1/*
2 * Intel 5400 class Memory Controllers kernel module (Seaburg)
3 *
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
6 *
7 * Copyright (c) 2008 by:
8 *	 Ben Woodard <woodard@redhat.com>
9 *	 Mauro Carvalho Chehab
10 *
11 * Red Hat Inc. http://www.redhat.com
12 *
13 * Forked and adapted from the i5000_edac driver which was
14 * written by Douglas Thompson Linux Networx <norsk5@xmission.com>
15 *
16 * This module is based on the following document:
17 *
18 * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19 * 	http://developer.intel.com/design/chipsets/datashts/313070.htm
20 *
21 * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
22 * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
23 * 4 dimm's, each with up to 8GB.
24 *
25 */
26
27#include <linux/module.h>
28#include <linux/init.h>
29#include <linux/pci.h>
30#include <linux/pci_ids.h>
31#include <linux/slab.h>
32#include <linux/edac.h>
33#include <linux/mmzone.h>
34
35#include "edac_core.h"
36
37/*
38 * Alter this version for the I5400 module when modifications are made
39 */
40#define I5400_REVISION    " Ver: 1.0.0"
41
42#define EDAC_MOD_STR      "i5400_edac"
43
44#define i5400_printk(level, fmt, arg...) \
45	edac_printk(level, "i5400", fmt, ##arg)
46
47#define i5400_mc_printk(mci, level, fmt, arg...) \
48	edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
49
50/* Limits for i5400 */
51#define MAX_BRANCHES		2
52#define CHANNELS_PER_BRANCH	2
53#define DIMMS_PER_CHANNEL	4
54#define	MAX_CHANNELS		(MAX_BRANCHES * CHANNELS_PER_BRANCH)
55
56/* Device 16,
57 * Function 0: System Address
58 * Function 1: Memory Branch Map, Control, Errors Register
59 * Function 2: FSB Error Registers
60 *
61 * All 3 functions of Device 16 (0,1,2) share the SAME DID and
62 * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
63 * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
64 * for device 21 (0,1).
65 */
66
67	/* OFFSETS for Function 0 */
68#define		AMBASE			0x48 /* AMB Mem Mapped Reg Region Base */
69#define		MAXCH			0x56 /* Max Channel Number */
70#define		MAXDIMMPERCH		0x57 /* Max DIMM PER Channel Number */
71
72	/* OFFSETS for Function 1 */
73#define		TOLM			0x6C
74#define		REDMEMB			0x7C
75#define			REC_ECC_LOCATOR_ODD(x)	((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0]  indicate EVEN */
76#define		MIR0			0x80
77#define		MIR1			0x84
78#define		AMIR0			0x8c
79#define		AMIR1			0x90
80
81	/* Fatal error registers */
82#define		FERR_FAT_FBD		0x98	/* also called as FERR_FAT_FB_DIMM at datasheet */
83#define			FERR_FAT_FBDCHAN (3<<28)	/* channel index where the highest-order error occurred */
84
85#define		NERR_FAT_FBD		0x9c
86#define		FERR_NF_FBD		0xa0	/* also called as FERR_NFAT_FB_DIMM at datasheet */
87
88	/* Non-fatal error register */
89#define		NERR_NF_FBD		0xa4
90
91	/* Enable error mask */
92#define		EMASK_FBD		0xa8
93
94#define		ERR0_FBD		0xac
95#define		ERR1_FBD		0xb0
96#define		ERR2_FBD		0xb4
97#define		MCERR_FBD		0xb8
98
99	/* No OFFSETS for Device 16 Function 2 */
100
101/*
102 * Device 21,
103 * Function 0: Memory Map Branch 0
104 *
105 * Device 22,
106 * Function 0: Memory Map Branch 1
107 */
108
109	/* OFFSETS for Function 0 */
110#define AMBPRESENT_0	0x64
111#define AMBPRESENT_1	0x66
112#define MTR0		0x80
113#define MTR1		0x82
114#define MTR2		0x84
115#define MTR3		0x86
116
117	/* OFFSETS for Function 1 */
118#define NRECFGLOG		0x74
119#define RECFGLOG		0x78
120#define NRECMEMA		0xbe
121#define NRECMEMB		0xc0
122#define NRECFB_DIMMA		0xc4
123#define NRECFB_DIMMB		0xc8
124#define NRECFB_DIMMC		0xcc
125#define NRECFB_DIMMD		0xd0
126#define NRECFB_DIMME		0xd4
127#define NRECFB_DIMMF		0xd8
128#define REDMEMA			0xdC
129#define RECMEMA			0xf0
130#define RECMEMB			0xf4
