1/*
2 *  linux/drivers/block/loop.c
3 *
4 *  Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/file.h>
57#include <linux/stat.h>
58#include <linux/errno.h>
59#include <linux/major.h>
60#include <linux/wait.h>
61#include <linux/blkdev.h>
62#include <linux/blkpg.h>
63#include <linux/init.h>
64#include <linux/swap.h>
65#include <linux/slab.h>
66#include <linux/compat.h>
67#include <linux/suspend.h>
68#include <linux/freezer.h>
69#include <linux/mutex.h>
70#include <linux/writeback.h>
71#include <linux/completion.h>
72#include <linux/highmem.h>
73#include <linux/kthread.h>
74#include <linux/splice.h>
75#include <linux/sysfs.h>
76#include <linux/miscdevice.h>
77#include <linux/falloc.h>
78#include <linux/uio.h>
79#include "loop.h"
80
81#include <asm/uaccess.h>
82
83static DEFINE_IDR(loop_index_idr);
84static DEFINE_MUTEX(loop_index_mutex);
85
86static int max_part;
87static int part_shift;
88
89static int transfer_xor(struct loop_device *lo, int cmd,
90			struct page *raw_page, unsigned raw_off,
91			struct page *loop_page, unsigned loop_off,
92			int size, sector_t real_block)
93{
94	char *raw_buf = kmap_atomic(raw_page) + raw_off;
95	char *loop_buf = kmap_atomic(loop_page) + loop_off;
96	char *in, *out, *key;
97	int i, keysize;
98
99	if (cmd == READ) {
100		in = raw_buf;
101		out = loop_buf;
102	} else {
103		in = loop_buf;
104		out = raw_buf;
105	}
106
107	key = lo->lo_encrypt_key;
108	keysize = lo->lo_encrypt_key_size;
109	for (i = 0; i < size; i++)
110		*out++ = *in++ ^ key[(i & 511) % keysize];
111
112	kunmap_atomic(loop_buf);
113	kunmap_atomic(raw_buf);
114	cond_resched();
115	return 0;
116}
117
118static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
119{
120	if (unlikely(info->lo_encrypt_key_size <= 0))
121		return -EINVAL;
122	return 0;
123}
124
125static struct loop_func_table none_funcs = {
126	.number = LO_CRYPT_NONE,
127};
128
129static struct loop_func_table xor_funcs = {
130	.number = LO_CRYPT_XOR,
131	.transfer = transfer_xor,
132	.init = xor_init
133};
134
135/* xfer_funcs[0] is special - its release function is never called */
136static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
137	&none_funcs,
138	&xor_funcs
139};
140
141static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
142{
143	loff_t loopsize;
144
145	/* Compute loopsize in bytes */
146	loopsize = i_size_read(file->f_mapping->host);
147	if (offset > 0)
148		loopsize -= offset;
149	/* offset is beyond i_size, weird but possible */
150	if (loopsize < 0)
151		return 0;
152
153	if (sizelimit > 0 && sizelimit < loopsize)
154		loopsize = sizelimit;
155	/*
156	 * Unfortunately, if we want to do I/O on the device,
157	 * the number of 512-byte sectors has to fit into a sector_t.
158	 */
159	return loopsize >> 9;
160}
161
162static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163{
164	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
165}
166
167static int
168figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
169{
170	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
171	sector_t x = (sector_t)size;
172	struct block_device *bdev = lo->lo_device;
173
174	if (unlikely((loff_t)x != size))
175		return -EFBIG;
176	if (lo->lo_offset != offset)
177		lo->lo_offset = offset;
178	if (lo->lo_sizelimit != sizelimit)
179		lo->lo_sizelimit = sizelimit;
180	set_capacity(lo->lo_disk, x);
181	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
182	/* let user-space know about the new size */
183	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
184	return 0;
185}
186
187static inline int
188lo_do_transfer(struct loop_device *lo, int cmd,
189	       struct page *rpage, unsigned roffs,
190	       struct page *lpage, unsigned loffs,
191	       int size, sector_t rblock)
192{
193	int ret;
194
195	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
196	if (likely(!ret))
197		return 0;
198
199	printk_ratelimited(KERN_ERR
200		"loop: Transfer error at byte offset %llu, length %i.\n",
201		(unsigned long long)rblock << 9, size);
202	return ret;
203}
204
205static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
206{
207	struct iov_iter i;
208	ssize_t bw;
209
210	iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
211
212	file_start_write(file);
213	bw = vfs_iter_write(file, &i, ppos);
214	file_end_write(file);
215
216	if (likely(bw ==  bvec->bv_len))
217		return 0;
218
219	printk_ratelimited(KERN_ERR
220		"loop: Write error at byte offset %llu, length %i.\n",
221		(unsigned long long)*ppos, bvec->bv_len);
222	if (bw >= 0)
223		bw = -EIO;
224	return bw;
225}
226
227static int lo_write_simple(struct loop_device *lo, struct request *rq,
228		loff_t pos)
229{
230	struct bio_vec bvec;
231	struct req_iterator iter;
232	int ret = 0;
233
234	rq_for_each_segment(bvec, rq, iter) {
235		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
236		if (ret < 0)
237			break;
238		cond_resched();
239	}
240
241	return ret;
242}
243
244/*
245 * This is the slow, transforming version that needs to double buffer the
246 * data as it cannot do the transformations in place without having direct
247 * access to the destination pages of the backing file.
