1/*
2 * Copyright (C) 2006-2009 DENX Software Engineering.
3 *
4 * Author: Yuri Tikhonov <yur@emcraft.com>
5 *
6 * Further porting to arch/powerpc by
7 * 	Anatolij Gustschin <agust@denx.de>
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17 * more details.
18 *
19 * The full GNU General Public License is included in this distribution in the
20 * file called COPYING.
21 */
22
23/*
24 * This driver supports the asynchrounous DMA copy and RAID engines available
25 * on the AMCC PPC440SPe Processors.
26 * Based on the Intel Xscale(R) family of I/O Processors (IOP 32x, 33x, 134x)
27 * ADMA driver written by D.Williams.
28 */
29
30#include <linux/init.h>
31#include <linux/module.h>
32#include <linux/async_tx.h>
33#include <linux/delay.h>
34#include <linux/dma-mapping.h>
35#include <linux/spinlock.h>
36#include <linux/interrupt.h>
37#include <linux/slab.h>
38#include <linux/uaccess.h>
39#include <linux/proc_fs.h>
40#include <linux/of.h>
41#include <linux/of_address.h>
42#include <linux/of_irq.h>
43#include <linux/of_platform.h>
44#include <asm/dcr.h>
45#include <asm/dcr-regs.h>
46#include "adma.h"
47#include "../dmaengine.h"
48
49enum ppc_adma_init_code {
50	PPC_ADMA_INIT_OK = 0,
51	PPC_ADMA_INIT_MEMRES,
52	PPC_ADMA_INIT_MEMREG,
53	PPC_ADMA_INIT_ALLOC,
54	PPC_ADMA_INIT_COHERENT,
55	PPC_ADMA_INIT_CHANNEL,
56	PPC_ADMA_INIT_IRQ1,
57	PPC_ADMA_INIT_IRQ2,
58	PPC_ADMA_INIT_REGISTER
59};
60
61static char *ppc_adma_errors[] = {
62	[PPC_ADMA_INIT_OK] = "ok",
63	[PPC_ADMA_INIT_MEMRES] = "failed to get memory resource",
64	[PPC_ADMA_INIT_MEMREG] = "failed to request memory region",
65	[PPC_ADMA_INIT_ALLOC] = "failed to allocate memory for adev "
66				"structure",
67	[PPC_ADMA_INIT_COHERENT] = "failed to allocate coherent memory for "
68				   "hardware descriptors",
69	[PPC_ADMA_INIT_CHANNEL] = "failed to allocate memory for channel",
70	[PPC_ADMA_INIT_IRQ1] = "failed to request first irq",
71	[PPC_ADMA_INIT_IRQ2] = "failed to request second irq",
72	[PPC_ADMA_INIT_REGISTER] = "failed to register dma async device",
73};
74
75static enum ppc_adma_init_code
76ppc440spe_adma_devices[PPC440SPE_ADMA_ENGINES_NUM];
77
78struct ppc_dma_chan_ref {
79	struct dma_chan *chan;
80	struct list_head node;
81};
82
83/* The list of channels exported by ppc440spe ADMA */
84struct list_head
85ppc440spe_adma_chan_list = LIST_HEAD_INIT(ppc440spe_adma_chan_list);
86
87/* This flag is set when want to refetch the xor chain in the interrupt
88 * handler
89 */
90static u32 do_xor_refetch;
91
92/* Pointer to DMA0, DMA1 CP/CS FIFO */
93static void *ppc440spe_dma_fifo_buf;
94
95/* Pointers to last submitted to DMA0, DMA1 CDBs */
96static struct ppc440spe_adma_desc_slot *chan_last_sub[3];
97static struct ppc440spe_adma_desc_slot *chan_first_cdb[3];
98
99/* Pointer to last linked and submitted xor CB */
100static struct ppc440spe_adma_desc_slot *xor_last_linked;
101static struct ppc440spe_adma_desc_slot *xor_last_submit;
102
103/* This array is used in data-check operations for storing a pattern */
104static char ppc440spe_qword[16];
105
106static atomic_t ppc440spe_adma_err_irq_ref;
107static dcr_host_t ppc440spe_mq_dcr_host;
108static unsigned int ppc440spe_mq_dcr_len;
109
110/* Since RXOR operations use the common register (MQ0_CF2H) for setting-up
111 * the block size in transactions, then we do not allow to activate more than
112 * only one RXOR transactions simultaneously. So use this var to store
113 * the information about is RXOR currently active (PPC440SPE_RXOR_RUN bit is
114 * set) or not (PPC440SPE_RXOR_RUN is clear).
115 */
116static unsigned long ppc440spe_rxor_state;
117
118/* These are used in enable & check routines
119 */
120static u32 ppc440spe_r6_enabled;
121static struct ppc440spe_adma_chan *ppc440spe_r6_tchan;
122static struct completion ppc440spe_r6_test_comp;
123
124static int ppc440spe_adma_dma2rxor_prep_src(
125		struct ppc440spe_adma_desc_slot *desc,
126		struct ppc440spe_rxor *cursor, int index,
127		int src_cnt, u32 addr);
128static void ppc440spe_adma_dma2rxor_set_src(
129		struct ppc440spe_adma_desc_slot *desc,
130		int index, dma_addr_t addr);
131static void ppc440spe_adma_dma2rxor_set_mult(
132		struct ppc440spe_adma_desc_slot *desc,
133		int index, u8 mult);
134
135#ifdef ADMA_LL_DEBUG
136#define ADMA_LL_DBG(x) ({ if (1) x; 0; })
137#else
138#define ADMA_LL_DBG(x) ({ if (0) x; 0; })
139#endif
140
141static void print_cb(struct ppc440spe_adma_chan *chan, void *block)
142{
143	struct dma_cdb *cdb;
144	struct xor_cb *cb;
145	int i;
146
147	switch (chan->device->id) {
148	case 0:
149	case 1:
150		cdb = block;
151
152		pr_debug("CDB at %p [%d]:\n"
153			"\t attr 0x%02x opc 0x%02x cnt 0x%08x\n"
154			"\t sg1u 0x%08x sg1l 0x%08x\n"
155			"\t sg2u 0x%08x sg2l 0x%08x\n"
156			"\t sg3u 0x%08x sg3l 0x%08x\n",
157			cdb, chan->device->id,
158			cdb->attr, cdb->opc, le32_to_cpu(cdb->cnt),
159			le32_to_cpu(cdb->sg1u), le32_to_cpu(cdb->sg1l),
160			le32_to_cpu(cdb->sg2u), le32_to_cpu(cdb->sg2l),
161			le32_to_cpu(cdb->sg3u), le32_to_cpu(cdb->sg3l)
162		);
163		break;
164	case 2:
165		cb = block;
166
167		pr_debug("CB at %p [%d]:\n"
168			"\t cbc 0x%08x cbbc 0x%08x cbs 0x%08x\n"
169			"\t cbtah 0x%08x cbtal 0x%08x\n"
170			"\t cblah 0x%08x cblal 0x%08x\n",
171			cb, chan->device->id,
172			cb->cbc, cb->cbbc, cb->cbs,
173			cb->cbtah, cb->cbtal,
174			cb->cblah, cb->cblal);
175		for (i = 0; i < 16; i++) {
176			if (i && !cb->ops[i].h && !cb->ops[i].l)
177				continue;
178			pr_debug("\t ops[%2d]: h 0x%08x l 0x%08x\n",
179				i, cb->ops[i].h, cb->ops[i].l);
180		}
181		break;
182	}
183}
184
185static void print_cb_list(struct ppc440spe_adma_chan *chan,
186			  struct ppc440spe_adma_desc_slot *iter)
187{
188	for (; iter; iter = iter->hw_next)
189		print_cb(chan, iter->hw_desc);
190}
191
192static void prep_dma_xor_dbg(int id, dma_addr_t dst, dma_addr_t *src,
193			     unsigned int src_cnt)
194{
195	int i;
196
197	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
198	for (i = 0; i < src_cnt; i++)
199		pr_debug("\t0x%016llx ", src[i]);
200	pr_debug("dst:\n\t0x%016llx\n", dst);
201}
202
203static void prep_dma_pq_dbg(int id, dma_addr_t *dst, dma_addr_t *src,
204			    unsigned int src_cnt)
205{
206	int i;
207
208	pr_debug("\n%s(%d):\nsrc: ", __func__, id);
209	for (i = 0; i < src_cnt; i++)
210		pr_debug("\t0x%016llx ", src[i]);
211	pr_debug("dst: ");
212	for (i = 0; i < 2; i++)
213		pr_debug("\t0x%016llx ", dst[i]);
214}
215
216static void prep_dma_pqzero_sum_dbg(int id, dma_addr_t *src,
217				    unsigned int src_cnt,
218				    const unsigned char *scf)
219{
220	int i;
221
222	pr_debug("\n%s(%d):\nsrc(coef): ", __func__, id);
223	if (scf) {
224		for (i = 0; i < src_cnt; i++)
225			pr_debug("\t0x%016llx(0x%02x) ", src[i], scf[i]);
226	} else {
227		for (i = 0; i < src_cnt; i++)
228			pr_debug("\t0x%016llx(no) ", src[i]);
229	}
230
231	pr_debug("dst: ");
232	for (i = 0; i < 2; i++)
233		pr_debug("\t0x%016llx ", src[src_cnt + i]);
234}
235
236/******************************************************************************
237 * Command (Descriptor) Blocks low-level routines
238 ******************************************************************************/
239/**
240 * ppc440spe_desc_init_interrupt - initialize the descriptor for INTERRUPT
241 * pseudo operation
242 */
243static void ppc440spe_desc_init_interrupt(struct ppc440spe_adma_desc_slot *desc,
244					  struct ppc440spe_adma_chan *chan)
245{
246	struct xor_cb *p;
247
248	switch (chan->device->id) {
249	case PPC440SPE_XOR_ID:
250		p = desc->hw_desc;
251		memset(desc->hw_desc, 0, sizeof(struct xor_cb));
252		/* NOP with Command Block Complete Enable */
253		p->cbc = XOR_CBCR_CBCE_BIT;
254		break;
255	case PPC440SPE_DMA0_ID:
256	case PPC440SPE_DMA1_ID:
257		memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
258		/* NOP with interrupt */
259		set_bit(PPC440SPE_DESC_INT, &desc->flags);
260		break;
261	default:
262		printk(KERN_ERR "Unsupported id %d in %s\n", chan->device->id,
263				__func__);
264		break;
265	}
266}
267
268/**
269 * ppc440spe_desc_init_null_xor - initialize the descriptor for NULL XOR
270 * pseudo operation
271 */
272static void ppc440spe_desc_init_null_xor(struct ppc440spe_adma_desc_slot *desc)
273{
274	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
275	desc->hw_next = NULL;
276	desc->src_cnt = 0;
277	desc->dst_cnt = 1;
278}
279
280/**
281 * ppc440spe_desc_init_xor - initialize the descriptor for XOR operation
282 */
283static void ppc440spe_desc_init_xor(struct ppc440spe_adma_desc_slot *desc,
284					 int src_cnt, unsigned long flags)
285{
286	struct xor_cb *hw_desc = desc->hw_desc;
287
288	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
289	desc->hw_next = NULL;
290	desc->src_cnt = src_cnt;
291	desc->dst_cnt = 1;
292
293	hw_desc->cbc = XOR_CBCR_TGT_BIT | src_cnt;
294	if (flags & DMA_PREP_INTERRUPT)
295		/* Enable interrupt on completion */
296		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
297}
298
299/**
300 * ppc440spe_desc_init_dma2pq - initialize the descriptor for PQ
301 * operation in DMA2 controller
302 */
303static void ppc440spe_desc_init_dma2pq(struct ppc440spe_adma_desc_slot *desc,
304		int dst_cnt, int src_cnt, unsigned long flags)
305{
306	struct xor_cb *hw_desc = desc->hw_desc;
307
308	memset(desc->hw_desc, 0, sizeof(struct xor_cb));
309	desc->hw_next = NULL;
310	desc->src_cnt = src_cnt;
311	desc->dst_cnt = dst_cnt;
312	memset(desc->reverse_flags, 0, sizeof(desc->reverse_flags));
313	desc->descs_per_op = 0;
314
315	hw_desc->cbc = XOR_CBCR_TGT_BIT;
316	if (flags & DMA_PREP_INTERRUPT)
317		/* Enable interrupt on completion */
318		hw_desc->cbc |= XOR_CBCR_CBCE_BIT;
319}
320
321#define DMA_CTRL_FLAGS_LAST	DMA_PREP_FENCE
322#define DMA_PREP_ZERO_P		(DMA_CTRL_FLAGS_LAST << 1)
323#define DMA_PREP_ZERO_Q		(DMA_PREP_ZERO_P << 1)
324
325/**
326 * ppc440spe_desc_init_dma01pq - initialize the descriptors for PQ operation
327 * with DMA0/1
328 */
329static void ppc440spe_desc_init_dma01pq(struct ppc440spe_adma_desc_slot *desc,
330				int dst_cnt, int src_cnt, unsigned long flags,
331				unsigned long op)
332{
333	struct dma_cdb *hw_desc;
334	struct ppc440spe_adma_desc_slot *iter;
335	u8 dopc;
336
337	/* Common initialization of a PQ descriptors chain */
338	set_bits(op, &desc->flags);
339	desc->src_cnt = src_cnt;
340	desc->dst_cnt = dst_cnt;
341
342	/* WXOR MULTICAST if both P and Q are being computed
343	 * MV_SG1_SG2 if Q only
344	 */
345	dopc = (desc->dst_cnt == DMA_DEST_MAX_NUM) ?
346		DMA_CDB_OPC_MULTICAST : DMA_CDB_OPC_MV_SG1_SG2;
347
348	list_for_each_entry(iter, &desc->group_list, chain_node) {
349		hw_desc = iter->hw_desc;
350		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
351
352		if (likely(!list_is_last(&iter->chain_node,
353				&desc->group_list))) {
354			/* set 'next' pointer */
355			iter->hw_next = list_entry(iter->chain_node.next,
356				struct ppc440spe_adma_desc_slot, chain_node);
357			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
358		} else {
359			/* this is the last descriptor.
360			 * this slot will be pasted from ADMA level
361			 * each time it wants to configure parameters
362			 * of the transaction (src, dst, ...)
363			 */
364			iter->hw_next = NULL;
365			if (flags & DMA_PREP_INTERRUPT)
366				set_bit(PPC440SPE_DESC_INT, &iter->flags);
367			else
368				clear_bit(PPC440SPE_DESC_INT, &iter->flags);
369		}
370	}
371
372	/* Set OPS depending on WXOR/RXOR type of operation */
373	if (!test_bit(PPC440SPE_DESC_RXOR, &desc->flags)) {
374		/* This is a WXOR only chain:
375		 * - first descriptors are for zeroing destinations
376		 *   if PPC440SPE_ZERO_P/Q set;
377		 * - descriptors remained are for GF-XOR operations.
378		 */
379		iter = list_first_entry(&desc->group_list,
380					struct ppc440spe_adma_desc_slot,
381					chain_node);
382
383		if (test_bit(PPC440SPE_ZERO_P, &desc->flags)) {
384			hw_desc = iter->hw_desc;
385			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
386			iter = list_first_entry(&iter->chain_node,
387					struct ppc440spe_adma_desc_slot,
388					chain_node);
389		}
390
391		if (test_bit(PPC440SPE_ZERO_Q, &desc->flags)) {
392			hw_desc = iter->hw_desc;
393			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
394			iter = list_first_entry(&iter->chain_node,
395					struct ppc440spe_adma_desc_slot,
396					chain_node);
397		}
398
399		list_for_each_entry_from(iter, &desc->group_list, chain_node) {
400			hw_desc = iter->hw_desc;
401			hw_desc->opc = dopc;
402		}
403	} else {
404		/* This is either RXOR-only or mixed RXOR/WXOR */
405
406		/* The first 1 or 2 slots in chain are always RXOR,
407		 * if need to calculate P & Q, then there are two
408		 * RXOR slots; if only P or only Q, then there is one
409		 */
410		iter = list_first_entry(&desc->group_list,
411					struct ppc440spe_adma_desc_slot,
412					chain_node);
413		hw_desc = iter->hw_desc;
414		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
415
416		if (desc->dst_cnt == DMA_DEST_MAX_NUM) {
417			iter = list_first_entry(&iter->chain_node,
418						struct ppc440spe_adma_desc_slot,
419						chain_node);
420			hw_desc = iter->hw_desc;
421			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
422		}
423
424		/* The remaining descs (if any) are WXORs */
425		if (test_bit(PPC440SPE_DESC_WXOR, &desc->flags)) {
426			iter = list_first_entry(&iter->chain_node,
427						struct ppc440spe_adma_desc_slot,
428						chain_node);
429			list_for_each_entry_from(iter, &desc->group_list,
430						chain_node) {
431				hw_desc = iter->hw_desc;
432				hw_desc->opc = dopc;
433			}
434		}
435	}
436}
437
438/**
439 * ppc440spe_desc_init_dma01pqzero_sum - initialize the descriptor
440 * for PQ_ZERO_SUM operation
441 */
442static void ppc440spe_desc_init_dma01pqzero_sum(
443				struct ppc440spe_adma_desc_slot *desc,
444				int dst_cnt, int src_cnt)
445{
446	struct dma_cdb *hw_desc;
447	struct ppc440spe_adma_desc_slot *iter;
448	int i = 0;
449	u8 dopc = (dst_cnt == 2) ? DMA_CDB_OPC_MULTICAST :
450				   DMA_CDB_OPC_MV_SG1_SG2;
451	/*
452	 * Initialize starting from 2nd or 3rd descriptor dependent
453	 * on dst_cnt. First one or two slots are for cloning P
454	 * and/or Q to chan->pdest and/or chan->qdest as we have
455	 * to preserve original P/Q.
456	 */
457	iter = list_first_entry(&desc->group_list,
458				struct ppc440spe_adma_desc_slot, chain_node);
459	iter = list_entry(iter->chain_node.next,
460			  struct ppc440spe_adma_desc_slot, chain_node);
461
462	if (dst_cnt > 1) {
463		iter = list_entry(iter->chain_node.next,
464				  struct ppc440spe_adma_desc_slot, chain_node);
465	}
466	/* initialize each source descriptor in chain */
467	list_for_each_entry_from(iter, &desc->group_list, chain_node) {
468		hw_desc = iter->hw_desc;
469		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
470		iter->src_cnt = 0;
471		iter->dst_cnt = 0;
472
473		/* This is a ZERO_SUM operation:
474		 * - <src_cnt> descriptors starting from 2nd or 3rd
475		 *   descriptor are for GF-XOR operations;
476		 * - remaining <dst_cnt> descriptors are for checking the result
477		 */
478		if (i++ < src_cnt)
479			/* MV_SG1_SG2 if only Q is being verified
480			 * MULTICAST if both P and Q are being verified
481			 */
482			hw_desc->opc = dopc;
483		else
484			/* DMA_CDB_OPC_DCHECK128 operation */
485			hw_desc->opc = DMA_CDB_OPC_DCHECK128;
486
487		if (likely(!list_is_last(&iter->chain_node,
488					 &desc->group_list))) {
489			/* set 'next' pointer */
490			iter->hw_next = list_entry(iter->chain_node.next,
491						struct ppc440spe_adma_desc_slot,
492						chain_node);
493		} else {
494			/* this is the last descriptor.
495			 * this slot will be pasted from ADMA level
496			 * each time it wants to configure parameters
497			 * of the transaction (src, dst, ...)
