1/*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is in this distribution in the file
19 * called COPYING.
20 *
21 * Documentation: ARM DDI 0196G == PL080
22 * Documentation: ARM DDI 0218E == PL081
23 * Documentation: S3C6410 User's Manual == PL080S
24 *
25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
26 * channel.
27 *
28 * The PL080 has 8 channels available for simultaneous use, and the PL081
29 * has only two channels. So on these DMA controllers the number of channels
30 * and the number of incoming DMA signals are two totally different things.
31 * It is usually not possible to theoretically handle all physical signals,
32 * so a multiplexing scheme with possible denial of use is necessary.
33 *
34 * The PL080 has a dual bus master, PL081 has a single master.
35 *
36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
37 * It differs in following aspects:
38 * - CH_CONFIG register at different offset,
39 * - separate CH_CONTROL2 register for transfer size,
40 * - bigger maximum transfer size,
41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
42 * - no support for peripheral flow control.
43 *
44 * Memory to peripheral transfer may be visualized as
45 *	Get data from memory to DMAC
46 *	Until no data left
47 *		On burst request from peripheral
48 *			Destination burst from DMAC to peripheral
49 *			Clear burst request
50 *	Raise terminal count interrupt
51 *
52 * For peripherals with a FIFO:
53 * Source      burst size == half the depth of the peripheral FIFO
54 * Destination burst size == the depth of the peripheral FIFO
55 *
56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
57 * signals, the DMA controller will simply facilitate its AHB master.)
58 *
59 * ASSUMES default (little) endianness for DMA transfers
60 *
61 * The PL08x has two flow control settings:
62 *  - DMAC flow control: the transfer size defines the number of transfers
63 *    which occur for the current LLI entry, and the DMAC raises TC at the
64 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
65 *    to both the BREQ and SREQ signals (contrary to documented),
66 *    transferring data if either is active.  The LBREQ and LSREQ signals
67 *    are ignored.
68 *
69 *  - Peripheral flow control: the transfer size is ignored (and should be
70 *    zero).  The data is transferred from the current LLI entry, until
71 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
72 *    will then move to the next LLI entry. Unsupported by PL080S.
73 */
74#include <linux/amba/bus.h>
75#include <linux/amba/pl08x.h>
76#include <linux/debugfs.h>
77#include <linux/delay.h>
78#include <linux/device.h>
79#include <linux/dmaengine.h>
80#include <linux/dmapool.h>
81#include <linux/dma-mapping.h>
82#include <linux/export.h>
83#include <linux/init.h>
84#include <linux/interrupt.h>
85#include <linux/module.h>
86#include <linux/pm_runtime.h>
87#include <linux/seq_file.h>
88#include <linux/slab.h>
89#include <linux/amba/pl080.h>
90
91#include "dmaengine.h"
92#include "virt-dma.h"
93
94#define DRIVER_NAME	"pl08xdmac"
95
96#define PL80X_DMA_BUSWIDTHS \
97	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
98	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
99	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
100	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
101
102static struct amba_driver pl08x_amba_driver;
103struct pl08x_driver_data;
104
105/**
106 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
107 * @channels: the number of channels available in this variant
108 * @dualmaster: whether this version supports dual AHB masters or not.
109 * @nomadik: whether the channels have Nomadik security extension bits
110 *	that need to be checked for permission before use and some registers are
111 *	missing
112 * @pl080s: whether this version is a PL080S, which has separate register and
113 *	LLI word for transfer size.
114 */
115struct vendor_data {
116	u8 config_offset;
117	u8 channels;
118	bool dualmaster;
119	bool nomadik;
120	bool pl080s;
121	u32 max_transfer_size;
122};
123
124/**
125 * struct pl08x_bus_data - information of source or destination
126 * busses for a transfer
127 * @addr: current address
128 * @maxwidth: the maximum width of a transfer on this bus
129 * @buswidth: the width of this bus in bytes: 1, 2 or 4
130 */
131struct pl08x_bus_data {
132	dma_addr_t addr;
133	u8 maxwidth;
134	u8 buswidth;
135};
136
137#define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
138
139/**
140 * struct pl08x_phy_chan - holder for the physical channels
141 * @id: physical index to this channel
142 * @lock: a lock to use when altering an instance of this struct
143 * @serving: the virtual channel currently being served by this physical
144 * channel
145 * @locked: channel unavailable for the system, e.g. dedicated to secure
146 * world
147 */
148struct pl08x_phy_chan {
149	unsigned int id;
150	void __iomem *base;
151	void __iomem *reg_config;
152	spinlock_t lock;
153	struct pl08x_dma_chan *serving;
154	bool locked;
155};
156
157/**
158 * struct pl08x_sg - structure containing data per sg
159 * @src_addr: src address of sg
160 * @dst_addr: dst address of sg
161 * @len: transfer len in bytes
162 * @node: node for txd's dsg_list
163 */
164struct pl08x_sg {
165	dma_addr_t src_addr;
166	dma_addr_t dst_addr;
167	size_t len;
168	struct list_head node;
169};
170
171/**
172 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
173 * @vd: virtual DMA descriptor
174 * @dsg_list: list of children sg's
175 * @llis_bus: DMA memory address (physical) start for the LLIs
176 * @llis_va: virtual memory address start for the LLIs
177 * @cctl: control reg values for current txd
178 * @ccfg: config reg values for current txd
179 * @done: this marks completed descriptors, which should not have their
180 *   mux released.
181 * @cyclic: indicate cyclic transfers
182 */
183struct pl08x_txd {
184	struct virt_dma_desc vd;
185	struct list_head dsg_list;
186	dma_addr_t llis_bus;
187	u32 *llis_va;
188	/* Default cctl value for LLIs */
189	u32 cctl;
190	/*
191	 * Settings to be put into the physical channel when we
192	 * trigger this txd.  Other registers are in llis_va[0].
193	 */
194	u32 ccfg;
195	bool done;
196	bool cyclic;
197};
198
199/**
200 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
201 * states
202 * @PL08X_CHAN_IDLE: the channel is idle
203 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
204 * channel and is running a transfer on it
205 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
206 * channel, but the transfer is currently paused
207 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
208 * channel to become available (only pertains to memcpy channels)
209 */
210enum pl08x_dma_chan_state {
211	PL08X_CHAN_IDLE,
212	PL08X_CHAN_RUNNING,
213	PL08X_CHAN_PAUSED,
214	PL08X_CHAN_WAITING,
215};
216
217/**
218 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
219 * @vc: wrappped virtual channel
220 * @phychan: the physical channel utilized by this channel, if there is one
221 * @name: name of channel
222 * @cd: channel platform data
223 * @runtime_addr: address for RX/TX according to the runtime config
224 * @at: active transaction on this channel
225 * @lock: a lock for this channel data
226 * @host: a pointer to the host (internal use)
227 * @state: whether the channel is idle, paused, running etc
228 * @slave: whether this channel is a device (slave) or for memcpy
229 * @signal: the physical DMA request signal which this channel is using
230 * @mux_use: count of descriptors using this DMA request signal setting
231 */
232struct pl08x_dma_chan {
233	struct virt_dma_chan vc;
234	struct pl08x_phy_chan *phychan;
235	const char *name;
236	const struct pl08x_channel_data *cd;
237	struct dma_slave_config cfg;
238	struct pl08x_txd *at;
239	struct pl08x_driver_data *host;
240	enum pl08x_dma_chan_state state;
241	bool slave;
242	int signal;
243	unsigned mux_use;
244};
245
246/**
247 * struct pl08x_driver_data - the local state holder for the PL08x
248 * @slave: slave engine for this instance
249 * @memcpy: memcpy engine for this instance
250 * @base: virtual memory base (remapped) for the PL08x
251 * @adev: the corresponding AMBA (PrimeCell) bus entry
252 * @vd: vendor data for this PL08x variant
253 * @pd: platform data passed in from the platform/machine
254 * @phy_chans: array of data for the physical channels
255 * @pool: a pool for the LLI descriptors
256 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
257 * fetches
258 * @mem_buses: set to indicate memory transfers on AHB2.
