1/*
2 * S3C24XX DMA handling
3 *
4 * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
5 *
6 * based on amba-pl08x.c
7 *
8 * Copyright (c) 2006 ARM Ltd.
9 * Copyright (c) 2010 ST-Ericsson SA
10 *
11 * Author: Peter Pearse <peter.pearse@arm.com>
12 * Author: Linus Walleij <linus.walleij@stericsson.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the Free
16 * Software Foundation; either version 2 of the License, or (at your option)
17 * any later version.
18 *
19 * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
20 * that can be routed to any of the 4 to 8 hardware-channels.
21 *
22 * Therefore on these DMA controllers the number of channels
23 * and the number of incoming DMA signals are two totally different things.
24 * It is usually not possible to theoretically handle all physical signals,
25 * so a multiplexing scheme with possible denial of use is necessary.
26 *
27 * Open items:
28 * - bursts
29 */
30
31#include <linux/platform_device.h>
32#include <linux/types.h>
33#include <linux/dmaengine.h>
34#include <linux/dma-mapping.h>
35#include <linux/interrupt.h>
36#include <linux/clk.h>
37#include <linux/module.h>
38#include <linux/slab.h>
39#include <linux/platform_data/dma-s3c24xx.h>
40
41#include "dmaengine.h"
42#include "virt-dma.h"
43
44#define MAX_DMA_CHANNELS	8
45
46#define S3C24XX_DISRC			0x00
47#define S3C24XX_DISRCC			0x04
48#define S3C24XX_DISRCC_INC_INCREMENT	0
49#define S3C24XX_DISRCC_INC_FIXED	BIT(0)
50#define S3C24XX_DISRCC_LOC_AHB		0
51#define S3C24XX_DISRCC_LOC_APB		BIT(1)
52
53#define S3C24XX_DIDST			0x08
54#define S3C24XX_DIDSTC			0x0c
55#define S3C24XX_DIDSTC_INC_INCREMENT	0
56#define S3C24XX_DIDSTC_INC_FIXED	BIT(0)
57#define S3C24XX_DIDSTC_LOC_AHB		0
58#define S3C24XX_DIDSTC_LOC_APB		BIT(1)
59#define S3C24XX_DIDSTC_INT_TC0		0
60#define S3C24XX_DIDSTC_INT_RELOAD	BIT(2)
61
62#define S3C24XX_DCON			0x10
63
64#define S3C24XX_DCON_TC_MASK		0xfffff
65#define S3C24XX_DCON_DSZ_BYTE		(0 << 20)
66#define S3C24XX_DCON_DSZ_HALFWORD	(1 << 20)
67#define S3C24XX_DCON_DSZ_WORD		(2 << 20)
68#define S3C24XX_DCON_DSZ_MASK		(3 << 20)
69#define S3C24XX_DCON_DSZ_SHIFT		20
70#define S3C24XX_DCON_AUTORELOAD		0
71#define S3C24XX_DCON_NORELOAD		BIT(22)
72#define S3C24XX_DCON_HWTRIG		BIT(23)
73#define S3C24XX_DCON_HWSRC_SHIFT	24
74#define S3C24XX_DCON_SERV_SINGLE	0
75#define S3C24XX_DCON_SERV_WHOLE		BIT(27)
76#define S3C24XX_DCON_TSZ_UNIT		0
77#define S3C24XX_DCON_TSZ_BURST4		BIT(28)
78#define S3C24XX_DCON_INT		BIT(29)
79#define S3C24XX_DCON_SYNC_PCLK		0
80#define S3C24XX_DCON_SYNC_HCLK		BIT(30)
81#define S3C24XX_DCON_DEMAND		0
82#define S3C24XX_DCON_HANDSHAKE		BIT(31)
83
84#define S3C24XX_DSTAT			0x14
85#define S3C24XX_DSTAT_STAT_BUSY		BIT(20)
86#define S3C24XX_DSTAT_CURRTC_MASK	0xfffff
87
88#define S3C24XX_DMASKTRIG		0x20
89#define S3C24XX_DMASKTRIG_SWTRIG	BIT(0)
90#define S3C24XX_DMASKTRIG_ON		BIT(1)
91#define S3C24XX_DMASKTRIG_STOP		BIT(2)
92
93#define S3C24XX_DMAREQSEL		0x24
94#define S3C24XX_DMAREQSEL_HW		BIT(0)
95
96/*
97 * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
98 * for a DMA source. Instead only specific channels are valid.
99 * All of these SoCs have 4 physical channels and the number of request
100 * source bits is 3. Additionally we also need 1 bit to mark the channel
101 * as valid.
102 * Therefore we separate the chansel element of the channel data into 4
103 * parts of 4 bits each, to hold the information if the channel is valid
104 * and the hw request source to use.