248 */
249static int lo_write_transfer(struct loop_device *lo, struct request *rq,
250		loff_t pos)
251{
252	struct bio_vec bvec, b;
253	struct req_iterator iter;
254	struct page *page;
255	int ret = 0;
256
257	page = alloc_page(GFP_NOIO);
258	if (unlikely(!page))
259		return -ENOMEM;
260
261	rq_for_each_segment(bvec, rq, iter) {
262		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
263			bvec.bv_offset, bvec.bv_len, pos >> 9);
264		if (unlikely(ret))
265			break;
266
267		b.bv_page = page;
268		b.bv_offset = 0;
269		b.bv_len = bvec.bv_len;
270		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
271		if (ret < 0)
272			break;
273	}
274
275	__free_page(page);
276	return ret;
277}
278
279static int lo_read_simple(struct loop_device *lo, struct request *rq,
280		loff_t pos)
281{
282	struct bio_vec bvec;
283	struct req_iterator iter;
284	struct iov_iter i;
285	ssize_t len;
286
287	rq_for_each_segment(bvec, rq, iter) {
288		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
289		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
290		if (len < 0)
291			return len;
292
293		flush_dcache_page(bvec.bv_page);
294
295		if (len != bvec.bv_len) {
296			struct bio *bio;
297
298			__rq_for_each_bio(bio, rq)
299				zero_fill_bio(bio);
300			break;
301		}
302		cond_resched();
303	}
304
305	return 0;
306}
307
308static int lo_read_transfer(struct loop_device *lo, struct request *rq,
309		loff_t pos)
310{
311	struct bio_vec bvec, b;
312	struct req_iterator iter;
313	struct iov_iter i;
314	struct page *page;
315	ssize_t len;
316	int ret = 0;
317
318	page = alloc_page(GFP_NOIO);
319	if (unlikely(!page))
320		return -ENOMEM;
321
322	rq_for_each_segment(bvec, rq, iter) {
323		loff_t offset = pos;
324
325		b.bv_page = page;
326		b.bv_offset = 0;
327		b.bv_len = bvec.bv_len;
328
329		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
330		len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
331		if (len < 0) {
332			ret = len;
333			goto out_free_page;
334		}
335
336		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
337			bvec.bv_offset, len, offset >> 9);
338		if (ret)
339			goto out_free_page;
340
341		flush_dcache_page(bvec.bv_page);
342
343		if (len != bvec.bv_len) {
344			struct bio *bio;
345
346			__rq_for_each_bio(bio, rq)
347				zero_fill_bio(bio);
348			break;
349		}
350	}
351
352	ret = 0;
353out_free_page:
354	__free_page(page);
355	return ret;
356}
357
358static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
359{
360	/*
361	 * We use punch hole to reclaim the free space used by the
362	 * image a.k.a. discard. However we do not support discard if
363	 * encryption is enabled, because it may give an attacker
364	 * useful information.
365	 */
366	struct file *file = lo->lo_backing_file;
367	int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
368	int ret;
369
370	if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
371		ret = -EOPNOTSUPP;
372		goto out;
373	}
374
375	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
376	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
377		ret = -EIO;
378 out:
379	return ret;
380}
381
382static int lo_req_flush(struct loop_device *lo, struct request *rq)
383{
384	struct file *file = lo->lo_backing_file;
385	int ret = vfs_fsync(file, 0);
386	if (unlikely(ret && ret != -EINVAL))
387		ret = -EIO;
388
389	return ret;
390}
391
392static int do_req_filebacked(struct loop_device *lo, struct request *rq)
393{
394	loff_t pos;
395	int ret;
396
397	pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
398
399	if (rq->cmd_flags & REQ_WRITE) {
400		if (rq->cmd_flags & REQ_FLUSH)
401			ret = lo_req_flush(lo, rq);
402		else if (rq->cmd_flags & REQ_DISCARD)
403			ret = lo_discard(lo, rq, pos);
404		else if (lo->transfer)
405			ret = lo_write_transfer(lo, rq, pos);
406		else
407			ret = lo_write_simple(lo, rq, pos);
408
409	} else {
410		if (lo->transfer)
411			ret = lo_read_transfer(lo, rq, pos);
412		else
413			ret = lo_read_simple(lo, rq, pos);
414	}
415
416	return ret;
417}
418
419struct switch_request {
420	struct file *file;
421	struct completion wait;
422};
423
424/*
425 * Do the actual switch; called from the BIO completion routine
426 */
427static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
428{
429	struct file *file = p->file;
430	struct file *old_file = lo->lo_backing_file;
431	struct address_space *mapping;
432
433	/* if no new file, only flush of queued bios requested */
434	if (!file)
435		return;
436
437	mapping = file->f_mapping;
438	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
439	lo->lo_backing_file = file;
440	lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
441		mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
442	lo->old_gfp_mask = mapping_gfp_mask(mapping);
443	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
444}
445
446/*
447 * loop_switch performs the hard work of switching a backing store.
448 * First it needs to flush existing IO, it does this by sending a magic
449 * BIO down the pipe. The completion of this BIO does the actual switch.
450 */
451static int loop_switch(struct loop_device *lo, struct file *file)
452{
453	struct switch_request w;
454
455	w.file = file;
456
457	/* freeze queue and wait for completion of scheduled requests */
458	blk_mq_freeze_queue(lo->lo_queue);
459
460	/* do the switch action */
461	do_loop_switch(lo, &w);
462
463	/* unfreeze */
464	blk_mq_unfreeze_queue(lo->lo_queue);
465
466	return 0;
467}
468
469/*
470 * Helper to flush the IOs in loop, but keeping loop thread running
471 */
472static int loop_flush(struct loop_device *lo)
473{
474	return loop_switch(lo, NULL);
475}
476
477/*
478 * loop_change_fd switched the backing store of a loopback device to
479 * a new file. This is useful for operating system installers to free up
480 * the original file and in High Availability environments to switch to
481 * an alternative location for the content in case of server meltdown.
482 * This can only work if the loop device is used read-only, and if the
483 * new backing store is the same size and type as the old backing store.