498			 */
499			iter->hw_next = NULL;
500			/* always enable interrupt generation since we get
501			 * the status of pqzero from the handler
502			 */
503			set_bit(PPC440SPE_DESC_INT, &iter->flags);
504		}
505	}
506	desc->src_cnt = src_cnt;
507	desc->dst_cnt = dst_cnt;
508}
509
510/**
511 * ppc440spe_desc_init_memcpy - initialize the descriptor for MEMCPY operation
512 */
513static void ppc440spe_desc_init_memcpy(struct ppc440spe_adma_desc_slot *desc,
514					unsigned long flags)
515{
516	struct dma_cdb *hw_desc = desc->hw_desc;
517
518	memset(desc->hw_desc, 0, sizeof(struct dma_cdb));
519	desc->hw_next = NULL;
520	desc->src_cnt = 1;
521	desc->dst_cnt = 1;
522
523	if (flags & DMA_PREP_INTERRUPT)
524		set_bit(PPC440SPE_DESC_INT, &desc->flags);
525	else
526		clear_bit(PPC440SPE_DESC_INT, &desc->flags);
527
528	hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
529}
530
531/**
532 * ppc440spe_desc_set_src_addr - set source address into the descriptor
533 */
534static void ppc440spe_desc_set_src_addr(struct ppc440spe_adma_desc_slot *desc,
535					struct ppc440spe_adma_chan *chan,
536					int src_idx, dma_addr_t addrh,
537					dma_addr_t addrl)
538{
539	struct dma_cdb *dma_hw_desc;
540	struct xor_cb *xor_hw_desc;
541	phys_addr_t addr64, tmplow, tmphi;
542
543	switch (chan->device->id) {
544	case PPC440SPE_DMA0_ID:
545	case PPC440SPE_DMA1_ID:
546		if (!addrh) {
547			addr64 = addrl;
548			tmphi = (addr64 >> 32);
549			tmplow = (addr64 & 0xFFFFFFFF);
550		} else {
551			tmphi = addrh;
552			tmplow = addrl;
553		}
554		dma_hw_desc = desc->hw_desc;
555		dma_hw_desc->sg1l = cpu_to_le32((u32)tmplow);
556		dma_hw_desc->sg1u |= cpu_to_le32((u32)tmphi);
557		break;
558	case PPC440SPE_XOR_ID:
559		xor_hw_desc = desc->hw_desc;
560		xor_hw_desc->ops[src_idx].l = addrl;
561		xor_hw_desc->ops[src_idx].h |= addrh;
562		break;
563	}
564}
565
566/**
567 * ppc440spe_desc_set_src_mult - set source address mult into the descriptor
568 */
569static void ppc440spe_desc_set_src_mult(struct ppc440spe_adma_desc_slot *desc,
570			struct ppc440spe_adma_chan *chan, u32 mult_index,
571			int sg_index, unsigned char mult_value)
572{
573	struct dma_cdb *dma_hw_desc;
574	struct xor_cb *xor_hw_desc;
575	u32 *psgu;
576
577	switch (chan->device->id) {
578	case PPC440SPE_DMA0_ID:
579	case PPC440SPE_DMA1_ID:
580		dma_hw_desc = desc->hw_desc;
581
582		switch (sg_index) {
583		/* for RXOR operations set multiplier
584		 * into source cued address
585		 */
586		case DMA_CDB_SG_SRC:
587			psgu = &dma_hw_desc->sg1u;
588			break;
589		/* for WXOR operations set multiplier
590		 * into destination cued address(es)
591		 */
592		case DMA_CDB_SG_DST1:
593			psgu = &dma_hw_desc->sg2u;
594			break;
595		case DMA_CDB_SG_DST2:
596			psgu = &dma_hw_desc->sg3u;
597			break;
598		default:
599			BUG();
600		}
601
602		*psgu |= cpu_to_le32(mult_value << mult_index);
603		break;
604	case PPC440SPE_XOR_ID:
605		xor_hw_desc = desc->hw_desc;
606		break;
607	default:
608		BUG();
609	}
610}
611
612/**
613 * ppc440spe_desc_set_dest_addr - set destination address into the descriptor
614 */
615static void ppc440spe_desc_set_dest_addr(struct ppc440spe_adma_desc_slot *desc,
616				struct ppc440spe_adma_chan *chan,
617				dma_addr_t addrh, dma_addr_t addrl,
618				u32 dst_idx)
619{
620	struct dma_cdb *dma_hw_desc;
621	struct xor_cb *xor_hw_desc;
622	phys_addr_t addr64, tmphi, tmplow;
623	u32 *psgu, *psgl;
624
625	switch (chan->device->id) {
626	case PPC440SPE_DMA0_ID:
627	case PPC440SPE_DMA1_ID:
628		if (!addrh) {
629			addr64 = addrl;
630			tmphi = (addr64 >> 32);
631			tmplow = (addr64 & 0xFFFFFFFF);
632		} else {
633			tmphi = addrh;
634			tmplow = addrl;
635		}
636		dma_hw_desc = desc->hw_desc;
637
638		psgu = dst_idx ? &dma_hw_desc->sg3u : &dma_hw_desc->sg2u;
639		psgl = dst_idx ? &dma_hw_desc->sg3l : &dma_hw_desc->sg2l;
640
641		*psgl = cpu_to_le32((u32)tmplow);
642		*psgu |= cpu_to_le32((u32)tmphi);
643		break;
644	case PPC440SPE_XOR_ID:
645		xor_hw_desc = desc->hw_desc;
646		xor_hw_desc->cbtal = addrl;
647		xor_hw_desc->cbtah |= addrh;
648		break;
649	}
650}
651
652/**
653 * ppc440spe_desc_set_byte_count - set number of data bytes involved
654 * into the operation
655 */
656static void ppc440spe_desc_set_byte_count(struct ppc440spe_adma_desc_slot *desc,
657				struct ppc440spe_adma_chan *chan,
658				u32 byte_count)
659{
660	struct dma_cdb *dma_hw_desc;
661	struct xor_cb *xor_hw_desc;
662
663	switch (chan->device->id) {
664	case PPC440SPE_DMA0_ID:
665	case PPC440SPE_DMA1_ID:
666		dma_hw_desc = desc->hw_desc;
667		dma_hw_desc->cnt = cpu_to_le32(byte_count);
668		break;
669	case PPC440SPE_XOR_ID:
670		xor_hw_desc = desc->hw_desc;
671		xor_hw_desc->cbbc = byte_count;
672		break;
673	}
674}
675
676/**
677 * ppc440spe_desc_set_rxor_block_size - set RXOR block size
678 */
679static inline void ppc440spe_desc_set_rxor_block_size(u32 byte_count)
680{
681	/* assume that byte_count is aligned on the 512-boundary;
682	 * thus write it directly to the register (bits 23:31 are
683	 * reserved there).
684	 */
685	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CF2H, byte_count);
686}
687
688/**
689 * ppc440spe_desc_set_dcheck - set CHECK pattern
690 */
691static void ppc440spe_desc_set_dcheck(struct ppc440spe_adma_desc_slot *desc,
692				struct ppc440spe_adma_chan *chan, u8 *qword)
693{
694	struct dma_cdb *dma_hw_desc;
695
696	switch (chan->device->id) {
697	case PPC440SPE_DMA0_ID:
698	case PPC440SPE_DMA1_ID:
699		dma_hw_desc = desc->hw_desc;
700		iowrite32(qword[0], &dma_hw_desc->sg3l);
701		iowrite32(qword[4], &dma_hw_desc->sg3u);
702		iowrite32(qword[8], &dma_hw_desc->sg2l);
703		iowrite32(qword[12], &dma_hw_desc->sg2u);
704		break;
705	default:
706		BUG();
707	}
708}
709
710/**
711 * ppc440spe_xor_set_link - set link address in xor CB
712 */
713static void ppc440spe_xor_set_link(struct ppc440spe_adma_desc_slot *prev_desc,
714				struct ppc440spe_adma_desc_slot *next_desc)
715{
716	struct xor_cb *xor_hw_desc = prev_desc->hw_desc;
717
718	if (unlikely(!next_desc || !(next_desc->phys))) {
719		printk(KERN_ERR "%s: next_desc=0x%p; next_desc->phys=0x%llx\n",
720			__func__, next_desc,
721			next_desc ? next_desc->phys : 0);
722		BUG();
723	}
724
725	xor_hw_desc->cbs = 0;
726	xor_hw_desc->cblal = next_desc->phys;
727	xor_hw_desc->cblah = 0;
728	xor_hw_desc->cbc |= XOR_CBCR_LNK_BIT;
729}
730
731/**
732 * ppc440spe_desc_set_link - set the address of descriptor following this
733 * descriptor in chain
734 */
735static void ppc440spe_desc_set_link(struct ppc440spe_adma_chan *chan,
736				struct ppc440spe_adma_desc_slot *prev_desc,
737				struct ppc440spe_adma_desc_slot *next_desc)
738{
739	unsigned long flags;
740	struct ppc440spe_adma_desc_slot *tail = next_desc;
741
742	if (unlikely(!prev_desc || !next_desc ||
743		(prev_desc->hw_next && prev_desc->hw_next != next_desc))) {
744		/* If previous next is overwritten something is wrong.
745		 * though we may refetch from append to initiate list
746		 * processing; in this case - it's ok.
747		 */
748		printk(KERN_ERR "%s: prev_desc=0x%p; next_desc=0x%p; "
749			"prev->hw_next=0x%p\n", __func__, prev_desc,
750			next_desc, prev_desc ? prev_desc->hw_next : 0);
751		BUG();
752	}
753
754	local_irq_save(flags);
755
756	/* do s/w chaining both for DMA and XOR descriptors */
757	prev_desc->hw_next = next_desc;
758
759	switch (chan->device->id) {
760	case PPC440SPE_DMA0_ID:
761	case PPC440SPE_DMA1_ID:
762		break;
763	case PPC440SPE_XOR_ID:
764		/* bind descriptor to the chain */
765		while (tail->hw_next)
766			tail = tail->hw_next;
767		xor_last_linked = tail;
768
769		if (prev_desc == xor_last_submit)
770			/* do not link to the last submitted CB */
771			break;
772		ppc440spe_xor_set_link(prev_desc, next_desc);
773		break;
774	}
775
776	local_irq_restore(flags);
777}
778
779/**
780 * ppc440spe_desc_get_link - get the address of the descriptor that
781 * follows this one
782 */
783static inline u32 ppc440spe_desc_get_link(struct ppc440spe_adma_desc_slot *desc,
784					struct ppc440spe_adma_chan *chan)
785{
786	if (!desc->hw_next)
787		return 0;
788
789	return desc->hw_next->phys;
790}
791
792/**
793 * ppc440spe_desc_is_aligned - check alignment
794 */
795static inline int ppc440spe_desc_is_aligned(
796	struct ppc440spe_adma_desc_slot *desc, int num_slots)
797{
798	return (desc->idx & (num_slots - 1)) ? 0 : 1;
799}
800
801/**
802 * ppc440spe_chan_xor_slot_count - get the number of slots necessary for
803 * XOR operation
804 */
805static int ppc440spe_chan_xor_slot_count(size_t len, int src_cnt,
806			int *slots_per_op)
807{
808	int slot_cnt;
809
810	/* each XOR descriptor provides up to 16 source operands */
811	slot_cnt = *slots_per_op = (src_cnt + XOR_MAX_OPS - 1)/XOR_MAX_OPS;
812
813	if (likely(len <= PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT))
814		return slot_cnt;
815
816	printk(KERN_ERR "%s: len %d > max %d !!\n",
817		__func__, len, PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
818	BUG();
819	return slot_cnt;
820}
821
822/**
823 * ppc440spe_dma2_pq_slot_count - get the number of slots necessary for
824 * DMA2 PQ operation
825 */
826static int ppc440spe_dma2_pq_slot_count(dma_addr_t *srcs,
827		int src_cnt, size_t len)
828{
829	signed long long order = 0;
830	int state = 0;
831	int addr_count = 0;
832	int i;
833	for (i = 1; i < src_cnt; i++) {
834		dma_addr_t cur_addr = srcs[i];
835		dma_addr_t old_addr = srcs[i-1];
836		switch (state) {
837		case 0:
838			if (cur_addr == old_addr + len) {
839				/* direct RXOR */
840				order = 1;
841				state = 1;
842				if (i == src_cnt-1)
843					addr_count++;
844			} else if (old_addr == cur_addr + len) {
845				/* reverse RXOR */
846				order = -1;
847				state = 1;
848				if (i == src_cnt-1)
849					addr_count++;
850			} else {
851				state = 3;
852			}
853			break;
854		case 1:
855			if (i == src_cnt-2 || (order == -1
856				&& cur_addr != old_addr - len)) {
857				order = 0;
858				state = 0;
859				addr_count++;
860			} else if (cur_addr == old_addr + len*order) {
861				state = 2;
862				if (i == src_cnt-1)
863					addr_count++;
864			} else if (cur_addr == old_addr + 2*len) {
865				state = 2;
866				if (i == src_cnt-1)
867					addr_count++;
868			} else if (cur_addr == old_addr + 3*len) {
869				state = 2;
870				if (i == src_cnt-1)
871					addr_count++;
872			} else {
873				order = 0;
874				state = 0;
875				addr_count++;
876			}
877			break;
878		case 2:
879			order = 0;
880			state = 0;
881			addr_count++;
882				break;
883		}
884		if (state == 3)
885			break;
886	}
887	if (src_cnt <= 1 || (state != 1 && state != 2)) {
888		pr_err("%s: src_cnt=%d, state=%d, addr_count=%d, order=%lld\n",
889			__func__, src_cnt, state, addr_count, order);
890		for (i = 0; i < src_cnt; i++)
891			pr_err("\t[%d] 0x%llx \n", i, srcs[i]);
892		BUG();
893	}
894
895	return (addr_count + XOR_MAX_OPS - 1) / XOR_MAX_OPS;
896}
897
898
899/******************************************************************************
900 * ADMA channel low-level routines
901 ******************************************************************************/
902
903static u32
904ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan);
905static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan);
906
907/**
908 * ppc440spe_adma_device_clear_eot_status - interrupt ack to XOR or DMA engine
909 */
910static void ppc440spe_adma_device_clear_eot_status(
911					struct ppc440spe_adma_chan *chan)
912{
913	struct dma_regs *dma_reg;
914	struct xor_regs *xor_reg;
915	u8 *p = chan->device->dma_desc_pool_virt;
916	struct dma_cdb *cdb;
917	u32 rv, i;
918
919	switch (chan->device->id) {
920	case PPC440SPE_DMA0_ID:
921	case PPC440SPE_DMA1_ID:
922		/* read FIFO to ack */
923		dma_reg = chan->device->dma_reg;
924		while ((rv = ioread32(&dma_reg->csfpl))) {
925			i = rv & DMA_CDB_ADDR_MSK;
926			cdb = (struct dma_cdb *)&p[i -
927			    (u32)chan->device->dma_desc_pool];
928
929			/* Clear opcode to ack. This is necessary for
930			 * ZeroSum operations only
931			 */
932			cdb->opc = 0;
933
934			if (test_bit(PPC440SPE_RXOR_RUN,
935			    &ppc440spe_rxor_state)) {
936				/* probably this is a completed RXOR op,
937				 * get pointer to CDB using the fact that
938				 * physical and virtual addresses of CDB
939				 * in pools have the same offsets
940				 */
941				if (le32_to_cpu(cdb->sg1u) &
942				    DMA_CUED_XOR_BASE) {
943					/* this is a RXOR */
944					clear_bit(PPC440SPE_RXOR_RUN,
945						  &ppc440spe_rxor_state);
946				}
947			}
948
949			if (rv & DMA_CDB_STATUS_MSK) {
950				/* ZeroSum check failed
951				 */
952				struct ppc440spe_adma_desc_slot *iter;
953				dma_addr_t phys = rv & ~DMA_CDB_MSK;
954
955				/*
956				 * Update the status of corresponding
957				 * descriptor.
958				 */
959				list_for_each_entry(iter, &chan->chain,
960				    chain_node) {
961					if (iter->phys == phys)
962						break;
963				}
964				/*
965				 * if cannot find the corresponding
966				 * slot it's a bug
967				 */
968				BUG_ON(&iter->chain_node == &chan->chain);
969
970				if (iter->xor_check_result) {
971					if (test_bit(PPC440SPE_DESC_PCHECK,
972						     &iter->flags)) {
973						*iter->xor_check_result |=
974							SUM_CHECK_P_RESULT;
975					} else
976					if (test_bit(PPC440SPE_DESC_QCHECK,
977						     &iter->flags)) {
978						*iter->xor_check_result |=
979							SUM_CHECK_Q_RESULT;
980					} else
981						BUG();
982				}
983			}
984		}
985
986		rv = ioread32(&dma_reg->dsts);
987		if (rv) {
988			pr_err("DMA%d err status: 0x%x\n",
989			       chan->device->id, rv);
990			/* write back to clear */
991			iowrite32(rv, &dma_reg->dsts);
992		}
993		break;
994	case PPC440SPE_XOR_ID:
995		/* reset status bits to ack */
996		xor_reg = chan->device->xor_reg;
997		rv = ioread32be(&xor_reg->sr);
998		iowrite32be(rv, &xor_reg->sr);
999
1000		if (rv & (XOR_IE_ICBIE_BIT|XOR_IE_ICIE_BIT|XOR_IE_RPTIE_BIT)) {
1001			if (rv & XOR_IE_RPTIE_BIT) {
1002				/* Read PLB Timeout Error.
1003				 * Try to resubmit the CB
1004				 */
1005				u32 val = ioread32be(&xor_reg->ccbalr);
1006
1007				iowrite32be(val, &xor_reg->cblalr);
1008
1009				val = ioread32be(&xor_reg->crsr);
1010				iowrite32be(val | XOR_CRSR_XAE_BIT,
1011					    &xor_reg->crsr);
1012			} else
1013				pr_err("XOR ERR 0x%x status\n", rv);
1014			break;
1015		}
1016
1017		/*  if the XORcore is idle, but there are unprocessed CBs
1018		 * then refetch the s/w chain here
1019		 */
1020		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) &&
1021		    do_xor_refetch)
1022			ppc440spe_chan_append(chan);
1023		break;
1024	}
1025}
1026
1027/**
1028 * ppc440spe_chan_is_busy - get the channel status
1029 */
1030static int ppc440spe_chan_is_busy(struct ppc440spe_adma_chan *chan)
1031{
1032	struct dma_regs *dma_reg;
1033	struct xor_regs *xor_reg;
1034	int busy = 0;
1035
1036	switch (chan->device->id) {
1037	case PPC440SPE_DMA0_ID:
1038	case PPC440SPE_DMA1_ID:
1039		dma_reg = chan->device->dma_reg;
1040		/*  if command FIFO's head and tail pointers are equal and
1041		 * status tail is the same as command, then channel is free
1042		 */
1043		if (ioread16(&dma_reg->cpfhp) != ioread16(&dma_reg->cpftp) ||
1044		    ioread16(&dma_reg->cpftp) != ioread16(&dma_reg->csftp))
1045			busy = 1;
1046		break;
1047	case PPC440SPE_XOR_ID:
1048		/* use the special status bit for the XORcore
1049		 */
1050		xor_reg = chan->device->xor_reg;
1051		busy = (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT) ? 1 : 0;
1052		break;
1053	}
1054
1055	return busy;
1056}
1057
1058/**
1059 * ppc440spe_chan_set_first_xor_descriptor -  init XORcore chain
1060 */
1061static void ppc440spe_chan_set_first_xor_descriptor(
1062				struct ppc440spe_adma_chan *chan,
1063				struct ppc440spe_adma_desc_slot *next_desc)
1064{
1065	struct xor_regs *xor_reg = chan->device->xor_reg;
1066
1067	if (ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)
1068		printk(KERN_INFO "%s: Warn: XORcore is running "
1069			"when try to set the first CDB!\n",
1070			__func__);
1071
1072	xor_last_submit = xor_last_linked = next_desc;
1073
1074	iowrite32be(XOR_CRSR_64BA_BIT, &xor_reg->crsr);
1075
1076	iowrite32be(next_desc->phys, &xor_reg->cblalr);
1077	iowrite32be(0, &xor_reg->cblahr);
1078	iowrite32be(ioread32be(&xor_reg->cbcr) | XOR_CBCR_LNK_BIT,
1079		    &xor_reg->cbcr);
1080
1081	chan->hw_chain_inited = 1;
1082}
1083
1084/**
1085 * ppc440spe_dma_put_desc - put DMA0,1 descriptor to FIFO.
1086 * called with irqs disabled
1087 */
1088static void ppc440spe_dma_put_desc(struct ppc440spe_adma_chan *chan,
1089		struct ppc440spe_adma_desc_slot *desc)
1090{
1091	u32 pcdb;
1092	struct dma_regs *dma_reg = chan->device->dma_reg;
1093
1094	pcdb = desc->phys;
1095	if (!test_bit(PPC440SPE_DESC_INT, &desc->flags))
1096		pcdb |= DMA_CDB_NO_INT;
1097
1098	chan_last_sub[chan->device->id] = desc;
1099
1100	ADMA_LL_DBG(print_cb(chan, desc->hw_desc));
1101
1102	iowrite32(pcdb, &dma_reg->cpfpl);
1103}
1104
1105/**
1106 * ppc440spe_chan_append - update the h/w chain in the channel
1107 */
1108static void ppc440spe_chan_append(struct ppc440spe_adma_chan *chan)
1109{
1110	struct xor_regs *xor_reg;
1111	struct ppc440spe_adma_desc_slot *iter;
1112	struct xor_cb *xcb;
1113	u32 cur_desc;
1114	unsigned long flags;
1115
1116	local_irq_save(flags);
1117
1118	switch (chan->device->id) {
1119	case PPC440SPE_DMA0_ID:
1120	case PPC440SPE_DMA1_ID:
1121		cur_desc = ppc440spe_chan_get_current_descriptor(chan);
1122
1123		if (likely(cur_desc)) {
1124			iter = chan_last_sub[chan->device->id];
1125			BUG_ON(!iter);
1126		} else {
1127			/* first peer */
1128			iter = chan_first_cdb[chan->device->id];
1129			BUG_ON(!iter);
1130			ppc440spe_dma_put_desc(chan, iter);
1131			chan->hw_chain_inited = 1;
1132		}
1133
1134		/* is there something new to append */
1135		if (!iter->hw_next)
1136			break;
1137
1138		/* flush descriptors from the s/w queue to fifo */
1139		list_for_each_entry_continue(iter, &chan->chain, chain_node) {
1140			ppc440spe_dma_put_desc(chan, iter);
1141			if (!iter->hw_next)
1142				break;
1143		}
1144		break;
1145	case PPC440SPE_XOR_ID:
1146		/* update h/w links and refetch */
1147		if (!xor_last_submit->hw_next)
1148			break;
1149
1150		xor_reg = chan->device->xor_reg;
1151		/* the last linked CDB has to generate an interrupt
1152		 * that we'd be able to append the next lists to h/w
1153		 * regardless of the XOR engine state at the moment of
1154		 * appending of these next lists
1155		 */
1156		xcb = xor_last_linked->hw_desc;
1157		xcb->cbc |= XOR_CBCR_CBCE_BIT;
1158
1159		if (!(ioread32be(&xor_reg->sr) & XOR_SR_XCP_BIT)) {
1160			/* XORcore is idle. Refetch now */
1161			do_xor_refetch = 0;
1162			ppc440spe_xor_set_link(xor_last_submit,
1163				xor_last_submit->hw_next);
1164
1165			ADMA_LL_DBG(print_cb_list(chan,
1166				xor_last_submit->hw_next));
1167
1168			xor_last_submit = xor_last_linked;
1169			iowrite32be(ioread32be(&xor_reg->crsr) |
1170				    XOR_CRSR_RCBE_BIT | XOR_CRSR_64BA_BIT,
1171				    &xor_reg->crsr);
1172		} else {
1173			/* XORcore is running. Refetch later in the handler */
1174			do_xor_refetch = 1;
1175		}
1176
1177		break;
1178	}
1179
1180	local_irq_restore(flags);
1181}
1182
1183/**
1184 * ppc440spe_chan_get_current_descriptor - get the currently executed descriptor
1185 */
1186static u32
1187ppc440spe_chan_get_current_descriptor(struct ppc440spe_adma_chan *chan)
1188{
1189	struct dma_regs *dma_reg;
1190	struct xor_regs *xor_reg;
1191
1192	if (unlikely(!chan->hw_chain_inited))
1193		/* h/w descriptor chain is not initialized yet */
1194		return 0;
1195
1196	switch (chan->device->id) {
1197	case PPC440SPE_DMA0_ID:
1198	case PPC440SPE_DMA1_ID:
1199		dma_reg = chan->device->dma_reg;
1200		return ioread32(&dma_reg->acpl) & (~DMA_CDB_MSK);
1201	case PPC440SPE_XOR_ID:
1202		xor_reg = chan->device->xor_reg;
1203		return ioread32be(&xor_reg->ccbalr);
1204	}
1205	return 0;
1206}
1207
1208/**
1209 * ppc440spe_chan_run - enable the channel
1210 */
1211static void ppc440spe_chan_run(struct ppc440spe_adma_chan *chan)
1212{
1213	struct xor_regs *xor_reg;
1214
1215	switch (chan->device->id) {
1216	case PPC440SPE_DMA0_ID:
1217	case PPC440SPE_DMA1_ID:
1218		/* DMAs are always enabled, do nothing */
1219		break;
1220	case PPC440SPE_XOR_ID:
1221		/* drain write buffer */
1222		xor_reg = chan->device->xor_reg;
1223
1224		/* fetch descriptor pointed to in <link> */
1225		iowrite32be(XOR_CRSR_64BA_BIT | XOR_CRSR_XAE_BIT,
1226			    &xor_reg->crsr);
1227		break;
1228	}
1229}
1230
1231/******************************************************************************
1232 * ADMA device level
1233 ******************************************************************************/
1234
1235static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan);
1236static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan);
1237
1238static dma_cookie_t
1239ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx);
1240
1241static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *tx,
1242				    dma_addr_t addr, int index);
1243static void
1244ppc440spe_adma_memcpy_xor_set_src(struct ppc440spe_adma_desc_slot *tx,
1245				  dma_addr_t addr, int index);
1246
1247static void
1248ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *tx,
1249			   dma_addr_t *paddr, unsigned long flags);
1250static void
1251ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *tx,
1252			  dma_addr_t addr, int index);
1253static void
1254ppc440spe_adma_pq_set_src_mult(struct ppc440spe_adma_desc_slot *tx,
1255			       unsigned char mult, int index, int dst_pos);
1256static void
1257ppc440spe_adma_pqzero_sum_set_dest(struct ppc440spe_adma_desc_slot *tx,
1258				   dma_addr_t paddr, dma_addr_t qaddr);
1259
1260static struct page *ppc440spe_rxor_srcs[32];
1261
1262/**
1263 * ppc440spe_can_rxor - check if the operands may be processed with RXOR
1264 */
1265static int ppc440spe_can_rxor(struct page **srcs, int src_cnt, size_t len)
1266{
1267	int i, order = 0, state = 0;
1268	int idx = 0;
1269
1270	if (unlikely(!(src_cnt > 1)))
1271		return 0;
1272
1273	BUG_ON(src_cnt > ARRAY_SIZE(ppc440spe_rxor_srcs));
1274
1275	/* Skip holes in the source list before checking */
1276	for (i = 0; i < src_cnt; i++) {
1277		if (!srcs[i])
1278			continue;
1279		ppc440spe_rxor_srcs[idx++] = srcs[i];
1280	}
1281	src_cnt = idx;
1282
1283	for (i = 1; i < src_cnt; i++) {
1284		char *cur_addr = page_address(ppc440spe_rxor_srcs[i]);
1285		char *old_addr = page_address(ppc440spe_rxor_srcs[i - 1]);
1286
1287		switch (state) {
1288		case 0:
1289			if (cur_addr == old_addr + len) {
1290				/* direct RXOR */
1291				order = 1;
1292				state = 1;
1293			} else if (old_addr == cur_addr + len) {
1294				/* reverse RXOR */
1295				order = -1;
1296				state = 1;
1297			} else
1298				goto out;
1299			break;
1300		case 1:
1301			if ((i == src_cnt - 2) ||
1302			    (order == -1 && cur_addr != old_addr - len)) {
1303				order = 0;
1304				state = 0;
1305			} else if ((cur_addr == old_addr + len * order) ||
1306				   (cur_addr == old_addr + 2 * len) ||
1307				   (cur_addr == old_addr + 3 * len)) {
1308				state = 2;
1309			} else {
1310				order = 0;
1311				state = 0;
1312			}
1313			break;
1314		case 2:
1315			order = 0;
1316			state = 0;
1317			break;
1318		}
1319	}
1320
1321out:
1322	if (state == 1 || state == 2)
1323		return 1;
1324
1325	return 0;
1326}
1327
1328/**
1329 * ppc440spe_adma_device_estimate - estimate the efficiency of processing
1330 *	the operation given on this channel. It's assumed that 'chan' is
1331 *	capable to process 'cap' type of operation.