259 * @lock: a spinlock for this struct
260 */
261struct pl08x_driver_data {
262	struct dma_device slave;
263	struct dma_device memcpy;
264	void __iomem *base;
265	struct amba_device *adev;
266	const struct vendor_data *vd;
267	struct pl08x_platform_data *pd;
268	struct pl08x_phy_chan *phy_chans;
269	struct dma_pool *pool;
270	u8 lli_buses;
271	u8 mem_buses;
272	u8 lli_words;
273};
274
275/*
276 * PL08X specific defines
277 */
278
279/* The order of words in an LLI. */
280#define PL080_LLI_SRC		0
281#define PL080_LLI_DST		1
282#define PL080_LLI_LLI		2
283#define PL080_LLI_CCTL		3
284#define PL080S_LLI_CCTL2	4
285
286/* Total words in an LLI. */
287#define PL080_LLI_WORDS		4
288#define PL080S_LLI_WORDS	8
289
290/*
291 * Number of LLIs in each LLI buffer allocated for one transfer
292 * (maximum times we call dma_pool_alloc on this pool without freeing)
293 */
294#define MAX_NUM_TSFR_LLIS	512
295#define PL08X_ALIGN		8
296
297static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
298{
299	return container_of(chan, struct pl08x_dma_chan, vc.chan);
300}
301
302static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
303{
304	return container_of(tx, struct pl08x_txd, vd.tx);
305}
306
307/*
308 * Mux handling.
309 *
310 * This gives us the DMA request input to the PL08x primecell which the
311 * peripheral described by the channel data will be routed to, possibly
312 * via a board/SoC specific external MUX.  One important point to note
313 * here is that this does not depend on the physical channel.
314 */
315static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
316{
317	const struct pl08x_platform_data *pd = plchan->host->pd;
318	int ret;
319
320	if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
321		ret = pd->get_xfer_signal(plchan->cd);
322		if (ret < 0) {
323			plchan->mux_use = 0;
324			return ret;
325		}
326
327		plchan->signal = ret;
328	}
329	return 0;
330}
331
332static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
333{
334	const struct pl08x_platform_data *pd = plchan->host->pd;
335
336	if (plchan->signal >= 0) {
337		WARN_ON(plchan->mux_use == 0);
338
339		if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
340			pd->put_xfer_signal(plchan->cd, plchan->signal);
341			plchan->signal = -1;
342		}
343	}
344}
345
346/*
347 * Physical channel handling
348 */
349
350/* Whether a certain channel is busy or not */
351static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
352{
353	unsigned int val;
354
355	val = readl(ch->reg_config);
356	return val & PL080_CONFIG_ACTIVE;
357}
358
359static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
360		struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
361{
362	if (pl08x->vd->pl080s)
363		dev_vdbg(&pl08x->adev->dev,
364			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
365			"clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
366			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
367			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
368			lli[PL080S_LLI_CCTL2], ccfg);
369	else
370		dev_vdbg(&pl08x->adev->dev,
371			"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
372			"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
373			phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
374			lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
375
376	writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
377	writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
378	writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
379	writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
380
381	if (pl08x->vd->pl080s)
382		writel_relaxed(lli[PL080S_LLI_CCTL2],
383				phychan->base + PL080S_CH_CONTROL2);
384
385	writel(ccfg, phychan->reg_config);
386}
387
388/*
389 * Set the initial DMA register values i.e. those for the first LLI
390 * The next LLI pointer and the configuration interrupt bit have
391 * been set when the LLIs were constructed.  Poke them into the hardware
392 * and start the transfer.
393 */
394static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
395{
396	struct pl08x_driver_data *pl08x = plchan->host;
397	struct pl08x_phy_chan *phychan = plchan->phychan;
398	struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
399	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
400	u32 val;
401
402	list_del(&txd->vd.node);
403
404	plchan->at = txd;
405
406	/* Wait for channel inactive */
407	while (pl08x_phy_channel_busy(phychan))
408		cpu_relax();
409
410	pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
411
412	/* Enable the DMA channel */
413	/* Do not access config register until channel shows as disabled */
414	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
415		cpu_relax();
416
417	/* Do not access config register until channel shows as inactive */
418	val = readl(phychan->reg_config);
419	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
420		val = readl(phychan->reg_config);
421
422	writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
423}
424
425/*
426 * Pause the channel by setting the HALT bit.
427 *
428 * For M->P transfers, pause the DMAC first and then stop the peripheral -
429 * the FIFO can only drain if the peripheral is still requesting data.
430 * (note: this can still timeout if the DMAC FIFO never drains of data.)
431 *
432 * For P->M transfers, disable the peripheral first to stop it filling
433 * the DMAC FIFO, and then pause the DMAC.
434 */
435static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
436{
437	u32 val;
438	int timeout;
439
440	/* Set the HALT bit and wait for the FIFO to drain */
441	val = readl(ch->reg_config);
442	val |= PL080_CONFIG_HALT;
443	writel(val, ch->reg_config);
444
445	/* Wait for channel inactive */
446	for (timeout = 1000; timeout; timeout--) {
447		if (!pl08x_phy_channel_busy(ch))
448			break;
449		udelay(1);
450	}
451	if (pl08x_phy_channel_busy(ch))
452		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
453}
454
455static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
456{
457	u32 val;
458
459	/* Clear the HALT bit */
460	val = readl(ch->reg_config);
461	val &= ~PL080_CONFIG_HALT;
462	writel(val, ch->reg_config);
463}
464
465/*
466 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
467 * clears any pending interrupt status.  This should not be used for
468 * an on-going transfer, but as a method of shutting down a channel
469 * (eg, when it's no longer used) or terminating a transfer.
470 */
471static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
472	struct pl08x_phy_chan *ch)
473{
474	u32 val = readl(ch->reg_config);
475
476	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
477	         PL080_CONFIG_TC_IRQ_MASK);
478
479	writel(val, ch->reg_config);
480
481	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
482	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
483}
484
485static inline u32 get_bytes_in_cctl(u32 cctl)
486{
487	/* The source width defines the number of bytes */
488	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
489
490	cctl &= PL080_CONTROL_SWIDTH_MASK;
491
492	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
493	case PL080_WIDTH_8BIT:
494		break;
495	case PL080_WIDTH_16BIT:
496		bytes *= 2;
497		break;
498	case PL080_WIDTH_32BIT:
499		bytes *= 4;
500		break;
501	}
502	return bytes;
503}
504
505static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
506{
507	/* The source width defines the number of bytes */
508	u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
509
510	cctl &= PL080_CONTROL_SWIDTH_MASK;
511
512	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
513	case PL080_WIDTH_8BIT:
514		break;
515	case PL080_WIDTH_16BIT:
516		bytes *= 2;
517		break;
518	case PL080_WIDTH_32BIT:
519		bytes *= 4;
520		break;
521	}
522	return bytes;
523}
524
525/* The channel should be paused when calling this */
526static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
527{
528	struct pl08x_driver_data *pl08x = plchan->host;
529	const u32 *llis_va, *llis_va_limit;
530	struct pl08x_phy_chan *ch;
531	dma_addr_t llis_bus;
532	struct pl08x_txd *txd;
533	u32 llis_max_words;
534	size_t bytes;
535	u32 clli;
536
537	ch = plchan->phychan;
538	txd = plchan->at;
539
540	if (!ch || !txd)
541		return 0;
542
543	/*
544	 * Follow the LLIs to get the number of remaining
545	 * bytes in the currently active transaction.
546	 */
547	clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
548
549	/* First get the remaining bytes in the active transfer */
550	if (pl08x->vd->pl080s)
551		bytes = get_bytes_in_cctl_pl080s(
552				readl(ch->base + PL080_CH_CONTROL),
553				readl(ch->base + PL080S_CH_CONTROL2));
554	else
555		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
556
557	if (!clli)
558		return bytes;
559
560	llis_va = txd->llis_va;
561	llis_bus = txd->llis_bus;
562
563	llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
564	BUG_ON(clli < llis_bus || clli >= llis_bus +
565						sizeof(u32) * llis_max_words);
566
567	/*
568	 * Locate the next LLI - as this is an array,
569	 * it's simple maths to find.
570	 */
571	llis_va += (clli - llis_bus) / sizeof(u32);
572
573	llis_va_limit = llis_va + llis_max_words;
574
575	for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
576		if (pl08x->vd->pl080s)
577			bytes += get_bytes_in_cctl_pl080s(
578						llis_va[PL080_LLI_CCTL],
579						llis_va[PL080S_LLI_CCTL2]);
580		else
581			bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
582
583		/*
584		 * A LLI pointer going backward terminates the LLI list
585		 */
586		if (llis_va[PL080_LLI_LLI] <= clli)
587			break;
588	}
589
590	return bytes;
591}
592
593/*
594 * Allocate a physical channel for a virtual channel
595 *
596 * Try to locate a physical channel to be used for this transfer. If all
597 * are taken return NULL and the requester will have to cope by using
598 * some fallback PIO mode or retrying later.