105 *
106 * Example:
107 * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
108 * For it the chansel field would look like
109 *
110 * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
111 * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
112 * ((BIT(3) | 2) << 0 * 4)   // channel 0, with request source 2
113 */
114#define S3C24XX_CHANSEL_WIDTH		4
115#define S3C24XX_CHANSEL_VALID		BIT(3)
116#define S3C24XX_CHANSEL_REQ_MASK	7
117
118/*
119 * struct soc_data - vendor-specific config parameters for individual SoCs
120 * @stride: spacing between the registers of each channel
121 * @has_reqsel: does the controller use the newer requestselection mechanism
122 * @has_clocks: are controllable dma-clocks present
123 */
124struct soc_data {
125	int stride;
126	bool has_reqsel;
127	bool has_clocks;
128};
129
130/*
131 * enum s3c24xx_dma_chan_state - holds the virtual channel states
132 * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
133 * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
134 * channel and is running a transfer on it
135 * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
136 * channel to become available (only pertains to memcpy channels)
137 */
138enum s3c24xx_dma_chan_state {
139	S3C24XX_DMA_CHAN_IDLE,
140	S3C24XX_DMA_CHAN_RUNNING,
141	S3C24XX_DMA_CHAN_WAITING,
142};
143
144/*
145 * struct s3c24xx_sg - structure containing data per sg
146 * @src_addr: src address of sg
147 * @dst_addr: dst address of sg
148 * @len: transfer len in bytes
149 * @node: node for txd's dsg_list
150 */
151struct s3c24xx_sg {
152	dma_addr_t src_addr;
153	dma_addr_t dst_addr;
154	size_t len;
155	struct list_head node;
156};
157
158/*
159 * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
160 * @vd: virtual DMA descriptor
161 * @dsg_list: list of children sg's
162 * @at: sg currently being transfered
163 * @width: transfer width
164 * @disrcc: value for source control register
165 * @didstc: value for destination control register
166 * @dcon: base value for dcon register
167 * @cyclic: indicate cyclic transfer
168 */
169struct s3c24xx_txd {
170	struct virt_dma_desc vd;
171	struct list_head dsg_list;
172	struct list_head *at;
173	u8 width;
174	u32 disrcc;
175	u32 didstc;
176	u32 dcon;
177	bool cyclic;
178};
179
180struct s3c24xx_dma_chan;
181
182/*
183 * struct s3c24xx_dma_phy - holder for the physical channels
184 * @id: physical index to this channel
185 * @valid: does the channel have all required elements
186 * @base: virtual memory base (remapped) for the this channel
187 * @irq: interrupt for this channel
188 * @clk: clock for this channel
189 * @lock: a lock to use when altering an instance of this struct
190 * @serving: virtual channel currently being served by this physicalchannel
191 * @host: a pointer to the host (internal use)
192 */
193struct s3c24xx_dma_phy {
194	unsigned int			id;
195	bool				valid;
196	void __iomem			*base;
197	int				irq;
198	struct clk			*clk;
199	spinlock_t			lock;
200	struct s3c24xx_dma_chan		*serving;
201	struct s3c24xx_dma_engine	*host;
202};
203
204/*
205 * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
206 * @id: the id of the channel
207 * @name: name of the channel
208 * @vc: wrappped virtual channel
209 * @phy: the physical channel utilized by this channel, if there is one
210 * @runtime_addr: address for RX/TX according to the runtime config
211 * @at: active transaction on this channel
212 * @lock: a lock for this channel data
213 * @host: a pointer to the host (internal use)
214 * @state: whether the channel is idle, running etc
215 * @slave: whether this channel is a device (slave) or for memcpy
216 */
217struct s3c24xx_dma_chan {
218	int id;
219	const char *name;
220	struct virt_dma_chan vc;
221	struct s3c24xx_dma_phy *phy;
222	struct dma_slave_config cfg;
223	struct s3c24xx_txd *at;
224	struct s3c24xx_dma_engine *host;
225	enum s3c24xx_dma_chan_state state;
226	bool slave;
227};
228
229/*
230 * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
231 * @pdev: the corresponding platform device
232 * @pdata: platform data passed in from the platform/machine
233 * @base: virtual memory base (remapped)
234 * @slave: slave engine for this instance
235 * @memcpy: memcpy engine for this instance
236 * @phy_chans: array of data for the physical channels
237 */
238struct s3c24xx_dma_engine {
239	struct platform_device			*pdev;
240	const struct s3c24xx_dma_platdata	*pdata;
241	struct soc_data				*sdata;
242	void __iomem				*base;
243	struct dma_device			slave;
244	struct dma_device			memcpy;
245	struct s3c24xx_dma_phy			*phy_chans;
246};
247
248/*
249 * Physical channel handling
250 */
251
252/*
253 * Check whether a certain channel is busy or not.
254 */
255static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
256{
257	unsigned int val = readl(phy->base + S3C24XX_DSTAT);
258	return val & S3C24XX_DSTAT_STAT_BUSY;
259}
260
261static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
262				  struct s3c24xx_dma_phy *phy)
263{
264	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
265	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
266	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
267	int phyvalid;
268
269	/* every phy is valid for memcopy channels */
270	if (!s3cchan->slave)
271		return true;
272
273	/* On newer variants all phys can be used for all virtual channels */
274	if (s3cdma->sdata->has_reqsel)
275		return true;
276
277	phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
278	return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
279}
280
281/*
282 * Allocate a physical channel for a virtual channel
283 *
284 * Try to locate a physical channel to be used for this transfer. If all
285 * are taken return NULL and the requester will have to cope by using
286 * some fallback PIO mode or retrying later.