484 */
485static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
486			  unsigned int arg)
487{
488	struct file	*file, *old_file;
489	struct inode	*inode;
490	int		error;
491
492	error = -ENXIO;
493	if (lo->lo_state != Lo_bound)
494		goto out;
495
496	/* the loop device has to be read-only */
497	error = -EINVAL;
498	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
499		goto out;
500
501	error = -EBADF;
502	file = fget(arg);
503	if (!file)
504		goto out;
505
506	inode = file->f_mapping->host;
507	old_file = lo->lo_backing_file;
508
509	error = -EINVAL;
510
511	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
512		goto out_putf;
513
514	/* size of the new backing store needs to be the same */
515	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
516		goto out_putf;
517
518	/* and ... switch */
519	error = loop_switch(lo, file);
520	if (error)
521		goto out_putf;
522
523	fput(old_file);
524	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
525		ioctl_by_bdev(bdev, BLKRRPART, 0);
526	return 0;
527
528 out_putf:
529	fput(file);
530 out:
531	return error;
532}
533
534static inline int is_loop_device(struct file *file)
535{
536	struct inode *i = file->f_mapping->host;
537
538	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
539}
540
541/* loop sysfs attributes */
542
543static ssize_t loop_attr_show(struct device *dev, char *page,
544			      ssize_t (*callback)(struct loop_device *, char *))
545{
546	struct gendisk *disk = dev_to_disk(dev);
547	struct loop_device *lo = disk->private_data;
548
549	return callback(lo, page);
550}
551
552#define LOOP_ATTR_RO(_name)						\
553static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
554static ssize_t loop_attr_do_show_##_name(struct device *d,		\
555				struct device_attribute *attr, char *b)	\
556{									\
557	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
558}									\
559static struct device_attribute loop_attr_##_name =			\
560	__ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
561
562static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
563{
564	ssize_t ret;
565	char *p = NULL;
566
567	spin_lock_irq(&lo->lo_lock);
568	if (lo->lo_backing_file)
569		p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
570	spin_unlock_irq(&lo->lo_lock);
571
572	if (IS_ERR_OR_NULL(p))
573		ret = PTR_ERR(p);
574	else {
575		ret = strlen(p);
576		memmove(buf, p, ret);
577		buf[ret++] = '\n';
578		buf[ret] = 0;
579	}
580
581	return ret;
582}
583
584static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
585{
586	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
587}
588
589static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
590{
591	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
592}
593
594static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
595{
596	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
597
598	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
599}
600
601static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
602{
603	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
604
605	return sprintf(buf, "%s\n", partscan ? "1" : "0");
606}
607
608LOOP_ATTR_RO(backing_file);
609LOOP_ATTR_RO(offset);
610LOOP_ATTR_RO(sizelimit);
611LOOP_ATTR_RO(autoclear);
612LOOP_ATTR_RO(partscan);
613
614static struct attribute *loop_attrs[] = {
615	&loop_attr_backing_file.attr,
616	&loop_attr_offset.attr,
617	&loop_attr_sizelimit.attr,
618	&loop_attr_autoclear.attr,
619	&loop_attr_partscan.attr,
620	NULL,
621};
622
623static struct attribute_group loop_attribute_group = {
624	.name = "loop",
625	.attrs= loop_attrs,
626};
627
628static int loop_sysfs_init(struct loop_device *lo)
629{
630	return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
631				  &loop_attribute_group);
632}
633
634static void loop_sysfs_exit(struct loop_device *lo)
635{
636	sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
637			   &loop_attribute_group);
638}
639
640static void loop_config_discard(struct loop_device *lo)
641{
642	struct file *file = lo->lo_backing_file;
643	struct inode *inode = file->f_mapping->host;
644	struct request_queue *q = lo->lo_queue;
645
646	/*
647	 * We use punch hole to reclaim the free space used by the
648	 * image a.k.a. discard. However we do not support discard if
649	 * encryption is enabled, because it may give an attacker
650	 * useful information.
651	 */
652	if ((!file->f_op->fallocate) ||
653	    lo->lo_encrypt_key_size) {
654		q->limits.discard_granularity = 0;
655		q->limits.discard_alignment = 0;
656		q->limits.max_discard_sectors = 0;
657		q->limits.discard_zeroes_data = 0;
658		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
659		return;
660	}
661
662	q->limits.discard_granularity = inode->i_sb->s_blocksize;
663	q->limits.discard_alignment = 0;
664	q->limits.max_discard_sectors = UINT_MAX >> 9;
665	q->limits.discard_zeroes_data = 1;
666	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
667}
668
669static int loop_set_fd(struct loop_device *lo, fmode_t mode,
670		       struct block_device *bdev, unsigned int arg)
671{
672	struct file	*file, *f;
673	struct inode	*inode;
674	struct address_space *mapping;
675	unsigned lo_blocksize;
676	int		lo_flags = 0;
677	int		error;
678	loff_t		size;
679
680	/* This is safe, since we have a reference from open(). */
681	__module_get(THIS_MODULE);
682
683	error = -EBADF;
684	file = fget(arg);
685	if (!file)
686		goto out;
687
688	error = -EBUSY;
689	if (lo->lo_state != Lo_unbound)
690		goto out_putf;
691
692	/* Avoid recursion */
693	f = file;
694	while (is_loop_device(f)) {
695		struct loop_device *l;
696
697		if (f->f_mapping->host->i_bdev == bdev)
698			goto out_putf;
699
700		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
701		if (l->lo_state == Lo_unbound) {
702			error = -EINVAL;
703			goto out_putf;
704		}
705		f = l->lo_backing_file;
706	}
707
708	mapping = file->f_mapping;
709	inode = mapping->host;
710
711	error = -EINVAL;
712	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
713		goto out_putf;
714
715	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
716	    !file->f_op->write_iter)
717		lo_flags |= LO_FLAGS_READ_ONLY;
718
719	lo_blocksize = S_ISBLK(inode->i_mode) ?
720		inode->i_bdev->bd_block_size : PAGE_SIZE;
721
722	error = -EFBIG;
723	size = get_loop_size(lo, file);
724	if ((loff_t)(sector_t)size != size)
725		goto out_putf;
726	error = -ENOMEM;
727	lo->wq = alloc_workqueue("kloopd%d",
728			WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 16,
729			lo->lo_number);
730	if (!lo->wq)
731		goto out_putf;
732
733	error = 0;
734
735	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
736
737	lo->lo_blocksize = lo_blocksize;
738	lo->lo_device = bdev;
739	lo->lo_flags = lo_flags;
740	lo->lo_backing_file = file;
741	lo->transfer = NULL;
742	lo->ioctl = NULL;
743	lo->lo_sizelimit = 0;
744	lo->old_gfp_mask = mapping_gfp_mask(mapping);
745	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
746
747	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
748		blk_queue_flush(lo->lo_queue, REQ_FLUSH);
749
750	set_capacity(lo->lo_disk, size);
751	bd_set_size(bdev, size << 9);
752	loop_sysfs_init(lo);
753	/* let user-space know about the new size */
754	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
755
756	set_blocksize(bdev, lo_blocksize);
757
758	lo->lo_state = Lo_bound;
759	if (part_shift)
760		lo->lo_flags |= LO_FLAGS_PARTSCAN;
761	if (lo->lo_flags & LO_FLAGS_PARTSCAN)
762		ioctl_by_bdev(bdev, BLKRRPART, 0);
763
764	/* Grab the block_device to prevent its destruction after we
765	 * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
766	 */
767	bdgrab(bdev);
768	return 0;
769
770 out_putf:
771	fput(file);
772 out:
773	/* This is safe: open() is still holding a reference. */
774	module_put(THIS_MODULE);
775	return error;
776}
777
778static int
779loop_release_xfer(struct loop_device *lo)
780{
781	int err = 0;
782	struct loop_func_table *xfer = lo->lo_encryption;
783
784	if (xfer) {
785		if (xfer->release)
786			err = xfer->release(lo);
787		lo->transfer = NULL;
788		lo->lo_encryption = NULL;
789		module_put(xfer->owner);
790	}
791	return err;
792}
793
794static int
795loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
796	       const struct loop_info64 *i)
797{
798	int err = 0;
799
800	if (xfer) {
801		struct module *owner = xfer->owner;
802
803		if (!try_module_get(owner))
804			return -EINVAL;
805		if (xfer->init)
806			err = xfer->init(lo, i);
807		if (err)
808			module_put(owner);
809		else
810			lo->lo_encryption = xfer;
811	}
812	return err;
813}
814
815static int loop_clr_fd(struct loop_device *lo)
816{
817	struct file *filp = lo->lo_backing_file;
818	gfp_t gfp = lo->old_gfp_mask;
819	struct block_device *bdev = lo->lo_device;
820
821	if (lo->lo_state != Lo_bound)
822		return -ENXIO;
823
824	/*
825	 * If we've explicitly asked to tear down the loop device,
826	 * and it has an elevated reference count, set it for auto-teardown when
827	 * the last reference goes away. This stops $!~#$@ udev from
828	 * preventing teardown because it decided that it needs to run blkid on
829	 * the loopback device whenever they appear. xfstests is notorious for
830	 * failing tests because blkid via udev races with a losetup
831	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
832	 * command to fail with EBUSY.