1332 * @chan: channel to use
1333 * @cap: type of transaction
1334 * @dst_lst: array of destination pointers
1335 * @dst_cnt: number of destination operands
1336 * @src_lst: array of source pointers
1337 * @src_cnt: number of source operands
1338 * @src_sz: size of each source operand
1339 */
1340static int ppc440spe_adma_estimate(struct dma_chan *chan,
1341	enum dma_transaction_type cap, struct page **dst_lst, int dst_cnt,
1342	struct page **src_lst, int src_cnt, size_t src_sz)
1343{
1344	int ef = 1;
1345
1346	if (cap == DMA_PQ || cap == DMA_PQ_VAL) {
1347		/* If RAID-6 capabilities were not activated don't try
1348		 * to use them
1349		 */
1350		if (unlikely(!ppc440spe_r6_enabled))
1351			return -1;
1352	}
1353	/*  In the current implementation of ppc440spe ADMA driver it
1354	 * makes sense to pick out only pq case, because it may be
1355	 * processed:
1356	 * (1) either using Biskup method on DMA2;
1357	 * (2) or on DMA0/1.
1358	 *  Thus we give a favour to (1) if the sources are suitable;
1359	 * else let it be processed on one of the DMA0/1 engines.
1360	 *  In the sum_product case where destination is also the
1361	 * source process it on DMA0/1 only.
1362	 */
1363	if (cap == DMA_PQ && chan->chan_id == PPC440SPE_XOR_ID) {
1364
1365		if (dst_cnt == 1 && src_cnt == 2 && dst_lst[0] == src_lst[1])
1366			ef = 0; /* sum_product case, process on DMA0/1 */
1367		else if (ppc440spe_can_rxor(src_lst, src_cnt, src_sz))
1368			ef = 3; /* override (DMA0/1 + idle) */
1369		else
1370			ef = 0; /* can't process on DMA2 if !rxor */
1371	}
1372
1373	/* channel idleness increases the priority */
1374	if (likely(ef) &&
1375	    !ppc440spe_chan_is_busy(to_ppc440spe_adma_chan(chan)))
1376		ef++;
1377
1378	return ef;
1379}
1380
1381struct dma_chan *
1382ppc440spe_async_tx_find_best_channel(enum dma_transaction_type cap,
1383	struct page **dst_lst, int dst_cnt, struct page **src_lst,
1384	int src_cnt, size_t src_sz)
1385{
1386	struct dma_chan *best_chan = NULL;
1387	struct ppc_dma_chan_ref *ref;
1388	int best_rank = -1;
1389
1390	if (unlikely(!src_sz))
1391		return NULL;
1392	if (src_sz > PAGE_SIZE) {
1393		/*
1394		 * should a user of the api ever pass > PAGE_SIZE requests
1395		 * we sort out cases where temporary page-sized buffers
1396		 * are used.
1397		 */
1398		switch (cap) {
1399		case DMA_PQ:
1400			if (src_cnt == 1 && dst_lst[1] == src_lst[0])
1401				return NULL;
1402			if (src_cnt == 2 && dst_lst[1] == src_lst[1])
1403				return NULL;
1404			break;
1405		case DMA_PQ_VAL:
1406		case DMA_XOR_VAL:
1407			return NULL;
1408		default:
1409			break;
1410		}
1411	}
1412
1413	list_for_each_entry(ref, &ppc440spe_adma_chan_list, node) {
1414		if (dma_has_cap(cap, ref->chan->device->cap_mask)) {
1415			int rank;
1416
1417			rank = ppc440spe_adma_estimate(ref->chan, cap, dst_lst,
1418					dst_cnt, src_lst, src_cnt, src_sz);
1419			if (rank > best_rank) {
1420				best_rank = rank;
1421				best_chan = ref->chan;
1422			}
1423		}
1424	}
1425
1426	return best_chan;
1427}
1428EXPORT_SYMBOL_GPL(ppc440spe_async_tx_find_best_channel);
1429
1430/**
1431 * ppc440spe_get_group_entry - get group entry with index idx
1432 * @tdesc: is the last allocated slot in the group.
1433 */
1434static struct ppc440spe_adma_desc_slot *
1435ppc440spe_get_group_entry(struct ppc440spe_adma_desc_slot *tdesc, u32 entry_idx)
1436{
1437	struct ppc440spe_adma_desc_slot *iter = tdesc->group_head;
1438	int i = 0;
1439
1440	if (entry_idx < 0 || entry_idx >= (tdesc->src_cnt + tdesc->dst_cnt)) {
1441		printk("%s: entry_idx %d, src_cnt %d, dst_cnt %d\n",
1442			__func__, entry_idx, tdesc->src_cnt, tdesc->dst_cnt);
1443		BUG();
1444	}
1445
1446	list_for_each_entry(iter, &tdesc->group_list, chain_node) {
1447		if (i++ == entry_idx)
1448			break;
1449	}
1450	return iter;
1451}
1452
1453/**
1454 * ppc440spe_adma_free_slots - flags descriptor slots for reuse
1455 * @slot: Slot to free
1456 * Caller must hold &ppc440spe_chan->lock while calling this function
1457 */
1458static void ppc440spe_adma_free_slots(struct ppc440spe_adma_desc_slot *slot,
1459				      struct ppc440spe_adma_chan *chan)
1460{
1461	int stride = slot->slots_per_op;
1462
1463	while (stride--) {
1464		slot->slots_per_op = 0;
1465		slot = list_entry(slot->slot_node.next,
1466				struct ppc440spe_adma_desc_slot,
1467				slot_node);
1468	}
1469}
1470
1471/**
1472 * ppc440spe_adma_run_tx_complete_actions - call functions to be called
1473 * upon completion
1474 */
1475static dma_cookie_t ppc440spe_adma_run_tx_complete_actions(
1476		struct ppc440spe_adma_desc_slot *desc,
1477		struct ppc440spe_adma_chan *chan,
1478		dma_cookie_t cookie)
1479{
1480	BUG_ON(desc->async_tx.cookie < 0);
1481	if (desc->async_tx.cookie > 0) {
1482		cookie = desc->async_tx.cookie;
1483		desc->async_tx.cookie = 0;
1484
1485		/* call the callback (must not sleep or submit new
1486		 * operations to this channel)
1487		 */
1488		if (desc->async_tx.callback)
1489			desc->async_tx.callback(
1490				desc->async_tx.callback_param);
1491
1492		dma_descriptor_unmap(&desc->async_tx);
1493	}
1494
1495	/* run dependent operations */
1496	dma_run_dependencies(&desc->async_tx);
1497
1498	return cookie;
1499}
1500
1501/**
1502 * ppc440spe_adma_clean_slot - clean up CDB slot (if ack is set)
1503 */
1504static int ppc440spe_adma_clean_slot(struct ppc440spe_adma_desc_slot *desc,
1505		struct ppc440spe_adma_chan *chan)
1506{
1507	/* the client is allowed to attach dependent operations
1508	 * until 'ack' is set
1509	 */
1510	if (!async_tx_test_ack(&desc->async_tx))
1511		return 0;
1512
1513	/* leave the last descriptor in the chain
1514	 * so we can append to it
1515	 */
1516	if (list_is_last(&desc->chain_node, &chan->chain) ||
1517	    desc->phys == ppc440spe_chan_get_current_descriptor(chan))
1518		return 1;
1519
1520	if (chan->device->id != PPC440SPE_XOR_ID) {
1521		/* our DMA interrupt handler clears opc field of
1522		 * each processed descriptor. For all types of
1523		 * operations except for ZeroSum we do not actually
1524		 * need ack from the interrupt handler. ZeroSum is a
1525		 * special case since the result of this operation
1526		 * is available from the handler only, so if we see
1527		 * such type of descriptor (which is unprocessed yet)
1528		 * then leave it in chain.
1529		 */
1530		struct dma_cdb *cdb = desc->hw_desc;
1531		if (cdb->opc == DMA_CDB_OPC_DCHECK128)
1532			return 1;
1533	}
1534
1535	dev_dbg(chan->device->common.dev, "\tfree slot %llx: %d stride: %d\n",
1536		desc->phys, desc->idx, desc->slots_per_op);
1537
1538	list_del(&desc->chain_node);
1539	ppc440spe_adma_free_slots(desc, chan);
1540	return 0;
1541}
1542
1543/**
1544 * __ppc440spe_adma_slot_cleanup - this is the common clean-up routine
1545 *	which runs through the channel CDBs list until reach the descriptor
1546 *	currently processed. When routine determines that all CDBs of group
1547 *	are completed then corresponding callbacks (if any) are called and slots
1548 *	are freed.
1549 */
1550static void __ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1551{
1552	struct ppc440spe_adma_desc_slot *iter, *_iter, *group_start = NULL;
1553	dma_cookie_t cookie = 0;
1554	u32 current_desc = ppc440spe_chan_get_current_descriptor(chan);
1555	int busy = ppc440spe_chan_is_busy(chan);
1556	int seen_current = 0, slot_cnt = 0, slots_per_op = 0;
1557
1558	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: %s\n",
1559		chan->device->id, __func__);
1560
1561	if (!current_desc) {
1562		/*  There were no transactions yet, so
1563		 * nothing to clean
1564		 */
1565		return;
1566	}
1567
1568	/* free completed slots from the chain starting with
1569	 * the oldest descriptor
1570	 */
1571	list_for_each_entry_safe(iter, _iter, &chan->chain,
1572					chain_node) {
1573		dev_dbg(chan->device->common.dev, "\tcookie: %d slot: %d "
1574		    "busy: %d this_desc: %#llx next_desc: %#x "
1575		    "cur: %#x ack: %d\n",
1576		    iter->async_tx.cookie, iter->idx, busy, iter->phys,
1577		    ppc440spe_desc_get_link(iter, chan), current_desc,
1578		    async_tx_test_ack(&iter->async_tx));
1579		prefetch(_iter);
1580		prefetch(&_iter->async_tx);
1581
1582		/* do not advance past the current descriptor loaded into the
1583		 * hardware channel,subsequent descriptors are either in process
1584		 * or have not been submitted
1585		 */
1586		if (seen_current)
1587			break;
1588
1589		/* stop the search if we reach the current descriptor and the
1590		 * channel is busy, or if it appears that the current descriptor
1591		 * needs to be re-read (i.e. has been appended to)
1592		 */
1593		if (iter->phys == current_desc) {
1594			BUG_ON(seen_current++);
1595			if (busy || ppc440spe_desc_get_link(iter, chan)) {
1596				/* not all descriptors of the group have
1597				 * been completed; exit.
1598				 */
1599				break;
1600			}
1601		}
1602
1603		/* detect the start of a group transaction */
1604		if (!slot_cnt && !slots_per_op) {
1605			slot_cnt = iter->slot_cnt;
1606			slots_per_op = iter->slots_per_op;
1607			if (slot_cnt <= slots_per_op) {
1608				slot_cnt = 0;
1609				slots_per_op = 0;
1610			}
1611		}
1612
1613		if (slot_cnt) {
1614			if (!group_start)
1615				group_start = iter;
1616			slot_cnt -= slots_per_op;
1617		}
1618
1619		/* all the members of a group are complete */
1620		if (slots_per_op != 0 && slot_cnt == 0) {
1621			struct ppc440spe_adma_desc_slot *grp_iter, *_grp_iter;
1622			int end_of_chain = 0;
1623
1624			/* clean up the group */
1625			slot_cnt = group_start->slot_cnt;
1626			grp_iter = group_start;
1627			list_for_each_entry_safe_from(grp_iter, _grp_iter,
1628				&chan->chain, chain_node) {
1629
1630				cookie = ppc440spe_adma_run_tx_complete_actions(
1631					grp_iter, chan, cookie);
1632
1633				slot_cnt -= slots_per_op;
1634				end_of_chain = ppc440spe_adma_clean_slot(
1635				    grp_iter, chan);
1636				if (end_of_chain && slot_cnt) {
1637					/* Should wait for ZeroSum completion */
1638					if (cookie > 0)
1639						chan->common.completed_cookie = cookie;
1640					return;
1641				}
1642
1643				if (slot_cnt == 0 || end_of_chain)
1644					break;
1645			}
1646
1647			/* the group should be complete at this point */
1648			BUG_ON(slot_cnt);
1649
1650			slots_per_op = 0;
1651			group_start = NULL;
1652			if (end_of_chain)
1653				break;
1654			else
1655				continue;
1656		} else if (slots_per_op) /* wait for group completion */
1657			continue;
1658
1659		cookie = ppc440spe_adma_run_tx_complete_actions(iter, chan,
1660		    cookie);
1661
1662		if (ppc440spe_adma_clean_slot(iter, chan))
1663			break;
1664	}
1665
1666	BUG_ON(!seen_current);
1667
1668	if (cookie > 0) {
1669		chan->common.completed_cookie = cookie;
1670		pr_debug("\tcompleted cookie %d\n", cookie);
1671	}
1672
1673}
1674
1675/**
1676 * ppc440spe_adma_tasklet - clean up watch-dog initiator
1677 */
1678static void ppc440spe_adma_tasklet(unsigned long data)
1679{
1680	struct ppc440spe_adma_chan *chan = (struct ppc440spe_adma_chan *) data;
1681
1682	spin_lock_nested(&chan->lock, SINGLE_DEPTH_NESTING);
1683	__ppc440spe_adma_slot_cleanup(chan);
1684	spin_unlock(&chan->lock);
1685}
1686
1687/**
1688 * ppc440spe_adma_slot_cleanup - clean up scheduled initiator
1689 */
1690static void ppc440spe_adma_slot_cleanup(struct ppc440spe_adma_chan *chan)
1691{
1692	spin_lock_bh(&chan->lock);
1693	__ppc440spe_adma_slot_cleanup(chan);
1694	spin_unlock_bh(&chan->lock);
1695}
1696
1697/**
1698 * ppc440spe_adma_alloc_slots - allocate free slots (if any)
1699 */
1700static struct ppc440spe_adma_desc_slot *ppc440spe_adma_alloc_slots(
1701		struct ppc440spe_adma_chan *chan, int num_slots,
1702		int slots_per_op)
1703{
1704	struct ppc440spe_adma_desc_slot *iter = NULL, *_iter;
1705	struct ppc440spe_adma_desc_slot *alloc_start = NULL;
1706	struct list_head chain = LIST_HEAD_INIT(chain);
1707	int slots_found, retry = 0;
1708
1709
1710	BUG_ON(!num_slots || !slots_per_op);
1711	/* start search from the last allocated descrtiptor
1712	 * if a contiguous allocation can not be found start searching
1713	 * from the beginning of the list
1714	 */
1715retry:
1716	slots_found = 0;
1717	if (retry == 0)
1718		iter = chan->last_used;
1719	else
1720		iter = list_entry(&chan->all_slots,
1721				  struct ppc440spe_adma_desc_slot,
1722				  slot_node);
1723	list_for_each_entry_safe_continue(iter, _iter, &chan->all_slots,
1724	    slot_node) {
1725		prefetch(_iter);
1726		prefetch(&_iter->async_tx);
1727		if (iter->slots_per_op) {
1728			slots_found = 0;
1729			continue;
1730		}
1731
1732		/* start the allocation if the slot is correctly aligned */
1733		if (!slots_found++)
1734			alloc_start = iter;
1735
1736		if (slots_found == num_slots) {
1737			struct ppc440spe_adma_desc_slot *alloc_tail = NULL;
1738			struct ppc440spe_adma_desc_slot *last_used = NULL;
1739
1740			iter = alloc_start;
1741			while (num_slots) {
1742				int i;
1743				/* pre-ack all but the last descriptor */
1744				if (num_slots != slots_per_op)
1745					async_tx_ack(&iter->async_tx);
1746
1747				list_add_tail(&iter->chain_node, &chain);
1748				alloc_tail = iter;
1749				iter->async_tx.cookie = 0;
1750				iter->hw_next = NULL;
1751				iter->flags = 0;
1752				iter->slot_cnt = num_slots;
1753				iter->xor_check_result = NULL;
1754				for (i = 0; i < slots_per_op; i++) {
1755					iter->slots_per_op = slots_per_op - i;
1756					last_used = iter;
1757					iter = list_entry(iter->slot_node.next,
1758						struct ppc440spe_adma_desc_slot,
1759						slot_node);
1760				}
1761				num_slots -= slots_per_op;
1762			}
1763			alloc_tail->group_head = alloc_start;
1764			alloc_tail->async_tx.cookie = -EBUSY;
1765			list_splice(&chain, &alloc_tail->group_list);
1766			chan->last_used = last_used;
1767			return alloc_tail;
1768		}
1769	}
1770	if (!retry++)
1771		goto retry;
1772
1773	/* try to free some slots if the allocation fails */
1774	tasklet_schedule(&chan->irq_tasklet);
1775	return NULL;
1776}
1777
1778/**
1779 * ppc440spe_adma_alloc_chan_resources -  allocate pools for CDB slots
1780 */
1781static int ppc440spe_adma_alloc_chan_resources(struct dma_chan *chan)
1782{
1783	struct ppc440spe_adma_chan *ppc440spe_chan;
1784	struct ppc440spe_adma_desc_slot *slot = NULL;
1785	char *hw_desc;
1786	int i, db_sz;
1787	int init;
1788
1789	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1790	init = ppc440spe_chan->slots_allocated ? 0 : 1;
1791	chan->chan_id = ppc440spe_chan->device->id;
1792
1793	/* Allocate descriptor slots */
1794	i = ppc440spe_chan->slots_allocated;
1795	if (ppc440spe_chan->device->id != PPC440SPE_XOR_ID)
1796		db_sz = sizeof(struct dma_cdb);
1797	else
1798		db_sz = sizeof(struct xor_cb);
1799
1800	for (; i < (ppc440spe_chan->device->pool_size / db_sz); i++) {
1801		slot = kzalloc(sizeof(struct ppc440spe_adma_desc_slot),
1802			       GFP_KERNEL);
1803		if (!slot) {
1804			printk(KERN_INFO "SPE ADMA Channel only initialized"
1805				" %d descriptor slots", i--);
1806			break;
1807		}
1808
1809		hw_desc = (char *) ppc440spe_chan->device->dma_desc_pool_virt;
1810		slot->hw_desc = (void *) &hw_desc[i * db_sz];
1811		dma_async_tx_descriptor_init(&slot->async_tx, chan);
1812		slot->async_tx.tx_submit = ppc440spe_adma_tx_submit;
1813		INIT_LIST_HEAD(&slot->chain_node);
1814		INIT_LIST_HEAD(&slot->slot_node);
1815		INIT_LIST_HEAD(&slot->group_list);
1816		slot->phys = ppc440spe_chan->device->dma_desc_pool + i * db_sz;
1817		slot->idx = i;
1818
1819		spin_lock_bh(&ppc440spe_chan->lock);
1820		ppc440spe_chan->slots_allocated++;
1821		list_add_tail(&slot->slot_node, &ppc440spe_chan->all_slots);
1822		spin_unlock_bh(&ppc440spe_chan->lock);
1823	}
1824
1825	if (i && !ppc440spe_chan->last_used) {
1826		ppc440spe_chan->last_used =
1827			list_entry(ppc440spe_chan->all_slots.next,
1828				struct ppc440spe_adma_desc_slot,
1829				slot_node);
1830	}
1831
1832	dev_dbg(ppc440spe_chan->device->common.dev,
1833		"ppc440spe adma%d: allocated %d descriptor slots\n",
1834		ppc440spe_chan->device->id, i);
1835
1836	/* initialize the channel and the chain with a null operation */
1837	if (init) {
1838		switch (ppc440spe_chan->device->id) {
1839		case PPC440SPE_DMA0_ID:
1840		case PPC440SPE_DMA1_ID:
1841			ppc440spe_chan->hw_chain_inited = 0;
1842			/* Use WXOR for self-testing */
1843			if (!ppc440spe_r6_tchan)
1844				ppc440spe_r6_tchan = ppc440spe_chan;
1845			break;
1846		case PPC440SPE_XOR_ID:
1847			ppc440spe_chan_start_null_xor(ppc440spe_chan);
1848			break;
1849		default:
1850			BUG();
1851		}
1852		ppc440spe_chan->needs_unmap = 1;
1853	}
1854
1855	return (i > 0) ? i : -ENOMEM;
1856}
1857
1858/**
1859 * ppc440spe_rxor_set_region_data -
1860 */
1861static void ppc440spe_rxor_set_region(struct ppc440spe_adma_desc_slot *desc,
1862	u8 xor_arg_no, u32 mask)
1863{
1864	struct xor_cb *xcb = desc->hw_desc;
1865
1866	xcb->ops[xor_arg_no].h |= mask;
1867}
1868
1869/**
1870 * ppc440spe_rxor_set_src -
1871 */
1872static void ppc440spe_rxor_set_src(struct ppc440spe_adma_desc_slot *desc,
1873	u8 xor_arg_no, dma_addr_t addr)
1874{
1875	struct xor_cb *xcb = desc->hw_desc;
1876
1877	xcb->ops[xor_arg_no].h |= DMA_CUED_XOR_BASE;
1878	xcb->ops[xor_arg_no].l = addr;
1879}
1880
1881/**
1882 * ppc440spe_rxor_set_mult -
1883 */
1884static void ppc440spe_rxor_set_mult(struct ppc440spe_adma_desc_slot *desc,
1885	u8 xor_arg_no, u8 idx, u8 mult)
1886{
1887	struct xor_cb *xcb = desc->hw_desc;
1888
1889	xcb->ops[xor_arg_no].h |= mult << (DMA_CUED_MULT1_OFF + idx * 8);
1890}
1891
1892/**
1893 * ppc440spe_adma_check_threshold - append CDBs to h/w chain if threshold
1894 *	has been achieved
1895 */
1896static void ppc440spe_adma_check_threshold(struct ppc440spe_adma_chan *chan)
1897{
1898	dev_dbg(chan->device->common.dev, "ppc440spe adma%d: pending: %d\n",
1899		chan->device->id, chan->pending);
1900
1901	if (chan->pending >= PPC440SPE_ADMA_THRESHOLD) {
1902		chan->pending = 0;