131#define RECFB_DIMMA		0xf8
132#define RECFB_DIMMB		0xec
133#define RECFB_DIMMC		0xf0
134#define RECFB_DIMMD		0xf4
135#define RECFB_DIMME		0xf8
136#define RECFB_DIMMF		0xfC
137
138/*
139 * Error indicator bits and masks
140 * Error masks are according with Table 5-17 of i5400 datasheet
141 */
142
143enum error_mask {
144	EMASK_M1  = 1<<0,  /* Memory Write error on non-redundant retry */
145	EMASK_M2  = 1<<1,  /* Memory or FB-DIMM configuration CRC read error */
146	EMASK_M3  = 1<<2,  /* Reserved */
147	EMASK_M4  = 1<<3,  /* Uncorrectable Data ECC on Replay */
148	EMASK_M5  = 1<<4,  /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
149	EMASK_M6  = 1<<5,  /* Unsupported on i5400 */
150	EMASK_M7  = 1<<6,  /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
151	EMASK_M8  = 1<<7,  /* Aliased Uncorrectable Patrol Data ECC */
152	EMASK_M9  = 1<<8,  /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
153	EMASK_M10 = 1<<9,  /* Unsupported on i5400 */
154	EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC  */
155	EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
156	EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
157	EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
158	EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
159	EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
160	EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
161	EMASK_M18 = 1<<17, /* Unsupported on i5400 */
162	EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
163	EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
164	EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
165	EMASK_M22 = 1<<21, /* SPD protocol Error */
166	EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
167	EMASK_M24 = 1<<23, /* Refresh error */
168	EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
169	EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
170	EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
171	EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
172	EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
173};
174
175/*
176 * Names to translate bit error into something useful
177 */
178static const char *error_name[] = {
179	[0]  = "Memory Write error on non-redundant retry",
180	[1]  = "Memory or FB-DIMM configuration CRC read error",
181	/* Reserved */
182	[3]  = "Uncorrectable Data ECC on Replay",
183	[4]  = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
184	/* M6 Unsupported on i5400 */
185	[6]  = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
186	[7]  = "Aliased Uncorrectable Patrol Data ECC",
187	[8]  = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
188	/* M10 Unsupported on i5400 */
189	[10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
190	[11] = "Non-Aliased Uncorrectable Patrol Data ECC",
191	[12] = "Memory Write error on first attempt",
192	[13] = "FB-DIMM Configuration Write error on first attempt",
193	[14] = "Memory or FB-DIMM configuration CRC read error",
194	[15] = "Channel Failed-Over Occurred",
195	[16] = "Correctable Non-Mirrored Demand Data ECC",
196	/* M18 Unsupported on i5400 */
197	[18] = "Correctable Resilver- or Spare-Copy Data ECC",
198	[19] = "Correctable Patrol Data ECC",
199	[20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
200	[21] = "SPD protocol Error",
201	[22] = "Non-Redundant Fast Reset Timeout",
202	[23] = "Refresh error",
203	[24] = "Memory Write error on redundant retry",
204	[25] = "Redundant Fast Reset Timeout",
205	[26] = "Correctable Counter Threshold Exceeded",
206	[27] = "DIMM-Spare Copy Completed",
207	[28] = "DIMM-Isolation Completed",
208};
209
210/* Fatal errors */
211#define ERROR_FAT_MASK		(EMASK_M1 | \
212				 EMASK_M2 | \
213				 EMASK_M23)