833	 */
834	if (lo->lo_refcnt > 1) {
835		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
836		mutex_unlock(&lo->lo_ctl_mutex);
837		return 0;
838	}
839
840	if (filp == NULL)
841		return -EINVAL;
842
843	spin_lock_irq(&lo->lo_lock);
844	lo->lo_state = Lo_rundown;
845	lo->lo_backing_file = NULL;
846	spin_unlock_irq(&lo->lo_lock);
847
848	loop_release_xfer(lo);
849	lo->transfer = NULL;
850	lo->ioctl = NULL;
851	lo->lo_device = NULL;
852	lo->lo_encryption = NULL;
853	lo->lo_offset = 0;
854	lo->lo_sizelimit = 0;
855	lo->lo_encrypt_key_size = 0;
856	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
857	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
858	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
859	if (bdev) {
860		bdput(bdev);
861		invalidate_bdev(bdev);
862	}
863	set_capacity(lo->lo_disk, 0);
864	loop_sysfs_exit(lo);
865	if (bdev) {
866		bd_set_size(bdev, 0);
867		/* let user-space know about this change */
868		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
869	}
870	mapping_set_gfp_mask(filp->f_mapping, gfp);
871	lo->lo_state = Lo_unbound;
872	/* This is safe: open() is still holding a reference. */
873	module_put(THIS_MODULE);
874	if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
875		ioctl_by_bdev(bdev, BLKRRPART, 0);
876	lo->lo_flags = 0;
877	if (!part_shift)
878		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
879	destroy_workqueue(lo->wq);
880	lo->wq = NULL;
881	mutex_unlock(&lo->lo_ctl_mutex);
882	/*
883	 * Need not hold lo_ctl_mutex to fput backing file.
884	 * Calling fput holding lo_ctl_mutex triggers a circular
885	 * lock dependency possibility warning as fput can take
886	 * bd_mutex which is usually taken before lo_ctl_mutex.
887	 */
888	fput(filp);
889	return 0;
890}
891
892static int
893loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
894{
895	int err;
896	struct loop_func_table *xfer;
897	kuid_t uid = current_uid();
898
899	if (lo->lo_encrypt_key_size &&
900	    !uid_eq(lo->lo_key_owner, uid) &&
901	    !capable(CAP_SYS_ADMIN))
902		return -EPERM;
903	if (lo->lo_state != Lo_bound)
904		return -ENXIO;
905	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
906		return -EINVAL;
907
908	err = loop_release_xfer(lo);
909	if (err)
910		return err;
911
912	if (info->lo_encrypt_type) {
913		unsigned int type = info->lo_encrypt_type;
914
915		if (type >= MAX_LO_CRYPT)
916			return -EINVAL;
917		xfer = xfer_funcs[type];
918		if (xfer == NULL)
919			return -EINVAL;
920	} else
921		xfer = NULL;
922
923	err = loop_init_xfer(lo, xfer, info);
924	if (err)
925		return err;
926
927	if (lo->lo_offset != info->lo_offset ||
928	    lo->lo_sizelimit != info->lo_sizelimit)
929		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
930			return -EFBIG;
931
932	loop_config_discard(lo);
933
934	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
935	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
936	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
937	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
938
939	if (!xfer)
940		xfer = &none_funcs;
941	lo->transfer = xfer->transfer;
942	lo->ioctl = xfer->ioctl;
943
944	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
945	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
946		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
947
948	if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
949	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
950		lo->lo_flags |= LO_FLAGS_PARTSCAN;
951		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
952		ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
953	}
954
955	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
956	lo->lo_init[0] = info->lo_init[0];
957	lo->lo_init[1] = info->lo_init[1];
958	if (info->lo_encrypt_key_size) {
959		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
960		       info->lo_encrypt_key_size);
961		lo->lo_key_owner = uid;
962	}
963
964	return 0;
965}
966
967static int
968loop_get_status(struct loop_device *lo, struct loop_info64 *info)
969{
970	struct file *file = lo->lo_backing_file;
971	struct kstat stat;
972	int error;
973
974	if (lo->lo_state != Lo_bound)
975		return -ENXIO;
976	error = vfs_getattr(&file->f_path, &stat);
977	if (error)
978		return error;
979	memset(info, 0, sizeof(*info));
980	info->lo_number = lo->lo_number;
981	info->lo_device = huge_encode_dev(stat.dev);
982	info->lo_inode = stat.ino;
983	info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
984	info->lo_offset = lo->lo_offset;
985	info->lo_sizelimit = lo->lo_sizelimit;
986	info->lo_flags = lo->lo_flags;
987	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
988	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
989	info->lo_encrypt_type =
990		lo->lo_encryption ? lo->lo_encryption->number : 0;
991	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
992		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
993		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
994		       lo->lo_encrypt_key_size);
995	}
996	return 0;
997}
998
999static void
1000loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1001{
1002	memset(info64, 0, sizeof(*info64));
1003	info64->lo_number = info->lo_number;
1004	info64->lo_device = info->lo_device;
1005	info64->lo_inode = info->lo_inode;
1006	info64->lo_rdevice = info->lo_rdevice;
1007	info64->lo_offset = info->lo_offset;
1008	info64->lo_sizelimit = 0;
1009	info64->lo_encrypt_type = info->lo_encrypt_type;
1010	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1011	info64->lo_flags = info->lo_flags;
1012	info64->lo_init[0] = info->lo_init[0];
1013	info64->lo_init[1] = info->lo_init[1];
1014	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1015		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1016	else
