1/*
2 * clk-xgene.c - AppliedMicro X-Gene Clock Interface
3 *
4 * Copyright (c) 2013, Applied Micro Circuits Corporation
5 * Author: Loc Ho <lho@apm.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of
10 * the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
20 * MA 02111-1307 USA
21 *
22 */
23#include <linux/module.h>
24#include <linux/spinlock.h>
25#include <linux/io.h>
26#include <linux/of.h>
27#include <linux/clkdev.h>
28#include <linux/clk-provider.h>
29#include <linux/of_address.h>
30#include <asm/setup.h>
31
32/* Register SCU_PCPPLL bit fields */
33#define N_DIV_RD(src)			(((src) & 0x000001ff))
34
35/* Register SCU_SOCPLL bit fields */
36#define CLKR_RD(src)			(((src) & 0x07000000)>>24)
37#define CLKOD_RD(src)			(((src) & 0x00300000)>>20)
38#define REGSPEC_RESET_F1_MASK		0x00010000
39#define CLKF_RD(src)			(((src) & 0x000001ff))
40
41#define XGENE_CLK_DRIVER_VER		"0.1"
42
43static DEFINE_SPINLOCK(clk_lock);
44
45static inline u32 xgene_clk_read(void *csr)
46{
47	return readl_relaxed(csr);
48}
49
50static inline void xgene_clk_write(u32 data, void *csr)
51{
52	return writel_relaxed(data, csr);
53}
54
55/* PLL Clock */
56enum xgene_pll_type {
57	PLL_TYPE_PCP = 0,
58	PLL_TYPE_SOC = 1,
59};
60
61struct xgene_clk_pll {
62	struct clk_hw	hw;
63	const char	*name;
64	void __iomem	*reg;
65	spinlock_t	*lock;
66	u32		pll_offset;
67	enum xgene_pll_type	type;
68};
69
70#define to_xgene_clk_pll(_hw) container_of(_hw, struct xgene_clk_pll, hw)
71
72static int xgene_clk_pll_is_enabled(struct clk_hw *hw)
73{
74	struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw);
75	u32 data;
76
77	data = xgene_clk_read(pllclk->reg + pllclk->pll_offset);
78	pr_debug("%s pll %s\n", pllclk->name,
79		data & REGSPEC_RESET_F1_MASK ? "disabled" : "enabled");
80
81	return data & REGSPEC_RESET_F1_MASK ? 0 : 1;
82}
83
84static unsigned long xgene_clk_pll_recalc_rate(struct clk_hw *hw,
85				unsigned long parent_rate)
86{
87	struct xgene_clk_pll *pllclk = to_xgene_clk_pll(hw);
88	unsigned long fref;
89	unsigned long fvco;
90	u32 pll;
91	u32 nref;
92	u32 nout;
93	u32 nfb;
94
95	pll = xgene_clk_read(pllclk->reg + pllclk->pll_offset);
96
97	if (pllclk->type == PLL_TYPE_PCP) {
98		/*
99		 * PLL VCO = Reference clock * NF
100		 * PCP PLL = PLL_VCO / 2
101		 */
102		nout = 2;
103		fvco = parent_rate * (N_DIV_RD(pll) + 4);
104	} else {
105		/*
106		 * Fref = Reference Clock / NREF;
107		 * Fvco = Fref * NFB;
108		 * Fout = Fvco / NOUT;
109		 */
110		nref = CLKR_RD(pll) + 1;
111		nout = CLKOD_RD(pll) + 1;
112		nfb = CLKF_RD(pll);
113		fref = parent_rate / nref;
114		fvco = fref * nfb;
115	}
116	pr_debug("%s pll recalc rate %ld parent %ld\n", pllclk->name,
117		fvco / nout, parent_rate);
118
119	return fvco / nout;
120}
121
122const struct clk_ops xgene_clk_pll_ops = {
123	.is_enabled = xgene_clk_pll_is_enabled,
124	.recalc_rate = xgene_clk_pll_recalc_rate,
125};
126
127static struct clk *xgene_register_clk_pll(struct device *dev,
128	const char *name, const char *parent_name,
129	unsigned long flags, void __iomem *reg, u32 pll_offset,
130	u32 type, spinlock_t *lock)
131{
132	struct xgene_clk_pll *apmclk;
133	struct clk *clk;
134	struct clk_init_data init;
135
136	/* allocate the APM clock structure */
137	apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL);
138	if (!apmclk) {
139		pr_err("%s: could not allocate APM clk\n", __func__);
140		return ERR_PTR(-ENOMEM);
141	}
142
143	init.name = name;
144	init.ops = &xgene_clk_pll_ops;
145	init.flags = flags;
146	init.parent_names = parent_name ? &parent_name : NULL;
147	init.num_parents = parent_name ? 1 : 0;
148
149	apmclk->name = name;
150	apmclk->reg = reg;
151	apmclk->lock = lock;
152	apmclk->pll_offset = pll_offset;
153	apmclk->type = type;
154	apmclk->hw.init = &init;
155
156	/* Register the clock */