287 */
288static
289struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
290{
291	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
292	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
293	struct s3c24xx_dma_channel *cdata;
294	struct s3c24xx_dma_phy *phy = NULL;
295	unsigned long flags;
296	int i;
297	int ret;
298
299	if (s3cchan->slave)
300		cdata = &pdata->channels[s3cchan->id];
301
302	for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
303		phy = &s3cdma->phy_chans[i];
304
305		if (!phy->valid)
306			continue;
307
308		if (!s3c24xx_dma_phy_valid(s3cchan, phy))
309			continue;
310
311		spin_lock_irqsave(&phy->lock, flags);
312
313		if (!phy->serving) {
314			phy->serving = s3cchan;
315			spin_unlock_irqrestore(&phy->lock, flags);
316			break;
317		}
318
319		spin_unlock_irqrestore(&phy->lock, flags);
320	}
321
322	/* No physical channel available, cope with it */
323	if (i == s3cdma->pdata->num_phy_channels) {
324		dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
325		return NULL;
326	}
327
328	/* start the phy clock */
329	if (s3cdma->sdata->has_clocks) {
330		ret = clk_enable(phy->clk);
331		if (ret) {
332			dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
333				phy->id, ret);
334			phy->serving = NULL;
335			return NULL;
336		}
337	}
338
339	return phy;
340}
341
342/*
343 * Mark the physical channel as free.
344 *
345 * This drops the link between the physical and virtual channel.
346 */
347static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
348{
349	struct s3c24xx_dma_engine *s3cdma = phy->host;
350
351	if (s3cdma->sdata->has_clocks)
352		clk_disable(phy->clk);
353
354	phy->serving = NULL;
355}
356
357/*
358 * Stops the channel by writing the stop bit.
359 * This should not be used for an on-going transfer, but as a method of
360 * shutting down a channel (eg, when it's no longer used) or terminating a
361 * transfer.
362 */
363static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
364{
365	writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
366}
367
368/*
369 * Virtual channel handling
370 */
371
372static inline
373struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
374{
375	return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
376}
377
378static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
379{
380	struct s3c24xx_dma_phy *phy = s3cchan->phy;
381	struct s3c24xx_txd *txd = s3cchan->at;
382	u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
383
384	return tc * txd->width;
385}
386
387static int s3c24xx_dma_set_runtime_config(struct dma_chan *chan,
388				  struct dma_slave_config *config)
389{
390	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
391	unsigned long flags;
392	int ret = 0;
393
394	/* Reject definitely invalid configurations */
395	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
396	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
397		return -EINVAL;
398
399	spin_lock_irqsave(&s3cchan->vc.lock, flags);
400
401	if (!s3cchan->slave) {
402		ret = -EINVAL;
403		goto out;
404	}
405
406	s3cchan->cfg = *config;
407
408out:
409	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
410	return ret;
411}
412
413/*
414 * Transfer handling
415 */
416
417static inline
418struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
419{
420	return container_of(tx, struct s3c24xx_txd, vd.tx);
421}
422
423static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
424{
425	struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
426
427	if (txd) {
428		INIT_LIST_HEAD(&txd->dsg_list);
429		txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
430	}
431
432	return txd;
433}
434
435static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
436{
437	struct s3c24xx_sg *dsg, *_dsg;
438
439	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
440		list_del(&dsg->node);
441		kfree(dsg);
442	}
443
444	kfree(txd);
445}
446
447static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
448				       struct s3c24xx_txd *txd)
449{
450	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
451	struct s3c24xx_dma_phy *phy = s3cchan->phy;
452	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
453	struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
454	u32 dcon = txd->dcon;
455	u32 val;
456
457	/* transfer-size and -count from len and width */
458	switch (txd->width) {
459	case 1:
460		dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
461		break;
462	case 2:
463		dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
464		break;
465	case 4:
466		dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
467		break;
468	}
469
470	if (s3cchan->slave) {
471		struct s3c24xx_dma_channel *cdata =
472					&pdata->channels[s3cchan->id];
473
474		if (s3cdma->sdata->has_reqsel) {
475			writel_relaxed((cdata->chansel << 1) |
476							S3C24XX_DMAREQSEL_HW,
477					phy->base + S3C24XX_DMAREQSEL);
478		} else {
479			int csel = cdata->chansel >> (phy->id *
480							S3C24XX_CHANSEL_WIDTH);
481
482			csel &= S3C24XX_CHANSEL_REQ_MASK;
483			dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
484			dcon |= S3C24XX_DCON_HWTRIG;
485		}
486	} else {
487		if (s3cdma->sdata->has_reqsel)
488			writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
489	}
490
491	writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
492	writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
493	writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
494	writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
495	writel_relaxed(dcon, phy->base + S3C24XX_DCON);
496
497	val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
498	val &= ~S3C24XX_DMASKTRIG_STOP;
499	val |= S3C24XX_DMASKTRIG_ON;
500
501	/* trigger the dma operation for memcpy transfers */
502	if (!s3cchan->slave)
503		val |= S3C24XX_DMASKTRIG_SWTRIG;
504
505	writel(val, phy->base + S3C24XX_DMASKTRIG);
506}
507
508/*
509 * Set the initial DMA register values and start first sg.