1017		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1018	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1019}
1020
1021static int
1022loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1023{
1024	memset(info, 0, sizeof(*info));
1025	info->lo_number = info64->lo_number;
1026	info->lo_device = info64->lo_device;
1027	info->lo_inode = info64->lo_inode;
1028	info->lo_rdevice = info64->lo_rdevice;
1029	info->lo_offset = info64->lo_offset;
1030	info->lo_encrypt_type = info64->lo_encrypt_type;
1031	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1032	info->lo_flags = info64->lo_flags;
1033	info->lo_init[0] = info64->lo_init[0];
1034	info->lo_init[1] = info64->lo_init[1];
1035	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1036		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1037	else
1038		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1039	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1040
1041	/* error in case values were truncated */
1042	if (info->lo_device != info64->lo_device ||
1043	    info->lo_rdevice != info64->lo_rdevice ||
1044	    info->lo_inode != info64->lo_inode ||
1045	    info->lo_offset != info64->lo_offset)
1046		return -EOVERFLOW;
1047
1048	return 0;
1049}
1050
1051static int
1052loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1053{
1054	struct loop_info info;
1055	struct loop_info64 info64;
1056
1057	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1058		return -EFAULT;
1059	loop_info64_from_old(&info, &info64);
1060	return loop_set_status(lo, &info64);
1061}
1062
1063static int
1064loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1065{
1066	struct loop_info64 info64;
1067
1068	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1069		return -EFAULT;
1070	return loop_set_status(lo, &info64);
1071}
1072
1073static int
1074loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1075	struct loop_info info;
1076	struct loop_info64 info64;
1077	int err = 0;
1078
1079	if (!arg)
1080		err = -EINVAL;
1081	if (!err)
1082		err = loop_get_status(lo, &info64);
1083	if (!err)
1084		err = loop_info64_to_old(&info64, &info);
1085	if (!err && copy_to_user(arg, &info, sizeof(info)))
1086		err = -EFAULT;
1087
1088	return err;
1089}
1090
1091static int
1092loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1093	struct loop_info64 info64;
1094	int err = 0;
1095
1096	if (!arg)
1097		err = -EINVAL;
1098	if (!err)
1099		err = loop_get_status(lo, &info64);
1100	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1101		err = -EFAULT;
1102
1103	return err;
1104}
1105
1106static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1107{
1108	if (unlikely(lo->lo_state != Lo_bound))
1109		return -ENXIO;
1110
1111	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1112}
1113
1114static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1115	unsigned int cmd, unsigned long arg)
1116{
1117	struct loop_device *lo = bdev->bd_disk->private_data;
1118	int err;
1119
1120	mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1121	switch (cmd) {
1122	case LOOP_SET_FD:
1123		err = loop_set_fd(lo, mode, bdev, arg);
1124		break;
1125	case LOOP_CHANGE_FD:
1126		err = loop_change_fd(lo, bdev, arg);
1127		break;
1128	case LOOP_CLR_FD:
1129		/* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1130		err = loop_clr_fd(lo);
1131		if (!err)
1132			goto out_unlocked;
1133		break;
1134	case LOOP_SET_STATUS:
1135		err = -EPERM;
1136		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1137			err = loop_set_status_old(lo,
1138					(struct loop_info __user *)arg);
1139		break;
1140	case LOOP_GET_STATUS:
1141		err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1142		break;
1143	case LOOP_SET_STATUS64:
1144		err = -EPERM;
1145		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1146			err = loop_set_status64(lo,
1147					(struct loop_info64 __user *) arg);
1148		break;
1149	case LOOP_GET_STATUS64:
1150		err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1151		break;
1152	case LOOP_SET_CAPACITY:
1153		err = -EPERM;
1154		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1155			err = loop_set_capacity(lo, bdev);
1156		break;
1157	default:
1158		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1159	}
1160	mutex_unlock(&lo->lo_ctl_mutex);
1161
1162out_unlocked:
1163	return err;
1164}
1165
1166#ifdef CONFIG_COMPAT
1167struct compat_loop_info {
1168	compat_int_t	lo_number;      /* ioctl r/o */
1169	compat_dev_t	lo_device;      /* ioctl r/o */
1170	compat_ulong_t	lo_inode;       /* ioctl r/o */
1171	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1172	compat_int_t	lo_offset;
1173	compat_int_t	lo_encrypt_type;
1174	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1175	compat_int_t	lo_flags;       /* ioctl r/o */
1176	char		lo_name[LO_NAME_SIZE];
1177	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1178	compat_ulong_t	lo_init[2];
1179	char		reserved[4];
1180};
1181
1182/*
1183 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1184 * - noinlined to reduce stack space usage in main part of driver
1185 */
1186static noinline int
1187loop_info64_from_compat(const struct compat_loop_info __user *arg,
1188			struct loop_info64 *info64)
1189{
1190	struct compat_loop_info info;
1191
1192	if (copy_from_user(&info, arg, sizeof(info)))
1193		return -EFAULT;
1194
1195	memset(info64, 0, sizeof(*info64));
1196	info64->lo_number = info.lo_number;
1197	info64->lo_device = info.lo_device;
1198	info64->lo_inode = info.lo_inode;
1199	info64->lo_rdevice = info.lo_rdevice;
1200	info64->lo_offset = info.lo_offset;
1201	info64->lo_sizelimit = 0;
1202	info64->lo_encrypt_type = info.lo_encrypt_type;
1203	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1204	info64->lo_flags = info.lo_flags;