214
215/* Correctable errors */
216#define ERROR_NF_CORRECTABLE	(EMASK_M27 | \
217				 EMASK_M20 | \
218				 EMASK_M19 | \
219				 EMASK_M18 | \
220				 EMASK_M17 | \
221				 EMASK_M16)
222#define ERROR_NF_DIMM_SPARE	(EMASK_M29 | \
223				 EMASK_M28)
224#define ERROR_NF_SPD_PROTOCOL	(EMASK_M22)
225#define ERROR_NF_NORTH_CRC	(EMASK_M21)
226
227/* Recoverable errors */
228#define ERROR_NF_RECOVERABLE	(EMASK_M26 | \
229				 EMASK_M25 | \
230				 EMASK_M24 | \
231				 EMASK_M15 | \
232				 EMASK_M14 | \
233				 EMASK_M13 | \
234				 EMASK_M12 | \
235				 EMASK_M11 | \
236				 EMASK_M9  | \
237				 EMASK_M8  | \
238				 EMASK_M7  | \
239				 EMASK_M5)
240
241/* uncorrectable errors */
242#define ERROR_NF_UNCORRECTABLE	(EMASK_M4)
243
244/* mask to all non-fatal errors */
245#define ERROR_NF_MASK		(ERROR_NF_CORRECTABLE   | \
246				 ERROR_NF_UNCORRECTABLE | \
247				 ERROR_NF_RECOVERABLE   | \
248				 ERROR_NF_DIMM_SPARE    | \
249				 ERROR_NF_SPD_PROTOCOL  | \
250				 ERROR_NF_NORTH_CRC)
251
252/*
253 * Define error masks for the several registers
254 */
255
256/* Enable all fatal and non fatal errors */
257#define ENABLE_EMASK_ALL	(ERROR_FAT_MASK | ERROR_NF_MASK)
258
259/* mask for fatal error registers */
260#define FERR_FAT_MASK ERROR_FAT_MASK
261
262/* masks for non-fatal error register */
263static inline int to_nf_mask(unsigned int mask)
264{
265	return (mask & EMASK_M29) | (mask >> 3);
266};
267
268static inline int from_nf_ferr(unsigned int mask)
269{
270	return (mask & EMASK_M29) |		/* Bit 28 */
271	       (mask & ((1 << 28) - 1) << 3);	/* Bits 0 to 27 */
272};
273
274#define FERR_NF_MASK		to_nf_mask(ERROR_NF_MASK)
275#define FERR_NF_CORRECTABLE	to_nf_mask(ERROR_NF_CORRECTABLE)
276#define FERR_NF_DIMM_SPARE	to_nf_mask(ERROR_NF_DIMM_SPARE)
277#define FERR_NF_SPD_PROTOCOL	to_nf_mask(ERROR_NF_SPD_PROTOCOL)
278#define FERR_NF_NORTH_CRC	to_nf_mask(ERROR_NF_NORTH_CRC)
279#define FERR_NF_RECOVERABLE	to_nf_mask(ERROR_NF_RECOVERABLE)
280#define FERR_NF_UNCORRECTABLE	to_nf_mask(ERROR_NF_UNCORRECTABLE)
281
282/* Defines to extract the vaious fields from the
283 *	MTRx - Memory Technology Registers
284 */
285#define MTR_DIMMS_PRESENT(mtr)		((mtr) & (1 << 10))
286#define MTR_DIMMS_ETHROTTLE(mtr)	((mtr) & (1 << 9))
287#define MTR_DRAM_WIDTH(mtr)		(((mtr) & (1 << 8)) ? 8 : 4)
288#define MTR_DRAM_BANKS(mtr)		(((mtr) & (1 << 6)) ? 8 : 4)
289#define MTR_DRAM_BANKS_ADDR_BITS(mtr)	((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
290#define MTR_DIMM_RANK(mtr)		(((mtr) >> 5) & 0x1)
291#define MTR_DIMM_RANK_ADDR_BITS(mtr)	(MTR_DIMM_RANK(mtr) ? 2 : 1)
292#define MTR_DIMM_ROWS(mtr)		(((mtr) >> 2) & 0x3)
293#define MTR_DIMM_ROWS_ADDR_BITS(mtr)	(MTR_DIMM_ROWS(mtr) + 13)
294#define MTR_DIMM_COLS(mtr)		((mtr) & 0x3)
295#define MTR_DIMM_COLS_ADDR_BITS(mtr)	(MTR_DIMM_COLS(mtr) + 10)
296
297/* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
298static inline int extract_fbdchan_indx(u32 x)
299{
300	return (x>>28) & 0x3;
301}
302
303/* Device name and register DID (Device ID) */
304struct i5400_dev_info {
305	const char *ctl_name;	/* name for this device */
306	u16 fsb_mapping_errors;	/* DID for the branchmap,control */
307};
308
309/* Table of devices attributes supported by this driver */
310static const struct i5400_dev_info i5400_devs[] = {
311	{
312		.ctl_name = "I5400",
313		.fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
314	},
315};
316
317struct i5400_dimm_info {
318	int megabytes;		/* size, 0 means not present  */
319};
320
321/* driver private data structure */
322struct i5400_pvt {
323	struct pci_dev *system_address;		/* 16.0 */
324	struct pci_dev *branchmap_werrors;	/* 16.1 */
325	struct pci_dev *fsb_error_regs;		/* 16.2 */