510 */
511static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
512{
513	struct s3c24xx_dma_phy *phy = s3cchan->phy;
514	struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
515	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
516
517	list_del(&txd->vd.node);
518
519	s3cchan->at = txd;
520
521	/* Wait for channel inactive */
522	while (s3c24xx_dma_phy_busy(phy))
523		cpu_relax();
524
525	/* point to the first element of the sg list */
526	txd->at = txd->dsg_list.next;
527	s3c24xx_dma_start_next_sg(s3cchan, txd);
528}
529
530static void s3c24xx_dma_free_txd_list(struct s3c24xx_dma_engine *s3cdma,
531				struct s3c24xx_dma_chan *s3cchan)
532{
533	LIST_HEAD(head);
534
535	vchan_get_all_descriptors(&s3cchan->vc, &head);
536	vchan_dma_desc_free_list(&s3cchan->vc, &head);
537}
538
539/*
540 * Try to allocate a physical channel.  When successful, assign it to
541 * this virtual channel, and initiate the next descriptor.  The
542 * virtual channel lock must be held at this point.
543 */
544static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
545{
546	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
547	struct s3c24xx_dma_phy *phy;
548
549	phy = s3c24xx_dma_get_phy(s3cchan);
550	if (!phy) {
551		dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
552			s3cchan->name);
553		s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
554		return;
555	}
556
557	dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
558		phy->id, s3cchan->name);
559
560	s3cchan->phy = phy;
561	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
562
563	s3c24xx_dma_start_next_txd(s3cchan);
564}
565
566static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
567	struct s3c24xx_dma_chan *s3cchan)
568{
569	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
570
571	dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
572		phy->id, s3cchan->name);
573
574	/*
575	 * We do this without taking the lock; we're really only concerned
576	 * about whether this pointer is NULL or not, and we're guaranteed
577	 * that this will only be called when it _already_ is non-NULL.
578	 */
579	phy->serving = s3cchan;
580	s3cchan->phy = phy;
581	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
582	s3c24xx_dma_start_next_txd(s3cchan);
583}
584
585/*
586 * Free a physical DMA channel, potentially reallocating it to another
587 * virtual channel if we have any pending.
588 */
589static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
590{
591	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
592	struct s3c24xx_dma_chan *p, *next;
593
594retry:
595	next = NULL;
596
597	/* Find a waiting virtual channel for the next transfer. */
598	list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
599		if (p->state == S3C24XX_DMA_CHAN_WAITING) {
600			next = p;
601			break;
602		}
603
604	if (!next) {
605		list_for_each_entry(p, &s3cdma->slave.channels,
606				    vc.chan.device_node)
607			if (p->state == S3C24XX_DMA_CHAN_WAITING &&
608				      s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
609				next = p;
610				break;
611			}
612	}
613
614	/* Ensure that the physical channel is stopped */
615	s3c24xx_dma_terminate_phy(s3cchan->phy);
616
617	if (next) {
618		bool success;
619
620		/*
621		 * Eww.  We know this isn't going to deadlock
622		 * but lockdep probably doesn't.
623		 */
624		spin_lock(&next->vc.lock);
625		/* Re-check the state now that we have the lock */
626		success = next->state == S3C24XX_DMA_CHAN_WAITING;
627		if (success)
628			s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
629		spin_unlock(&next->vc.lock);
630
631		/* If the state changed, try to find another channel */
632		if (!success)
633			goto retry;
634	} else {
635		/* No more jobs, so free up the physical channel */
636		s3c24xx_dma_put_phy(s3cchan->phy);
637	}
638
639	s3cchan->phy = NULL;
640	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
641}
642
643static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
644{
645	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
646	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
647
648	if (!s3cchan->slave)
649		dma_descriptor_unmap(&vd->tx);
650
651	s3c24xx_dma_free_txd(txd);
652}
653
654static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
655{
656	struct s3c24xx_dma_phy *phy = data;
657	struct s3c24xx_dma_chan *s3cchan = phy->serving;
658	struct s3c24xx_txd *txd;
659
660	dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
661
662	/*
663	 * Interrupts happen to notify the completion of a transfer and the
664	 * channel should have moved into its stop state already on its own.
665	 * Therefore interrupts on channels not bound to a virtual channel
666	 * should never happen. Nevertheless send a terminate command to the
667	 * channel if the unlikely case happens.
668	 */
669	if (unlikely(!s3cchan)) {
670		dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
671			phy->id);
672
673		s3c24xx_dma_terminate_phy(phy);
674
675		return IRQ_HANDLED;
676	}
677
678	spin_lock(&s3cchan->vc.lock);
679	txd = s3cchan->at;
680	if (txd) {
681		/* when more sg's are in this txd, start the next one */
682		if (!list_is_last(txd->at, &txd->dsg_list)) {
683			txd->at = txd->at->next;
684			if (txd->cyclic)
685				vchan_cyclic_callback(&txd->vd);
686			s3c24xx_dma_start_next_sg(s3cchan, txd);
687		} else if (!txd->cyclic) {
688			s3cchan->at = NULL;
689			vchan_cookie_complete(&txd->vd);
690
691			/*
692			 * And start the next descriptor (if any),
693			 * otherwise free this channel.