1903		ppc440spe_chan_append(chan);
1904	}
1905}
1906
1907/**
1908 * ppc440spe_adma_tx_submit - submit new descriptor group to the channel
1909 *	(it's not necessary that descriptors will be submitted to the h/w
1910 *	chains too right now)
1911 */
1912static dma_cookie_t ppc440spe_adma_tx_submit(struct dma_async_tx_descriptor *tx)
1913{
1914	struct ppc440spe_adma_desc_slot *sw_desc;
1915	struct ppc440spe_adma_chan *chan = to_ppc440spe_adma_chan(tx->chan);
1916	struct ppc440spe_adma_desc_slot *group_start, *old_chain_tail;
1917	int slot_cnt;
1918	int slots_per_op;
1919	dma_cookie_t cookie;
1920
1921	sw_desc = tx_to_ppc440spe_adma_slot(tx);
1922
1923	group_start = sw_desc->group_head;
1924	slot_cnt = group_start->slot_cnt;
1925	slots_per_op = group_start->slots_per_op;
1926
1927	spin_lock_bh(&chan->lock);
1928	cookie = dma_cookie_assign(tx);
1929
1930	if (unlikely(list_empty(&chan->chain))) {
1931		/* first peer */
1932		list_splice_init(&sw_desc->group_list, &chan->chain);
1933		chan_first_cdb[chan->device->id] = group_start;
1934	} else {
1935		/* isn't first peer, bind CDBs to chain */
1936		old_chain_tail = list_entry(chan->chain.prev,
1937					struct ppc440spe_adma_desc_slot,
1938					chain_node);
1939		list_splice_init(&sw_desc->group_list,
1940		    &old_chain_tail->chain_node);
1941		/* fix up the hardware chain */
1942		ppc440spe_desc_set_link(chan, old_chain_tail, group_start);
1943	}
1944
1945	/* increment the pending count by the number of operations */
1946	chan->pending += slot_cnt / slots_per_op;
1947	ppc440spe_adma_check_threshold(chan);
1948	spin_unlock_bh(&chan->lock);
1949
1950	dev_dbg(chan->device->common.dev,
1951		"ppc440spe adma%d: %s cookie: %d slot: %d tx %p\n",
1952		chan->device->id, __func__,
1953		sw_desc->async_tx.cookie, sw_desc->idx, sw_desc);
1954
1955	return cookie;
1956}
1957
1958/**
1959 * ppc440spe_adma_prep_dma_interrupt - prepare CDB for a pseudo DMA operation
1960 */
1961static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_interrupt(
1962		struct dma_chan *chan, unsigned long flags)
1963{
1964	struct ppc440spe_adma_chan *ppc440spe_chan;
1965	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1966	int slot_cnt, slots_per_op;
1967
1968	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
1969
1970	dev_dbg(ppc440spe_chan->device->common.dev,
1971		"ppc440spe adma%d: %s\n", ppc440spe_chan->device->id,
1972		__func__);
1973
1974	spin_lock_bh(&ppc440spe_chan->lock);
1975	slot_cnt = slots_per_op = 1;
1976	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
1977			slots_per_op);
1978	if (sw_desc) {
1979		group_start = sw_desc->group_head;
1980		ppc440spe_desc_init_interrupt(group_start, ppc440spe_chan);
1981		group_start->unmap_len = 0;
1982		sw_desc->async_tx.flags = flags;
1983	}
1984	spin_unlock_bh(&ppc440spe_chan->lock);
1985
1986	return sw_desc ? &sw_desc->async_tx : NULL;
1987}
1988
1989/**
1990 * ppc440spe_adma_prep_dma_memcpy - prepare CDB for a MEMCPY operation
1991 */
1992static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_memcpy(
1993		struct dma_chan *chan, dma_addr_t dma_dest,
1994		dma_addr_t dma_src, size_t len, unsigned long flags)
1995{
1996	struct ppc440spe_adma_chan *ppc440spe_chan;
1997	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
1998	int slot_cnt, slots_per_op;
1999
2000	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2001
2002	if (unlikely(!len))
2003		return NULL;
2004
2005	BUG_ON(len > PPC440SPE_ADMA_DMA_MAX_BYTE_COUNT);
2006
2007	spin_lock_bh(&ppc440spe_chan->lock);
2008
2009	dev_dbg(ppc440spe_chan->device->common.dev,
2010		"ppc440spe adma%d: %s len: %u int_en %d\n",
2011		ppc440spe_chan->device->id, __func__, len,
2012		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2013	slot_cnt = slots_per_op = 1;
2014	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2015		slots_per_op);
2016	if (sw_desc) {
2017		group_start = sw_desc->group_head;
2018		ppc440spe_desc_init_memcpy(group_start, flags);
2019		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2020		ppc440spe_adma_memcpy_xor_set_src(group_start, dma_src, 0);
2021		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2022		sw_desc->unmap_len = len;
2023		sw_desc->async_tx.flags = flags;
2024	}
2025	spin_unlock_bh(&ppc440spe_chan->lock);
2026
2027	return sw_desc ? &sw_desc->async_tx : NULL;
2028}
2029
2030/**
2031 * ppc440spe_adma_prep_dma_xor - prepare CDB for a XOR operation
2032 */
2033static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor(
2034		struct dma_chan *chan, dma_addr_t dma_dest,
2035		dma_addr_t *dma_src, u32 src_cnt, size_t len,
2036		unsigned long flags)
2037{
2038	struct ppc440spe_adma_chan *ppc440spe_chan;
2039	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
2040	int slot_cnt, slots_per_op;
2041
2042	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2043
2044	ADMA_LL_DBG(prep_dma_xor_dbg(ppc440spe_chan->device->id,
2045				     dma_dest, dma_src, src_cnt));
2046	if (unlikely(!len))
2047		return NULL;
2048	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2049
2050	dev_dbg(ppc440spe_chan->device->common.dev,
2051		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2052		ppc440spe_chan->device->id, __func__, src_cnt, len,
2053		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2054
2055	spin_lock_bh(&ppc440spe_chan->lock);
2056	slot_cnt = ppc440spe_chan_xor_slot_count(len, src_cnt, &slots_per_op);
2057	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2058			slots_per_op);
2059	if (sw_desc) {
2060		group_start = sw_desc->group_head;
2061		ppc440spe_desc_init_xor(group_start, src_cnt, flags);
2062		ppc440spe_adma_set_dest(group_start, dma_dest, 0);
2063		while (src_cnt--)
2064			ppc440spe_adma_memcpy_xor_set_src(group_start,
2065				dma_src[src_cnt], src_cnt);
2066		ppc440spe_desc_set_byte_count(group_start, ppc440spe_chan, len);
2067		sw_desc->unmap_len = len;
2068		sw_desc->async_tx.flags = flags;
2069	}
2070	spin_unlock_bh(&ppc440spe_chan->lock);
2071
2072	return sw_desc ? &sw_desc->async_tx : NULL;
2073}
2074
2075static inline void
2076ppc440spe_desc_set_xor_src_cnt(struct ppc440spe_adma_desc_slot *desc,
2077				int src_cnt);
2078static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor);
2079
2080/**
2081 * ppc440spe_adma_init_dma2rxor_slot -
2082 */
2083static void ppc440spe_adma_init_dma2rxor_slot(
2084		struct ppc440spe_adma_desc_slot *desc,
2085		dma_addr_t *src, int src_cnt)
2086{
2087	int i;
2088
2089	/* initialize CDB */
2090	for (i = 0; i < src_cnt; i++) {
2091		ppc440spe_adma_dma2rxor_prep_src(desc, &desc->rxor_cursor, i,
2092						 desc->src_cnt, (u32)src[i]);
2093	}
2094}
2095
2096/**
2097 * ppc440spe_dma01_prep_mult -
2098 * for Q operation where destination is also the source
2099 */
2100static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_mult(
2101		struct ppc440spe_adma_chan *ppc440spe_chan,
2102		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2103		const unsigned char *scf, size_t len, unsigned long flags)
2104{
2105	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2106	unsigned long op = 0;
2107	int slot_cnt;
2108
2109	set_bit(PPC440SPE_DESC_WXOR, &op);
2110	slot_cnt = 2;
2111
2112	spin_lock_bh(&ppc440spe_chan->lock);
2113
2114	/* use WXOR, each descriptor occupies one slot */
2115	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2116	if (sw_desc) {
2117		struct ppc440spe_adma_chan *chan;
2118		struct ppc440spe_adma_desc_slot *iter;
2119		struct dma_cdb *hw_desc;
2120
2121		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2122		set_bits(op, &sw_desc->flags);
2123		sw_desc->src_cnt = src_cnt;
2124		sw_desc->dst_cnt = dst_cnt;
2125		/* First descriptor, zero data in the destination and copy it
2126		 * to q page using MULTICAST transfer.
2127		 */
2128		iter = list_first_entry(&sw_desc->group_list,
2129					struct ppc440spe_adma_desc_slot,
2130					chain_node);
2131		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2132		/* set 'next' pointer */
2133		iter->hw_next = list_entry(iter->chain_node.next,
2134					   struct ppc440spe_adma_desc_slot,
2135					   chain_node);
2136		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2137		hw_desc = iter->hw_desc;
2138		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2139
2140		ppc440spe_desc_set_dest_addr(iter, chan,
2141					     DMA_CUED_XOR_BASE, dst[0], 0);
2142		ppc440spe_desc_set_dest_addr(iter, chan, 0, dst[1], 1);
2143		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2144					    src[0]);
2145		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2146		iter->unmap_len = len;
2147
2148		/*
2149		 * Second descriptor, multiply data from the q page
2150		 * and store the result in real destination.
2151		 */
2152		iter = list_first_entry(&iter->chain_node,
2153					struct ppc440spe_adma_desc_slot,
2154					chain_node);
2155		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2156		iter->hw_next = NULL;
2157		if (flags & DMA_PREP_INTERRUPT)
2158			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2159		else
2160			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2161
2162		hw_desc = iter->hw_desc;
2163		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2164		ppc440spe_desc_set_src_addr(iter, chan, 0,
2165					    DMA_CUED_XOR_HB, dst[1]);
2166		ppc440spe_desc_set_dest_addr(iter, chan,
2167					     DMA_CUED_XOR_BASE, dst[0], 0);
2168
2169		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2170					    DMA_CDB_SG_DST1, scf[0]);
2171		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2172		iter->unmap_len = len;
2173		sw_desc->async_tx.flags = flags;
2174	}
2175
2176	spin_unlock_bh(&ppc440spe_chan->lock);
2177
2178	return sw_desc;
2179}
2180
2181/**
2182 * ppc440spe_dma01_prep_sum_product -
2183 * Dx = A*(P+Pxy) + B*(Q+Qxy) operation where destination is also
2184 * the source.
2185 */
2186static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_sum_product(
2187		struct ppc440spe_adma_chan *ppc440spe_chan,
2188		dma_addr_t *dst, dma_addr_t *src, int src_cnt,
2189		const unsigned char *scf, size_t len, unsigned long flags)
2190{
2191	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2192	unsigned long op = 0;
2193	int slot_cnt;
2194
2195	set_bit(PPC440SPE_DESC_WXOR, &op);
2196	slot_cnt = 3;
2197
2198	spin_lock_bh(&ppc440spe_chan->lock);
2199
2200	/* WXOR, each descriptor occupies one slot */
2201	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2202	if (sw_desc) {
2203		struct ppc440spe_adma_chan *chan;
2204		struct ppc440spe_adma_desc_slot *iter;
2205		struct dma_cdb *hw_desc;
2206
2207		chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2208		set_bits(op, &sw_desc->flags);
2209		sw_desc->src_cnt = src_cnt;
2210		sw_desc->dst_cnt = 1;
2211		/* 1st descriptor, src[1] data to q page and zero destination */
2212		iter = list_first_entry(&sw_desc->group_list,
2213					struct ppc440spe_adma_desc_slot,
2214					chain_node);
2215		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2216		iter->hw_next = list_entry(iter->chain_node.next,
2217					   struct ppc440spe_adma_desc_slot,
2218					   chain_node);
2219		clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2220		hw_desc = iter->hw_desc;
2221		hw_desc->opc = DMA_CDB_OPC_MULTICAST;
2222
2223		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2224					     *dst, 0);
2225		ppc440spe_desc_set_dest_addr(iter, chan, 0,
2226					     ppc440spe_chan->qdest, 1);
2227		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2228					    src[1]);
2229		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2230		iter->unmap_len = len;
2231
2232		/* 2nd descriptor, multiply src[1] data and store the
2233		 * result in destination */
2234		iter = list_first_entry(&iter->chain_node,
2235					struct ppc440spe_adma_desc_slot,
2236					chain_node);
2237		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2238		/* set 'next' pointer */
2239		iter->hw_next = list_entry(iter->chain_node.next,
2240					   struct ppc440spe_adma_desc_slot,
2241					   chain_node);
2242		if (flags & DMA_PREP_INTERRUPT)
2243			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2244		else
2245			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2246
2247		hw_desc = iter->hw_desc;
2248		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2249		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2250					    ppc440spe_chan->qdest);
2251		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2252					     *dst, 0);
2253		ppc440spe_desc_set_src_mult(iter, chan,	DMA_CUED_MULT1_OFF,
2254					    DMA_CDB_SG_DST1, scf[1]);
2255		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2256		iter->unmap_len = len;
2257
2258		/*
2259		 * 3rd descriptor, multiply src[0] data and xor it
2260		 * with destination
2261		 */
2262		iter = list_first_entry(&iter->chain_node,
2263					struct ppc440spe_adma_desc_slot,
2264					chain_node);
2265		memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2266		iter->hw_next = NULL;
2267		if (flags & DMA_PREP_INTERRUPT)
2268			set_bit(PPC440SPE_DESC_INT, &iter->flags);
2269		else
2270			clear_bit(PPC440SPE_DESC_INT, &iter->flags);
2271
2272		hw_desc = iter->hw_desc;
2273		hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2274		ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB,
2275					    src[0]);
2276		ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE,
2277					     *dst, 0);
2278		ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2279					    DMA_CDB_SG_DST1, scf[0]);
2280		ppc440spe_desc_set_byte_count(iter, ppc440spe_chan, len);
2281		iter->unmap_len = len;
2282		sw_desc->async_tx.flags = flags;
2283	}
2284
2285	spin_unlock_bh(&ppc440spe_chan->lock);
2286
2287	return sw_desc;
2288}
2289
2290static struct ppc440spe_adma_desc_slot *ppc440spe_dma01_prep_pq(
2291		struct ppc440spe_adma_chan *ppc440spe_chan,
2292		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2293		const unsigned char *scf, size_t len, unsigned long flags)
2294{
2295	int slot_cnt;
2296	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2297	unsigned long op = 0;
2298	unsigned char mult = 1;
2299
2300	pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2301		 __func__, dst_cnt, src_cnt, len);
2302	/*  select operations WXOR/RXOR depending on the
2303	 * source addresses of operators and the number
2304	 * of destinations (RXOR support only Q-parity calculations)
2305	 */
2306	set_bit(PPC440SPE_DESC_WXOR, &op);
2307	if (!test_and_set_bit(PPC440SPE_RXOR_RUN, &ppc440spe_rxor_state)) {
2308		/* no active RXOR;
2309		 * do RXOR if:
2310		 * - there are more than 1 source,
2311		 * - len is aligned on 512-byte boundary,
2312		 * - source addresses fit to one of 4 possible regions.
2313		 */
2314		if (src_cnt > 1 &&
2315		    !(len & MQ0_CF2H_RXOR_BS_MASK) &&
2316		    (src[0] + len) == src[1]) {
2317			/* may do RXOR R1 R2 */
2318			set_bit(PPC440SPE_DESC_RXOR, &op);
2319			if (src_cnt != 2) {
2320				/* may try to enhance region of RXOR */
2321				if ((src[1] + len) == src[2]) {
2322					/* do RXOR R1 R2 R3 */
2323					set_bit(PPC440SPE_DESC_RXOR123,
2324						&op);
2325				} else if ((src[1] + len * 2) == src[2]) {
2326					/* do RXOR R1 R2 R4 */
2327					set_bit(PPC440SPE_DESC_RXOR124, &op);
2328				} else if ((src[1] + len * 3) == src[2]) {
2329					/* do RXOR R1 R2 R5 */
2330					set_bit(PPC440SPE_DESC_RXOR125,
2331						&op);
2332				} else {
2333					/* do RXOR R1 R2 */
2334					set_bit(PPC440SPE_DESC_RXOR12,
2335						&op);
2336				}
2337			} else {
2338				/* do RXOR R1 R2 */
2339				set_bit(PPC440SPE_DESC_RXOR12, &op);
2340			}
2341		}
2342
2343		if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2344			/* can not do this operation with RXOR */
2345			clear_bit(PPC440SPE_RXOR_RUN,
2346				&ppc440spe_rxor_state);
2347		} else {
2348			/* can do; set block size right now */
2349			ppc440spe_desc_set_rxor_block_size(len);
2350		}
2351	}
2352
2353	/* Number of necessary slots depends on operation type selected */
2354	if (!test_bit(PPC440SPE_DESC_RXOR, &op)) {
2355		/*  This is a WXOR only chain. Need descriptors for each
2356		 * source to GF-XOR them with WXOR, and need descriptors
2357		 * for each destination to zero them with WXOR
2358		 */
2359		slot_cnt = src_cnt;
2360
2361		if (flags & DMA_PREP_ZERO_P) {
2362			slot_cnt++;
2363			set_bit(PPC440SPE_ZERO_P, &op);
2364		}
2365		if (flags & DMA_PREP_ZERO_Q) {
2366			slot_cnt++;
2367			set_bit(PPC440SPE_ZERO_Q, &op);
2368		}
2369	} else {
2370		/*  Need 1/2 descriptor for RXOR operation, and
2371		 * need (src_cnt - (2 or 3)) for WXOR of sources
2372		 * remained (if any)
2373		 */
2374		slot_cnt = dst_cnt;
2375
2376		if (flags & DMA_PREP_ZERO_P)
2377			set_bit(PPC440SPE_ZERO_P, &op);
2378		if (flags & DMA_PREP_ZERO_Q)
2379			set_bit(PPC440SPE_ZERO_Q, &op);
2380
2381		if (test_bit(PPC440SPE_DESC_RXOR12, &op))
2382			slot_cnt += src_cnt - 2;
2383		else
2384			slot_cnt += src_cnt - 3;
2385
2386		/*  Thus we have either RXOR only chain or
2387		 * mixed RXOR/WXOR
2388		 */
2389		if (slot_cnt == dst_cnt)
2390			/* RXOR only chain */
2391			clear_bit(PPC440SPE_DESC_WXOR, &op);
2392	}
2393
2394	spin_lock_bh(&ppc440spe_chan->lock);
2395	/* for both RXOR/WXOR each descriptor occupies one slot */
2396	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2397	if (sw_desc) {
2398		ppc440spe_desc_init_dma01pq(sw_desc, dst_cnt, src_cnt,
2399				flags, op);
2400
2401		/* setup dst/src/mult */
2402		pr_debug("%s: set dst descriptor 0, 1: 0x%016llx, 0x%016llx\n",
2403			 __func__, dst[0], dst[1]);
2404		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2405		while (src_cnt--) {
2406			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2407						  src_cnt);
2408
2409			/* NOTE: "Multi = 0 is equivalent to = 1" as it
2410			 * stated in 440SPSPe_RAID6_Addendum_UM_1_17.pdf
2411			 * doesn't work for RXOR with DMA0/1! Instead, multi=0
2412			 * leads to zeroing source data after RXOR.