326	struct pci_dev *branch_0;		/* 21.0 */
327	struct pci_dev *branch_1;		/* 22.0 */
328
329	u16 tolm;				/* top of low memory */
330	union {
331		u64 ambase;				/* AMB BAR */
332		struct {
333			u32 ambase_bottom;
334			u32 ambase_top;
335		} u __packed;
336	};
337
338	u16 mir0, mir1;
339
340	u16 b0_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
341	u16 b0_ambpresent0;			/* Branch 0, Channel 0 */
342	u16 b0_ambpresent1;			/* Brnach 0, Channel 1 */
343
344	u16 b1_mtr[DIMMS_PER_CHANNEL];	/* Memory Technlogy Reg */
345	u16 b1_ambpresent0;			/* Branch 1, Channel 8 */
346	u16 b1_ambpresent1;			/* Branch 1, Channel 1 */
347
348	/* DIMM information matrix, allocating architecture maximums */
349	struct i5400_dimm_info dimm_info[DIMMS_PER_CHANNEL][MAX_CHANNELS];
350
351	/* Actual values for this controller */
352	int maxch;				/* Max channels */
353	int maxdimmperch;			/* Max DIMMs per channel */
354};
355
356/* I5400 MCH error information retrieved from Hardware */
357struct i5400_error_info {
358	/* These registers are always read from the MC */
359	u32 ferr_fat_fbd;	/* First Errors Fatal */
360	u32 nerr_fat_fbd;	/* Next Errors Fatal */
361	u32 ferr_nf_fbd;	/* First Errors Non-Fatal */
362	u32 nerr_nf_fbd;	/* Next Errors Non-Fatal */
363
364	/* These registers are input ONLY if there was a Recoverable Error */
365	u32 redmemb;		/* Recoverable Mem Data Error log B */
366	u16 recmema;		/* Recoverable Mem Error log A */
367	u32 recmemb;		/* Recoverable Mem Error log B */
368
369	/* These registers are input ONLY if there was a Non-Rec Error */
370	u16 nrecmema;		/* Non-Recoverable Mem log A */
371	u16 nrecmemb;		/* Non-Recoverable Mem log B */
372
373};
374
375/* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
376   5400 better to use an inline function than a macro in this case */
377static inline int nrec_bank(struct i5400_error_info *info)
378{
379	return ((info->nrecmema) >> 12) & 0x7;
380}
381static inline int nrec_rank(struct i5400_error_info *info)
382{
383	return ((info->nrecmema) >> 8) & 0xf;
384}
385static inline int nrec_buf_id(struct i5400_error_info *info)
386{
387	return ((info->nrecmema)) & 0xff;
388}
389static inline int nrec_rdwr(struct i5400_error_info *info)
390{
391	return (info->nrecmemb) >> 31;
392}
393/* This applies to both NREC and REC string so it can be used with nrec_rdwr
394   and rec_rdwr */
395static inline const char *rdwr_str(int rdwr)
396{
397	return rdwr ? "Write" : "Read";
398}
399static inline int nrec_cas(struct i5400_error_info *info)
400{
401	return ((info->nrecmemb) >> 16) & 0x1fff;
402}
403static inline int nrec_ras(struct i5400_error_info *info)
404{
405	return (info->nrecmemb) & 0xffff;
406}
407static inline int rec_bank(struct i5400_error_info *info)
408{
409	return ((info->recmema) >> 12) & 0x7;
410}
411static inline int rec_rank(struct i5400_error_info *info)
412{
413	return ((info->recmema) >> 8) & 0xf;
414}
415static inline int rec_rdwr(struct i5400_error_info *info)
416{
417	return (info->recmemb) >> 31;
418}
419static inline int rec_cas(struct i5400_error_info *info)
420{
421	return ((info->recmemb) >> 16) & 0x1fff;
422}
423static inline int rec_ras(struct i5400_error_info *info)
424{
425	return (info->recmemb) & 0xffff;
426}
427
428static struct edac_pci_ctl_info *i5400_pci;
429
430/*
431 *	i5400_get_error_info	Retrieve the hardware error information from
432 *				the hardware and cache it in the 'info'
433 *				structure
434 */
435static void i5400_get_error_info(struct mem_ctl_info *mci,
436				 struct i5400_error_info *info)
437{
438	struct i5400_pvt *pvt;
439	u32 value;
440
441	pvt = mci->pvt_info;
442
443	/* read in the 1st FATAL error register */
444	pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