599 */
600static struct pl08x_phy_chan *
601pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
602		      struct pl08x_dma_chan *virt_chan)
603{
604	struct pl08x_phy_chan *ch = NULL;
605	unsigned long flags;
606	int i;
607
608	for (i = 0; i < pl08x->vd->channels; i++) {
609		ch = &pl08x->phy_chans[i];
610
611		spin_lock_irqsave(&ch->lock, flags);
612
613		if (!ch->locked && !ch->serving) {
614			ch->serving = virt_chan;
615			spin_unlock_irqrestore(&ch->lock, flags);
616			break;
617		}
618
619		spin_unlock_irqrestore(&ch->lock, flags);
620	}
621
622	if (i == pl08x->vd->channels) {
623		/* No physical channel available, cope with it */
624		return NULL;
625	}
626
627	return ch;
628}
629
630/* Mark the physical channel as free.  Note, this write is atomic. */
631static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
632					 struct pl08x_phy_chan *ch)
633{
634	ch->serving = NULL;
635}
636
637/*
638 * Try to allocate a physical channel.  When successful, assign it to
639 * this virtual channel, and initiate the next descriptor.  The
640 * virtual channel lock must be held at this point.
641 */
642static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
643{
644	struct pl08x_driver_data *pl08x = plchan->host;
645	struct pl08x_phy_chan *ch;
646
647	ch = pl08x_get_phy_channel(pl08x, plchan);
648	if (!ch) {
649		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
650		plchan->state = PL08X_CHAN_WAITING;
651		return;
652	}
653
654	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
655		ch->id, plchan->name);
656
657	plchan->phychan = ch;
658	plchan->state = PL08X_CHAN_RUNNING;
659	pl08x_start_next_txd(plchan);
660}
661
662static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
663	struct pl08x_dma_chan *plchan)
664{
665	struct pl08x_driver_data *pl08x = plchan->host;
666
667	dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
668		ch->id, plchan->name);
669
670	/*
671	 * We do this without taking the lock; we're really only concerned
672	 * about whether this pointer is NULL or not, and we're guaranteed
673	 * that this will only be called when it _already_ is non-NULL.
674	 */
675	ch->serving = plchan;
676	plchan->phychan = ch;
677	plchan->state = PL08X_CHAN_RUNNING;
678	pl08x_start_next_txd(plchan);
679}
680
681/*
682 * Free a physical DMA channel, potentially reallocating it to another
683 * virtual channel if we have any pending.
684 */
685static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
686{
687	struct pl08x_driver_data *pl08x = plchan->host;
688	struct pl08x_dma_chan *p, *next;
689
690 retry:
691	next = NULL;
692
693	/* Find a waiting virtual channel for the next transfer. */
694	list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
695		if (p->state == PL08X_CHAN_WAITING) {
696			next = p;
697			break;
698		}
699
700	if (!next) {
701		list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
702			if (p->state == PL08X_CHAN_WAITING) {
703				next = p;
704				break;
705			}
706	}
707
708	/* Ensure that the physical channel is stopped */
709	pl08x_terminate_phy_chan(pl08x, plchan->phychan);
710
711	if (next) {
712		bool success;
713
714		/*
715		 * Eww.  We know this isn't going to deadlock
716		 * but lockdep probably doesn't.
717		 */
718		spin_lock(&next->vc.lock);
719		/* Re-check the state now that we have the lock */
720		success = next->state == PL08X_CHAN_WAITING;
721		if (success)
722			pl08x_phy_reassign_start(plchan->phychan, next);
723		spin_unlock(&next->vc.lock);
724
725		/* If the state changed, try to find another channel */
726		if (!success)
727			goto retry;
728	} else {
729		/* No more jobs, so free up the physical channel */
730		pl08x_put_phy_channel(pl08x, plchan->phychan);
731	}
732
733	plchan->phychan = NULL;
734	plchan->state = PL08X_CHAN_IDLE;
735}
736
737/*
738 * LLI handling
739 */
740
741static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
742{
743	switch (coded) {
744	case PL080_WIDTH_8BIT:
745		return 1;
746	case PL080_WIDTH_16BIT:
747		return 2;
748	case PL080_WIDTH_32BIT:
749		return 4;
750	default:
751		break;
752	}
753	BUG();
754	return 0;
755}
756
757static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
758				  size_t tsize)
759{
760	u32 retbits = cctl;
761
762	/* Remove all src, dst and transfer size bits */
763	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
764	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
765	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
766
767	/* Then set the bits according to the parameters */
768	switch (srcwidth) {
769	case 1:
770		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
771		break;
772	case 2:
773		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
774		break;
775	case 4:
776		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
777		break;
778	default:
779		BUG();
780		break;
781	}
782
783	switch (dstwidth) {
784	case 1:
785		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
786		break;
787	case 2:
788		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
789		break;
790	case 4:
791		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
792		break;
793	default:
794		BUG();
795		break;
796	}
797
798	tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
799	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
800	return retbits;
801}
802
803struct pl08x_lli_build_data {
804	struct pl08x_txd *txd;
805	struct pl08x_bus_data srcbus;
806	struct pl08x_bus_data dstbus;
807	size_t remainder;
808	u32 lli_bus;
809};
810
811/*
812 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
813 * victim in case src & dest are not similarly aligned. i.e. If after aligning
814 * masters address with width requirements of transfer (by sending few byte by
815 * byte data), slave is still not aligned, then its width will be reduced to
816 * BYTE.
817 * - prefers the destination bus if both available
818 * - prefers bus with fixed address (i.e. peripheral)
819 */
820static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
821	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
822{
823	if (!(cctl & PL080_CONTROL_DST_INCR)) {
824		*mbus = &bd->dstbus;
825		*sbus = &bd->srcbus;
826	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
827		*mbus = &bd->srcbus;
828		*sbus = &bd->dstbus;
829	} else {
830		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
831			*mbus = &bd->dstbus;
832			*sbus = &bd->srcbus;
833		} else {
834			*mbus = &bd->srcbus;
835			*sbus = &bd->dstbus;
836		}
837	}
838}
839
840/*
841 * Fills in one LLI for a certain transfer descriptor and advance the counter
842 */
843static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
844				    struct pl08x_lli_build_data *bd,
845				    int num_llis, int len, u32 cctl, u32 cctl2)
846{
847	u32 offset = num_llis * pl08x->lli_words;
848	u32 *llis_va = bd->txd->llis_va + offset;
849	dma_addr_t llis_bus = bd->txd->llis_bus;
850
851	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
852
853	/* Advance the offset to next LLI. */
854	offset += pl08x->lli_words;
855
856	llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
857	llis_va[PL080_LLI_DST] = bd->dstbus.addr;
858	llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
859	llis_va[PL080_LLI_LLI] |= bd->lli_bus;
860	llis_va[PL080_LLI_CCTL] = cctl;
861	if (pl08x->vd->pl080s)
862		llis_va[PL080S_LLI_CCTL2] = cctl2;
863
864	if (cctl & PL080_CONTROL_SRC_INCR)
865		bd->srcbus.addr += len;
866	if (cctl & PL080_CONTROL_DST_INCR)
867		bd->dstbus.addr += len;
868
869	BUG_ON(bd->remainder < len);
870
871	bd->remainder -= len;
872}
873
874static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
875			struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
876			int num_llis, size_t *total_bytes)
877{
878	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
879	pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
880	(*total_bytes) += len;
881}
882
883#ifdef VERBOSE_DEBUG
884static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
885			   const u32 *llis_va, int num_llis)
886{
887	int i;
888
889	if (pl08x->vd->pl080s) {
890		dev_vdbg(&pl08x->adev->dev,
891			"%-3s %-9s  %-10s %-10s %-10s %-10s %s\n",
892			"lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
893		for (i = 0; i < num_llis; i++) {
894			dev_vdbg(&pl08x->adev->dev,
895				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
896				i, llis_va, llis_va[PL080_LLI_SRC],
897				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
898				llis_va[PL080_LLI_CCTL],
899				llis_va[PL080S_LLI_CCTL2]);
900			llis_va += pl08x->lli_words;
901		}
902	} else {
903		dev_vdbg(&pl08x->adev->dev,
904			"%-3s %-9s  %-10s %-10s %-10s %s\n",
905			"lli", "", "csrc", "cdst", "clli", "cctl");
906		for (i = 0; i < num_llis; i++) {
907			dev_vdbg(&pl08x->adev->dev,
908				"%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
909				i, llis_va, llis_va[PL080_LLI_SRC],
910				llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
911				llis_va[PL080_LLI_CCTL]);
912			llis_va += pl08x->lli_words;
913		}
914	}
915}
916#else
917static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
918				  const u32 *llis_va, int num_llis) {}
919#endif
920
921/*
922 * This fills in the table of LLIs for the transfer descriptor
923 * Note that we assume we never have to change the burst sizes
924 * Return 0 for error
925 */
926static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
927			      struct pl08x_txd *txd)
928{
929	struct pl08x_bus_data *mbus, *sbus;
930	struct pl08x_lli_build_data bd;
931	int num_llis = 0;
932	u32 cctl, early_bytes = 0;
933	size_t max_bytes_per_lli, total_bytes;
934	u32 *llis_va, *last_lli;
935	struct pl08x_sg *dsg;
936
937	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
938	if (!txd->llis_va) {
939		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
940		return 0;
941	}
942
943	bd.txd = txd;
944	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
945	cctl = txd->cctl;
946
947	/* Find maximum width of the source bus */
948	bd.srcbus.maxwidth =
949		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
950				       PL080_CONTROL_SWIDTH_SHIFT);
951
952	/* Find maximum width of the destination bus */
953	bd.dstbus.maxwidth =
954		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
955				       PL080_CONTROL_DWIDTH_SHIFT);
956
957	list_for_each_entry(dsg, &txd->dsg_list, node) {
958		total_bytes = 0;
959		cctl = txd->cctl;
960
961		bd.srcbus.addr = dsg->src_addr;
962		bd.dstbus.addr = dsg->dst_addr;
963		bd.remainder = dsg->len;
964		bd.srcbus.buswidth = bd.srcbus.maxwidth;
965		bd.dstbus.buswidth = bd.dstbus.maxwidth;
966
967		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
968
969		dev_vdbg(&pl08x->adev->dev,
970			"src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
971			(u64)bd.srcbus.addr,
972			cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
973			bd.srcbus.buswidth,
974			(u64)bd.dstbus.addr,
975			cctl & PL080_CONTROL_DST_INCR ? "+" : "",
976			bd.dstbus.buswidth,
977			bd.remainder);
978		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
979			mbus == &bd.srcbus ? "src" : "dst",
980			sbus == &bd.srcbus ? "src" : "dst");
981
982		/*
983		 * Zero length is only allowed if all these requirements are
984		 * met:
985		 * - flow controller is peripheral.