1205	info64->lo_init[0] = info.lo_init[0];
1206	info64->lo_init[1] = info.lo_init[1];
1207	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1208		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1209	else
1210		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1211	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1212	return 0;
1213}
1214
1215/*
1216 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1217 * - noinlined to reduce stack space usage in main part of driver
1218 */
1219static noinline int
1220loop_info64_to_compat(const struct loop_info64 *info64,
1221		      struct compat_loop_info __user *arg)
1222{
1223	struct compat_loop_info info;
1224
1225	memset(&info, 0, sizeof(info));
1226	info.lo_number = info64->lo_number;
1227	info.lo_device = info64->lo_device;
1228	info.lo_inode = info64->lo_inode;
1229	info.lo_rdevice = info64->lo_rdevice;
1230	info.lo_offset = info64->lo_offset;
1231	info.lo_encrypt_type = info64->lo_encrypt_type;
1232	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1233	info.lo_flags = info64->lo_flags;
1234	info.lo_init[0] = info64->lo_init[0];
1235	info.lo_init[1] = info64->lo_init[1];
1236	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1237		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1238	else
1239		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1240	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1241
1242	/* error in case values were truncated */
1243	if (info.lo_device != info64->lo_device ||
1244	    info.lo_rdevice != info64->lo_rdevice ||
1245	    info.lo_inode != info64->lo_inode ||
1246	    info.lo_offset != info64->lo_offset ||
1247	    info.lo_init[0] != info64->lo_init[0] ||
1248	    info.lo_init[1] != info64->lo_init[1])
1249		return -EOVERFLOW;
1250
1251	if (copy_to_user(arg, &info, sizeof(info)))
1252		return -EFAULT;
1253	return 0;
1254}
1255
1256static int
1257loop_set_status_compat(struct loop_device *lo,
1258		       const struct compat_loop_info __user *arg)
1259{
1260	struct loop_info64 info64;
1261	int ret;
1262
1263	ret = loop_info64_from_compat(arg, &info64);
1264	if (ret < 0)
1265		return ret;
1266	return loop_set_status(lo, &info64);
1267}
1268
1269static int
1270loop_get_status_compat(struct loop_device *lo,
1271		       struct compat_loop_info __user *arg)
1272{
1273	struct loop_info64 info64;
1274	int err = 0;
1275
1276	if (!arg)
1277		err = -EINVAL;
1278	if (!err)
1279		err = loop_get_status(lo, &info64);
1280	if (!err)
1281		err = loop_info64_to_compat(&info64, arg);
1282	return err;
1283}
1284
1285static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1286			   unsigned int cmd, unsigned long arg)
1287{
1288	struct loop_device *lo = bdev->bd_disk->private_data;
1289	int err;
1290
1291	switch(cmd) {
1292	case LOOP_SET_STATUS:
1293		mutex_lock(&lo->lo_ctl_mutex);
1294		err = loop_set_status_compat(
1295			lo, (const struct compat_loop_info __user *) arg);
1296		mutex_unlock(&lo->lo_ctl_mutex);
1297		break;
1298	case LOOP_GET_STATUS:
1299		mutex_lock(&lo->lo_ctl_mutex);
1300		err = loop_get_status_compat(
1301			lo, (struct compat_loop_info __user *) arg);
1302		mutex_unlock(&lo->lo_ctl_mutex);
1303		break;
1304	case LOOP_SET_CAPACITY:
1305	case LOOP_CLR_FD:
1306	case LOOP_GET_STATUS64:
1307	case LOOP_SET_STATUS64:
1308		arg = (unsigned long) compat_ptr(arg);
1309	case LOOP_SET_FD:
1310	case LOOP_CHANGE_FD:
1311		err = lo_ioctl(bdev, mode, cmd, arg);
1312		break;
1313	default:
1314		err = -ENOIOCTLCMD;
1315		break;
1316	}
1317	return err;
1318}
1319#endif
1320
1321static int lo_open(struct block_device *bdev, fmode_t mode)
1322{
1323	struct loop_device *lo;
1324	int err = 0;
1325
1326	mutex_lock(&loop_index_mutex);
1327	lo = bdev->bd_disk->private_data;
1328	if (!lo) {
1329		err = -ENXIO;
1330		goto out;
1331	}
1332
1333	mutex_lock(&lo->lo_ctl_mutex);
1334	lo->lo_refcnt++;
1335	mutex_unlock(&lo->lo_ctl_mutex);
1336out:
1337	mutex_unlock(&loop_index_mutex);
1338	return err;
1339}
1340
1341static void lo_release(struct gendisk *disk, fmode_t mode)
1342{
1343	struct loop_device *lo = disk->private_data;
1344	int err;
1345
1346	mutex_lock(&lo->lo_ctl_mutex);
1347
1348	if (--lo->lo_refcnt)
1349		goto out;
1350
1351	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1352		/*
1353		 * In autoclear mode, stop the loop thread
1354		 * and remove configuration after last close.
1355		 */
1356		err = loop_clr_fd(lo);
1357		if (!err)
1358			return;
1359	} else {
1360		/*
1361		 * Otherwise keep thread (if running) and config,
1362		 * but flush possible ongoing bios in thread.
1363		 */
1364		loop_flush(lo);
1365	}
1366
1367out:
1368	mutex_unlock(&lo->lo_ctl_mutex);
1369}
1370
1371static const struct block_device_operations lo_fops = {
1372	.owner =	THIS_MODULE,
1373	.open =		lo_open,
1374	.release =	lo_release,
1375	.ioctl =	lo_ioctl,
1376#ifdef CONFIG_COMPAT
1377	.compat_ioctl =	lo_compat_ioctl,
1378#endif
1379};
1380
1381/*
1382 * And now the modules code and kernel interface.
1383 */
1384static int max_loop;
1385module_param(max_loop, int, S_IRUGO);
1386MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1387module_param(max_part, int, S_IRUGO);
1388MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1389MODULE_LICENSE("GPL");
1390MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1391
1392int loop_register_transfer(struct loop_func_table *funcs)
1393{
1394	unsigned int n = funcs->number;
1395
1396	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1397		return -EINVAL;
1398	xfer_funcs[n] = funcs;
1399	return 0;
1400}
1401
1402static int unregister_transfer_cb(int id, void *ptr, void *data)
1403{
1404	struct loop_device *lo = ptr;