157	clk = clk_register(dev, &apmclk->hw);
158	if (IS_ERR(clk)) {
159		pr_err("%s: could not register clk %s\n", __func__, name);
160		kfree(apmclk);
161		return NULL;
162	}
163	return clk;
164}
165
166static void xgene_pllclk_init(struct device_node *np, enum xgene_pll_type pll_type)
167{
168        const char *clk_name = np->full_name;
169        struct clk *clk;
170        void *reg;
171
172        reg = of_iomap(np, 0);
173        if (reg == NULL) {
174                pr_err("Unable to map CSR register for %s\n", np->full_name);
175                return;
176        }
177        of_property_read_string(np, "clock-output-names", &clk_name);
178        clk = xgene_register_clk_pll(NULL,
179                        clk_name, of_clk_get_parent_name(np, 0),
180                        CLK_IS_ROOT, reg, 0, pll_type, &clk_lock);
181        if (!IS_ERR(clk)) {
182                of_clk_add_provider(np, of_clk_src_simple_get, clk);
183                clk_register_clkdev(clk, clk_name, NULL);
184                pr_debug("Add %s clock PLL\n", clk_name);
185        }
186}
187
188static void xgene_socpllclk_init(struct device_node *np)
189{
190	xgene_pllclk_init(np, PLL_TYPE_SOC);
191}
192
193static void xgene_pcppllclk_init(struct device_node *np)
194{
195	xgene_pllclk_init(np, PLL_TYPE_PCP);
196}
197
198/* IP Clock */
199struct xgene_dev_parameters {
200	void __iomem *csr_reg;		/* CSR for IP clock */
201	u32 reg_clk_offset;		/* Offset to clock enable CSR */
202	u32 reg_clk_mask;		/* Mask bit for clock enable */
203	u32 reg_csr_offset;		/* Offset to CSR reset */
204	u32 reg_csr_mask;		/* Mask bit for disable CSR reset */
205	void __iomem *divider_reg;	/* CSR for divider */
206	u32 reg_divider_offset;		/* Offset to divider register */
207	u32 reg_divider_shift;		/* Bit shift to divider field */
208	u32 reg_divider_width;		/* Width of the bit to divider field */
209};
210
211struct xgene_clk {
212	struct clk_hw	hw;
213	const char	*name;
214	spinlock_t	*lock;
215	struct xgene_dev_parameters	param;
216};
217
218#define to_xgene_clk(_hw) container_of(_hw, struct xgene_clk, hw)
219
220static int xgene_clk_enable(struct clk_hw *hw)
221{
222	struct xgene_clk *pclk = to_xgene_clk(hw);
223	unsigned long flags = 0;
224	u32 data;
225
226	if (pclk->lock)
227		spin_lock_irqsave(pclk->lock, flags);
228
229	if (pclk->param.csr_reg != NULL) {
230		pr_debug("%s clock enabled\n", pclk->name);
231		/* First enable the clock */
232		data = xgene_clk_read(pclk->param.csr_reg +
233					pclk->param.reg_clk_offset);
234		data |= pclk->param.reg_clk_mask;
235		xgene_clk_write(data, pclk->param.csr_reg +
236					pclk->param.reg_clk_offset);
237		pr_debug("%s clock PADDR base 0x%016LX clk offset 0x%08X mask 0x%08X value 0x%08X\n",
238			pclk->name, __pa(pclk->param.csr_reg),
239			pclk->param.reg_clk_offset, pclk->param.reg_clk_mask,
240			data);
241
242		/* Second enable the CSR */
243		data = xgene_clk_read(pclk->param.csr_reg +
244					pclk->param.reg_csr_offset);
245		data &= ~pclk->param.reg_csr_mask;
246		xgene_clk_write(data, pclk->param.csr_reg +
247					pclk->param.reg_csr_offset);
248		pr_debug("%s CSR RESET PADDR base 0x%016LX csr offset 0x%08X mask 0x%08X value 0x%08X\n",
249			pclk->name, __pa(pclk->param.csr_reg),
250			pclk->param.reg_csr_offset, pclk->param.reg_csr_mask,
251			data);
252	}
253
254	if (pclk->lock)
255		spin_unlock_irqrestore(pclk->lock, flags);
256
257	return 0;
258}
259
260static void xgene_clk_disable(struct clk_hw *hw)
261{
262	struct xgene_clk *pclk = to_xgene_clk(hw);
263	unsigned long flags = 0;
264	u32 data;
265
266	if (pclk->lock)
267		spin_lock_irqsave(pclk->lock, flags);
268
269	if (pclk->param.csr_reg != NULL) {
270		pr_debug("%s clock disabled\n", pclk->name);
271		/* First put the CSR in reset */
272		data = xgene_clk_read(pclk->param.csr_reg +