694			 */
695			if (vchan_next_desc(&s3cchan->vc))
696				s3c24xx_dma_start_next_txd(s3cchan);
697			else
698				s3c24xx_dma_phy_free(s3cchan);
699		} else {
700			vchan_cyclic_callback(&txd->vd);
701
702			/* Cyclic: reset at beginning */
703			txd->at = txd->dsg_list.next;
704			s3c24xx_dma_start_next_sg(s3cchan, txd);
705		}
706	}
707	spin_unlock(&s3cchan->vc.lock);
708
709	return IRQ_HANDLED;
710}
711
712/*
713 * The DMA ENGINE API
714 */
715
716static int s3c24xx_dma_terminate_all(struct dma_chan *chan)
717{
718	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
719	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
720	unsigned long flags;
721	int ret = 0;
722
723	spin_lock_irqsave(&s3cchan->vc.lock, flags);
724
725	if (!s3cchan->phy && !s3cchan->at) {
726		dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
727			s3cchan->id);
728		ret = -EINVAL;
729		goto unlock;
730	}
731
732	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
733
734	/* Mark physical channel as free */
735	if (s3cchan->phy)
736		s3c24xx_dma_phy_free(s3cchan);
737
738	/* Dequeue current job */
739	if (s3cchan->at) {
740		s3c24xx_dma_desc_free(&s3cchan->at->vd);
741		s3cchan->at = NULL;
742	}
743
744	/* Dequeue jobs not yet fired as well */
745	s3c24xx_dma_free_txd_list(s3cdma, s3cchan);
746unlock:
747	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
748
749	return ret;
750}
751
752static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
753{
754	/* Ensure all queued descriptors are freed */
755	vchan_free_chan_resources(to_virt_chan(chan));
756}
757
758static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
759		dma_cookie_t cookie, struct dma_tx_state *txstate)
760{
761	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
762	struct s3c24xx_txd *txd;
763	struct s3c24xx_sg *dsg;
764	struct virt_dma_desc *vd;
765	unsigned long flags;
766	enum dma_status ret;
767	size_t bytes = 0;
768
769	spin_lock_irqsave(&s3cchan->vc.lock, flags);
770	ret = dma_cookie_status(chan, cookie, txstate);
771	if (ret == DMA_COMPLETE) {
772		spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
773		return ret;
774	}
775
776	/*
777	 * There's no point calculating the residue if there's
778	 * no txstate to store the value.
779	 */
780	if (!txstate) {
781		spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
782		return ret;
783	}
784
785	vd = vchan_find_desc(&s3cchan->vc, cookie);
786	if (vd) {
787		/* On the issued list, so hasn't been processed yet */
788		txd = to_s3c24xx_txd(&vd->tx);
789
790		list_for_each_entry(dsg, &txd->dsg_list, node)
791			bytes += dsg->len;
792	} else {
793		/*
794		 * Currently running, so sum over the pending sg's and
795		 * the currently active one.
796		 */
797		txd = s3cchan->at;
798
799		dsg = list_entry(txd->at, struct s3c24xx_sg, node);
800		list_for_each_entry_from(dsg, &txd->dsg_list, node)
801			bytes += dsg->len;
802
803		bytes += s3c24xx_dma_getbytes_chan(s3cchan);
804	}
805	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
806
807	/*
808	 * This cookie not complete yet
809	 * Get number of bytes left in the active transactions and queue
810	 */
811	dma_set_residue(txstate, bytes);
812
813	/* Whether waiting or running, we're in progress */
814	return ret;
815}
816
817/*
818 * Initialize a descriptor to be used by memcpy submit
819 */
820static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
821		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
822		size_t len, unsigned long flags)
823{
824	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
825	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
826	struct s3c24xx_txd *txd;
827	struct s3c24xx_sg *dsg;
828	int src_mod, dest_mod;
829
830	dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %d bytes from %s\n",
831			len, s3cchan->name);
832
833	if ((len & S3C24XX_DCON_TC_MASK) != len) {
834		dev_err(&s3cdma->pdev->dev, "memcpy size %d to large\n", len);
835		return NULL;
836	}
837
838	txd = s3c24xx_dma_get_txd();
839	if (!txd)
840		return NULL;
841
842	dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
843	if (!dsg) {
844		s3c24xx_dma_free_txd(txd);
845		return NULL;
846	}
847	list_add_tail(&dsg->node, &txd->dsg_list);
848
849	dsg->src_addr = src;
850	dsg->dst_addr = dest;
851	dsg->len = len;
852
853	/*
854	 * Determine a suitable transfer width.
855	 * The DMA controller cannot fetch/store information which is not
856	 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
857	 * an address divisible by 4 - more generally addr % width must be 0.
858	 */
859	src_mod = src % 4;
860	dest_mod = dest % 4;
861	switch (len % 4) {
862	case 0:
863		txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
864		break;
865	case 2:
866		txd->width = ((src_mod == 2 || src_mod == 0) &&
867			      (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
868		break;
869	default:
870		txd->width = 1;
871		break;
872	}
873
874	txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
875	txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
876	txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
877		     S3C24XX_DCON_SERV_WHOLE;
878
879	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
880}
881
882static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
883	struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
884	enum dma_transfer_direction direction, unsigned long flags)
885{
886	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
887	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
888	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
889	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
890	struct s3c24xx_txd *txd;
891	struct s3c24xx_sg *dsg;
892	unsigned sg_len;
893	dma_addr_t slave_addr;
894	u32 hwcfg = 0;
895	int i;
896
897	dev_dbg(&s3cdma->pdev->dev,
898		"prepare cyclic transaction of %zu bytes with period %zu from %s\n",
899		size, period, s3cchan->name);
900
901	if (!is_slave_direction(direction)) {
902		dev_err(&s3cdma->pdev->dev,
903			"direction %d unsupported\n", direction);
904		return NULL;
905	}
906
907	txd = s3c24xx_dma_get_txd();
908	if (!txd)
909		return NULL;
910
911	txd->cyclic = 1;
912
913	if (cdata->handshake)
914		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
915
916	switch (cdata->bus) {
917	case S3C24XX_DMA_APB:
918		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
919		hwcfg |= S3C24XX_DISRCC_LOC_APB;
920		break;
921	case S3C24XX_DMA_AHB:
922		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
923		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
924		break;
925	}
926
927	/*
928	 * Always assume our peripheral desintation is a fixed
929	 * address in memory.