986		 * - src.addr is aligned to src.width
987		 * - dst.addr is aligned to dst.width
988		 *
989		 * sg_len == 1 should be true, as there can be two cases here:
990		 *
991		 * - Memory addresses are contiguous and are not scattered.
992		 *   Here, Only one sg will be passed by user driver, with
993		 *   memory address and zero length. We pass this to controller
994		 *   and after the transfer it will receive the last burst
995		 *   request from peripheral and so transfer finishes.
996		 *
997		 * - Memory addresses are scattered and are not contiguous.
998		 *   Here, Obviously as DMA controller doesn't know when a lli's
999		 *   transfer gets over, it can't load next lli. So in this
1000		 *   case, there has to be an assumption that only one lli is
1001		 *   supported. Thus, we can't have scattered addresses.
1002		 */
1003		if (!bd.remainder) {
1004			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1005				PL080_CONFIG_FLOW_CONTROL_SHIFT;
1006			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1007					(fc <= PL080_FLOW_SRC2DST_SRC))) {
1008				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1009					__func__);
1010				return 0;
1011			}
1012
1013			if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1014				!IS_BUS_ALIGNED(&bd.dstbus)) {
1015				dev_err(&pl08x->adev->dev,
1016					"%s src & dst address must be aligned to src"
1017					" & dst width if peripheral is flow controller",
1018					__func__);
1019				return 0;
1020			}
1021
1022			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1023					bd.dstbus.buswidth, 0);
1024			pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1025					0, cctl, 0);
1026			break;
1027		}
1028
1029		/*
1030		 * Send byte by byte for following cases
1031		 * - Less than a bus width available
1032		 * - until master bus is aligned
1033		 */
1034		if (bd.remainder < mbus->buswidth)
1035			early_bytes = bd.remainder;
1036		else if (!IS_BUS_ALIGNED(mbus)) {
1037			early_bytes = mbus->buswidth -
1038				(mbus->addr & (mbus->buswidth - 1));
1039			if ((bd.remainder - early_bytes) < mbus->buswidth)
1040				early_bytes = bd.remainder;
1041		}
1042
1043		if (early_bytes) {
1044			dev_vdbg(&pl08x->adev->dev,
1045				"%s byte width LLIs (remain 0x%08zx)\n",
1046				__func__, bd.remainder);
1047			prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1048				num_llis++, &total_bytes);
1049		}
1050
1051		if (bd.remainder) {
1052			/*
1053			 * Master now aligned
1054			 * - if slave is not then we must set its width down
1055			 */
1056			if (!IS_BUS_ALIGNED(sbus)) {
1057				dev_dbg(&pl08x->adev->dev,
1058					"%s set down bus width to one byte\n",
1059					__func__);
1060
1061				sbus->buswidth = 1;
1062			}
1063
1064			/*
1065			 * Bytes transferred = tsize * src width, not
1066			 * MIN(buswidths)
1067			 */
1068			max_bytes_per_lli = bd.srcbus.buswidth *
1069						pl08x->vd->max_transfer_size;
1070			dev_vdbg(&pl08x->adev->dev,
1071				"%s max bytes per lli = %zu\n",
1072				__func__, max_bytes_per_lli);
1073
1074			/*
1075			 * Make largest possible LLIs until less than one bus
1076			 * width left
1077			 */
1078			while (bd.remainder > (mbus->buswidth - 1)) {
1079				size_t lli_len, tsize, width;
1080
1081				/*
1082				 * If enough left try to send max possible,
1083				 * otherwise try to send the remainder
1084				 */
1085				lli_len = min(bd.remainder, max_bytes_per_lli);
1086
1087				/*
1088				 * Check against maximum bus alignment:
1089				 * Calculate actual transfer size in relation to
1090				 * bus width an get a maximum remainder of the
1091				 * highest bus width - 1
1092				 */
1093				width = max(mbus->buswidth, sbus->buswidth);
1094				lli_len = (lli_len / width) * width;
1095				tsize = lli_len / bd.srcbus.buswidth;
1096
1097				dev_vdbg(&pl08x->adev->dev,
1098					"%s fill lli with single lli chunk of "
1099					"size 0x%08zx (remainder 0x%08zx)\n",
1100					__func__, lli_len, bd.remainder);
1101
1102				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1103					bd.dstbus.buswidth, tsize);
1104				pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1105						lli_len, cctl, tsize);
1106				total_bytes += lli_len;
1107			}
1108
1109			/*
1110			 * Send any odd bytes
1111			 */
1112			if (bd.remainder) {
1113				dev_vdbg(&pl08x->adev->dev,
1114					"%s align with boundary, send odd bytes (remain %zu)\n",
1115					__func__, bd.remainder);
1116				prep_byte_width_lli(pl08x, &bd, &cctl,
1117					bd.remainder, num_llis++, &total_bytes);
1118			}
1119		}
1120
1121		if (total_bytes != dsg->len) {
1122			dev_err(&pl08x->adev->dev,
1123				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1124				__func__, total_bytes, dsg->len);
1125			return 0;
1126		}
1127
1128		if (num_llis >= MAX_NUM_TSFR_LLIS) {
1129			dev_err(&pl08x->adev->dev,
1130				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1131				__func__, MAX_NUM_TSFR_LLIS);
1132			return 0;
1133		}
1134	}
1135
1136	llis_va = txd->llis_va;
1137	last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1138
1139	if (txd->cyclic) {
1140		/* Link back to the first LLI. */
1141		last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1142	} else {
1143		/* The final LLI terminates the LLI. */
1144		last_lli[PL080_LLI_LLI] = 0;
1145		/* The final LLI element shall also fire an interrupt. */
1146		last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1147	}
1148
1149	pl08x_dump_lli(pl08x, llis_va, num_llis);
1150
1151	return num_llis;
1152}
1153
1154static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1155			   struct pl08x_txd *txd)
1156{
1157	struct pl08x_sg *dsg, *_dsg;
1158
1159	if (txd->llis_va)
1160		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1161
1162	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1163		list_del(&dsg->node);
1164		kfree(dsg);
1165	}
1166
1167	kfree(txd);
1168}
1169
1170static void pl08x_desc_free(struct virt_dma_desc *vd)
1171{
1172	struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1173	struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1174
1175	dma_descriptor_unmap(&vd->tx);
1176	if (!txd->done)
1177		pl08x_release_mux(plchan);
1178
1179	pl08x_free_txd(plchan->host, txd);
1180}
1181
1182static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1183				struct pl08x_dma_chan *plchan)
1184{
1185	LIST_HEAD(head);
1186
1187	vchan_get_all_descriptors(&plchan->vc, &head);
1188	vchan_dma_desc_free_list(&plchan->vc, &head);
1189}
1190
1191/*
1192 * The DMA ENGINE API
1193 */
1194static void pl08x_free_chan_resources(struct dma_chan *chan)
1195{
1196	/* Ensure all queued descriptors are freed */
1197	vchan_free_chan_resources(to_virt_chan(chan));
1198}
1199
1200static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1201		struct dma_chan *chan, unsigned long flags)
1202{
1203	struct dma_async_tx_descriptor *retval = NULL;
1204
1205	return retval;
1206}
1207
1208/*
1209 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1210 * If slaves are relying on interrupts to signal completion this function
1211 * must not be called with interrupts disabled.