1405	struct loop_func_table *xfer = data;
1406
1407	mutex_lock(&lo->lo_ctl_mutex);
1408	if (lo->lo_encryption == xfer)
1409		loop_release_xfer(lo);
1410	mutex_unlock(&lo->lo_ctl_mutex);
1411	return 0;
1412}
1413
1414int loop_unregister_transfer(int number)
1415{
1416	unsigned int n = number;
1417	struct loop_func_table *xfer;
1418
1419	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1420		return -EINVAL;
1421
1422	xfer_funcs[n] = NULL;
1423	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1424	return 0;
1425}
1426
1427EXPORT_SYMBOL(loop_register_transfer);
1428EXPORT_SYMBOL(loop_unregister_transfer);
1429
1430static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1431		const struct blk_mq_queue_data *bd)
1432{
1433	struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1434	struct loop_device *lo = cmd->rq->q->queuedata;
1435
1436	blk_mq_start_request(bd->rq);
1437
1438	if (lo->lo_state != Lo_bound)
1439		return -EIO;
1440
1441	if (cmd->rq->cmd_flags & REQ_WRITE) {
1442		struct loop_device *lo = cmd->rq->q->queuedata;
1443		bool need_sched = true;
1444
1445		spin_lock_irq(&lo->lo_lock);
1446		if (lo->write_started)
1447			need_sched = false;
1448		else
1449			lo->write_started = true;
1450		list_add_tail(&cmd->list, &lo->write_cmd_head);
1451		spin_unlock_irq(&lo->lo_lock);
1452
1453		if (need_sched)
1454			queue_work(lo->wq, &lo->write_work);
1455	} else {
1456		queue_work(lo->wq, &cmd->read_work);
1457	}
1458
1459	return BLK_MQ_RQ_QUEUE_OK;
1460}
1461
1462static void loop_handle_cmd(struct loop_cmd *cmd)
1463{
1464	const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1465	struct loop_device *lo = cmd->rq->q->queuedata;
1466	int ret = -EIO;
1467
1468	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1469		goto failed;
1470
1471	ret = do_req_filebacked(lo, cmd->rq);
1472
1473 failed:
1474	if (ret)
1475		cmd->rq->errors = -EIO;
1476	blk_mq_complete_request(cmd->rq);
1477}
1478
1479static void loop_queue_write_work(struct work_struct *work)
1480{
1481	struct loop_device *lo =
1482		container_of(work, struct loop_device, write_work);
1483	LIST_HEAD(cmd_list);
1484
1485	spin_lock_irq(&lo->lo_lock);
1486 repeat:
1487	list_splice_init(&lo->write_cmd_head, &cmd_list);
1488	spin_unlock_irq(&lo->lo_lock);
1489
1490	while (!list_empty(&cmd_list)) {
1491		struct loop_cmd *cmd = list_first_entry(&cmd_list,
1492				struct loop_cmd, list);
1493		list_del_init(&cmd->list);
1494		loop_handle_cmd(cmd);
1495	}
1496
1497	spin_lock_irq(&lo->lo_lock);
1498	if (!list_empty(&lo->write_cmd_head))
1499		goto repeat;
1500	lo->write_started = false;
1501	spin_unlock_irq(&lo->lo_lock);
1502}
1503
1504static void loop_queue_read_work(struct work_struct *work)
1505{
1506	struct loop_cmd *cmd =
1507		container_of(work, struct loop_cmd, read_work);
1508
1509	loop_handle_cmd(cmd);
1510}
1511
1512static int loop_init_request(void *data, struct request *rq,
1513		unsigned int hctx_idx, unsigned int request_idx,
1514		unsigned int numa_node)
1515{
1516	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1517
1518	cmd->rq = rq;
1519	INIT_WORK(&cmd->read_work, loop_queue_read_work);
1520
1521	return 0;
1522}
1523
1524static struct blk_mq_ops loop_mq_ops = {
1525	.queue_rq       = loop_queue_rq,
1526	.map_queue      = blk_mq_map_queue,
1527	.init_request	= loop_init_request,
1528};
1529
1530static int loop_add(struct loop_device **l, int i)
1531{
1532	struct loop_device *lo;
1533	struct gendisk *disk;
1534	int err;
1535
1536	err = -ENOMEM;
1537	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1538	if (!lo)
1539		goto out;
1540
1541	lo->lo_state = Lo_unbound;
1542
1543	/* allocate id, if @id >= 0, we're requesting that specific id */
1544	if (i >= 0) {
1545		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1546		if (err == -ENOSPC)
1547			err = -EEXIST;
1548	} else {
1549		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1550	}
1551	if (err < 0)
1552		goto out_free_dev;
1553	i = err;
1554
1555	err = -ENOMEM;
1556	lo->tag_set.ops = &loop_mq_ops;
1557	lo->tag_set.nr_hw_queues = 1;
1558	lo->tag_set.queue_depth = 128;
1559	lo->tag_set.numa_node = NUMA_NO_NODE;
1560	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1561	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1562	lo->tag_set.driver_data = lo;
1563
1564	err = blk_mq_alloc_tag_set(&lo->tag_set);
1565	if (err)
1566		goto out_free_idr;
1567
1568	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1569	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1570		err = PTR_ERR(lo->lo_queue);
1571		goto out_cleanup_tags;
1572	}
1573	lo->lo_queue->queuedata = lo;
1574
1575	INIT_LIST_HEAD(&lo->write_cmd_head);
1576	INIT_WORK(&lo->write_work, loop_queue_write_work);
1577
1578	disk = lo->lo_disk = alloc_disk(1 << part_shift);
1579	if (!disk)
1580		goto out_free_queue;
1581
1582	/*
1583	 * Disable partition scanning by default. The in-kernel partition
1584	 * scanning can be requested individually per-device during its
1585	 * setup. Userspace can always add and remove partitions from all
1586	 * devices. The needed partition minors are allocated from the
1587	 * extended minor space, the main loop device numbers will continue
1588	 * to match the loop minors, regardless of the number of partitions
1589	 * used.
1590	 *
1591	 * If max_part is given, partition scanning is globally enabled for
1592	 * all loop devices. The minors for the main loop devices will be
1593	 * multiples of max_part.
1594	 *
1595	 * Note: Global-for-all-devices, set-only-at-init, read-only module
1596	 * parameteters like 'max_loop' and 'max_part' make things needlessly
1597	 * complicated, are too static, inflexible and may surprise
1598	 * userspace tools. Parameters like this in general should be avoided.