273					pclk->param.reg_csr_offset);
274		data |= pclk->param.reg_csr_mask;
275		xgene_clk_write(data, pclk->param.csr_reg +
276					pclk->param.reg_csr_offset);
277
278		/* Second disable the clock */
279		data = xgene_clk_read(pclk->param.csr_reg +
280					pclk->param.reg_clk_offset);
281		data &= ~pclk->param.reg_clk_mask;
282		xgene_clk_write(data, pclk->param.csr_reg +
283					pclk->param.reg_clk_offset);
284	}
285
286	if (pclk->lock)
287		spin_unlock_irqrestore(pclk->lock, flags);
288}
289
290static int xgene_clk_is_enabled(struct clk_hw *hw)
291{
292	struct xgene_clk *pclk = to_xgene_clk(hw);
293	u32 data = 0;
294
295	if (pclk->param.csr_reg != NULL) {
296		pr_debug("%s clock checking\n", pclk->name);
297		data = xgene_clk_read(pclk->param.csr_reg +
298					pclk->param.reg_clk_offset);
299		pr_debug("%s clock is %s\n", pclk->name,
300			data & pclk->param.reg_clk_mask ? "enabled" :
301							"disabled");
302	}
303
304	if (pclk->param.csr_reg == NULL)
305		return 1;
306	return data & pclk->param.reg_clk_mask ? 1 : 0;
307}
308
309static unsigned long xgene_clk_recalc_rate(struct clk_hw *hw,
310				unsigned long parent_rate)
311{
312	struct xgene_clk *pclk = to_xgene_clk(hw);
313	u32 data;
314
315	if (pclk->param.divider_reg) {
316		data = xgene_clk_read(pclk->param.divider_reg +
317					pclk->param.reg_divider_offset);
318		data >>= pclk->param.reg_divider_shift;
319		data &= (1 << pclk->param.reg_divider_width) - 1;
320
321		pr_debug("%s clock recalc rate %ld parent %ld\n",
322			pclk->name, parent_rate / data, parent_rate);
323		return parent_rate / data;
324	} else {
325		pr_debug("%s clock recalc rate %ld parent %ld\n",
326			pclk->name, parent_rate, parent_rate);
327		return parent_rate;
328	}
329}
330
331static int xgene_clk_set_rate(struct clk_hw *hw, unsigned long rate,
332				unsigned long parent_rate)
333{
334	struct xgene_clk *pclk = to_xgene_clk(hw);
335	unsigned long flags = 0;
336	u32 data;
337	u32 divider;
338	u32 divider_save;
339
340	if (pclk->lock)
341		spin_lock_irqsave(pclk->lock, flags);
342
343	if (pclk->param.divider_reg) {
344		/* Let's compute the divider */
345		if (rate > parent_rate)
346			rate = parent_rate;
347		divider_save = divider = parent_rate / rate; /* Rounded down */
348		divider &= (1 << pclk->param.reg_divider_width) - 1;
349		divider <<= pclk->param.reg_divider_shift;
350
351		/* Set new divider */
352		data = xgene_clk_read(pclk->param.divider_reg +
353				pclk->param.reg_divider_offset);
354		data &= ~((1 << pclk->param.reg_divider_width) - 1);
355		data |= divider;
356		xgene_clk_write(data, pclk->param.divider_reg +
357					pclk->param.reg_divider_offset);
358		pr_debug("%s clock set rate %ld\n", pclk->name,
359			parent_rate / divider_save);
360	} else {
361		divider_save = 1;
362	}
363
364	if (pclk->lock)
365		spin_unlock_irqrestore(pclk->lock, flags);
366
367	return parent_rate / divider_save;
368}
369
370static long xgene_clk_round_rate(struct clk_hw *hw, unsigned long rate,
371				unsigned long *prate)
372{
373	struct xgene_clk *pclk = to_xgene_clk(hw);
374	unsigned long parent_rate = *prate;
375	u32 divider;
376
377	if (pclk->param.divider_reg) {
378		/* Let's compute the divider */
379		if (rate > parent_rate)
380			rate = parent_rate;
381		divider = parent_rate / rate;   /* Rounded down */
382	} else {
383		divider = 1;
384	}
385
386	return parent_rate / divider;
387}
388
389const struct clk_ops xgene_clk_ops = {
390	.enable = xgene_clk_enable,
391	.disable = xgene_clk_disable,
392	.is_enabled = xgene_clk_is_enabled,
393	.recalc_rate = xgene_clk_recalc_rate,
394	.set_rate = xgene_clk_set_rate,
395	.round_rate = xgene_clk_round_rate,
396};
397
398static struct clk *xgene_register_clk(struct device *dev,
399		const char *name, const char *parent_name,