930	 */
931	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
932
933	/*
934	 * Individual dma operations are requested by the slave,
935	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
936	 */
937	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
938
939	if (direction == DMA_MEM_TO_DEV) {
940		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
941			      S3C24XX_DISRCC_INC_INCREMENT;
942		txd->didstc = hwcfg;
943		slave_addr = s3cchan->cfg.dst_addr;
944		txd->width = s3cchan->cfg.dst_addr_width;
945	} else {
946		txd->disrcc = hwcfg;
947		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
948			      S3C24XX_DIDSTC_INC_INCREMENT;
949		slave_addr = s3cchan->cfg.src_addr;
950		txd->width = s3cchan->cfg.src_addr_width;
951	}
952
953	sg_len = size / period;
954
955	for (i = 0; i < sg_len; i++) {
956		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
957		if (!dsg) {
958			s3c24xx_dma_free_txd(txd);
959			return NULL;
960		}
961		list_add_tail(&dsg->node, &txd->dsg_list);
962
963		dsg->len = period;
964		/* Check last period length */
965		if (i == sg_len - 1)
966			dsg->len = size - period * i;
967		if (direction == DMA_MEM_TO_DEV) {
968			dsg->src_addr = addr + period * i;
969			dsg->dst_addr = slave_addr;
970		} else { /* DMA_DEV_TO_MEM */
971			dsg->src_addr = slave_addr;
972			dsg->dst_addr = addr + period * i;
973		}
974	}
975
976	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
977}
978
979static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
980		struct dma_chan *chan, struct scatterlist *sgl,
981		unsigned int sg_len, enum dma_transfer_direction direction,
982		unsigned long flags, void *context)
983{
984	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
985	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
986	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
987	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
988	struct s3c24xx_txd *txd;
989	struct s3c24xx_sg *dsg;
990	struct scatterlist *sg;
991	dma_addr_t slave_addr;
992	u32 hwcfg = 0;
993	int tmp;
994
995	dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
996			sg_dma_len(sgl), s3cchan->name);
997
998	txd = s3c24xx_dma_get_txd();
999	if (!txd)
1000		return NULL;
1001
1002	if (cdata->handshake)
1003		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
1004
1005	switch (cdata->bus) {
1006	case S3C24XX_DMA_APB:
1007		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
1008		hwcfg |= S3C24XX_DISRCC_LOC_APB;
1009		break;
1010	case S3C24XX_DMA_AHB:
1011		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
1012		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
1013		break;
1014	}
1015
1016	/*
1017	 * Always assume our peripheral desintation is a fixed
1018	 * address in memory.
1019	 */
1020	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
1021
1022	/*
1023	 * Individual dma operations are requested by the slave,
1024	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1025	 */
1026	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
1027
1028	if (direction == DMA_MEM_TO_DEV) {
1029		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
1030			      S3C24XX_DISRCC_INC_INCREMENT;
1031		txd->didstc = hwcfg;
1032		slave_addr = s3cchan->cfg.dst_addr;
1033		txd->width = s3cchan->cfg.dst_addr_width;
1034	} else if (direction == DMA_DEV_TO_MEM) {
1035		txd->disrcc = hwcfg;
1036		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
1037			      S3C24XX_DIDSTC_INC_INCREMENT;
1038		slave_addr = s3cchan->cfg.src_addr;
1039		txd->width = s3cchan->cfg.src_addr_width;
1040	} else {
1041		s3c24xx_dma_free_txd(txd);
1042		dev_err(&s3cdma->pdev->dev,
1043			"direction %d unsupported\n", direction);
1044		return NULL;
1045	}
1046
1047	for_each_sg(sgl, sg, sg_len, tmp) {
1048		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
1049		if (!dsg) {
1050			s3c24xx_dma_free_txd(txd);
1051			return NULL;
1052		}
1053		list_add_tail(&dsg->node, &txd->dsg_list);
1054
1055		dsg->len = sg_dma_len(sg);
1056		if (direction == DMA_MEM_TO_DEV) {
1057			dsg->src_addr = sg_dma_address(sg);
1058			dsg->dst_addr = slave_addr;
1059		} else { /* DMA_DEV_TO_MEM */
1060			dsg->src_addr = slave_addr;
1061			dsg->dst_addr = sg_dma_address(sg);
1062		}
1063	}
1064
1065	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
1066}
1067
1068/*
1069 * Slave transactions callback to the slave device to allow
1070 * synchronization of slave DMA signals with the DMAC enable
1071 */
1072static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
1073{
1074	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
1075	unsigned long flags;
1076
1077	spin_lock_irqsave(&s3cchan->vc.lock, flags);
1078	if (vchan_issue_pending(&s3cchan->vc)) {
1079		if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
1080			s3c24xx_dma_phy_alloc_and_start(s3cchan);
1081	}
1082	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
1083}
1084
1085/*
1086 * Bringup and teardown
1087 */
1088
1089/*
1090 * Initialise the DMAC memcpy/slave channels.