1212 */
1213static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1214		dma_cookie_t cookie, struct dma_tx_state *txstate)
1215{
1216	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1217	struct virt_dma_desc *vd;
1218	unsigned long flags;
1219	enum dma_status ret;
1220	size_t bytes = 0;
1221
1222	ret = dma_cookie_status(chan, cookie, txstate);
1223	if (ret == DMA_COMPLETE)
1224		return ret;
1225
1226	/*
1227	 * There's no point calculating the residue if there's
1228	 * no txstate to store the value.
1229	 */
1230	if (!txstate) {
1231		if (plchan->state == PL08X_CHAN_PAUSED)
1232			ret = DMA_PAUSED;
1233		return ret;
1234	}
1235
1236	spin_lock_irqsave(&plchan->vc.lock, flags);
1237	ret = dma_cookie_status(chan, cookie, txstate);
1238	if (ret != DMA_COMPLETE) {
1239		vd = vchan_find_desc(&plchan->vc, cookie);
1240		if (vd) {
1241			/* On the issued list, so hasn't been processed yet */
1242			struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1243			struct pl08x_sg *dsg;
1244
1245			list_for_each_entry(dsg, &txd->dsg_list, node)
1246				bytes += dsg->len;
1247		} else {
1248			bytes = pl08x_getbytes_chan(plchan);
1249		}
1250	}
1251	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1252
1253	/*
1254	 * This cookie not complete yet
1255	 * Get number of bytes left in the active transactions and queue
1256	 */
1257	dma_set_residue(txstate, bytes);
1258
1259	if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1260		ret = DMA_PAUSED;
1261
1262	/* Whether waiting or running, we're in progress */
1263	return ret;
1264}
1265
1266/* PrimeCell DMA extension */
1267struct burst_table {
1268	u32 burstwords;
1269	u32 reg;
1270};
1271
1272static const struct burst_table burst_sizes[] = {
1273	{
1274		.burstwords = 256,
1275		.reg = PL080_BSIZE_256,
1276	},
1277	{
1278		.burstwords = 128,
1279		.reg = PL080_BSIZE_128,
1280	},
1281	{
1282		.burstwords = 64,
1283		.reg = PL080_BSIZE_64,
1284	},
1285	{
1286		.burstwords = 32,
1287		.reg = PL080_BSIZE_32,
1288	},
1289	{
1290		.burstwords = 16,
1291		.reg = PL080_BSIZE_16,
1292	},
1293	{
1294		.burstwords = 8,
1295		.reg = PL080_BSIZE_8,
1296	},
1297	{
1298		.burstwords = 4,
1299		.reg = PL080_BSIZE_4,
1300	},
1301	{
1302		.burstwords = 0,
1303		.reg = PL080_BSIZE_1,
1304	},
1305};
1306
1307/*
1308 * Given the source and destination available bus masks, select which
1309 * will be routed to each port.  We try to have source and destination
1310 * on separate ports, but always respect the allowable settings.
1311 */
1312static u32 pl08x_select_bus(u8 src, u8 dst)
1313{
1314	u32 cctl = 0;
1315
1316	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1317		cctl |= PL080_CONTROL_DST_AHB2;
1318	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1319		cctl |= PL080_CONTROL_SRC_AHB2;
1320
1321	return cctl;
1322}
1323
1324static u32 pl08x_cctl(u32 cctl)
1325{
1326	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1327		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1328		  PL080_CONTROL_PROT_MASK);
1329
1330	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
1331	return cctl | PL080_CONTROL_PROT_SYS;
1332}
1333
1334static u32 pl08x_width(enum dma_slave_buswidth width)
1335{
1336	switch (width) {
1337	case DMA_SLAVE_BUSWIDTH_1_BYTE:
1338		return PL080_WIDTH_8BIT;
1339	case DMA_SLAVE_BUSWIDTH_2_BYTES:
1340		return PL080_WIDTH_16BIT;
1341	case DMA_SLAVE_BUSWIDTH_4_BYTES:
1342		return PL080_WIDTH_32BIT;
1343	default:
1344		return ~0;
1345	}
1346}
1347
1348static u32 pl08x_burst(u32 maxburst)
1349{
1350	int i;
1351
1352	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1353		if (burst_sizes[i].burstwords <= maxburst)
1354			break;
1355
1356	return burst_sizes[i].reg;
1357}
1358
1359static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1360	enum dma_slave_buswidth addr_width, u32 maxburst)
1361{
1362	u32 width, burst, cctl = 0;
1363
1364	width = pl08x_width(addr_width);
1365	if (width == ~0)
1366		return ~0;
1367
1368	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1369	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1370
1371	/*
1372	 * If this channel will only request single transfers, set this
1373	 * down to ONE element.  Also select one element if no maxburst
1374	 * is specified.
1375	 */
1376	if (plchan->cd->single)
1377		maxburst = 1;
1378
1379	burst = pl08x_burst(maxburst);
1380	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1381	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1382
1383	return pl08x_cctl(cctl);
1384}
1385
1386/*
1387 * Slave transactions callback to the slave device to allow
1388 * synchronization of slave DMA signals with the DMAC enable
1389 */
1390static void pl08x_issue_pending(struct dma_chan *chan)
1391{
1392	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1393	unsigned long flags;
1394
1395	spin_lock_irqsave(&plchan->vc.lock, flags);
1396	if (vchan_issue_pending(&plchan->vc)) {
1397		if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1398			pl08x_phy_alloc_and_start(plchan);
1399	}
1400	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1401}
1402
1403static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1404{
1405	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1406
1407	if (txd) {
1408		INIT_LIST_HEAD(&txd->dsg_list);
1409
1410		/* Always enable error and terminal interrupts */
1411		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1412			    PL080_CONFIG_TC_IRQ_MASK;
1413	}
1414	return txd;
1415}
1416
1417/*
1418 * Initialize a descriptor to be used by memcpy submit
1419 */
1420static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1421		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1422		size_t len, unsigned long flags)
1423{
1424	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1425	struct pl08x_driver_data *pl08x = plchan->host;
1426	struct pl08x_txd *txd;
1427	struct pl08x_sg *dsg;
1428	int ret;
1429
1430	txd = pl08x_get_txd(plchan);
1431	if (!txd) {
1432		dev_err(&pl08x->adev->dev,
1433			"%s no memory for descriptor\n", __func__);
1434		return NULL;
1435	}
1436
1437	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1438	if (!dsg) {
1439		pl08x_free_txd(pl08x, txd);
1440		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1441				__func__);
1442		return NULL;
1443	}
1444	list_add_tail(&dsg->node, &txd->dsg_list);
1445
1446	dsg->src_addr = src;
1447	dsg->dst_addr = dest;
1448	dsg->len = len;
1449
1450	/* Set platform data for m2m */
1451	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1452	txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1453			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1454
1455	/* Both to be incremented or the code will break */
1456	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1457
1458	if (pl08x->vd->dualmaster)
1459		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1460					      pl08x->mem_buses);
1461
1462	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1463	if (!ret) {
1464		pl08x_free_txd(pl08x, txd);
1465		return NULL;
1466	}
1467
1468	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1469}
1470
1471static struct pl08x_txd *pl08x_init_txd(
1472		struct dma_chan *chan,
1473		enum dma_transfer_direction direction,
1474		dma_addr_t *slave_addr)
1475{
1476	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1477	struct pl08x_driver_data *pl08x = plchan->host;
1478	struct pl08x_txd *txd;
1479	enum dma_slave_buswidth addr_width;
1480	int ret, tmp;
1481	u8 src_buses, dst_buses;
1482	u32 maxburst, cctl;
1483
1484	txd = pl08x_get_txd(plchan);
1485	if (!txd) {
1486		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1487		return NULL;
1488	}
1489
1490	/*
1491	 * Set up addresses, the PrimeCell configured address
1492	 * will take precedence since this may configure the
1493	 * channel target address dynamically at runtime.