400		struct xgene_dev_parameters *parameters, spinlock_t *lock)
401{
402	struct xgene_clk *apmclk;
403	struct clk *clk;
404	struct clk_init_data init;
405	int rc;
406
407	/* allocate the APM clock structure */
408	apmclk = kzalloc(sizeof(*apmclk), GFP_KERNEL);
409	if (!apmclk) {
410		pr_err("%s: could not allocate APM clk\n", __func__);
411		return ERR_PTR(-ENOMEM);
412	}
413
414	init.name = name;
415	init.ops = &xgene_clk_ops;
416	init.flags = 0;
417	init.parent_names = parent_name ? &parent_name : NULL;
418	init.num_parents = parent_name ? 1 : 0;
419
420	apmclk->name = name;
421	apmclk->lock = lock;
422	apmclk->hw.init = &init;
423	apmclk->param = *parameters;
424
425	/* Register the clock */
426	clk = clk_register(dev, &apmclk->hw);
427	if (IS_ERR(clk)) {
428		pr_err("%s: could not register clk %s\n", __func__, name);
429		kfree(apmclk);
430		return clk;
431	}
432
433	/* Register the clock for lookup */
434	rc = clk_register_clkdev(clk, name, NULL);
435	if (rc != 0) {
436		pr_err("%s: could not register lookup clk %s\n",
437			__func__, name);
438	}
439	return clk;
440}
441
442static void __init xgene_devclk_init(struct device_node *np)
443{
444	const char *clk_name = np->full_name;
445	struct clk *clk;
446	struct resource res;
447	int rc;
448	struct xgene_dev_parameters parameters;
449	int i;
450
451	/* Check if the entry is disabled */
452        if (!of_device_is_available(np))
453                return;
454
455	/* Parse the DTS register for resource */
456	parameters.csr_reg = NULL;
457	parameters.divider_reg = NULL;
458	for (i = 0; i < 2; i++) {
459		void *map_res;
460		rc = of_address_to_resource(np, i, &res);
461		if (rc != 0) {
462			if (i == 0) {
463				pr_err("no DTS register for %s\n",
464					np->full_name);
465				return;
466			}
467			break;
468		}
469		map_res = of_iomap(np, i);
470		if (map_res == NULL) {
471			pr_err("Unable to map resource %d for %s\n",
472				i, np->full_name);
473			goto err;
474		}
475		if (strcmp(res.name, "div-reg") == 0)
476			parameters.divider_reg = map_res;
477		else /* if (strcmp(res->name, "csr-reg") == 0) */
478			parameters.csr_reg = map_res;
479	}
480	if (of_property_read_u32(np, "csr-offset", &parameters.reg_csr_offset))
481		parameters.reg_csr_offset = 0;
482	if (of_property_read_u32(np, "csr-mask", &parameters.reg_csr_mask))
483		parameters.reg_csr_mask = 0xF;
484	if (of_property_read_u32(np, "enable-offset",
485				&parameters.reg_clk_offset))
486		parameters.reg_clk_offset = 0x8;
487	if (of_property_read_u32(np, "enable-mask", &parameters.reg_clk_mask))
488		parameters.reg_clk_mask = 0xF;
489	if (of_property_read_u32(np, "divider-offset",
490				&parameters.reg_divider_offset))
491		parameters.reg_divider_offset = 0;
492	if (of_property_read_u32(np, "divider-width",
493				&parameters.reg_divider_width))
494		parameters.reg_divider_width = 0;
495	if (of_property_read_u32(np, "divider-shift",
496				&parameters.reg_divider_shift))
497		parameters.reg_divider_shift = 0;
498	of_property_read_string(np, "clock-output-names", &clk_name);
499
500	clk = xgene_register_clk(NULL, clk_name,
501		of_clk_get_parent_name(np, 0), &parameters, &clk_lock);
502	if (IS_ERR(clk))
503		goto err;
504	pr_debug("Add %s clock\n", clk_name);
505	rc = of_clk_add_provider(np, of_clk_src_simple_get, clk);
506	if (rc != 0)
507		pr_err("%s: could register provider clk %s\n", __func__,
508			np->full_name);
509
510	return;
511
512err:
513	if (parameters.csr_reg)
514		iounmap(parameters.csr_reg);
515	if (parameters.divider_reg)
516		iounmap(parameters.divider_reg);
517}
518
519CLK_OF_DECLARE(xgene_socpll_clock, "apm,xgene-socpll-clock", xgene_socpllclk_init);
520CLK_OF_DECLARE(xgene_pcppll_clock, "apm,xgene-pcppll-clock", xgene_pcppllclk_init);
521CLK_OF_DECLARE(xgene_dev_clock, "apm,xgene-device-clock", xgene_devclk_init);
522