1091 * Make a local wrapper to hold required data
1092 */
1093static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
1094		struct dma_device *dmadev, unsigned int channels, bool slave)
1095{
1096	struct s3c24xx_dma_chan *chan;
1097	int i;
1098
1099	INIT_LIST_HEAD(&dmadev->channels);
1100
1101	/*
1102	 * Register as many many memcpy as we have physical channels,
1103	 * we won't always be able to use all but the code will have
1104	 * to cope with that situation.
1105	 */
1106	for (i = 0; i < channels; i++) {
1107		chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
1108		if (!chan) {
1109			dev_err(dmadev->dev,
1110				"%s no memory for channel\n", __func__);
1111			return -ENOMEM;
1112		}
1113
1114		chan->id = i;
1115		chan->host = s3cdma;
1116		chan->state = S3C24XX_DMA_CHAN_IDLE;
1117
1118		if (slave) {
1119			chan->slave = true;
1120			chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
1121			if (!chan->name)
1122				return -ENOMEM;
1123		} else {
1124			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1125			if (!chan->name)
1126				return -ENOMEM;
1127		}
1128		dev_dbg(dmadev->dev,
1129			 "initialize virtual channel \"%s\"\n",
1130			 chan->name);
1131
1132		chan->vc.desc_free = s3c24xx_dma_desc_free;
1133		vchan_init(&chan->vc, dmadev);
1134	}
1135	dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
1136		 i, slave ? "slave" : "memcpy");
1137	return i;
1138}
1139
1140static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
1141{
1142	struct s3c24xx_dma_chan *chan = NULL;
1143	struct s3c24xx_dma_chan *next;
1144
1145	list_for_each_entry_safe(chan,
1146				 next, &dmadev->channels, vc.chan.device_node)
1147		list_del(&chan->vc.chan.device_node);
1148}
1149
1150/* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1151static struct soc_data soc_s3c2410 = {
1152	.stride = 0x40,
1153	.has_reqsel = false,
1154	.has_clocks = false,
1155};
1156
1157/* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1158static struct soc_data soc_s3c2412 = {
1159	.stride = 0x40,
1160	.has_reqsel = true,
1161	.has_clocks = true,
1162};
1163
1164/* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1165static struct soc_data soc_s3c2443 = {
1166	.stride = 0x100,
1167	.has_reqsel = true,
1168	.has_clocks = true,
1169};
1170
1171static struct platform_device_id s3c24xx_dma_driver_ids[] = {
1172	{
1173		.name		= "s3c2410-dma",
1174		.driver_data	= (kernel_ulong_t)&soc_s3c2410,
1175	}, {
1176		.name		= "s3c2412-dma",
1177		.driver_data	= (kernel_ulong_t)&soc_s3c2412,
1178	}, {
1179		.name		= "s3c2443-dma",
1180		.driver_data	= (kernel_ulong_t)&soc_s3c2443,
1181	},
1182	{ },
1183};
1184
1185static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
1186{
1187	return (struct soc_data *)
1188			 platform_get_device_id(pdev)->driver_data;
1189}
1190
1191static int s3c24xx_dma_probe(struct platform_device *pdev)
1192{
1193	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1194	struct s3c24xx_dma_engine *s3cdma;
1195	struct soc_data *sdata;
1196	struct resource *res;
1197	int ret;
1198	int i;
1199
1200	if (!pdata) {
1201		dev_err(&pdev->dev, "platform data missing\n");
1202		return -ENODEV;
1203	}
1204
1205	/* Basic sanity check */
1206	if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
1207		dev_err(&pdev->dev, "to many dma channels %d, max %d\n",
1208			pdata->num_phy_channels, MAX_DMA_CHANNELS);
1209		return -EINVAL;
1210	}
1211
1212	sdata = s3c24xx_dma_get_soc_data(pdev);
1213	if (!sdata)
1214		return -EINVAL;
1215
1216	s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
1217	if (!s3cdma)
1218		return -ENOMEM;
1219
1220	s3cdma->pdev = pdev;
1221	s3cdma->pdata = pdata;
1222	s3cdma->sdata = sdata;
1223
1224	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1225	s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
1226	if (IS_ERR(s3cdma->base))
1227		return PTR_ERR(s3cdma->base);
1228
1229	s3cdma->phy_chans = devm_kzalloc(&pdev->dev,
1230					      sizeof(struct s3c24xx_dma_phy) *
1231							pdata->num_phy_channels,
1232					      GFP_KERNEL);
1233	if (!s3cdma->phy_chans)
1234		return -ENOMEM;
1235
1236	/* acquire irqs and clocks for all physical channels */
1237	for (i = 0; i < pdata->num_phy_channels; i++) {
1238		struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1239		char clk_name[6];
1240
1241		phy->id = i;
1242		phy->base = s3cdma->base + (i * sdata->stride);
1243		phy->host = s3cdma;
1244
1245		phy->irq = platform_get_irq(pdev, i);
1246		if (phy->irq < 0) {
1247			dev_err(&pdev->dev, "failed to get irq %d, err %d\n",
1248				i, phy->irq);
1249			continue;
1250		}
1251
1252		ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
1253				       0, pdev->name, phy);
1254		if (ret) {
1255			dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
1256				i, ret);
1257			continue;
1258		}
1259
1260		if (sdata->has_clocks) {
1261			sprintf(clk_name, "dma.%d", i);
1262			phy->clk = devm_clk_get(&pdev->dev, clk_name);
1263			if (IS_ERR(phy->clk) && sdata->has_clocks) {
1264				dev_err(&pdev->dev, "unable to acquire clock for channel %d, error %lu\n",