1494	 */
1495	if (direction == DMA_MEM_TO_DEV) {
1496		cctl = PL080_CONTROL_SRC_INCR;
1497		*slave_addr = plchan->cfg.dst_addr;
1498		addr_width = plchan->cfg.dst_addr_width;
1499		maxburst = plchan->cfg.dst_maxburst;
1500		src_buses = pl08x->mem_buses;
1501		dst_buses = plchan->cd->periph_buses;
1502	} else if (direction == DMA_DEV_TO_MEM) {
1503		cctl = PL080_CONTROL_DST_INCR;
1504		*slave_addr = plchan->cfg.src_addr;
1505		addr_width = plchan->cfg.src_addr_width;
1506		maxburst = plchan->cfg.src_maxburst;
1507		src_buses = plchan->cd->periph_buses;
1508		dst_buses = pl08x->mem_buses;
1509	} else {
1510		pl08x_free_txd(pl08x, txd);
1511		dev_err(&pl08x->adev->dev,
1512			"%s direction unsupported\n", __func__);
1513		return NULL;
1514	}
1515
1516	cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1517	if (cctl == ~0) {
1518		pl08x_free_txd(pl08x, txd);
1519		dev_err(&pl08x->adev->dev,
1520			"DMA slave configuration botched?\n");
1521		return NULL;
1522	}
1523
1524	txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1525
1526	if (plchan->cfg.device_fc)
1527		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1528			PL080_FLOW_PER2MEM_PER;
1529	else
1530		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1531			PL080_FLOW_PER2MEM;
1532
1533	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1534
1535	ret = pl08x_request_mux(plchan);
1536	if (ret < 0) {
1537		pl08x_free_txd(pl08x, txd);
1538		dev_dbg(&pl08x->adev->dev,
1539			"unable to mux for transfer on %s due to platform restrictions\n",
1540			plchan->name);
1541		return NULL;
1542	}
1543
1544	dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1545		 plchan->signal, plchan->name);
1546
1547	/* Assign the flow control signal to this channel */
1548	if (direction == DMA_MEM_TO_DEV)
1549		txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1550	else
1551		txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1552
1553	return txd;
1554}
1555
1556static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1557			   enum dma_transfer_direction direction,
1558			   dma_addr_t slave_addr,
1559			   dma_addr_t buf_addr,
1560			   unsigned int len)
1561{
1562	struct pl08x_sg *dsg;
1563
1564	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1565	if (!dsg)
1566		return -ENOMEM;
1567
1568	list_add_tail(&dsg->node, &txd->dsg_list);
1569
1570	dsg->len = len;
1571	if (direction == DMA_MEM_TO_DEV) {
1572		dsg->src_addr = buf_addr;
1573		dsg->dst_addr = slave_addr;
1574	} else {
1575		dsg->src_addr = slave_addr;
1576		dsg->dst_addr = buf_addr;
1577	}
1578
1579	return 0;
1580}
1581
1582static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1583		struct dma_chan *chan, struct scatterlist *sgl,
1584		unsigned int sg_len, enum dma_transfer_direction direction,
1585		unsigned long flags, void *context)
1586{
1587	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1588	struct pl08x_driver_data *pl08x = plchan->host;
1589	struct pl08x_txd *txd;
1590	struct scatterlist *sg;
1591	int ret, tmp;
1592	dma_addr_t slave_addr;
1593
1594	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1595			__func__, sg_dma_len(sgl), plchan->name);
1596
1597	txd = pl08x_init_txd(chan, direction, &slave_addr);
1598	if (!txd)
1599		return NULL;
1600
1601	for_each_sg(sgl, sg, sg_len, tmp) {
1602		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1603				      sg_dma_address(sg),
1604				      sg_dma_len(sg));
1605		if (ret) {
1606			pl08x_release_mux(plchan);
1607			pl08x_free_txd(pl08x, txd);
1608			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1609					__func__);
1610			return NULL;
1611		}
1612	}
1613
1614	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1615	if (!ret) {
1616		pl08x_release_mux(plchan);
1617		pl08x_free_txd(pl08x, txd);
1618		return NULL;
1619	}
1620
1621	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1622}
1623
1624static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1625		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1626		size_t period_len, enum dma_transfer_direction direction,
1627		unsigned long flags)
1628{
1629	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1630	struct pl08x_driver_data *pl08x = plchan->host;
1631	struct pl08x_txd *txd;
1632	int ret, tmp;
1633	dma_addr_t slave_addr;
1634
1635	dev_dbg(&pl08x->adev->dev,
1636		"%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1637		__func__, period_len, buf_len,
1638		direction == DMA_MEM_TO_DEV ? "to" : "from",
1639		plchan->name);
1640
1641	txd = pl08x_init_txd(chan, direction, &slave_addr);
1642	if (!txd)
1643		return NULL;
1644
1645	txd->cyclic = true;
1646	txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1647	for (tmp = 0; tmp < buf_len; tmp += period_len) {
1648		ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1649				      buf_addr + tmp, period_len);
1650		if (ret) {
1651			pl08x_release_mux(plchan);
1652			pl08x_free_txd(pl08x, txd);
1653			return NULL;
1654		}
1655	}
1656
1657	ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1658	if (!ret) {
1659		pl08x_release_mux(plchan);
1660		pl08x_free_txd(pl08x, txd);
1661		return NULL;
1662	}
1663
1664	return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1665}
1666
1667static int pl08x_config(struct dma_chan *chan,
1668			struct dma_slave_config *config)
1669{
1670	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1671	struct pl08x_driver_data *pl08x = plchan->host;
1672
1673	if (!plchan->slave)
1674		return -EINVAL;
1675
1676	/* Reject definitely invalid configurations */
1677	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1678	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1679		return -EINVAL;
1680
1681	if (config->device_fc && pl08x->vd->pl080s) {
1682		dev_err(&pl08x->adev->dev,
1683			"%s: PL080S does not support peripheral flow control\n",
1684			__func__);
1685		return -EINVAL;
1686	}
1687
1688	plchan->cfg = *config;
1689
1690	return 0;
1691}
1692
1693static int pl08x_terminate_all(struct dma_chan *chan)
1694{
1695	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1696	struct pl08x_driver_data *pl08x = plchan->host;
1697	unsigned long flags;
1698
1699	spin_lock_irqsave(&plchan->vc.lock, flags);
1700	if (!plchan->phychan && !plchan->at) {
1701		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1702		return 0;
1703	}
1704
1705	plchan->state = PL08X_CHAN_IDLE;
1706
1707	if (plchan->phychan) {
1708		/*
1709		 * Mark physical channel as free and free any slave
1710		 * signal
1711		 */
1712		pl08x_phy_free(plchan);
1713	}
1714	/* Dequeue jobs and free LLIs */
1715	if (plchan->at) {
1716		pl08x_desc_free(&plchan->at->vd);
1717		plchan->at = NULL;
1718	}
1719	/* Dequeue jobs not yet fired as well */
1720	pl08x_free_txd_list(pl08x, plchan);
1721
1722	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1723
1724	return 0;
1725}
1726
1727static int pl08x_pause(struct dma_chan *chan)
1728{
1729	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1730	unsigned long flags;
1731
1732	/*
1733	 * Anything succeeds on channels with no physical allocation and
1734	 * no queued transfers.
1735	 */
1736	spin_lock_irqsave(&plchan->vc.lock, flags);
1737	if (!plchan->phychan && !plchan->at) {
1738		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1739		return 0;
1740	}
1741
1742	pl08x_pause_phy_chan(plchan->phychan);
1743	plchan->state = PL08X_CHAN_PAUSED;
1744
1745	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1746
1747	return 0;
1748}
1749
1750static int pl08x_resume(struct dma_chan *chan)
1751{
1752	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1753	unsigned long flags;
1754
1755	/*
1756	 * Anything succeeds on channels with no physical allocation and
1757	 * no queued transfers.
1758	 */
1759	spin_lock_irqsave(&plchan->vc.lock, flags);
1760	if (!plchan->phychan && !plchan->at) {
1761		spin_unlock_irqrestore(&plchan->vc.lock, flags);
1762		return 0;
1763	}
1764
1765	pl08x_resume_phy_chan(plchan->phychan);
1766	plchan->state = PL08X_CHAN_RUNNING;
1767
1768	spin_unlock_irqrestore(&plchan->vc.lock, flags);
1769
1770	return 0;
1771}
1772
1773bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1774{
1775	struct pl08x_dma_chan *plchan;
1776	char *name = chan_id;
1777
1778	/* Reject channels for devices not bound to this driver */
1779	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1780		return false;
1781
1782	plchan = to_pl08x_chan(chan);
1783
1784	/* Check that the channel is not taken! */
1785	if (!strcmp(plchan->name, name))
1786		return true;
1787
1788	return false;
1789}
1790EXPORT_SYMBOL_GPL(pl08x_filter_id);
1791
1792/*
1793 * Just check that the device is there and active
1794 * TODO: turn this bit on/off depending on the number of physical channels
1795 * actually used, if it is zero... well shut it off. That will save some
1796 * power. Cut the clock at the same time.