2413			 * So, for P case set-up mult=1 explicitly.
2414			 */
2415			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2416				mult = scf[src_cnt];
2417			ppc440spe_adma_pq_set_src_mult(sw_desc,
2418				mult, src_cnt,  dst_cnt - 1);
2419		}
2420
2421		/* Setup byte count foreach slot just allocated */
2422		sw_desc->async_tx.flags = flags;
2423		list_for_each_entry(iter, &sw_desc->group_list,
2424				chain_node) {
2425			ppc440spe_desc_set_byte_count(iter,
2426				ppc440spe_chan, len);
2427			iter->unmap_len = len;
2428		}
2429	}
2430	spin_unlock_bh(&ppc440spe_chan->lock);
2431
2432	return sw_desc;
2433}
2434
2435static struct ppc440spe_adma_desc_slot *ppc440spe_dma2_prep_pq(
2436		struct ppc440spe_adma_chan *ppc440spe_chan,
2437		dma_addr_t *dst, int dst_cnt, dma_addr_t *src, int src_cnt,
2438		const unsigned char *scf, size_t len, unsigned long flags)
2439{
2440	int slot_cnt, descs_per_op;
2441	struct ppc440spe_adma_desc_slot *sw_desc = NULL, *iter;
2442	unsigned long op = 0;
2443	unsigned char mult = 1;
2444
2445	BUG_ON(!dst_cnt);
2446	/*pr_debug("%s: dst_cnt %d, src_cnt %d, len %d\n",
2447		 __func__, dst_cnt, src_cnt, len);*/
2448
2449	spin_lock_bh(&ppc440spe_chan->lock);
2450	descs_per_op = ppc440spe_dma2_pq_slot_count(src, src_cnt, len);
2451	if (descs_per_op < 0) {
2452		spin_unlock_bh(&ppc440spe_chan->lock);
2453		return NULL;
2454	}
2455
2456	/* depending on number of sources we have 1 or 2 RXOR chains */
2457	slot_cnt = descs_per_op * dst_cnt;
2458
2459	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt, 1);
2460	if (sw_desc) {
2461		op = slot_cnt;
2462		sw_desc->async_tx.flags = flags;
2463		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2464			ppc440spe_desc_init_dma2pq(iter, dst_cnt, src_cnt,
2465				--op ? 0 : flags);
2466			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2467				len);
2468			iter->unmap_len = len;
2469
2470			ppc440spe_init_rxor_cursor(&(iter->rxor_cursor));
2471			iter->rxor_cursor.len = len;
2472			iter->descs_per_op = descs_per_op;
2473		}
2474		op = 0;
2475		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2476			op++;
2477			if (op % descs_per_op == 0)
2478				ppc440spe_adma_init_dma2rxor_slot(iter, src,
2479								  src_cnt);
2480			if (likely(!list_is_last(&iter->chain_node,
2481						 &sw_desc->group_list))) {
2482				/* set 'next' pointer */
2483				iter->hw_next =
2484					list_entry(iter->chain_node.next,
2485						struct ppc440spe_adma_desc_slot,
2486						chain_node);
2487				ppc440spe_xor_set_link(iter, iter->hw_next);
2488			} else {
2489				/* this is the last descriptor. */
2490				iter->hw_next = NULL;
2491			}
2492		}
2493
2494		/* fixup head descriptor */
2495		sw_desc->dst_cnt = dst_cnt;
2496		if (flags & DMA_PREP_ZERO_P)
2497			set_bit(PPC440SPE_ZERO_P, &sw_desc->flags);
2498		if (flags & DMA_PREP_ZERO_Q)
2499			set_bit(PPC440SPE_ZERO_Q, &sw_desc->flags);
2500
2501		/* setup dst/src/mult */
2502		ppc440spe_adma_pq_set_dest(sw_desc, dst, flags);
2503
2504		while (src_cnt--) {
2505			/* handle descriptors (if dst_cnt == 2) inside
2506			 * the ppc440spe_adma_pq_set_srcxxx() functions
2507			 */
2508			ppc440spe_adma_pq_set_src(sw_desc, src[src_cnt],
2509						  src_cnt);
2510			if (!(flags & DMA_PREP_PQ_DISABLE_Q))
2511				mult = scf[src_cnt];
2512			ppc440spe_adma_pq_set_src_mult(sw_desc,
2513					mult, src_cnt, dst_cnt - 1);
2514		}
2515	}
2516	spin_unlock_bh(&ppc440spe_chan->lock);
2517	ppc440spe_desc_set_rxor_block_size(len);
2518	return sw_desc;
2519}
2520
2521/**
2522 * ppc440spe_adma_prep_dma_pq - prepare CDB (group) for a GF-XOR operation
2523 */
2524static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pq(
2525		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
2526		unsigned int src_cnt, const unsigned char *scf,
2527		size_t len, unsigned long flags)
2528{
2529	struct ppc440spe_adma_chan *ppc440spe_chan;
2530	struct ppc440spe_adma_desc_slot *sw_desc = NULL;
2531	int dst_cnt = 0;
2532
2533	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2534
2535	ADMA_LL_DBG(prep_dma_pq_dbg(ppc440spe_chan->device->id,
2536				    dst, src, src_cnt));
2537	BUG_ON(!len);
2538	BUG_ON(len > PPC440SPE_ADMA_XOR_MAX_BYTE_COUNT);
2539	BUG_ON(!src_cnt);
2540
2541	if (src_cnt == 1 && dst[1] == src[0]) {
2542		dma_addr_t dest[2];
2543
2544		/* dst[1] is real destination (Q) */
2545		dest[0] = dst[1];
2546		/* this is the page to multicast source data to */
2547		dest[1] = ppc440spe_chan->qdest;
2548		sw_desc = ppc440spe_dma01_prep_mult(ppc440spe_chan,
2549				dest, 2, src, src_cnt, scf, len, flags);
2550		return sw_desc ? &sw_desc->async_tx : NULL;
2551	}
2552
2553	if (src_cnt == 2 && dst[1] == src[1]) {
2554		sw_desc = ppc440spe_dma01_prep_sum_product(ppc440spe_chan,
2555					&dst[1], src, 2, scf, len, flags);
2556		return sw_desc ? &sw_desc->async_tx : NULL;
2557	}
2558
2559	if (!(flags & DMA_PREP_PQ_DISABLE_P)) {
2560		BUG_ON(!dst[0]);
2561		dst_cnt++;
2562		flags |= DMA_PREP_ZERO_P;
2563	}
2564
2565	if (!(flags & DMA_PREP_PQ_DISABLE_Q)) {
2566		BUG_ON(!dst[1]);
2567		dst_cnt++;
2568		flags |= DMA_PREP_ZERO_Q;
2569	}
2570
2571	BUG_ON(!dst_cnt);
2572
2573	dev_dbg(ppc440spe_chan->device->common.dev,
2574		"ppc440spe adma%d: %s src_cnt: %d len: %u int_en: %d\n",
2575		ppc440spe_chan->device->id, __func__, src_cnt, len,
2576		flags & DMA_PREP_INTERRUPT ? 1 : 0);
2577
2578	switch (ppc440spe_chan->device->id) {
2579	case PPC440SPE_DMA0_ID:
2580	case PPC440SPE_DMA1_ID:
2581		sw_desc = ppc440spe_dma01_prep_pq(ppc440spe_chan,
2582				dst, dst_cnt, src, src_cnt, scf,
2583				len, flags);
2584		break;
2585
2586	case PPC440SPE_XOR_ID:
2587		sw_desc = ppc440spe_dma2_prep_pq(ppc440spe_chan,
2588				dst, dst_cnt, src, src_cnt, scf,
2589				len, flags);
2590		break;
2591	}
2592
2593	return sw_desc ? &sw_desc->async_tx : NULL;
2594}
2595
2596/**
2597 * ppc440spe_adma_prep_dma_pqzero_sum - prepare CDB group for
2598 * a PQ_ZERO_SUM operation
2599 */
2600static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_pqzero_sum(
2601		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
2602		unsigned int src_cnt, const unsigned char *scf, size_t len,
2603		enum sum_check_flags *pqres, unsigned long flags)
2604{
2605	struct ppc440spe_adma_chan *ppc440spe_chan;
2606	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
2607	dma_addr_t pdest, qdest;
2608	int slot_cnt, slots_per_op, idst, dst_cnt;
2609
2610	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
2611
2612	if (flags & DMA_PREP_PQ_DISABLE_P)
2613		pdest = 0;
2614	else
2615		pdest = pq[0];
2616
2617	if (flags & DMA_PREP_PQ_DISABLE_Q)
2618		qdest = 0;
2619	else
2620		qdest = pq[1];
2621
2622	ADMA_LL_DBG(prep_dma_pqzero_sum_dbg(ppc440spe_chan->device->id,
2623					    src, src_cnt, scf));
2624
2625	/* Always use WXOR for P/Q calculations (two destinations).
2626	 * Need 1 or 2 extra slots to verify results are zero.
2627	 */
2628	idst = dst_cnt = (pdest && qdest) ? 2 : 1;
2629
2630	/* One additional slot per destination to clone P/Q
2631	 * before calculation (we have to preserve destinations).
2632	 */
2633	slot_cnt = src_cnt + dst_cnt * 2;
2634	slots_per_op = 1;
2635
2636	spin_lock_bh(&ppc440spe_chan->lock);
2637	sw_desc = ppc440spe_adma_alloc_slots(ppc440spe_chan, slot_cnt,
2638					     slots_per_op);
2639	if (sw_desc) {
2640		ppc440spe_desc_init_dma01pqzero_sum(sw_desc, dst_cnt, src_cnt);
2641
2642		/* Setup byte count for each slot just allocated */
2643		sw_desc->async_tx.flags = flags;
2644		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
2645			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2646						      len);
2647			iter->unmap_len = len;
2648		}
2649
2650		if (pdest) {
2651			struct dma_cdb *hw_desc;
2652			struct ppc440spe_adma_chan *chan;
2653
2654			iter = sw_desc->group_head;
2655			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2656			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2657			iter->hw_next = list_entry(iter->chain_node.next,
2658						struct ppc440spe_adma_desc_slot,
2659						chain_node);
2660			hw_desc = iter->hw_desc;
2661			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2662			iter->src_cnt = 0;
2663			iter->dst_cnt = 0;
2664			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2665						     ppc440spe_chan->pdest, 0);
2666			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, pdest);
2667			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2668						      len);
2669			iter->unmap_len = 0;
2670			/* override pdest to preserve original P */
2671			pdest = ppc440spe_chan->pdest;
2672		}
2673		if (qdest) {
2674			struct dma_cdb *hw_desc;
2675			struct ppc440spe_adma_chan *chan;
2676
2677			iter = list_first_entry(&sw_desc->group_list,
2678						struct ppc440spe_adma_desc_slot,
2679						chain_node);
2680			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2681
2682			if (pdest) {
2683				iter = list_entry(iter->chain_node.next,
2684						struct ppc440spe_adma_desc_slot,
2685						chain_node);
2686			}
2687
2688			memset(iter->hw_desc, 0, sizeof(struct dma_cdb));
2689			iter->hw_next = list_entry(iter->chain_node.next,
2690						struct ppc440spe_adma_desc_slot,
2691						chain_node);
2692			hw_desc = iter->hw_desc;
2693			hw_desc->opc = DMA_CDB_OPC_MV_SG1_SG2;
2694			iter->src_cnt = 0;
2695			iter->dst_cnt = 0;
2696			ppc440spe_desc_set_dest_addr(iter, chan, 0,
2697						     ppc440spe_chan->qdest, 0);
2698			ppc440spe_desc_set_src_addr(iter, chan, 0, 0, qdest);
2699			ppc440spe_desc_set_byte_count(iter, ppc440spe_chan,
2700						      len);
2701			iter->unmap_len = 0;
2702			/* override qdest to preserve original Q */
2703			qdest = ppc440spe_chan->qdest;
2704		}
2705
2706		/* Setup destinations for P/Q ops */
2707		ppc440spe_adma_pqzero_sum_set_dest(sw_desc, pdest, qdest);
2708
2709		/* Setup zero QWORDs into DCHECK CDBs */
2710		idst = dst_cnt;
2711		list_for_each_entry_reverse(iter, &sw_desc->group_list,
2712					    chain_node) {
2713			/*
2714			 * The last CDB corresponds to Q-parity check,
2715			 * the one before last CDB corresponds
2716			 * P-parity check
2717			 */
2718			if (idst == DMA_DEST_MAX_NUM) {
2719				if (idst == dst_cnt) {
2720					set_bit(PPC440SPE_DESC_QCHECK,
2721						&iter->flags);
2722				} else {
2723					set_bit(PPC440SPE_DESC_PCHECK,
2724						&iter->flags);
2725				}
2726			} else {
2727				if (qdest) {
2728					set_bit(PPC440SPE_DESC_QCHECK,
2729						&iter->flags);
2730				} else {
2731					set_bit(PPC440SPE_DESC_PCHECK,
2732						&iter->flags);
2733				}
2734			}
2735			iter->xor_check_result = pqres;
2736
2737			/*
2738			 * set it to zero, if check fail then result will
2739			 * be updated
2740			 */
2741			*iter->xor_check_result = 0;
2742			ppc440spe_desc_set_dcheck(iter, ppc440spe_chan,
2743				ppc440spe_qword);
2744
2745			if (!(--dst_cnt))
2746				break;
2747		}
2748
2749		/* Setup sources and mults for P/Q ops */
2750		list_for_each_entry_continue_reverse(iter, &sw_desc->group_list,
2751						     chain_node) {
2752			struct ppc440spe_adma_chan *chan;
2753			u32 mult_dst;
2754
2755			chan = to_ppc440spe_adma_chan(iter->async_tx.chan);
2756			ppc440spe_desc_set_src_addr(iter, chan, 0,
2757						    DMA_CUED_XOR_HB,
2758						    src[src_cnt - 1]);
2759			if (qdest) {
2760				mult_dst = (dst_cnt - 1) ? DMA_CDB_SG_DST2 :
2761							   DMA_CDB_SG_DST1;
2762				ppc440spe_desc_set_src_mult(iter, chan,
2763							    DMA_CUED_MULT1_OFF,
2764							    mult_dst,
2765							    scf[src_cnt - 1]);
2766			}
2767			if (!(--src_cnt))
2768				break;
2769		}
2770	}
2771	spin_unlock_bh(&ppc440spe_chan->lock);
2772	return sw_desc ? &sw_desc->async_tx : NULL;
2773}
2774
2775/**
2776 * ppc440spe_adma_prep_dma_xor_zero_sum - prepare CDB group for
2777 * XOR ZERO_SUM operation
2778 */
2779static struct dma_async_tx_descriptor *ppc440spe_adma_prep_dma_xor_zero_sum(
2780		struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
2781		size_t len, enum sum_check_flags *result, unsigned long flags)
2782{
2783	struct dma_async_tx_descriptor *tx;
2784	dma_addr_t pq[2];
2785
2786	/* validate P, disable Q */
2787	pq[0] = src[0];
2788	pq[1] = 0;
2789	flags |= DMA_PREP_PQ_DISABLE_Q;
2790
2791	tx = ppc440spe_adma_prep_dma_pqzero_sum(chan, pq, &src[1],
2792						src_cnt - 1, 0, len,
2793						result, flags);
2794	return tx;
2795}
2796
2797/**
2798 * ppc440spe_adma_set_dest - set destination address into descriptor
2799 */
2800static void ppc440spe_adma_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2801		dma_addr_t addr, int index)
2802{
2803	struct ppc440spe_adma_chan *chan;
2804
2805	BUG_ON(index >= sw_desc->dst_cnt);
2806
2807	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2808
2809	switch (chan->device->id) {
2810	case PPC440SPE_DMA0_ID:
2811	case PPC440SPE_DMA1_ID:
2812		/* to do: support transfers lengths >
2813		 * PPC440SPE_ADMA_DMA/XOR_MAX_BYTE_COUNT
2814		 */
2815		ppc440spe_desc_set_dest_addr(sw_desc->group_head,
2816			chan, 0, addr, index);
2817		break;
2818	case PPC440SPE_XOR_ID:
2819		sw_desc = ppc440spe_get_group_entry(sw_desc, index);
2820		ppc440spe_desc_set_dest_addr(sw_desc,
2821			chan, 0, addr, index);
2822		break;
2823	}
2824}
2825
2826static void ppc440spe_adma_pq_zero_op(struct ppc440spe_adma_desc_slot *iter,
2827		struct ppc440spe_adma_chan *chan, dma_addr_t addr)
2828{
2829	/*  To clear destinations update the descriptor
2830	 * (P or Q depending on index) as follows:
2831	 * addr is destination (0 corresponds to SG2):
2832	 */
2833	ppc440spe_desc_set_dest_addr(iter, chan, DMA_CUED_XOR_BASE, addr, 0);
2834
2835	/* ... and the addr is source: */
2836	ppc440spe_desc_set_src_addr(iter, chan, 0, DMA_CUED_XOR_HB, addr);
2837
2838	/* addr is always SG2 then the mult is always DST1 */
2839	ppc440spe_desc_set_src_mult(iter, chan, DMA_CUED_MULT1_OFF,
2840				    DMA_CDB_SG_DST1, 1);
2841}
2842
2843/**
2844 * ppc440spe_adma_pq_set_dest - set destination address into descriptor
2845 * for the PQXOR operation
2846 */
2847static void ppc440spe_adma_pq_set_dest(struct ppc440spe_adma_desc_slot *sw_desc,
2848		dma_addr_t *addrs, unsigned long flags)
2849{
2850	struct ppc440spe_adma_desc_slot *iter;
2851	struct ppc440spe_adma_chan *chan;
2852	dma_addr_t paddr, qaddr;
2853	dma_addr_t addr = 0, ppath, qpath;
2854	int index = 0, i;
2855
2856	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
2857
2858	if (flags & DMA_PREP_PQ_DISABLE_P)
2859		paddr = 0;
2860	else
2861		paddr = addrs[0];
2862
2863	if (flags & DMA_PREP_PQ_DISABLE_Q)
2864		qaddr = 0;
2865	else
2866		qaddr = addrs[1];
2867
2868	if (!paddr || !qaddr)
2869		addr = paddr ? paddr : qaddr;
2870
2871	switch (chan->device->id) {
2872	case PPC440SPE_DMA0_ID:
2873	case PPC440SPE_DMA1_ID:
2874		/* walk through the WXOR source list and set P/Q-destinations
2875		 * for each slot:
2876		 */
2877		if (!test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
2878			/* This is WXOR-only chain; may have 1/2 zero descs */
2879			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
2880				index++;
2881			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
2882				index++;
2883
2884			iter = ppc440spe_get_group_entry(sw_desc, index);
2885			if (addr) {
2886				/* one destination */
2887				list_for_each_entry_from(iter,
2888					&sw_desc->group_list, chain_node)
2889					ppc440spe_desc_set_dest_addr(iter, chan,
2890						DMA_CUED_XOR_BASE, addr, 0);
2891			} else {
2892				/* two destinations */
2893				list_for_each_entry_from(iter,
2894					&sw_desc->group_list, chain_node) {
2895					ppc440spe_desc_set_dest_addr(iter, chan,
2896						DMA_CUED_XOR_BASE, paddr, 0);
2897					ppc440spe_desc_set_dest_addr(iter, chan,
2898						DMA_CUED_XOR_BASE, qaddr, 1);
2899				}
2900			}
2901
2902			if (index) {
2903				/*  To clear destinations update the descriptor
2904				 * (1st,2nd, or both depending on flags)
2905				 */
2906				index = 0;
2907				if (test_bit(PPC440SPE_ZERO_P,
2908						&sw_desc->flags)) {
2909					iter = ppc440spe_get_group_entry(
2910							sw_desc, index++);
2911					ppc440spe_adma_pq_zero_op(iter, chan,
2912							paddr);
2913				}
2914
2915				if (test_bit(PPC440SPE_ZERO_Q,
2916						&sw_desc->flags)) {
2917					iter = ppc440spe_get_group_entry(
2918							sw_desc, index++);
2919					ppc440spe_adma_pq_zero_op(iter, chan,
2920							qaddr);
2921				}
2922
2923				return;
2924			}
2925		} else {
2926			/* This is RXOR-only or RXOR/WXOR mixed chain */
2927
2928			/* If we want to include destination into calculations,
2929			 * then make dest addresses cued with mult=1 (XOR).
2930			 */
2931			ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2932					DMA_CUED_XOR_HB :
2933					DMA_CUED_XOR_BASE |
2934						(1 << DMA_CUED_MULT1_OFF);
2935			qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
2936					DMA_CUED_XOR_HB :
2937					DMA_CUED_XOR_BASE |
2938						(1 << DMA_CUED_MULT1_OFF);
2939
2940			/* Setup destination(s) in RXOR slot(s) */
2941			iter = ppc440spe_get_group_entry(sw_desc, index++);
2942			ppc440spe_desc_set_dest_addr(iter, chan,
2943						paddr ? ppath : qpath,
2944						paddr ? paddr : qaddr, 0);
2945			if (!addr) {
2946				/* two destinations */
2947				iter = ppc440spe_get_group_entry(sw_desc,
2948								 index++);
2949				ppc440spe_desc_set_dest_addr(iter, chan,
2950						qpath, qaddr, 0);
2951			}
2952
2953			if (test_bit(PPC440SPE_DESC_WXOR, &sw_desc->flags)) {
2954				/* Setup destination(s) in remaining WXOR
2955				 * slots
2956				 */
2957				iter = ppc440spe_get_group_entry(sw_desc,
2958								 index);
2959				if (addr) {
2960					/* one destination */
2961					list_for_each_entry_from(iter,
2962					    &sw_desc->group_list,
2963					    chain_node)
2964						ppc440spe_desc_set_dest_addr(
2965							iter, chan,
2966							DMA_CUED_XOR_BASE,
2967							addr, 0);
2968
2969				} else {
2970					/* two destinations */
2971					list_for_each_entry_from(iter,
2972					    &sw_desc->group_list,
2973					    chain_node) {
2974						ppc440spe_desc_set_dest_addr(
2975							iter, chan,
2976							DMA_CUED_XOR_BASE,
2977							paddr, 0);
2978						ppc440spe_desc_set_dest_addr(
2979							iter, chan,
2980							DMA_CUED_XOR_BASE,
2981							qaddr, 1);
2982					}
2983				}
2984			}
2985
2986		}
2987		break;
2988
2989	case PPC440SPE_XOR_ID:
2990		/* DMA2 descriptors have only 1 destination, so there are
2991		 * two chains - one for each dest.