1265					i, PTR_ERR(phy->clk));
1266				continue;
1267			}
1268
1269			ret = clk_prepare(phy->clk);
1270			if (ret) {
1271				dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
1272					i, ret);
1273				continue;
1274			}
1275		}
1276
1277		spin_lock_init(&phy->lock);
1278		phy->valid = true;
1279
1280		dev_dbg(&pdev->dev, "physical channel %d is %s\n",
1281			i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
1282	}
1283
1284	/* Initialize memcpy engine */
1285	dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
1286	dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
1287	s3cdma->memcpy.dev = &pdev->dev;
1288	s3cdma->memcpy.device_free_chan_resources =
1289					s3c24xx_dma_free_chan_resources;
1290	s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
1291	s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
1292	s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
1293	s3cdma->memcpy.device_config = s3c24xx_dma_set_runtime_config;
1294	s3cdma->memcpy.device_terminate_all = s3c24xx_dma_terminate_all;
1295
1296	/* Initialize slave engine for SoC internal dedicated peripherals */
1297	dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
1298	dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
1299	dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
1300	s3cdma->slave.dev = &pdev->dev;
1301	s3cdma->slave.device_free_chan_resources =
1302					s3c24xx_dma_free_chan_resources;
1303	s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
1304	s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
1305	s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
1306	s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
1307	s3cdma->slave.device_config = s3c24xx_dma_set_runtime_config;
1308	s3cdma->slave.device_terminate_all = s3c24xx_dma_terminate_all;
1309
1310	/* Register as many memcpy channels as there are physical channels */
1311	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
1312						pdata->num_phy_channels, false);
1313	if (ret <= 0) {
1314		dev_warn(&pdev->dev,
1315			 "%s failed to enumerate memcpy channels - %d\n",
1316			 __func__, ret);
1317		goto err_memcpy;
1318	}
1319
1320	/* Register slave channels */
1321	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
1322				pdata->num_channels, true);
1323	if (ret <= 0) {
1324		dev_warn(&pdev->dev,
1325			"%s failed to enumerate slave channels - %d\n",
1326				__func__, ret);
1327		goto err_slave;
1328	}
1329
1330	ret = dma_async_device_register(&s3cdma->memcpy);
1331	if (ret) {
1332		dev_warn(&pdev->dev,
1333			"%s failed to register memcpy as an async device - %d\n",
1334			__func__, ret);
1335		goto err_memcpy_reg;
1336	}
1337
1338	ret = dma_async_device_register(&s3cdma->slave);
1339	if (ret) {
1340		dev_warn(&pdev->dev,
1341			"%s failed to register slave as an async device - %d\n",
1342			__func__, ret);
1343		goto err_slave_reg;
1344	}
1345
1346	platform_set_drvdata(pdev, s3cdma);
1347	dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
1348		 pdata->num_phy_channels);
1349
1350	return 0;
1351
1352err_slave_reg:
1353	dma_async_device_unregister(&s3cdma->memcpy);
1354err_memcpy_reg:
1355	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1356err_slave:
1357	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1358err_memcpy:
1359	if (sdata->has_clocks)
1360		for (i = 0; i < pdata->num_phy_channels; i++) {
1361			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1362			if (phy->valid)
1363				clk_unprepare(phy->clk);
1364		}
1365
1366	return ret;
1367}
1368
1369static int s3c24xx_dma_remove(struct platform_device *pdev)
1370{
1371	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1372	struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
1373	struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
1374	int i;
1375
1376	dma_async_device_unregister(&s3cdma->slave);
1377	dma_async_device_unregister(&s3cdma->memcpy);
1378
1379	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1380	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1381
1382	if (sdata->has_clocks)
1383		for (i = 0; i < pdata->num_phy_channels; i++) {
1384			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1385			if (phy->valid)
1386				clk_unprepare(phy->clk);
1387		}
1388
1389	return 0;
1390}
1391
1392static struct platform_driver s3c24xx_dma_driver = {
1393	.driver		= {
1394		.name	= "s3c24xx-dma",
1395	},
1396	.id_table	= s3c24xx_dma_driver_ids,
1397	.probe		= s3c24xx_dma_probe,
1398	.remove		= s3c24xx_dma_remove,
1399};
1400
1401module_platform_driver(s3c24xx_dma_driver);
1402
1403bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
1404{
1405	struct s3c24xx_dma_chan *s3cchan;
1406
1407	if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
1408		return false;
1409
1410	s3cchan = to_s3c24xx_dma_chan(chan);
1411
1412	return s3cchan->id == (int)param;
1413}
1414EXPORT_SYMBOL(s3c24xx_dma_filter);
1415
1416MODULE_DESCRIPTION("S3C24XX DMA Driver");
1417MODULE_AUTHOR("Heiko Stuebner");
1418MODULE_LICENSE("GPL v2");
1419