1797 */
1798static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1799{
1800	/* The Nomadik variant does not have the config register */
1801	if (pl08x->vd->nomadik)
1802		return;
1803	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1804}
1805
1806static irqreturn_t pl08x_irq(int irq, void *dev)
1807{
1808	struct pl08x_driver_data *pl08x = dev;
1809	u32 mask = 0, err, tc, i;
1810
1811	/* check & clear - ERR & TC interrupts */
1812	err = readl(pl08x->base + PL080_ERR_STATUS);
1813	if (err) {
1814		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1815			__func__, err);
1816		writel(err, pl08x->base + PL080_ERR_CLEAR);
1817	}
1818	tc = readl(pl08x->base + PL080_TC_STATUS);
1819	if (tc)
1820		writel(tc, pl08x->base + PL080_TC_CLEAR);
1821
1822	if (!err && !tc)
1823		return IRQ_NONE;
1824
1825	for (i = 0; i < pl08x->vd->channels; i++) {
1826		if (((1 << i) & err) || ((1 << i) & tc)) {
1827			/* Locate physical channel */
1828			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1829			struct pl08x_dma_chan *plchan = phychan->serving;
1830			struct pl08x_txd *tx;
1831
1832			if (!plchan) {
1833				dev_err(&pl08x->adev->dev,
1834					"%s Error TC interrupt on unused channel: 0x%08x\n",
1835					__func__, i);
1836				continue;
1837			}
1838
1839			spin_lock(&plchan->vc.lock);
1840			tx = plchan->at;
1841			if (tx && tx->cyclic) {
1842				vchan_cyclic_callback(&tx->vd);
1843			} else if (tx) {
1844				plchan->at = NULL;
1845				/*
1846				 * This descriptor is done, release its mux
1847				 * reservation.
1848				 */
1849				pl08x_release_mux(plchan);
1850				tx->done = true;
1851				vchan_cookie_complete(&tx->vd);
1852
1853				/*
1854				 * And start the next descriptor (if any),
1855				 * otherwise free this channel.
1856				 */
1857				if (vchan_next_desc(&plchan->vc))
1858					pl08x_start_next_txd(plchan);
1859				else
1860					pl08x_phy_free(plchan);
1861			}
1862			spin_unlock(&plchan->vc.lock);
1863
1864			mask |= (1 << i);
1865		}
1866	}
1867
1868	return mask ? IRQ_HANDLED : IRQ_NONE;
1869}
1870
1871static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1872{
1873	chan->slave = true;
1874	chan->name = chan->cd->bus_id;
1875	chan->cfg.src_addr = chan->cd->addr;
1876	chan->cfg.dst_addr = chan->cd->addr;
1877}
1878
1879/*
1880 * Initialise the DMAC memcpy/slave channels.
1881 * Make a local wrapper to hold required data
1882 */
1883static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1884		struct dma_device *dmadev, unsigned int channels, bool slave)
1885{
1886	struct pl08x_dma_chan *chan;
1887	int i;
1888
1889	INIT_LIST_HEAD(&dmadev->channels);
1890
1891	/*
1892	 * Register as many many memcpy as we have physical channels,
1893	 * we won't always be able to use all but the code will have
1894	 * to cope with that situation.
1895	 */
1896	for (i = 0; i < channels; i++) {
1897		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1898		if (!chan) {
1899			dev_err(&pl08x->adev->dev,
1900				"%s no memory for channel\n", __func__);
1901			return -ENOMEM;
1902		}
1903
1904		chan->host = pl08x;
1905		chan->state = PL08X_CHAN_IDLE;
1906		chan->signal = -1;
1907
1908		if (slave) {
1909			chan->cd = &pl08x->pd->slave_channels[i];
1910			pl08x_dma_slave_init(chan);
1911		} else {
1912			chan->cd = &pl08x->pd->memcpy_channel;
1913			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1914			if (!chan->name) {
1915				kfree(chan);
1916				return -ENOMEM;
1917			}
1918		}
1919		dev_dbg(&pl08x->adev->dev,
1920			 "initialize virtual channel \"%s\"\n",
1921			 chan->name);
1922
1923		chan->vc.desc_free = pl08x_desc_free;
1924		vchan_init(&chan->vc, dmadev);
1925	}
1926	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1927		 i, slave ? "slave" : "memcpy");
1928	return i;
1929}
1930
1931static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1932{
1933	struct pl08x_dma_chan *chan = NULL;
1934	struct pl08x_dma_chan *next;
1935
1936	list_for_each_entry_safe(chan,
1937				 next, &dmadev->channels, vc.chan.device_node) {
1938		list_del(&chan->vc.chan.device_node);
1939		kfree(chan);
1940	}
1941}
1942
1943#ifdef CONFIG_DEBUG_FS
1944static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1945{
1946	switch (state) {
1947	case PL08X_CHAN_IDLE:
1948		return "idle";
1949	case PL08X_CHAN_RUNNING:
1950		return "running";
1951	case PL08X_CHAN_PAUSED:
1952		return "paused";
1953	case PL08X_CHAN_WAITING:
1954		return "waiting";
1955	default:
1956		break;
1957	}
1958	return "UNKNOWN STATE";
1959}
1960
1961static int pl08x_debugfs_show(struct seq_file *s, void *data)
1962{
1963	struct pl08x_driver_data *pl08x = s->private;
1964	struct pl08x_dma_chan *chan;
1965	struct pl08x_phy_chan *ch;
1966	unsigned long flags;
1967	int i;
1968
1969	seq_printf(s, "PL08x physical channels:\n");
1970	seq_printf(s, "CHANNEL:\tUSER:\n");
1971	seq_printf(s, "--------\t-----\n");
1972	for (i = 0; i < pl08x->vd->channels; i++) {
1973		struct pl08x_dma_chan *virt_chan;
1974
1975		ch = &pl08x->phy_chans[i];
1976
1977		spin_lock_irqsave(&ch->lock, flags);
1978		virt_chan = ch->serving;
1979
1980		seq_printf(s, "%d\t\t%s%s\n",
1981			   ch->id,
1982			   virt_chan ? virt_chan->name : "(none)",
1983			   ch->locked ? " LOCKED" : "");
1984
1985		spin_unlock_irqrestore(&ch->lock, flags);
1986	}
1987
1988	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1989	seq_printf(s, "CHANNEL:\tSTATE:\n");
1990	seq_printf(s, "--------\t------\n");
1991	list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1992		seq_printf(s, "%s\t\t%s\n", chan->name,
1993			   pl08x_state_str(chan->state));
1994	}
1995
1996	seq_printf(s, "\nPL08x virtual slave channels:\n");
1997	seq_printf(s, "CHANNEL:\tSTATE:\n");
1998	seq_printf(s, "--------\t------\n");
1999	list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2000		seq_printf(s, "%s\t\t%s\n", chan->name,
2001			   pl08x_state_str(chan->state));
2002	}
2003
2004	return 0;
2005}
2006
2007static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2008{
2009	return single_open(file, pl08x_debugfs_show, inode->i_private);
2010}
2011
2012static const struct file_operations pl08x_debugfs_operations = {
2013	.open		= pl08x_debugfs_open,
2014	.read		= seq_read,
2015	.llseek		= seq_lseek,
2016	.release	= single_release,
2017};
2018
2019static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2020{
2021	/* Expose a simple debugfs interface to view all clocks */
2022	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2023			S_IFREG | S_IRUGO, NULL, pl08x,
2024			&pl08x_debugfs_operations);
2025}
2026
2027#else
2028static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2029{
2030}
2031#endif
2032
2033static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2034{
2035	struct pl08x_driver_data *pl08x;
2036	const struct vendor_data *vd = id->data;
2037	u32 tsfr_size;
2038	int ret = 0;
2039	int i;
2040
2041	ret = amba_request_regions(adev, NULL);
2042	if (ret)
2043		return ret;
2044
2045	/* Ensure that we can do DMA */
2046	ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2047	if (ret)
2048		goto out_no_pl08x;
2049
2050	/* Create the driver state holder */
2051	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2052	if (!pl08x) {
2053		ret = -ENOMEM;
2054		goto out_no_pl08x;
2055	}
2056
2057	/* Initialize memcpy engine */
2058	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2059	pl08x->memcpy.dev = &adev->dev;
2060	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2061	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2062	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2063	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2064	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2065	pl08x->memcpy.device_config = pl08x_config;
2066	pl08x->memcpy.device_pause = pl08x_pause;
2067	pl08x->memcpy.device_resume = pl08x_resume;