1599	 */
1600	if (!part_shift)
1601		disk->flags |= GENHD_FL_NO_PART_SCAN;
1602	disk->flags |= GENHD_FL_EXT_DEVT;
1603	mutex_init(&lo->lo_ctl_mutex);
1604	lo->lo_number		= i;
1605	spin_lock_init(&lo->lo_lock);
1606	disk->major		= LOOP_MAJOR;
1607	disk->first_minor	= i << part_shift;
1608	disk->fops		= &lo_fops;
1609	disk->private_data	= lo;
1610	disk->queue		= lo->lo_queue;
1611	sprintf(disk->disk_name, "loop%d", i);
1612	add_disk(disk);
1613	*l = lo;
1614	return lo->lo_number;
1615
1616out_free_queue:
1617	blk_cleanup_queue(lo->lo_queue);
1618out_cleanup_tags:
1619	blk_mq_free_tag_set(&lo->tag_set);
1620out_free_idr:
1621	idr_remove(&loop_index_idr, i);
1622out_free_dev:
1623	kfree(lo);
1624out:
1625	return err;
1626}
1627
1628static void loop_remove(struct loop_device *lo)
1629{
1630	blk_cleanup_queue(lo->lo_queue);
1631	del_gendisk(lo->lo_disk);
1632	blk_mq_free_tag_set(&lo->tag_set);
1633	put_disk(lo->lo_disk);
1634	kfree(lo);
1635}
1636
1637static int find_free_cb(int id, void *ptr, void *data)
1638{
1639	struct loop_device *lo = ptr;
1640	struct loop_device **l = data;
1641
1642	if (lo->lo_state == Lo_unbound) {
1643		*l = lo;
1644		return 1;
1645	}
1646	return 0;
1647}
1648
1649static int loop_lookup(struct loop_device **l, int i)
1650{
1651	struct loop_device *lo;
1652	int ret = -ENODEV;
1653
1654	if (i < 0) {
1655		int err;
1656
1657		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1658		if (err == 1) {
1659			*l = lo;
1660			ret = lo->lo_number;
1661		}
1662		goto out;
1663	}
1664
1665	/* lookup and return a specific i */
1666	lo = idr_find(&loop_index_idr, i);
1667	if (lo) {
1668		*l = lo;
1669		ret = lo->lo_number;
1670	}
1671out:
1672	return ret;
1673}
1674
1675static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1676{
1677	struct loop_device *lo;
1678	struct kobject *kobj;
1679	int err;
1680
1681	mutex_lock(&loop_index_mutex);
1682	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1683	if (err < 0)
1684		err = loop_add(&lo, MINOR(dev) >> part_shift);
1685	if (err < 0)
1686		kobj = NULL;
1687	else
1688		kobj = get_disk(lo->lo_disk);
1689	mutex_unlock(&loop_index_mutex);
1690
1691	*part = 0;
1692	return kobj;
1693}
1694
1695static long loop_control_ioctl(struct file *file, unsigned int cmd,
1696			       unsigned long parm)
1697{
1698	struct loop_device *lo;
1699	int ret = -ENOSYS;
1700
1701	mutex_lock(&loop_index_mutex);
1702	switch (cmd) {
1703	case LOOP_CTL_ADD:
1704		ret = loop_lookup(&lo, parm);
1705		if (ret >= 0) {
1706			ret = -EEXIST;
1707			break;
1708		}
1709		ret = loop_add(&lo, parm);
1710		break;
1711	case LOOP_CTL_REMOVE:
1712		ret = loop_lookup(&lo, parm);
1713		if (ret < 0)
1714			break;
1715		mutex_lock(&lo->lo_ctl_mutex);
1716		if (lo->lo_state != Lo_unbound) {
1717			ret = -EBUSY;
1718			mutex_unlock(&lo->lo_ctl_mutex);
1719			break;
1720		}
1721		if (lo->lo_refcnt > 0) {
1722			ret = -EBUSY;
1723			mutex_unlock(&lo->lo_ctl_mutex);
1724			break;
1725		}
1726		lo->lo_disk->private_data = NULL;
1727		mutex_unlock(&lo->lo_ctl_mutex);
1728		idr_remove(&loop_index_idr, lo->lo_number);
1729		loop_remove(lo);
1730		break;
1731	case LOOP_CTL_GET_FREE:
1732		ret = loop_lookup(&lo, -1);
1733		if (ret >= 0)
1734			break;
1735		ret = loop_add(&lo, -1);
1736	}
1737	mutex_unlock(&loop_index_mutex);
1738
1739	return ret;
1740}
1741
1742static const struct file_operations loop_ctl_fops = {
1743	.open		= nonseekable_open,
1744	.unlocked_ioctl	= loop_control_ioctl,
1745	.compat_ioctl	= loop_control_ioctl,
1746	.owner		= THIS_MODULE,
1747	.llseek		= noop_llseek,
1748};
1749
1750static struct miscdevice loop_misc = {
1751	.minor		= LOOP_CTRL_MINOR,
1752	.name		= "loop-control",
1753	.fops		= &loop_ctl_fops,
1754};
1755
1756MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1757MODULE_ALIAS("devname:loop-control");
1758
1759static int __init loop_init(void)
1760{
1761	int i, nr;
1762	unsigned long range;
1763	struct loop_device *lo;
1764	int err;
1765
1766	err = misc_register(&loop_misc);
1767	if (err < 0)
1768		return err;
1769
1770	part_shift = 0;
1771	if (max_part > 0) {
1772		part_shift = fls(max_part);
1773
1774		/*
1775		 * Adjust max_part according to part_shift as it is exported
1776		 * to user space so that user can decide correct minor number
1777		 * if [s]he want to create more devices.
1778		 *
1779		 * Note that -1 is required because partition 0 is reserved
1780		 * for the whole disk.
1781		 */
1782		max_part = (1UL << part_shift) - 1;
1783	}
1784
1785	if ((1UL << part_shift) > DISK_MAX_PARTS) {
1786		err = -EINVAL;
1787		goto misc_out;
1788	}
1789
1790	if (max_loop > 1UL << (MINORBITS - part_shift)) {
1791		err = -EINVAL;
1792		goto misc_out;
1793	}
1794
1795	/*
1796	 * If max_loop is specified, create that many devices upfront.
1797	 * This also becomes a hard limit. If max_loop is not specified,
1798	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1799	 * init time. Loop devices can be requested on-demand with the
1800	 * /dev/loop-control interface, or be instantiated by accessing
1801	 * a 'dead' device node.
1802	 */
1803	if (max_loop) {
1804		nr = max_loop;
1805		range = max_loop << part_shift;
1806	} else {
1807		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1808		range = 1UL << MINORBITS;
1809	}
1810
1811	if (register_blkdev(LOOP_MAJOR, "loop")) {
1812		err = -EIO;
1813		goto misc_out;
1814	}
1815
1816	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1817				  THIS_MODULE, loop_probe, NULL, NULL);
1818
1819	/* pre-create number of devices given by config or max_loop */
1820	mutex_lock(&loop_index_mutex);
1821	for (i = 0; i < nr; i++)
1822		loop_add(&lo, i);
1823	mutex_unlock(&loop_index_mutex);
1824
1825	printk(KERN_INFO "loop: module loaded\n");
1826	return 0;
1827
1828misc_out:
1829	misc_deregister(&loop_misc);
1830	return err;
1831}
1832
1833static int loop_exit_cb(int id, void *ptr, void *data)
1834{
1835	struct loop_device *lo = ptr;
1836
1837	loop_remove(lo);
1838	return 0;
1839}
1840
1841static void __exit loop_exit(void)
1842{
1843	unsigned long range;
1844
1845	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1846
1847	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1848	idr_destroy(&loop_index_idr);
1849
1850	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1851	unregister_blkdev(LOOP_MAJOR, "loop");
1852
1853	misc_deregister(&loop_misc);
1854}
1855
1856module_init(loop_init);
1857module_exit(loop_exit);
1858
1859#ifndef MODULE
1860static int __init max_loop_setup(char *str)
1861{
1862	max_loop = simple_strtol(str, NULL, 0);
1863	return 1;
1864}
1865
1866__setup("max_loop=", max_loop_setup);
1867#endif
1868