445
446	/* Mask only the bits that the doc says are valid
447	 */
448	value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
449
450	/* If there is an error, then read in the
451	   NEXT FATAL error register and the Memory Error Log Register A
452	 */
453	if (value & FERR_FAT_MASK) {
454		info->ferr_fat_fbd = value;
455
456		/* harvest the various error data we need */
457		pci_read_config_dword(pvt->branchmap_werrors,
458				NERR_FAT_FBD, &info->nerr_fat_fbd);
459		pci_read_config_word(pvt->branchmap_werrors,
460				NRECMEMA, &info->nrecmema);
461		pci_read_config_word(pvt->branchmap_werrors,
462				NRECMEMB, &info->nrecmemb);
463
464		/* Clear the error bits, by writing them back */
465		pci_write_config_dword(pvt->branchmap_werrors,
466				FERR_FAT_FBD, value);
467	} else {
468		info->ferr_fat_fbd = 0;
469		info->nerr_fat_fbd = 0;
470		info->nrecmema = 0;
471		info->nrecmemb = 0;
472	}
473
474	/* read in the 1st NON-FATAL error register */
475	pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
476
477	/* If there is an error, then read in the 1st NON-FATAL error
478	 * register as well */
479	if (value & FERR_NF_MASK) {
480		info->ferr_nf_fbd = value;
481
482		/* harvest the various error data we need */
483		pci_read_config_dword(pvt->branchmap_werrors,
484				NERR_NF_FBD, &info->nerr_nf_fbd);
485		pci_read_config_word(pvt->branchmap_werrors,
486				RECMEMA, &info->recmema);
487		pci_read_config_dword(pvt->branchmap_werrors,
488				RECMEMB, &info->recmemb);
489		pci_read_config_dword(pvt->branchmap_werrors,
490				REDMEMB, &info->redmemb);
491
492		/* Clear the error bits, by writing them back */
493		pci_write_config_dword(pvt->branchmap_werrors,
494				FERR_NF_FBD, value);
495	} else {
496		info->ferr_nf_fbd = 0;
497		info->nerr_nf_fbd = 0;
498		info->recmema = 0;
499		info->recmemb = 0;
500		info->redmemb = 0;
501	}
502}
503
504/*
505 * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
506 * 					struct i5400_error_info *info,
507 * 					int handle_errors);
508 *
509 *	handle the Intel FATAL and unrecoverable errors, if any
510 */
511static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
512				    struct i5400_error_info *info,
513				    unsigned long allErrors)
514{
515	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
516	int branch;
517	int channel;
518	int bank;
519	int buf_id;
520	int rank;
521	int rdwr;
522	int ras, cas;
523	int errnum;
524	char *type = NULL;
525	enum hw_event_mc_err_type tp_event = HW_EVENT_ERR_UNCORRECTED;
526
527	if (!allErrors)
528		return;		/* if no error, return now */
529
530	if (allErrors &  ERROR_FAT_MASK) {
531		type = "FATAL";
532		tp_event = HW_EVENT_ERR_FATAL;
533	} else if (allErrors & FERR_NF_UNCORRECTABLE)
534		type = "NON-FATAL uncorrected";
535	else
536		type = "NON-FATAL recoverable";
537
538	/* ONLY ONE of the possible error bits will be set, as per the docs */
539
540	branch = extract_fbdchan_indx(info->ferr_fat_fbd);
541	channel = branch;
542
543	/* Use the NON-Recoverable macros to extract data */
544	bank = nrec_bank(info);
545	rank = nrec_rank(info);
546	buf_id = nrec_buf_id(info);
547	rdwr = nrec_rdwr(info);
548	ras = nrec_ras(info);
549	cas = nrec_cas(info);
550
551	edac_dbg(0, "\t\tDIMM= %d  Channels= %d,%d  (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
552		 rank, channel, channel + 1, branch >> 1, bank,
553		 buf_id, rdwr_str(rdwr), ras, cas);
554
555	/* Only 1 bit will be on */
556	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
557
558	/* Form out message */
559	snprintf(msg, sizeof(msg),
560		 "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
561		 bank, buf_id, ras, cas, allErrors, error_name[errnum]);
562