2992		 * If we want to include destination into calculations,
2993		 * then make dest addresses cued with mult=1 (XOR).
2994		 */
2995		ppath = test_bit(PPC440SPE_ZERO_P, &sw_desc->flags) ?
2996				DMA_CUED_XOR_HB :
2997				DMA_CUED_XOR_BASE |
2998					(1 << DMA_CUED_MULT1_OFF);
2999
3000		qpath = test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags) ?
3001				DMA_CUED_XOR_HB :
3002				DMA_CUED_XOR_BASE |
3003					(1 << DMA_CUED_MULT1_OFF);
3004
3005		iter = ppc440spe_get_group_entry(sw_desc, 0);
3006		for (i = 0; i < sw_desc->descs_per_op; i++) {
3007			ppc440spe_desc_set_dest_addr(iter, chan,
3008				paddr ? ppath : qpath,
3009				paddr ? paddr : qaddr, 0);
3010			iter = list_entry(iter->chain_node.next,
3011					  struct ppc440spe_adma_desc_slot,
3012					  chain_node);
3013		}
3014
3015		if (!addr) {
3016			/* Two destinations; setup Q here */
3017			iter = ppc440spe_get_group_entry(sw_desc,
3018				sw_desc->descs_per_op);
3019			for (i = 0; i < sw_desc->descs_per_op; i++) {
3020				ppc440spe_desc_set_dest_addr(iter,
3021					chan, qpath, qaddr, 0);
3022				iter = list_entry(iter->chain_node.next,
3023						struct ppc440spe_adma_desc_slot,
3024						chain_node);
3025			}
3026		}
3027
3028		break;
3029	}
3030}
3031
3032/**
3033 * ppc440spe_adma_pq_zero_sum_set_dest - set destination address into descriptor
3034 * for the PQ_ZERO_SUM operation
3035 */
3036static void ppc440spe_adma_pqzero_sum_set_dest(
3037		struct ppc440spe_adma_desc_slot *sw_desc,
3038		dma_addr_t paddr, dma_addr_t qaddr)
3039{
3040	struct ppc440spe_adma_desc_slot *iter, *end;
3041	struct ppc440spe_adma_chan *chan;
3042	dma_addr_t addr = 0;
3043	int idx;
3044
3045	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3046
3047	/* walk through the WXOR source list and set P/Q-destinations
3048	 * for each slot
3049	 */
3050	idx = (paddr && qaddr) ? 2 : 1;
3051	/* set end */
3052	list_for_each_entry_reverse(end, &sw_desc->group_list,
3053				    chain_node) {
3054		if (!(--idx))
3055			break;
3056	}
3057	/* set start */
3058	idx = (paddr && qaddr) ? 2 : 1;
3059	iter = ppc440spe_get_group_entry(sw_desc, idx);
3060
3061	if (paddr && qaddr) {
3062		/* two destinations */
3063		list_for_each_entry_from(iter, &sw_desc->group_list,
3064					 chain_node) {
3065			if (unlikely(iter == end))
3066				break;
3067			ppc440spe_desc_set_dest_addr(iter, chan,
3068						DMA_CUED_XOR_BASE, paddr, 0);
3069			ppc440spe_desc_set_dest_addr(iter, chan,
3070						DMA_CUED_XOR_BASE, qaddr, 1);
3071		}
3072	} else {
3073		/* one destination */
3074		addr = paddr ? paddr : qaddr;
3075		list_for_each_entry_from(iter, &sw_desc->group_list,
3076					 chain_node) {
3077			if (unlikely(iter == end))
3078				break;
3079			ppc440spe_desc_set_dest_addr(iter, chan,
3080						DMA_CUED_XOR_BASE, addr, 0);
3081		}
3082	}
3083
3084	/*  The remaining descriptors are DATACHECK. These have no need in
3085	 * destination. Actually, these destinations are used there
3086	 * as sources for check operation. So, set addr as source.
3087	 */
3088	ppc440spe_desc_set_src_addr(end, chan, 0, 0, addr ? addr : paddr);
3089
3090	if (!addr) {
3091		end = list_entry(end->chain_node.next,
3092				 struct ppc440spe_adma_desc_slot, chain_node);
3093		ppc440spe_desc_set_src_addr(end, chan, 0, 0, qaddr);
3094	}
3095}
3096
3097/**
3098 * ppc440spe_desc_set_xor_src_cnt - set source count into descriptor
3099 */
3100static inline void ppc440spe_desc_set_xor_src_cnt(
3101			struct ppc440spe_adma_desc_slot *desc,
3102			int src_cnt)
3103{
3104	struct xor_cb *hw_desc = desc->hw_desc;
3105
3106	hw_desc->cbc &= ~XOR_CDCR_OAC_MSK;
3107	hw_desc->cbc |= src_cnt;
3108}
3109
3110/**
3111 * ppc440spe_adma_pq_set_src - set source address into descriptor
3112 */
3113static void ppc440spe_adma_pq_set_src(struct ppc440spe_adma_desc_slot *sw_desc,
3114		dma_addr_t addr, int index)
3115{
3116	struct ppc440spe_adma_chan *chan;
3117	dma_addr_t haddr = 0;
3118	struct ppc440spe_adma_desc_slot *iter = NULL;
3119
3120	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3121
3122	switch (chan->device->id) {
3123	case PPC440SPE_DMA0_ID:
3124	case PPC440SPE_DMA1_ID:
3125		/* DMA0,1 may do: WXOR, RXOR, RXOR+WXORs chain
3126		 */
3127		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3128			/* RXOR-only or RXOR/WXOR operation */
3129			int iskip = test_bit(PPC440SPE_DESC_RXOR12,
3130				&sw_desc->flags) ?  2 : 3;
3131
3132			if (index == 0) {
3133				/* 1st slot (RXOR) */
3134				/* setup sources region (R1-2-3, R1-2-4,
3135				 * or R1-2-5)
3136				 */
3137				if (test_bit(PPC440SPE_DESC_RXOR12,
3138						&sw_desc->flags))
3139					haddr = DMA_RXOR12 <<
3140						DMA_CUED_REGION_OFF;
3141				else if (test_bit(PPC440SPE_DESC_RXOR123,
3142				    &sw_desc->flags))
3143					haddr = DMA_RXOR123 <<
3144						DMA_CUED_REGION_OFF;
3145				else if (test_bit(PPC440SPE_DESC_RXOR124,
3146				    &sw_desc->flags))
3147					haddr = DMA_RXOR124 <<
3148						DMA_CUED_REGION_OFF;
3149				else if (test_bit(PPC440SPE_DESC_RXOR125,
3150				    &sw_desc->flags))
3151					haddr = DMA_RXOR125 <<
3152						DMA_CUED_REGION_OFF;
3153				else
3154					BUG();
3155				haddr |= DMA_CUED_XOR_BASE;
3156				iter = ppc440spe_get_group_entry(sw_desc, 0);
3157			} else if (index < iskip) {
3158				/* 1st slot (RXOR)
3159				 * shall actually set source address only once
3160				 * instead of first <iskip>
3161				 */
3162				iter = NULL;
3163			} else {
3164				/* 2nd/3d and next slots (WXOR);
3165				 * skip first slot with RXOR
3166				 */
3167				haddr = DMA_CUED_XOR_HB;
3168				iter = ppc440spe_get_group_entry(sw_desc,
3169				    index - iskip + sw_desc->dst_cnt);
3170			}
3171		} else {
3172			int znum = 0;
3173
3174			/* WXOR-only operation; skip first slots with
3175			 * zeroing destinations
3176			 */
3177			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3178				znum++;
3179			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3180				znum++;
3181
3182			haddr = DMA_CUED_XOR_HB;
3183			iter = ppc440spe_get_group_entry(sw_desc,
3184					index + znum);
3185		}
3186
3187		if (likely(iter)) {
3188			ppc440spe_desc_set_src_addr(iter, chan, 0, haddr, addr);
3189
3190			if (!index &&
3191			    test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags) &&
3192			    sw_desc->dst_cnt == 2) {
3193				/* if we have two destinations for RXOR, then
3194				 * setup source in the second descr too
3195				 */
3196				iter = ppc440spe_get_group_entry(sw_desc, 1);
3197				ppc440spe_desc_set_src_addr(iter, chan, 0,
3198					haddr, addr);
3199			}
3200		}
3201		break;
3202
3203	case PPC440SPE_XOR_ID:
3204		/* DMA2 may do Biskup */
3205		iter = sw_desc->group_head;
3206		if (iter->dst_cnt == 2) {
3207			/* both P & Q calculations required; set P src here */
3208			ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3209
3210			/* this is for Q */
3211			iter = ppc440spe_get_group_entry(sw_desc,
3212				sw_desc->descs_per_op);
3213		}
3214		ppc440spe_adma_dma2rxor_set_src(iter, index, addr);
3215		break;
3216	}
3217}
3218
3219/**
3220 * ppc440spe_adma_memcpy_xor_set_src - set source address into descriptor
3221 */
3222static void ppc440spe_adma_memcpy_xor_set_src(
3223		struct ppc440spe_adma_desc_slot *sw_desc,
3224		dma_addr_t addr, int index)
3225{
3226	struct ppc440spe_adma_chan *chan;
3227
3228	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3229	sw_desc = sw_desc->group_head;
3230
3231	if (likely(sw_desc))
3232		ppc440spe_desc_set_src_addr(sw_desc, chan, index, 0, addr);
3233}
3234
3235/**
3236 * ppc440spe_adma_dma2rxor_inc_addr  -
3237 */
3238static void ppc440spe_adma_dma2rxor_inc_addr(
3239		struct ppc440spe_adma_desc_slot *desc,
3240		struct ppc440spe_rxor *cursor, int index, int src_cnt)
3241{
3242	cursor->addr_count++;
3243	if (index == src_cnt - 1) {
3244		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3245	} else if (cursor->addr_count == XOR_MAX_OPS) {
3246		ppc440spe_desc_set_xor_src_cnt(desc, cursor->addr_count);
3247		cursor->addr_count = 0;
3248		cursor->desc_count++;
3249	}
3250}
3251
3252/**
3253 * ppc440spe_adma_dma2rxor_prep_src - setup RXOR types in DMA2 CDB
3254 */
3255static int ppc440spe_adma_dma2rxor_prep_src(
3256		struct ppc440spe_adma_desc_slot *hdesc,
3257		struct ppc440spe_rxor *cursor, int index,
3258		int src_cnt, u32 addr)
3259{
3260	int rval = 0;
3261	u32 sign;
3262	struct ppc440spe_adma_desc_slot *desc = hdesc;
3263	int i;
3264
3265	for (i = 0; i < cursor->desc_count; i++) {
3266		desc = list_entry(hdesc->chain_node.next,
3267				  struct ppc440spe_adma_desc_slot,
3268				  chain_node);
3269	}
3270
3271	switch (cursor->state) {
3272	case 0:
3273		if (addr == cursor->addrl + cursor->len) {
3274			/* direct RXOR */
3275			cursor->state = 1;
3276			cursor->xor_count++;
3277			if (index == src_cnt-1) {
3278				ppc440spe_rxor_set_region(desc,
3279					cursor->addr_count,
3280					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3281				ppc440spe_adma_dma2rxor_inc_addr(
3282					desc, cursor, index, src_cnt);
3283			}
3284		} else if (cursor->addrl == addr + cursor->len) {
3285			/* reverse RXOR */
3286			cursor->state = 1;
3287			cursor->xor_count++;
3288			set_bit(cursor->addr_count, &desc->reverse_flags[0]);
3289			if (index == src_cnt-1) {
3290				ppc440spe_rxor_set_region(desc,
3291					cursor->addr_count,
3292					DMA_RXOR12 << DMA_CUED_REGION_OFF);
3293				ppc440spe_adma_dma2rxor_inc_addr(
3294					desc, cursor, index, src_cnt);
3295			}
3296		} else {
3297			printk(KERN_ERR "Cannot build "
3298				"DMA2 RXOR command block.\n");
3299			BUG();
3300		}
3301		break;
3302	case 1:
3303		sign = test_bit(cursor->addr_count,
3304				desc->reverse_flags)
3305			? -1 : 1;
3306		if (index == src_cnt-2 || (sign == -1
3307			&& addr != cursor->addrl - 2*cursor->len)) {
3308			cursor->state = 0;
3309			cursor->xor_count = 1;
3310			cursor->addrl = addr;
3311			ppc440spe_rxor_set_region(desc,
3312				cursor->addr_count,
3313				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3314			ppc440spe_adma_dma2rxor_inc_addr(
3315				desc, cursor, index, src_cnt);
3316		} else if (addr == cursor->addrl + 2*sign*cursor->len) {
3317			cursor->state = 2;
3318			cursor->xor_count = 0;
3319			ppc440spe_rxor_set_region(desc,
3320				cursor->addr_count,
3321				DMA_RXOR123 << DMA_CUED_REGION_OFF);
3322			if (index == src_cnt-1) {
3323				ppc440spe_adma_dma2rxor_inc_addr(
3324					desc, cursor, index, src_cnt);
3325			}
3326		} else if (addr == cursor->addrl + 3*cursor->len) {
3327			cursor->state = 2;
3328			cursor->xor_count = 0;
3329			ppc440spe_rxor_set_region(desc,
3330				cursor->addr_count,
3331				DMA_RXOR124 << DMA_CUED_REGION_OFF);
3332			if (index == src_cnt-1) {
3333				ppc440spe_adma_dma2rxor_inc_addr(
3334					desc, cursor, index, src_cnt);
3335			}
3336		} else if (addr == cursor->addrl + 4*cursor->len) {
3337			cursor->state = 2;
3338			cursor->xor_count = 0;
3339			ppc440spe_rxor_set_region(desc,
3340				cursor->addr_count,
3341				DMA_RXOR125 << DMA_CUED_REGION_OFF);
3342			if (index == src_cnt-1) {
3343				ppc440spe_adma_dma2rxor_inc_addr(
3344					desc, cursor, index, src_cnt);
3345			}
3346		} else {
3347			cursor->state = 0;
3348			cursor->xor_count = 1;
3349			cursor->addrl = addr;
3350			ppc440spe_rxor_set_region(desc,
3351				cursor->addr_count,
3352				DMA_RXOR12 << DMA_CUED_REGION_OFF);
3353			ppc440spe_adma_dma2rxor_inc_addr(
3354				desc, cursor, index, src_cnt);
3355		}
3356		break;
3357	case 2:
3358		cursor->state = 0;
3359		cursor->addrl = addr;
3360		cursor->xor_count++;
3361		if (index) {
3362			ppc440spe_adma_dma2rxor_inc_addr(
3363				desc, cursor, index, src_cnt);
3364		}
3365		break;
3366	}
3367
3368	return rval;
3369}
3370
3371/**
3372 * ppc440spe_adma_dma2rxor_set_src - set RXOR source address; it's assumed that
3373 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3374 */
3375static void ppc440spe_adma_dma2rxor_set_src(
3376		struct ppc440spe_adma_desc_slot *desc,
3377		int index, dma_addr_t addr)
3378{
3379	struct xor_cb *xcb = desc->hw_desc;
3380	int k = 0, op = 0, lop = 0;
3381
3382	/* get the RXOR operand which corresponds to index addr */
3383	while (op <= index) {
3384		lop = op;
3385		if (k == XOR_MAX_OPS) {
3386			k = 0;
3387			desc = list_entry(desc->chain_node.next,
3388				struct ppc440spe_adma_desc_slot, chain_node);
3389			xcb = desc->hw_desc;
3390
3391		}
3392		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3393		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3394			op += 2;
3395		else
3396			op += 3;
3397	}
3398
3399	BUG_ON(k < 1);
3400
3401	if (test_bit(k-1, desc->reverse_flags)) {
3402		/* reverse operand order; put last op in RXOR group */
3403		if (index == op - 1)
3404			ppc440spe_rxor_set_src(desc, k - 1, addr);
3405	} else {
3406		/* direct operand order; put first op in RXOR group */
3407		if (index == lop)
3408			ppc440spe_rxor_set_src(desc, k - 1, addr);
3409	}
3410}
3411
3412/**
3413 * ppc440spe_adma_dma2rxor_set_mult - set RXOR multipliers; it's assumed that
3414 *	ppc440spe_adma_dma2rxor_prep_src() has already done prior this call
3415 */
3416static void ppc440spe_adma_dma2rxor_set_mult(
3417		struct ppc440spe_adma_desc_slot *desc,
3418		int index, u8 mult)
3419{
3420	struct xor_cb *xcb = desc->hw_desc;
3421	int k = 0, op = 0, lop = 0;
3422
3423	/* get the RXOR operand which corresponds to index mult */
3424	while (op <= index) {
3425		lop = op;
3426		if (k == XOR_MAX_OPS) {
3427			k = 0;
3428			desc = list_entry(desc->chain_node.next,
3429					  struct ppc440spe_adma_desc_slot,
3430					  chain_node);
3431			xcb = desc->hw_desc;
3432
3433		}
3434		if ((xcb->ops[k++].h & (DMA_RXOR12 << DMA_CUED_REGION_OFF)) ==
3435		    (DMA_RXOR12 << DMA_CUED_REGION_OFF))
3436			op += 2;
3437		else
3438			op += 3;
3439	}
3440
3441	BUG_ON(k < 1);
3442	if (test_bit(k-1, desc->reverse_flags)) {
3443		/* reverse order */
3444		ppc440spe_rxor_set_mult(desc, k - 1, op - index - 1, mult);
3445	} else {
3446		/* direct order */
3447		ppc440spe_rxor_set_mult(desc, k - 1, index - lop, mult);
3448	}
3449}
3450
3451/**
3452 * ppc440spe_init_rxor_cursor -
3453 */
3454static void ppc440spe_init_rxor_cursor(struct ppc440spe_rxor *cursor)
3455{
3456	memset(cursor, 0, sizeof(struct ppc440spe_rxor));
3457	cursor->state = 2;
3458}
3459
3460/**
3461 * ppc440spe_adma_pq_set_src_mult - set multiplication coefficient into
3462 * descriptor for the PQXOR operation
3463 */
3464static void ppc440spe_adma_pq_set_src_mult(
3465		struct ppc440spe_adma_desc_slot *sw_desc,
3466		unsigned char mult, int index, int dst_pos)
3467{
3468	struct ppc440spe_adma_chan *chan;
3469	u32 mult_idx, mult_dst;
3470	struct ppc440spe_adma_desc_slot *iter = NULL, *iter1 = NULL;
3471
3472	chan = to_ppc440spe_adma_chan(sw_desc->async_tx.chan);
3473
3474	switch (chan->device->id) {
3475	case PPC440SPE_DMA0_ID:
3476	case PPC440SPE_DMA1_ID:
3477		if (test_bit(PPC440SPE_DESC_RXOR, &sw_desc->flags)) {
3478			int region = test_bit(PPC440SPE_DESC_RXOR12,
3479					&sw_desc->flags) ? 2 : 3;
3480
3481			if (index < region) {
3482				/* RXOR multipliers */
3483				iter = ppc440spe_get_group_entry(sw_desc,
3484					sw_desc->dst_cnt - 1);
3485				if (sw_desc->dst_cnt == 2)
3486					iter1 = ppc440spe_get_group_entry(
3487							sw_desc, 0);
3488
3489				mult_idx = DMA_CUED_MULT1_OFF + (index << 3);
3490				mult_dst = DMA_CDB_SG_SRC;
3491			} else {
3492				/* WXOR multiplier */
3493				iter = ppc440spe_get_group_entry(sw_desc,
3494							index - region +
3495							sw_desc->dst_cnt);
3496				mult_idx = DMA_CUED_MULT1_OFF;
3497				mult_dst = dst_pos ? DMA_CDB_SG_DST2 :
3498						     DMA_CDB_SG_DST1;
3499			}
3500		} else {
3501			int znum = 0;
3502
3503			/* WXOR-only;
3504			 * skip first slots with destinations (if ZERO_DST has
3505			 * place)
3506			 */
3507			if (test_bit(PPC440SPE_ZERO_P, &sw_desc->flags))
3508				znum++;
3509			if (test_bit(PPC440SPE_ZERO_Q, &sw_desc->flags))
3510				znum++;
3511
3512			iter = ppc440spe_get_group_entry(sw_desc, index + znum);
3513			mult_idx = DMA_CUED_MULT1_OFF;
3514			mult_dst = dst_pos ? DMA_CDB_SG_DST2 : DMA_CDB_SG_DST1;
3515		}
3516
3517		if (likely(iter)) {
3518			ppc440spe_desc_set_src_mult(iter, chan,
3519				mult_idx, mult_dst, mult);
3520
3521			if (unlikely(iter1)) {
3522				/* if we have two destinations for RXOR, then
3523				 * we've just set Q mult. Set-up P now.