2068	pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2069	pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2070	pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2071	pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2072	pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2073
2074	/* Initialize slave engine */
2075	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2076	dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2077	pl08x->slave.dev = &adev->dev;
2078	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2079	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2080	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2081	pl08x->slave.device_issue_pending = pl08x_issue_pending;
2082	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2083	pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2084	pl08x->slave.device_config = pl08x_config;
2085	pl08x->slave.device_pause = pl08x_pause;
2086	pl08x->slave.device_resume = pl08x_resume;
2087	pl08x->slave.device_terminate_all = pl08x_terminate_all;
2088	pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2089	pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2090	pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2091	pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2092
2093	/* Get the platform data */
2094	pl08x->pd = dev_get_platdata(&adev->dev);
2095	if (!pl08x->pd) {
2096		dev_err(&adev->dev, "no platform data supplied\n");
2097		ret = -EINVAL;
2098		goto out_no_platdata;
2099	}
2100
2101	/* Assign useful pointers to the driver state */
2102	pl08x->adev = adev;
2103	pl08x->vd = vd;
2104
2105	/* By default, AHB1 only.  If dualmaster, from platform */
2106	pl08x->lli_buses = PL08X_AHB1;
2107	pl08x->mem_buses = PL08X_AHB1;
2108	if (pl08x->vd->dualmaster) {
2109		pl08x->lli_buses = pl08x->pd->lli_buses;
2110		pl08x->mem_buses = pl08x->pd->mem_buses;
2111	}
2112
2113	if (vd->pl080s)
2114		pl08x->lli_words = PL080S_LLI_WORDS;
2115	else
2116		pl08x->lli_words = PL080_LLI_WORDS;
2117	tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2118
2119	/* A DMA memory pool for LLIs, align on 1-byte boundary */
2120	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2121						tsfr_size, PL08X_ALIGN, 0);
2122	if (!pl08x->pool) {
2123		ret = -ENOMEM;
2124		goto out_no_lli_pool;
2125	}
2126
2127	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2128	if (!pl08x->base) {
2129		ret = -ENOMEM;
2130		goto out_no_ioremap;
2131	}
2132
2133	/* Turn on the PL08x */
2134	pl08x_ensure_on(pl08x);
2135
2136	/* Attach the interrupt handler */
2137	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2138	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2139
2140	ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2141	if (ret) {
2142		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2143			__func__, adev->irq[0]);
2144		goto out_no_irq;
2145	}
2146
2147	/* Initialize physical channels */
2148	pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2149			GFP_KERNEL);
2150	if (!pl08x->phy_chans) {
2151		dev_err(&adev->dev, "%s failed to allocate "
2152			"physical channel holders\n",
2153			__func__);
2154		ret = -ENOMEM;
2155		goto out_no_phychans;
2156	}
2157
2158	for (i = 0; i < vd->channels; i++) {
2159		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2160
2161		ch->id = i;
2162		ch->base = pl08x->base + PL080_Cx_BASE(i);
2163		ch->reg_config = ch->base + vd->config_offset;
2164		spin_lock_init(&ch->lock);
2165
2166		/*
2167		 * Nomadik variants can have channels that are locked
2168		 * down for the secure world only. Lock up these channels
2169		 * by perpetually serving a dummy virtual channel.
2170		 */
2171		if (vd->nomadik) {
2172			u32 val;
2173
2174			val = readl(ch->reg_config);
2175			if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2176				dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2177				ch->locked = true;
2178			}
2179		}
2180
2181		dev_dbg(&adev->dev, "physical channel %d is %s\n",
2182			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2183	}
2184
2185	/* Register as many memcpy channels as there are physical channels */
2186	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2187					      pl08x->vd->channels, false);
2188	if (ret <= 0) {
2189		dev_warn(&pl08x->adev->dev,
2190			 "%s failed to enumerate memcpy channels - %d\n",
2191			 __func__, ret);
2192		goto out_no_memcpy;
2193	}
2194
2195	/* Register slave channels */
2196	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2197			pl08x->pd->num_slave_channels, true);
2198	if (ret < 0) {
2199		dev_warn(&pl08x->adev->dev,
2200			"%s failed to enumerate slave channels - %d\n",
2201				__func__, ret);
2202		goto out_no_slave;
2203	}
2204
2205	ret = dma_async_device_register(&pl08x->memcpy);
2206	if (ret) {
2207		dev_warn(&pl08x->adev->dev,
2208			"%s failed to register memcpy as an async device - %d\n",
2209			__func__, ret);
2210		goto out_no_memcpy_reg;
2211	}
2212
2213	ret = dma_async_device_register(&pl08x->slave);
2214	if (ret) {
2215		dev_warn(&pl08x->adev->dev,
2216			"%s failed to register slave as an async device - %d\n",
2217			__func__, ret);
2218		goto out_no_slave_reg;
2219	}
2220
2221	amba_set_drvdata(adev, pl08x);
2222	init_pl08x_debugfs(pl08x);
2223	dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2224		 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2225		 (unsigned long long)adev->res.start, adev->irq[0]);
2226
2227	return 0;
2228
2229out_no_slave_reg:
2230	dma_async_device_unregister(&pl08x->memcpy);
2231out_no_memcpy_reg:
2232	pl08x_free_virtual_channels(&pl08x->slave);
2233out_no_slave:
2234	pl08x_free_virtual_channels(&pl08x->memcpy);
2235out_no_memcpy:
2236	kfree(pl08x->phy_chans);
2237out_no_phychans:
2238	free_irq(adev->irq[0], pl08x);
2239out_no_irq:
2240	iounmap(pl08x->base);
2241out_no_ioremap:
2242	dma_pool_destroy(pl08x->pool);
2243out_no_lli_pool:
2244out_no_platdata:
2245	kfree(pl08x);
2246out_no_pl08x:
2247	amba_release_regions(adev);
2248	return ret;
2249}
2250
2251/* PL080 has 8 channels and the PL080 have just 2 */
2252static struct vendor_data vendor_pl080 = {
2253	.config_offset = PL080_CH_CONFIG,
2254	.channels = 8,
2255	.dualmaster = true,
2256	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2257};
2258
2259static struct vendor_data vendor_nomadik = {
2260	.config_offset = PL080_CH_CONFIG,
2261	.channels = 8,
2262	.dualmaster = true,
2263	.nomadik = true,
2264	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2265};
2266
2267static struct vendor_data vendor_pl080s = {
2268	.config_offset = PL080S_CH_CONFIG,
2269	.channels = 8,
2270	.pl080s = true,
2271	.max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2272};
2273
2274static struct vendor_data vendor_pl081 = {
2275	.config_offset = PL080_CH_CONFIG,
2276	.channels = 2,
2277	.dualmaster = false,
2278	.max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2279};
2280
2281static struct amba_id pl08x_ids[] = {
2282	/* Samsung PL080S variant */
2283	{
2284		.id	= 0x0a141080,
2285		.mask	= 0xffffffff,
2286		.data	= &vendor_pl080s,
2287	},
2288	/* PL080 */
2289	{
2290		.id	= 0x00041080,
2291		.mask	= 0x000fffff,
2292		.data	= &vendor_pl080,
2293	},
2294	/* PL081 */
2295	{
2296		.id	= 0x00041081,
2297		.mask	= 0x000fffff,
2298		.data	= &vendor_pl081,
2299	},
2300	/* Nomadik 8815 PL080 variant */
2301	{
2302		.id	= 0x00280080,
2303		.mask	= 0x00ffffff,
2304		.data	= &vendor_nomadik,
2305	},
2306	{ 0, 0 },
2307};
2308
2309MODULE_DEVICE_TABLE(amba, pl08x_ids);
2310
2311static struct amba_driver pl08x_amba_driver = {
2312	.drv.name	= DRIVER_NAME,
2313	.id_table	= pl08x_ids,
2314	.probe		= pl08x_probe,
2315};
2316
2317static int __init pl08x_init(void)
2318{
2319	int retval;
2320	retval = amba_driver_register(&pl08x_amba_driver);
2321	if (retval)
2322		printk(KERN_WARNING DRIVER_NAME
2323		       "failed to register as an AMBA device (%d)\n",
2324		       retval);
2325	return retval;
2326}
2327subsys_initcall(pl08x_init);
2328