563	edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
564			     branch >> 1, -1, rank,
565			     rdwr ? "Write error" : "Read error",
566			     msg);
567}
568
569/*
570 * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
571 * 				struct i5400_error_info *info,
572 * 				int handle_errors);
573 *
574 *	handle the Intel NON-FATAL errors, if any
575 */
576static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
577					struct i5400_error_info *info)
578{
579	char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
580	unsigned long allErrors;
581	int branch;
582	int channel;
583	int bank;
584	int rank;
585	int rdwr;
586	int ras, cas;
587	int errnum;
588
589	/* mask off the Error bits that are possible */
590	allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
591	if (!allErrors)
592		return;		/* if no error, return now */
593
594	/* ONLY ONE of the possible error bits will be set, as per the docs */
595
596	if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
597		i5400_proccess_non_recoverable_info(mci, info, allErrors);
598		return;
599	}
600
601	/* Correctable errors */
602	if (allErrors & ERROR_NF_CORRECTABLE) {
603		edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
604
605		branch = extract_fbdchan_indx(info->ferr_nf_fbd);
606
607		channel = 0;
608		if (REC_ECC_LOCATOR_ODD(info->redmemb))
609			channel = 1;
610
611		/* Convert channel to be based from zero, instead of
612		 * from branch base of 0 */
613		channel += branch;
614
615		bank = rec_bank(info);
616		rank = rec_rank(info);
617		rdwr = rec_rdwr(info);
618		ras = rec_ras(info);
619		cas = rec_cas(info);
620
621		/* Only 1 bit will be on */
622		errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
623
624		edac_dbg(0, "\t\tDIMM= %d Channel= %d  (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
625			 rank, channel, branch >> 1, bank,
626			 rdwr_str(rdwr), ras, cas);
627
628		/* Form out message */
629		snprintf(msg, sizeof(msg),
630			 "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
631			 "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
632			 branch >> 1, bank, rdwr_str(rdwr), ras, cas,
633			 allErrors, error_name[errnum]);
634
635		edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1, 0, 0, 0,
636				     branch >> 1, channel % 2, rank,
637				     rdwr ? "Write error" : "Read error",
638				     msg);
639
640		return;
641	}
642
643	/* Miscellaneous errors */
644	errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
645
646	branch = extract_fbdchan_indx(info->ferr_nf_fbd);
647
648	i5400_mc_printk(mci, KERN_EMERG,
649			"Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
650			branch >> 1, allErrors, error_name[errnum]);
651}
652
653/*
654 *	i5400_process_error_info	Process the error info that is
655 *	in the 'info' structure, previously retrieved from hardware
656 */
657static void i5400_process_error_info(struct mem_ctl_info *mci,
658				struct i5400_error_info *info)
659{	u32 allErrors;
660
661	/* First handle any fatal errors that occurred */
662	allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
663	i5400_proccess_non_recoverable_info(mci, info, allErrors);
664
665	/* now handle any non-fatal errors that occurred */
666	i5400_process_nonfatal_error_info(mci, info);
667}
668
669/*
670 *	i5400_clear_error	Retrieve any error from the hardware
671 *				but do NOT process that error.
672 *				Used for 'clearing' out of previous errors
673 *				Called by the Core module.
674 */
675static void i5400_clear_error(struct mem_ctl_info *mci)
676{
677	struct i5400_error_info info;
678
679	i5400_get_error_info(mci, &info);
680}
681
682/*
683 *	i5400_check_error	Retrieve and process errors reported by the
684 *				hardware. Called by the Core module.
