trace_regmap_async_complete_done(map);
2533
2534	return ret;
2535}
2536EXPORT_SYMBOL_GPL(regmap_async_complete);
2537
2538/**
2539 * regmap_register_patch: Register and apply register updates to be applied
2540 *                        on device initialistion
2541 *
2542 * @map: Register map to apply updates to.
2543 * @regs: Values to update.
2544 * @num_regs: Number of entries in regs.
2545 *
2546 * Register a set of register updates to be applied to the device
2547 * whenever the device registers are synchronised with the cache and
2548 * apply them immediately.  Typically this is used to apply
2549 * corrections to be applied to the device defaults on startup, such
2550 * as the updates some vendors provide to undocumented registers.
2551 *
2552 * The caller must ensure that this function cannot be called
2553 * concurrently with either itself or regcache_sync().
2554 */
2555int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2556			  int num_regs)
2557{
2558	struct reg_default *p;
2559	int ret;
2560	bool bypass;
2561
2562	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2563	    num_regs))
2564		return 0;
2565
2566	p = krealloc(map->patch,
2567		     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2568		     GFP_KERNEL);
2569	if (p) {
2570		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2571		map->patch = p;
2572		map->patch_regs += num_regs;
2573	} else {
2574		return -ENOMEM;
2575	}
2576
2577	map->lock(map->lock_arg);
2578
2579	bypass = map->cache_bypass;
2580
2581	map->cache_bypass = true;
2582	map->async = true;
2583
2584	ret = _regmap_multi_reg_write(map, regs, num_regs);
2585	if (ret != 0)
2586		goto out;
2587
2588out:
2589	map->async = false;
2590	map->cache_bypass = bypass;
2591
2592	map->unlock(map->lock_arg);
2593
2594	regmap_async_complete(map);
2595
2596	return ret;
2597}
2598EXPORT_SYMBOL_GPL(regmap_register_patch);
2599
2600/*
2601 * regmap_get_val_bytes(): Report the size of a register value
2602 *
2603 * Report the size of a register value, mainly intended to for use by
2604 * generic infrastructure built on top of regmap.
2605 */
2606int regmap_get_val_bytes(struct regmap *map)
2607{
2608	if (map->format.format_write)
2609		return -EINVAL;
2610
2611	return map->format.val_bytes;
2612}
2613EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2614
2615int regmap_parse_val(struct regmap *map, const void *buf,
2616			unsigned int *val)
2617{
2618	if (!map->format.parse_val)
2619		return -EINVAL;
2620
2621	*val = map->format.parse_val(buf);
2622
2623	return 0;
2624}
2625EXPORT_SYMBOL_GPL(regmap_parse_val);
2626
2627static int __init regmap_initcall(void)
2628{
2629	regmap_debugfs_initcall();
2630
2631	return 0;
2632}
2633postcore_initcall(regmap_initcall);
2634