3524				 */
3525				ppc440spe_desc_set_src_mult(iter1, chan,
3526					mult_idx, mult_dst, 1);
3527			}
3528
3529		}
3530		break;
3531
3532	case PPC440SPE_XOR_ID:
3533		iter = sw_desc->group_head;
3534		if (sw_desc->dst_cnt == 2) {
3535			/* both P & Q calculations required; set P mult here */
3536			ppc440spe_adma_dma2rxor_set_mult(iter, index, 1);
3537
3538			/* and then set Q mult */
3539			iter = ppc440spe_get_group_entry(sw_desc,
3540			       sw_desc->descs_per_op);
3541		}
3542		ppc440spe_adma_dma2rxor_set_mult(iter, index, mult);
3543		break;
3544	}
3545}
3546
3547/**
3548 * ppc440spe_adma_free_chan_resources - free the resources allocated
3549 */
3550static void ppc440spe_adma_free_chan_resources(struct dma_chan *chan)
3551{
3552	struct ppc440spe_adma_chan *ppc440spe_chan;
3553	struct ppc440spe_adma_desc_slot *iter, *_iter;
3554	int in_use_descs = 0;
3555
3556	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3557	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3558
3559	spin_lock_bh(&ppc440spe_chan->lock);
3560	list_for_each_entry_safe(iter, _iter, &ppc440spe_chan->chain,
3561					chain_node) {
3562		in_use_descs++;
3563		list_del(&iter->chain_node);
3564	}
3565	list_for_each_entry_safe_reverse(iter, _iter,
3566			&ppc440spe_chan->all_slots, slot_node) {
3567		list_del(&iter->slot_node);
3568		kfree(iter);
3569		ppc440spe_chan->slots_allocated--;
3570	}
3571	ppc440spe_chan->last_used = NULL;
3572
3573	dev_dbg(ppc440spe_chan->device->common.dev,
3574		"ppc440spe adma%d %s slots_allocated %d\n",
3575		ppc440spe_chan->device->id,
3576		__func__, ppc440spe_chan->slots_allocated);
3577	spin_unlock_bh(&ppc440spe_chan->lock);
3578
3579	/* one is ok since we left it on there on purpose */
3580	if (in_use_descs > 1)
3581		printk(KERN_ERR "SPE: Freeing %d in use descriptors!\n",
3582			in_use_descs - 1);
3583}
3584
3585/**
3586 * ppc440spe_adma_tx_status - poll the status of an ADMA transaction
3587 * @chan: ADMA channel handle
3588 * @cookie: ADMA transaction identifier
3589 * @txstate: a holder for the current state of the channel
3590 */
3591static enum dma_status ppc440spe_adma_tx_status(struct dma_chan *chan,
3592			dma_cookie_t cookie, struct dma_tx_state *txstate)
3593{
3594	struct ppc440spe_adma_chan *ppc440spe_chan;
3595	enum dma_status ret;
3596
3597	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3598	ret = dma_cookie_status(chan, cookie, txstate);
3599	if (ret == DMA_COMPLETE)
3600		return ret;
3601
3602	ppc440spe_adma_slot_cleanup(ppc440spe_chan);
3603
3604	return dma_cookie_status(chan, cookie, txstate);
3605}
3606
3607/**
3608 * ppc440spe_adma_eot_handler - end of transfer interrupt handler
3609 */
3610static irqreturn_t ppc440spe_adma_eot_handler(int irq, void *data)
3611{
3612	struct ppc440spe_adma_chan *chan = data;
3613
3614	dev_dbg(chan->device->common.dev,
3615		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3616
3617	tasklet_schedule(&chan->irq_tasklet);
3618	ppc440spe_adma_device_clear_eot_status(chan);
3619
3620	return IRQ_HANDLED;
3621}
3622
3623/**
3624 * ppc440spe_adma_err_handler - DMA error interrupt handler;
3625 *	do the same things as a eot handler
3626 */
3627static irqreturn_t ppc440spe_adma_err_handler(int irq, void *data)
3628{
3629	struct ppc440spe_adma_chan *chan = data;
3630
3631	dev_dbg(chan->device->common.dev,
3632		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3633
3634	tasklet_schedule(&chan->irq_tasklet);
3635	ppc440spe_adma_device_clear_eot_status(chan);
3636
3637	return IRQ_HANDLED;
3638}
3639
3640/**
3641 * ppc440spe_test_callback - called when test operation has been done
3642 */
3643static void ppc440spe_test_callback(void *unused)
3644{
3645	complete(&ppc440spe_r6_test_comp);
3646}
3647
3648/**
3649 * ppc440spe_adma_issue_pending - flush all pending descriptors to h/w
3650 */
3651static void ppc440spe_adma_issue_pending(struct dma_chan *chan)
3652{
3653	struct ppc440spe_adma_chan *ppc440spe_chan;
3654
3655	ppc440spe_chan = to_ppc440spe_adma_chan(chan);
3656	dev_dbg(ppc440spe_chan->device->common.dev,
3657		"ppc440spe adma%d: %s %d \n", ppc440spe_chan->device->id,
3658		__func__, ppc440spe_chan->pending);
3659
3660	if (ppc440spe_chan->pending) {
3661		ppc440spe_chan->pending = 0;
3662		ppc440spe_chan_append(ppc440spe_chan);
3663	}
3664}
3665
3666/**
3667 * ppc440spe_chan_start_null_xor - initiate the first XOR operation (DMA engines
3668 *	use FIFOs (as opposite to chains used in XOR) so this is a XOR
3669 *	specific operation)
3670 */
3671static void ppc440spe_chan_start_null_xor(struct ppc440spe_adma_chan *chan)
3672{
3673	struct ppc440spe_adma_desc_slot *sw_desc, *group_start;
3674	dma_cookie_t cookie;
3675	int slot_cnt, slots_per_op;
3676
3677	dev_dbg(chan->device->common.dev,
3678		"ppc440spe adma%d: %s\n", chan->device->id, __func__);
3679
3680	spin_lock_bh(&chan->lock);
3681	slot_cnt = ppc440spe_chan_xor_slot_count(0, 2, &slots_per_op);
3682	sw_desc = ppc440spe_adma_alloc_slots(chan, slot_cnt, slots_per_op);
3683	if (sw_desc) {
3684		group_start = sw_desc->group_head;
3685		list_splice_init(&sw_desc->group_list, &chan->chain);
3686		async_tx_ack(&sw_desc->async_tx);
3687		ppc440spe_desc_init_null_xor(group_start);
3688
3689		cookie = dma_cookie_assign(&sw_desc->async_tx);
3690
3691		/* initialize the completed cookie to be less than
3692		 * the most recently used cookie
3693		 */
3694		chan->common.completed_cookie = cookie - 1;
3695
3696		/* channel should not be busy */
3697		BUG_ON(ppc440spe_chan_is_busy(chan));
3698
3699		/* set the descriptor address */
3700		ppc440spe_chan_set_first_xor_descriptor(chan, sw_desc);
3701
3702		/* run the descriptor */
3703		ppc440spe_chan_run(chan);
3704	} else
3705		printk(KERN_ERR "ppc440spe adma%d"
3706			" failed to allocate null descriptor\n",
3707			chan->device->id);
3708	spin_unlock_bh(&chan->lock);
3709}
3710
3711/**
3712 * ppc440spe_test_raid6 - test are RAID-6 capabilities enabled successfully.
3713 *	For this we just perform one WXOR operation with the same source
3714 *	and destination addresses, the GF-multiplier is 1; so if RAID-6
3715 *	capabilities are enabled then we'll get src/dst filled with zero.
3716 */
3717static int ppc440spe_test_raid6(struct ppc440spe_adma_chan *chan)
3718{
3719	struct ppc440spe_adma_desc_slot *sw_desc, *iter;
3720	struct page *pg;
3721	char *a;
3722	dma_addr_t dma_addr, addrs[2];
3723	unsigned long op = 0;
3724	int rval = 0;
3725
3726	set_bit(PPC440SPE_DESC_WXOR, &op);
3727
3728	pg = alloc_page(GFP_KERNEL);
3729	if (!pg)
3730		return -ENOMEM;
3731
3732	spin_lock_bh(&chan->lock);
3733	sw_desc = ppc440spe_adma_alloc_slots(chan, 1, 1);
3734	if (sw_desc) {
3735		/* 1 src, 1 dsr, int_ena, WXOR */
3736		ppc440spe_desc_init_dma01pq(sw_desc, 1, 1, 1, op);
3737		list_for_each_entry(iter, &sw_desc->group_list, chain_node) {
3738			ppc440spe_desc_set_byte_count(iter, chan, PAGE_SIZE);
3739			iter->unmap_len = PAGE_SIZE;
3740		}
3741	} else {
3742		rval = -EFAULT;
3743		spin_unlock_bh(&chan->lock);
3744		goto exit;
3745	}
3746	spin_unlock_bh(&chan->lock);
3747
3748	/* Fill the test page with ones */
3749	memset(page_address(pg), 0xFF, PAGE_SIZE);
3750	dma_addr = dma_map_page(chan->device->dev, pg, 0,
3751				PAGE_SIZE, DMA_BIDIRECTIONAL);
3752
3753	/* Setup addresses */
3754	ppc440spe_adma_pq_set_src(sw_desc, dma_addr, 0);
3755	ppc440spe_adma_pq_set_src_mult(sw_desc, 1, 0, 0);
3756	addrs[0] = dma_addr;
3757	addrs[1] = 0;
3758	ppc440spe_adma_pq_set_dest(sw_desc, addrs, DMA_PREP_PQ_DISABLE_Q);
3759
3760	async_tx_ack(&sw_desc->async_tx);
3761	sw_desc->async_tx.callback = ppc440spe_test_callback;
3762	sw_desc->async_tx.callback_param = NULL;
3763
3764	init_completion(&ppc440spe_r6_test_comp);
3765
3766	ppc440spe_adma_tx_submit(&sw_desc->async_tx);
3767	ppc440spe_adma_issue_pending(&chan->common);
3768
3769	wait_for_completion(&ppc440spe_r6_test_comp);
3770
3771	/* Now check if the test page is zeroed */
3772	a = page_address(pg);
3773	if ((*(u32 *)a) == 0 && memcmp(a, a+4, PAGE_SIZE-4) == 0) {
3774		/* page is zero - RAID-6 enabled */
3775		rval = 0;
3776	} else {
3777		/* RAID-6 was not enabled */
3778		rval = -EINVAL;
3779	}
3780exit:
3781	__free_page(pg);
3782	return rval;
3783}
3784
3785static void ppc440spe_adma_init_capabilities(struct ppc440spe_adma_device *adev)
3786{
3787	switch (adev->id) {
3788	case PPC440SPE_DMA0_ID:
3789	case PPC440SPE_DMA1_ID:
3790		dma_cap_set(DMA_MEMCPY, adev->common.cap_mask);
3791		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3792		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3793		dma_cap_set(DMA_PQ_VAL, adev->common.cap_mask);
3794		dma_cap_set(DMA_XOR_VAL, adev->common.cap_mask);
3795		break;
3796	case PPC440SPE_XOR_ID:
3797		dma_cap_set(DMA_XOR, adev->common.cap_mask);
3798		dma_cap_set(DMA_PQ, adev->common.cap_mask);
3799		dma_cap_set(DMA_INTERRUPT, adev->common.cap_mask);
3800		adev->common.cap_mask = adev->common.cap_mask;
3801		break;
3802	}
3803
3804	/* Set base routines */
3805	adev->common.device_alloc_chan_resources =
3806				ppc440spe_adma_alloc_chan_resources;
3807	adev->common.device_free_chan_resources =
3808				ppc440spe_adma_free_chan_resources;
3809	adev->common.device_tx_status = ppc440spe_adma_tx_status;
3810	adev->common.device_issue_pending = ppc440spe_adma_issue_pending;
3811
3812	/* Set prep routines based on capability */
3813	if (dma_has_cap(DMA_MEMCPY, adev->common.cap_mask)) {
3814		adev->common.device_prep_dma_memcpy =
3815			ppc440spe_adma_prep_dma_memcpy;
3816	}
3817	if (dma_has_cap(DMA_XOR, adev->common.cap_mask)) {
3818		adev->common.max_xor = XOR_MAX_OPS;
3819		adev->common.device_prep_dma_xor =
3820			ppc440spe_adma_prep_dma_xor;
3821	}
3822	if (dma_has_cap(DMA_PQ, adev->common.cap_mask)) {
3823		switch (adev->id) {
3824		case PPC440SPE_DMA0_ID:
3825			dma_set_maxpq(&adev->common,
3826				DMA0_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3827			break;
3828		case PPC440SPE_DMA1_ID:
3829			dma_set_maxpq(&adev->common,
3830				DMA1_FIFO_SIZE / sizeof(struct dma_cdb), 0);
3831			break;
3832		case PPC440SPE_XOR_ID:
3833			adev->common.max_pq = XOR_MAX_OPS * 3;
3834			break;
3835		}
3836		adev->common.device_prep_dma_pq =
3837			ppc440spe_adma_prep_dma_pq;
3838	}
3839	if (dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask)) {
3840		switch (adev->id) {
3841		case PPC440SPE_DMA0_ID:
3842			adev->common.max_pq = DMA0_FIFO_SIZE /
3843						sizeof(struct dma_cdb);
3844			break;
3845		case PPC440SPE_DMA1_ID:
3846			adev->common.max_pq = DMA1_FIFO_SIZE /
3847						sizeof(struct dma_cdb);
3848			break;
3849		}
3850		adev->common.device_prep_dma_pq_val =
3851			ppc440spe_adma_prep_dma_pqzero_sum;
3852	}
3853	if (dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask)) {
3854		switch (adev->id) {
3855		case PPC440SPE_DMA0_ID:
3856			adev->common.max_xor = DMA0_FIFO_SIZE /
3857						sizeof(struct dma_cdb);
3858			break;
3859		case PPC440SPE_DMA1_ID:
3860			adev->common.max_xor = DMA1_FIFO_SIZE /
3861						sizeof(struct dma_cdb);
3862			break;
3863		}
3864		adev->common.device_prep_dma_xor_val =
3865			ppc440spe_adma_prep_dma_xor_zero_sum;
3866	}
3867	if (dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask)) {
3868		adev->common.device_prep_dma_interrupt =
3869			ppc440spe_adma_prep_dma_interrupt;
3870	}
3871	pr_info("%s: AMCC(R) PPC440SP(E) ADMA Engine: "
3872	  "( %s%s%s%s%s%s)\n",
3873	  dev_name(adev->dev),
3874	  dma_has_cap(DMA_PQ, adev->common.cap_mask) ? "pq " : "",
3875	  dma_has_cap(DMA_PQ_VAL, adev->common.cap_mask) ? "pq_val " : "",
3876	  dma_has_cap(DMA_XOR, adev->common.cap_mask) ? "xor " : "",
3877	  dma_has_cap(DMA_XOR_VAL, adev->common.cap_mask) ? "xor_val " : "",
3878	  dma_has_cap(DMA_MEMCPY, adev->common.cap_mask) ? "memcpy " : "",
3879	  dma_has_cap(DMA_INTERRUPT, adev->common.cap_mask) ? "intr " : "");
3880}
3881
3882static int ppc440spe_adma_setup_irqs(struct ppc440spe_adma_device *adev,
3883				     struct ppc440spe_adma_chan *chan,
3884				     int *initcode)
3885{
3886	struct platform_device *ofdev;
3887	struct device_node *np;
3888	int ret;
3889
3890	ofdev = container_of(adev->dev, struct platform_device, dev);
3891	np = ofdev->dev.of_node;
3892	if (adev->id != PPC440SPE_XOR_ID) {
3893		adev->err_irq = irq_of_parse_and_map(np, 1);
3894		if (adev->err_irq == NO_IRQ) {
3895			dev_warn(adev->dev, "no err irq resource?\n");
3896			*initcode = PPC_ADMA_INIT_IRQ2;
3897			adev->err_irq = -ENXIO;
3898		} else
3899			atomic_inc(&ppc440spe_adma_err_irq_ref);
3900	} else {
3901		adev->err_irq = -ENXIO;
3902	}
3903
3904	adev->irq = irq_of_parse_and_map(np, 0);
3905	if (adev->irq == NO_IRQ) {
3906		dev_err(adev->dev, "no irq resource\n");
3907		*initcode = PPC_ADMA_INIT_IRQ1;
3908		ret = -ENXIO;
3909		goto err_irq_map;
3910	}
3911	dev_dbg(adev->dev, "irq %d, err irq %d\n",
3912		adev->irq, adev->err_irq);
3913
3914	ret = request_irq(adev->irq, ppc440spe_adma_eot_handler,
3915			  0, dev_driver_string(adev->dev), chan);
3916	if (ret) {
3917		dev_err(adev->dev, "can't request irq %d\n",
3918			adev->irq);
3919		*initcode = PPC_ADMA_INIT_IRQ1;
3920		ret = -EIO;
3921		goto err_req1;
3922	}
3923
3924	/* only DMA engines have a separate error IRQ
3925	 * so it's Ok if err_irq < 0 in XOR engine case.
3926	 */
3927	if (adev->err_irq > 0) {
3928		/* both DMA engines share common error IRQ */
3929		ret = request_irq(adev->err_irq,
3930				  ppc440spe_adma_err_handler,
3931				  IRQF_SHARED,
3932				  dev_driver_string(adev->dev),
3933				  chan);
3934		if (ret) {
3935			dev_err(adev->dev, "can't request irq %d\n",
3936				adev->err_irq);
3937			*initcode = PPC_ADMA_INIT_IRQ2;
3938			ret = -EIO;
3939			goto err_req2;
3940		}
3941	}
3942
3943	if (adev->id == PPC440SPE_XOR_ID) {
3944		/* enable XOR engine interrupts */
3945		iowrite32be(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3946			    XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT,
3947			    &adev->xor_reg->ier);
3948	} else {
3949		u32 mask, enable;
3950
3951		np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
3952		if (!np) {
3953			pr_err("%s: can't find I2O device tree node\n",
3954				__func__);
3955			ret = -ENODEV;
3956			goto err_req2;
3957		}
3958		adev->i2o_reg = of_iomap(np, 0);
3959		if (!adev->i2o_reg) {
3960			pr_err("%s: failed to map I2O registers\n", __func__);
3961			of_node_put(np);
3962			ret = -EINVAL;
3963			goto err_req2;
3964		}
3965		of_node_put(np);
3966		/* Unmask 'CS FIFO Attention' interrupts and
3967		 * enable generating interrupts on errors
3968		 */
3969		enable = (adev->id == PPC440SPE_DMA0_ID) ?
3970			 ~(I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
3971			 ~(I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
3972		mask = ioread32(&adev->i2o_reg->iopim) & enable;
3973		iowrite32(mask, &adev->i2o_reg->iopim);
3974	}
3975	return 0;
3976
3977err_req2:
3978	free_irq(adev->irq, chan);
3979err_req1:
3980	irq_dispose_mapping(adev->irq);
3981err_irq_map:
3982	if (adev->err_irq > 0) {
3983		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref))
3984			irq_dispose_mapping(adev->err_irq);
3985	}
3986	return ret;
3987}
3988
3989static void ppc440spe_adma_release_irqs(struct ppc440spe_adma_device *adev,
3990					struct ppc440spe_adma_chan *chan)
3991{
3992	u32 mask, disable;
3993
3994	if (adev->id == PPC440SPE_XOR_ID) {
3995		/* disable XOR engine interrupts */
3996		mask = ioread32be(&adev->xor_reg->ier);
3997		mask &= ~(XOR_IE_CBCIE_BIT | XOR_IE_ICBIE_BIT |
3998			  XOR_IE_ICIE_BIT | XOR_IE_RPTIE_BIT);
3999		iowrite32be(mask, &adev->xor_reg->ier);
4000	} else {
4001		/* disable DMAx engine interrupts */
4002		disable = (adev->id == PPC440SPE_DMA0_ID) ?
4003			  (I2O_IOPIM_P0SNE | I2O_IOPIM_P0EM) :
4004			  (I2O_IOPIM_P1SNE | I2O_IOPIM_P1EM);
4005		mask = ioread32(&adev->i2o_reg->iopim) | disable;
4006		iowrite32(mask, &adev->i2o_reg->iopim);
4007	}
4008	free_irq(adev->irq, chan);
4009	irq_dispose_mapping(adev->irq);
4010	if (adev->err_irq > 0) {
4011		free_irq(adev->err_irq, chan);
4012		if (atomic_dec_and_test(&ppc440spe_adma_err_irq_ref)) {
4013			irq_dispose_mapping(adev->err_irq);
4014			iounmap(adev->i2o_reg);
4015		}
4016	}
4017}
4018
4019/**
4020 * ppc440spe_adma_probe - probe the asynch device
4021 */
4022static int ppc440spe_adma_probe(struct platform_device *ofdev)
4023{
4024	struct device_node *np = ofdev->dev.of_node;
4025	struct resource res;
4026	struct ppc440spe_adma_device *adev;
4027	struct ppc440spe_adma_chan *chan;
4028	struct ppc_dma_chan_ref *ref, *_ref;
4029	int ret = 0, initcode = PPC_ADMA_INIT_OK;
4030	const u32 *idx;
4031	int len;
4032	void *regs;
4033	u32 id, pool_size;
4034
4035	if (of_device_is_compatible(np, "amcc,xor-accelerator")) {
4036		id = PPC440SPE_XOR_ID;
4037		/* As far as the XOR engine is concerned, it does not
4038		 * use FIFOs but uses linked list. So there is no dependency
4039		 * between pool size to allocate and the engine configuration.
4040		 */
4041		pool_size = PAGE_SIZE << 1;
4042	} else {
4043		/* it is DMA0 or DMA1 */
4044		idx = of_get_property(np, "cell-index", &len);
4045		if (!idx || (len != sizeof(u32))) {
4046			dev_err(&ofdev->dev, "Device node %s has missing "
4047				"or invalid cell-index property\n",
4048				np->full_name);
4049			return -EINVAL;
4050		}
4051		id = *idx;
4052		/* DMA0,1 engines use FIFO to maintain CDBs, so we
4053		 * should allocate the pool accordingly to size of this
4054		 * FIFO. Thus, the pool size depends on the FIFO depth:
4055		 * how much CDBs pointers the FIFO may contain then so
4056		 * much CDBs we should provide in the pool.
4057		 * That is
4058		 *   CDB size = 32B;
4059		 *   CDBs number = (DMA0_FIFO_SIZE >> 3);
4060		 *   Pool size = CDBs number * CDB size =
4061		 *      = (DMA0_FIFO_SIZE >> 3) << 5 = DMA0_FIFO_SIZE << 2.
4062		 */
4063		pool_size = (id == PPC440SPE_DMA0_ID) ?
4064			    DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4065		pool_size <<= 2;
4066	}
4067
4068	if (of_address_to_resource(np, 0, &res)) {
4069		dev_err(&ofdev->dev, "failed to get memory resource\n");
4070		initcode = PPC_ADMA_INIT_MEMRES;
4071		ret = -ENODEV;
4072		goto out;
4073	}
4074
4075	if (!request_mem_region(res.start, resource_size(&res),
4076				dev_driver_string(&ofdev->dev))) {
4077		dev_err(&ofdev->dev, "failed to request memory region %pR\n",
4078			&res);
4079		initcode = PPC_ADMA_INIT_MEMREG;
4080		ret = -EBUSY;
4081		goto out;
4082	}
4083
4084	/* create a device */
4085	adev = kzalloc(sizeof(*adev), GFP_KERNEL);
4086	if (!adev) {
4087		dev_err(&ofdev->dev, "failed to allocate device\n");
4088		initcode = PPC_ADMA_INIT_ALLOC;
4089		ret = -ENOMEM;
4090		goto err_adev_alloc;
4091	}
4092
4093	adev->id = id;
4094	adev->pool_size = pool_size;
4095	/* allocate coherent memory for hardware descriptors */
4096	adev->dma_desc_pool_virt = dma_alloc_coherent(&ofdev->dev,
4097					adev->pool_size, &adev->dma_desc_pool,
4098					GFP_KERNEL);
4099	if (adev->dma_desc_pool_virt == NULL) {
4100		dev_err(&ofdev->dev, "failed to allocate %d bytes of coherent "
4101			"memory for hardware descriptors\n",
4102			adev->pool_size);
4103		initcode = PPC_ADMA_INIT_COHERENT;
4104		ret = -ENOMEM;
4105		goto err_dma_alloc;
4106	}
4107	dev_dbg(&ofdev->dev, "allocated descriptor pool virt 0x%p phys 0x%llx\n",
4108		adev->dma_desc_pool_virt, (u64)adev->dma_desc_pool);
4109
4110	regs = ioremap(res.start, resource_size(&res));
4111	if (!regs) {
4112		dev_err(&ofdev->dev, "failed to ioremap regs!\n");
4113		ret = -ENOMEM;
4114		goto err_regs_alloc;
4115	}
4116
4117	if (adev->id == PPC440SPE_XOR_ID) {
4118		adev->xor_reg = regs;
4119		/* Reset XOR */
4120		iowrite32be(XOR_CRSR_XASR_BIT, &adev->xor_reg->crsr);
4121		iowrite32be(XOR_CRSR_64BA_BIT, &adev->xor_reg->crrr);
4122	} else {
4123		size_t fifo_size = (adev->id == PPC440SPE_DMA0_ID) ?