685 */
686static void i5400_check_error(struct mem_ctl_info *mci)
687{
688	struct i5400_error_info info;
689	edac_dbg(4, "MC%d\n", mci->mc_idx);
690	i5400_get_error_info(mci, &info);
691	i5400_process_error_info(mci, &info);
692}
693
694/*
695 *	i5400_put_devices	'put' all the devices that we have
696 *				reserved via 'get'
697 */
698static void i5400_put_devices(struct mem_ctl_info *mci)
699{
700	struct i5400_pvt *pvt;
701
702	pvt = mci->pvt_info;
703
704	/* Decrement usage count for devices */
705	pci_dev_put(pvt->branch_1);
706	pci_dev_put(pvt->branch_0);
707	pci_dev_put(pvt->fsb_error_regs);
708	pci_dev_put(pvt->branchmap_werrors);
709}
710
711/*
712 *	i5400_get_devices	Find and perform 'get' operation on the MCH's
713 *			device/functions we want to reference for this driver
714 *
715 *			Need to 'get' device 16 func 1 and func 2
716 */
717static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
718{
719	struct i5400_pvt *pvt;
720	struct pci_dev *pdev;
721
722	pvt = mci->pvt_info;
723	pvt->branchmap_werrors = NULL;
724	pvt->fsb_error_regs = NULL;
725	pvt->branch_0 = NULL;
726	pvt->branch_1 = NULL;
727
728	/* Attempt to 'get' the MCH register we want */
729	pdev = NULL;
730	while (1) {
731		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
732				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
733		if (!pdev) {
734			/* End of list, leave */
735			i5400_printk(KERN_ERR,
736				"'system address,Process Bus' "
737				"device not found:"
738				"vendor 0x%x device 0x%x ERR func 1 "
739				"(broken BIOS?)\n",
740				PCI_VENDOR_ID_INTEL,
741				PCI_DEVICE_ID_INTEL_5400_ERR);
742			return -ENODEV;
743		}
744
745		/* Store device 16 func 1 */
746		if (PCI_FUNC(pdev->devfn) == 1)
747			break;
748	}
749	pvt->branchmap_werrors = pdev;
750
751	pdev = NULL;
752	while (1) {
753		pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
754				      PCI_DEVICE_ID_INTEL_5400_ERR, pdev);
755		if (!pdev) {
756			/* End of list, leave */
757			i5400_printk(KERN_ERR,
758				"'system address,Process Bus' "
759				"device not found:"
760				"vendor 0x%x device 0x%x ERR func 2 "
761				"(broken BIOS?)\n",
762				PCI_VENDOR_ID_INTEL,
763				PCI_DEVICE_ID_INTEL_5400_ERR);
764
765			pci_dev_put(pvt->branchmap_werrors);
766			return -ENODEV;
767		}
768
769		/* Store device 16 func 2 */
770		if (PCI_FUNC(pdev->devfn) == 2)
771			break;
772	}
773	pvt->fsb_error_regs = pdev;
774
775	edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
776		 pci_name(pvt->system_address),
777		 pvt->system_address->vendor, pvt->system_address->device);
778	edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
779		 pci_name(pvt->branchmap_werrors),
780		 pvt->branchmap_werrors->vendor,
781		 pvt->branchmap_werrors->device);
782	edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
783		 pci_name(pvt->fsb_error_regs),
784		 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
785
786	pvt->branch_0 = pci_get_device(PCI_VENDOR_ID_INTEL,
787				       PCI_DEVICE_ID_INTEL_5400_FBD0, NULL);
788	if (!pvt->branch_0) {
789		i5400_printk(KERN_ERR,
790			"MC: 'BRANCH 0' device not found:"
791			"vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
792			PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_FBD0);
793
794		pci_dev_put(pvt->fsb_error_regs);
795		pci_dev_put(pvt->branchmap_werrors);
796		return -ENODEV;
797	}
798
799	/* If this device claims to have more than 2 channels then
800	 * fetch Branch 1's information
801	 */
802	if (pvt->maxch < CHANNELS_PER_BRANCH)
803		return 0;
804
805	pvt->branch_1 = pci_get_device(PCI_VENDOR_ID_INTEL,
806				       PCI_DEVICE_ID_INTEL_5400_FBD1, NULL);
807	if (!pvt->branch_1) {
808		i5400_printk(KERN_ERR,
809			"MC: 'BRANCH 1' device not found:"
810			"vendor 0x%x device 0x%x Func 0 "
811			"(broken BIOS?)\n",
812			PCI_VENDOR_ID_INTEL,
813			PCI_DEVICE_ID_INTEL_5400_FBD1);
814
815		pci_dev_put(pvt->branch_0);
816		pci_dev_put(pvt->fsb_error_regs);
817		pci_dev_put(pvt->branchmap_werrors);
818		return -ENODEV;
819	}
820
821	return 0;
822}
823
824/*
825 *	determine_amb_present
826 *
827 *		the information is contained in DIMMS_PER_CHANNEL different
828 *		registers determining which of the DIMMS_PER_CHANNEL requires
829 *              knowing which channel is in question
830 *
831 *	2 branches, each with 2 channels
832 *		b0_ambpresent0 for channel '0'
833 *		b0_ambpresent1 for channel '1'
834 *		b1_ambpresent0 for channel '2'
835 *		b1_ambpresent1 for channel '3'
836 */
837static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
838{
839	int amb_present;
840
841	if (channel < CHANNELS_PER_BRANCH) {
842		if (channel & 0x1)
843			amb_present = pvt->b0_ambpresent1;
844		else
845			amb_present = pvt->b0_ambpresent0;
846	} else {
847		if (channel & 0x1)
848			amb_present = pvt->b1_ambpresent1;
849		else
850			amb_present = pvt->b1_ambpresent0;
851	}
852
853	return amb_present;
854}
855
856/*
857 * determine_mtr(pvt, dimm, channel)
858 *
859 * return the proper MTR register as determine by the dimm and desired channel
860 */
861static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
862{
863	int mtr;
864	int n;