4124				   DMA0_FIFO_SIZE : DMA1_FIFO_SIZE;
4125		adev->dma_reg = regs;
4126		/* DMAx_FIFO_SIZE is defined in bytes,
4127		 * <fsiz> - is defined in number of CDB pointers (8byte).
4128		 * DMA FIFO Length = CSlength + CPlength, where
4129		 * CSlength = CPlength = (fsiz + 1) * 8.
4130		 */
4131		iowrite32(DMA_FIFO_ENABLE | ((fifo_size >> 3) - 2),
4132			  &adev->dma_reg->fsiz);
4133		/* Configure DMA engine */
4134		iowrite32(DMA_CFG_DXEPR_HP | DMA_CFG_DFMPP_HP | DMA_CFG_FALGN,
4135			  &adev->dma_reg->cfg);
4136		/* Clear Status */
4137		iowrite32(~0, &adev->dma_reg->dsts);
4138	}
4139
4140	adev->dev = &ofdev->dev;
4141	adev->common.dev = &ofdev->dev;
4142	INIT_LIST_HEAD(&adev->common.channels);
4143	platform_set_drvdata(ofdev, adev);
4144
4145	/* create a channel */
4146	chan = kzalloc(sizeof(*chan), GFP_KERNEL);
4147	if (!chan) {
4148		dev_err(&ofdev->dev, "can't allocate channel structure\n");
4149		initcode = PPC_ADMA_INIT_CHANNEL;
4150		ret = -ENOMEM;
4151		goto err_chan_alloc;
4152	}
4153
4154	spin_lock_init(&chan->lock);
4155	INIT_LIST_HEAD(&chan->chain);
4156	INIT_LIST_HEAD(&chan->all_slots);
4157	chan->device = adev;
4158	chan->common.device = &adev->common;
4159	dma_cookie_init(&chan->common);
4160	list_add_tail(&chan->common.device_node, &adev->common.channels);
4161	tasklet_init(&chan->irq_tasklet, ppc440spe_adma_tasklet,
4162		     (unsigned long)chan);
4163
4164	/* allocate and map helper pages for async validation or
4165	 * async_mult/async_sum_product operations on DMA0/1.
4166	 */
4167	if (adev->id != PPC440SPE_XOR_ID) {
4168		chan->pdest_page = alloc_page(GFP_KERNEL);
4169		chan->qdest_page = alloc_page(GFP_KERNEL);
4170		if (!chan->pdest_page ||
4171		    !chan->qdest_page) {
4172			if (chan->pdest_page)
4173				__free_page(chan->pdest_page);
4174			if (chan->qdest_page)
4175				__free_page(chan->qdest_page);
4176			ret = -ENOMEM;
4177			goto err_page_alloc;
4178		}
4179		chan->pdest = dma_map_page(&ofdev->dev, chan->pdest_page, 0,
4180					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4181		chan->qdest = dma_map_page(&ofdev->dev, chan->qdest_page, 0,
4182					   PAGE_SIZE, DMA_BIDIRECTIONAL);
4183	}
4184
4185	ref = kmalloc(sizeof(*ref), GFP_KERNEL);
4186	if (ref) {
4187		ref->chan = &chan->common;
4188		INIT_LIST_HEAD(&ref->node);
4189		list_add_tail(&ref->node, &ppc440spe_adma_chan_list);
4190	} else {
4191		dev_err(&ofdev->dev, "failed to allocate channel reference!\n");
4192		ret = -ENOMEM;
4193		goto err_ref_alloc;
4194	}
4195
4196	ret = ppc440spe_adma_setup_irqs(adev, chan, &initcode);
4197	if (ret)
4198		goto err_irq;
4199
4200	ppc440spe_adma_init_capabilities(adev);
4201
4202	ret = dma_async_device_register(&adev->common);
4203	if (ret) {
4204		initcode = PPC_ADMA_INIT_REGISTER;
4205		dev_err(&ofdev->dev, "failed to register dma device\n");
4206		goto err_dev_reg;
4207	}
4208
4209	goto out;
4210
4211err_dev_reg:
4212	ppc440spe_adma_release_irqs(adev, chan);
4213err_irq:
4214	list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list, node) {
4215		if (chan == to_ppc440spe_adma_chan(ref->chan)) {
4216			list_del(&ref->node);
4217			kfree(ref);
4218		}
4219	}
4220err_ref_alloc:
4221	if (adev->id != PPC440SPE_XOR_ID) {
4222		dma_unmap_page(&ofdev->dev, chan->pdest,
4223			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4224		dma_unmap_page(&ofdev->dev, chan->qdest,
4225			       PAGE_SIZE, DMA_BIDIRECTIONAL);
4226		__free_page(chan->pdest_page);
4227		__free_page(chan->qdest_page);
4228	}
4229err_page_alloc:
4230	kfree(chan);
4231err_chan_alloc:
4232	if (adev->id == PPC440SPE_XOR_ID)
4233		iounmap(adev->xor_reg);
4234	else
4235		iounmap(adev->dma_reg);
4236err_regs_alloc:
4237	dma_free_coherent(adev->dev, adev->pool_size,
4238			  adev->dma_desc_pool_virt,
4239			  adev->dma_desc_pool);
4240err_dma_alloc:
4241	kfree(adev);
4242err_adev_alloc:
4243	release_mem_region(res.start, resource_size(&res));
4244out:
4245	if (id < PPC440SPE_ADMA_ENGINES_NUM)
4246		ppc440spe_adma_devices[id] = initcode;
4247
4248	return ret;
4249}
4250
4251/**
4252 * ppc440spe_adma_remove - remove the asynch device
4253 */
4254static int ppc440spe_adma_remove(struct platform_device *ofdev)
4255{
4256	struct ppc440spe_adma_device *adev = platform_get_drvdata(ofdev);
4257	struct device_node *np = ofdev->dev.of_node;
4258	struct resource res;
4259	struct dma_chan *chan, *_chan;
4260	struct ppc_dma_chan_ref *ref, *_ref;
4261	struct ppc440spe_adma_chan *ppc440spe_chan;
4262
4263	if (adev->id < PPC440SPE_ADMA_ENGINES_NUM)
4264		ppc440spe_adma_devices[adev->id] = -1;
4265
4266	dma_async_device_unregister(&adev->common);
4267
4268	list_for_each_entry_safe(chan, _chan, &adev->common.channels,
4269				 device_node) {
4270		ppc440spe_chan = to_ppc440spe_adma_chan(chan);
4271		ppc440spe_adma_release_irqs(adev, ppc440spe_chan);
4272		tasklet_kill(&ppc440spe_chan->irq_tasklet);
4273		if (adev->id != PPC440SPE_XOR_ID) {
4274			dma_unmap_page(&ofdev->dev, ppc440spe_chan->pdest,
4275					PAGE_SIZE, DMA_BIDIRECTIONAL);
4276			dma_unmap_page(&ofdev->dev, ppc440spe_chan->qdest,
4277					PAGE_SIZE, DMA_BIDIRECTIONAL);
4278			__free_page(ppc440spe_chan->pdest_page);
4279			__free_page(ppc440spe_chan->qdest_page);
4280		}
4281		list_for_each_entry_safe(ref, _ref, &ppc440spe_adma_chan_list,
4282					 node) {
4283			if (ppc440spe_chan ==
4284			    to_ppc440spe_adma_chan(ref->chan)) {
4285				list_del(&ref->node);
4286				kfree(ref);
4287			}
4288		}
4289		list_del(&chan->device_node);
4290		kfree(ppc440spe_chan);
4291	}
4292
4293	dma_free_coherent(adev->dev, adev->pool_size,
4294			  adev->dma_desc_pool_virt, adev->dma_desc_pool);
4295	if (adev->id == PPC440SPE_XOR_ID)
4296		iounmap(adev->xor_reg);
4297	else
4298		iounmap(adev->dma_reg);
4299	of_address_to_resource(np, 0, &res);
4300	release_mem_region(res.start, resource_size(&res));
4301	kfree(adev);
4302	return 0;
4303}
4304
4305/*
4306 * /sys driver interface to enable h/w RAID-6 capabilities
4307 * Files created in e.g. /sys/devices/plb.0/400100100.dma0/driver/
4308 * directory are "devices", "enable" and "poly".
4309 * "devices" shows available engines.
4310 * "enable" is used to enable RAID-6 capabilities or to check
4311 * whether these has been activated.
4312 * "poly" allows setting/checking used polynomial (for PPC440SPe only).
4313 */
4314
4315static ssize_t show_ppc440spe_devices(struct device_driver *dev, char *buf)
4316{
4317	ssize_t size = 0;
4318	int i;
4319
4320	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++) {
4321		if (ppc440spe_adma_devices[i] == -1)
4322			continue;
4323		size += snprintf(buf + size, PAGE_SIZE - size,
4324				 "PPC440SP(E)-ADMA.%d: %s\n", i,
4325				 ppc_adma_errors[ppc440spe_adma_devices[i]]);
4326	}
4327	return size;
4328}
4329
4330static ssize_t show_ppc440spe_r6enable(struct device_driver *dev, char *buf)
4331{
4332	return snprintf(buf, PAGE_SIZE,
4333			"PPC440SP(e) RAID-6 capabilities are %sABLED.\n",
4334			ppc440spe_r6_enabled ? "EN" : "DIS");
4335}
4336
4337static ssize_t store_ppc440spe_r6enable(struct device_driver *dev,
4338					const char *buf, size_t count)
4339{
4340	unsigned long val;
4341
4342	if (!count || count > 11)
4343		return -EINVAL;
4344
4345	if (!ppc440spe_r6_tchan)
4346		return -EFAULT;
4347
4348	/* Write a key */
4349	sscanf(buf, "%lx", &val);
4350	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_XORBA, val);
4351	isync();
4352
4353	/* Verify whether it really works now */
4354	if (ppc440spe_test_raid6(ppc440spe_r6_tchan) == 0) {
4355		pr_info("PPC440SP(e) RAID-6 has been activated "
4356			"successfully\n");
4357		ppc440spe_r6_enabled = 1;
4358	} else {
4359		pr_info("PPC440SP(e) RAID-6 hasn't been activated!"
4360			" Error key ?\n");
4361		ppc440spe_r6_enabled = 0;
4362	}
4363	return count;
4364}
4365
4366static ssize_t show_ppc440spe_r6poly(struct device_driver *dev, char *buf)
4367{
4368	ssize_t size = 0;
4369	u32 reg;
4370
4371#ifdef CONFIG_440SP
4372	/* 440SP has fixed polynomial */
4373	reg = 0x4d;
4374#else
4375	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4376	reg >>= MQ0_CFBHL_POLY;
4377	reg &= 0xFF;
4378#endif
4379
4380	size = snprintf(buf, PAGE_SIZE, "PPC440SP(e) RAID-6 driver "
4381			"uses 0x1%02x polynomial.\n", reg);
4382	return size;
4383}
4384
4385static ssize_t store_ppc440spe_r6poly(struct device_driver *dev,
4386				      const char *buf, size_t count)
4387{
4388	unsigned long reg, val;
4389
4390#ifdef CONFIG_440SP
4391	/* 440SP uses default 0x14D polynomial only */
4392	return -EINVAL;
4393#endif
4394
4395	if (!count || count > 6)
4396		return -EINVAL;
4397
4398	/* e.g., 0x14D or 0x11D */
4399	sscanf(buf, "%lx", &val);
4400
4401	if (val & ~0x1FF)
4402		return -EINVAL;
4403
4404	val &= 0xFF;
4405	reg = dcr_read(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL);
4406	reg &= ~(0xFF << MQ0_CFBHL_POLY);
4407	reg |= val << MQ0_CFBHL_POLY;
4408	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL, reg);
4409
4410	return count;
4411}
4412
4413static DRIVER_ATTR(devices, S_IRUGO, show_ppc440spe_devices, NULL);
4414static DRIVER_ATTR(enable, S_IRUGO | S_IWUSR, show_ppc440spe_r6enable,
4415		   store_ppc440spe_r6enable);
4416static DRIVER_ATTR(poly, S_IRUGO | S_IWUSR, show_ppc440spe_r6poly,
4417		   store_ppc440spe_r6poly);
4418
4419/*
4420 * Common initialisation for RAID engines; allocate memory for
4421 * DMAx FIFOs, perform configuration common for all DMA engines.
4422 * Further DMA engine specific configuration is done at probe time.
4423 */
4424static int ppc440spe_configure_raid_devices(void)
4425{
4426	struct device_node *np;
4427	struct resource i2o_res;
4428	struct i2o_regs __iomem *i2o_reg;
4429	dcr_host_t i2o_dcr_host;
4430	unsigned int dcr_base, dcr_len;
4431	int i, ret;
4432
4433	np = of_find_compatible_node(NULL, NULL, "ibm,i2o-440spe");
4434	if (!np) {
4435		pr_err("%s: can't find I2O device tree node\n",
4436			__func__);
4437		return -ENODEV;
4438	}
4439
4440	if (of_address_to_resource(np, 0, &i2o_res)) {
4441		of_node_put(np);
4442		return -EINVAL;
4443	}
4444
4445	i2o_reg = of_iomap(np, 0);
4446	if (!i2o_reg) {
4447		pr_err("%s: failed to map I2O registers\n", __func__);
4448		of_node_put(np);
4449		return -EINVAL;
4450	}
4451
4452	/* Get I2O DCRs base */
4453	dcr_base = dcr_resource_start(np, 0);
4454	dcr_len = dcr_resource_len(np, 0);
4455	if (!dcr_base && !dcr_len) {
4456		pr_err("%s: can't get DCR registers base/len!\n",
4457			np->full_name);
4458		of_node_put(np);
4459		iounmap(i2o_reg);
4460		return -ENODEV;
4461	}
4462
4463	i2o_dcr_host = dcr_map(np, dcr_base, dcr_len);
4464	if (!DCR_MAP_OK(i2o_dcr_host)) {
4465		pr_err("%s: failed to map DCRs!\n", np->full_name);
4466		of_node_put(np);
4467		iounmap(i2o_reg);
4468		return -ENODEV;
4469	}
4470	of_node_put(np);
4471
4472	/* Provide memory regions for DMA's FIFOs: I2O, DMA0 and DMA1 share
4473	 * the base address of FIFO memory space.
4474	 * Actually we need twice more physical memory than programmed in the
4475	 * <fsiz> register (because there are two FIFOs for each DMA: CP and CS)
4476	 */
4477	ppc440spe_dma_fifo_buf = kmalloc((DMA0_FIFO_SIZE + DMA1_FIFO_SIZE) << 1,
4478					 GFP_KERNEL);
4479	if (!ppc440spe_dma_fifo_buf) {
4480		pr_err("%s: DMA FIFO buffer allocation failed.\n", __func__);
4481		iounmap(i2o_reg);
4482		dcr_unmap(i2o_dcr_host, dcr_len);
4483		return -ENOMEM;
4484	}
4485
4486	/*
4487	 * Configure h/w
4488	 */
4489	/* Reset I2O/DMA */
4490	mtdcri(SDR0, DCRN_SDR0_SRST, DCRN_SDR0_SRST_I2ODMA);
4491	mtdcri(SDR0, DCRN_SDR0_SRST, 0);
4492
4493	/* Setup the base address of mmaped registers */
4494	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAH, (u32)(i2o_res.start >> 32));
4495	dcr_write(i2o_dcr_host, DCRN_I2O0_IBAL, (u32)(i2o_res.start) |
4496						I2O_REG_ENABLE);
4497	dcr_unmap(i2o_dcr_host, dcr_len);
4498
4499	/* Setup FIFO memory space base address */
4500	iowrite32(0, &i2o_reg->ifbah);
4501	iowrite32(((u32)__pa(ppc440spe_dma_fifo_buf)), &i2o_reg->ifbal);
4502
4503	/* set zero FIFO size for I2O, so the whole
4504	 * ppc440spe_dma_fifo_buf is used by DMAs.
4505	 * DMAx_FIFOs will be configured while probe.
4506	 */
4507	iowrite32(0, &i2o_reg->ifsiz);
4508	iounmap(i2o_reg);
4509
4510	/* To prepare WXOR/RXOR functionality we need access to
4511	 * Memory Queue Module DCRs (finally it will be enabled
4512	 * via /sys interface of the ppc440spe ADMA driver).
4513	 */
4514	np = of_find_compatible_node(NULL, NULL, "ibm,mq-440spe");
4515	if (!np) {
4516		pr_err("%s: can't find MQ device tree node\n",
4517			__func__);
4518		ret = -ENODEV;
4519		goto out_free;
4520	}
4521
4522	/* Get MQ DCRs base */
4523	dcr_base = dcr_resource_start(np, 0);
4524	dcr_len = dcr_resource_len(np, 0);
4525	if (!dcr_base && !dcr_len) {
4526		pr_err("%s: can't get DCR registers base/len!\n",
4527			np->full_name);
4528		ret = -ENODEV;
4529		goto out_mq;
4530	}
4531
4532	ppc440spe_mq_dcr_host = dcr_map(np, dcr_base, dcr_len);
4533	if (!DCR_MAP_OK(ppc440spe_mq_dcr_host)) {
4534		pr_err("%s: failed to map DCRs!\n", np->full_name);
4535		ret = -ENODEV;
4536		goto out_mq;
4537	}
4538	of_node_put(np);
4539	ppc440spe_mq_dcr_len = dcr_len;
4540
4541	/* Set HB alias */
4542	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_BAUH, DMA_CUED_XOR_HB);
4543
4544	/* Set:
4545	 * - LL transaction passing limit to 1;
4546	 * - Memory controller cycle limit to 1;
4547	 * - Galois Polynomial to 0x14d (default)
4548	 */
4549	dcr_write(ppc440spe_mq_dcr_host, DCRN_MQ0_CFBHL,
4550		  (1 << MQ0_CFBHL_TPLM) | (1 << MQ0_CFBHL_HBCL) |
4551		  (PPC440SPE_DEFAULT_POLY << MQ0_CFBHL_POLY));
4552
4553	atomic_set(&ppc440spe_adma_err_irq_ref, 0);
4554	for (i = 0; i < PPC440SPE_ADMA_ENGINES_NUM; i++)
4555		ppc440spe_adma_devices[i] = -1;
4556
4557	return 0;
4558
4559out_mq:
4560	of_node_put(np);
4561out_free:
4562	kfree(ppc440spe_dma_fifo_buf);
4563	return ret;
4564}
4565
4566static const struct of_device_id ppc440spe_adma_of_match[] = {
4567	{ .compatible	= "ibm,dma-440spe", },
4568	{ .compatible	= "amcc,xor-accelerator", },
4569	{},
4570};
4571MODULE_DEVICE_TABLE(of, ppc440spe_adma_of_match);
4572
4573static struct platform_driver ppc440spe_adma_driver = {
4574	.probe = ppc440spe_adma_probe,
4575	.remove = ppc440spe_adma_remove,
4576	.driver = {
4577		.name = "PPC440SP(E)-ADMA",
4578		.of_match_table = ppc440spe_adma_of_match,
4579	},
4580};
4581
4582static __init int ppc440spe_adma_init(void)
4583{
4584	int ret;
4585
4586	ret = ppc440spe_configure_raid_devices();
4587	if (ret)
4588		return ret;
4589
4590	ret = platform_driver_register(&ppc440spe_adma_driver);
4591	if (ret) {
4592		pr_err("%s: failed to register platform driver\n",
4593			__func__);
4594		goto out_reg;
4595	}
4596
4597	/* Initialization status */
4598	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4599				 &driver_attr_devices);
4600	if (ret)
4601		goto out_dev;
4602
4603	/* RAID-6 h/w enable entry */
4604	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4605				 &driver_attr_enable);
4606	if (ret)
4607		goto out_en;
4608
4609	/* GF polynomial to use */
4610	ret = driver_create_file(&ppc440spe_adma_driver.driver,
4611				 &driver_attr_poly);
4612	if (!ret)
4613		return ret;
4614
4615	driver_remove_file(&ppc440spe_adma_driver.driver,
4616			   &driver_attr_enable);
4617out_en:
4618	driver_remove_file(&ppc440spe_adma_driver.driver,
4619			   &driver_attr_devices);
4620out_dev:
4621	/* User will not be able to enable h/w RAID-6 */
4622	pr_err("%s: failed to create RAID-6 driver interface\n",
4623		__func__);
4624	platform_driver_unregister(&ppc440spe_adma_driver);
4625out_reg:
4626	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4627	kfree(ppc440spe_dma_fifo_buf);
4628	return ret;
4629}
4630
4631static void __exit ppc440spe_adma_exit(void)
4632{
4633	driver_remove_file(&ppc440spe_adma_driver.driver,
4634			   &driver_attr_poly);
4635	driver_remove_file(&ppc440spe_adma_driver.driver,
4636			   &driver_attr_enable);
4637	driver_remove_file(&ppc440spe_adma_driver.driver,
4638			   &driver_attr_devices);
4639	platform_driver_unregister(&ppc440spe_adma_driver);
4640	dcr_unmap(ppc440spe_mq_dcr_host, ppc440spe_mq_dcr_len);
4641	kfree(ppc440spe_dma_fifo_buf);
4642}
4643
4644arch_initcall(ppc440spe_adma_init);
4645module_exit(ppc440spe_adma_exit);
4646
4647MODULE_AUTHOR("Yuri Tikhonov <yur@emcraft.com>");
4648MODULE_DESCRIPTION("PPC440SPE ADMA Engine Driver");
4649MODULE_LICENSE("GPL");
4650