865
866	/* There is one MTR for each slot pair of FB-DIMMs,
867	   Each slot pair may be at branch 0 or branch 1.
868	 */
869	n = dimm;
870
871	if (n >= DIMMS_PER_CHANNEL) {
872		edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
873			 dimm);
874		return 0;
875	}
876
877	if (channel < CHANNELS_PER_BRANCH)
878		mtr = pvt->b0_mtr[n];
879	else
880		mtr = pvt->b1_mtr[n];
881
882	return mtr;
883}
884
885/*
886 */
887static void decode_mtr(int slot_row, u16 mtr)
888{
889	int ans;
890
891	ans = MTR_DIMMS_PRESENT(mtr);
892
893	edac_dbg(2, "\tMTR%d=0x%x:  DIMMs are %sPresent\n",
894		 slot_row, mtr, ans ? "" : "NOT ");
895	if (!ans)
896		return;
897
898	edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
899
900	edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
901		 MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
902
903	edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
904	edac_dbg(2, "\t\tNUMRANK: %s\n",
905		 MTR_DIMM_RANK(mtr) ? "double" : "single");
906	edac_dbg(2, "\t\tNUMROW: %s\n",
907		 MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
908		 MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
909		 MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
910		 "65,536 - 16 rows");
911	edac_dbg(2, "\t\tNUMCOL: %s\n",
912		 MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
913		 MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
914		 MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
915		 "reserved");
916}
917
918static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
919			struct i5400_dimm_info *dinfo)
920{
921	int mtr;
922	int amb_present_reg;
923	int addrBits;
924
925	mtr = determine_mtr(pvt, dimm, channel);
926	if (MTR_DIMMS_PRESENT(mtr)) {
927		amb_present_reg = determine_amb_present_reg(pvt, channel);
928
929		/* Determine if there is a DIMM present in this DIMM slot */
930		if (amb_present_reg & (1 << dimm)) {
931			/* Start with the number of bits for a Bank
932			 * on the DRAM */
933			addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
934			/* Add thenumber of ROW bits */
935			addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
936			/* add the number of COLUMN bits */
937			addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
938			/* add the number of RANK bits */
939			addrBits += MTR_DIMM_RANK(mtr);
940
941			addrBits += 6;	/* add 64 bits per DIMM */
942			addrBits -= 20;	/* divide by 2^^20 */
943			addrBits -= 3;	/* 8 bits per bytes */
944
945			dinfo->megabytes = 1 << addrBits;
946		}
947	}
948}
949
950/*
951 *	calculate_dimm_size
952 *
953 *	also will output a DIMM matrix map, if debug is enabled, for viewing
954 *	how the DIMMs are populated
955 */
956static void calculate_dimm_size(struct i5400_pvt *pvt)
957{
958	struct i5400_dimm_info *dinfo;
959	int dimm, max_dimms;
960	char *p, *mem_buffer;
961	int space, n;
962	int channel, branch;
963
964	/* ================= Generate some debug output ================= */
965	space = PAGE_SIZE;
966	mem_buffer = p = kmalloc(space, GFP_KERNEL);
967	if (p == NULL) {
968		i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
969			__FILE__, __func__);
970		return;
971	}
972
973	/* Scan all the actual DIMMS
974	 * and calculate the information for each DIMM
975	 * Start with the highest dimm first, to display it first
976	 * and work toward the 0th dimm
977	 */
978	max_dimms = pvt->maxdimmperch;
979	for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
980
981		/* on an odd dimm, first output a 'boundary' marker,
982		 * then reset the message buffer  */
983		if (dimm & 0x1) {
984			n = snprintf(p, space, "---------------------------"
985					"-------------------------------");
986			p += n;
987			space -= n;
988			edac_dbg(2, "%s\n", mem_buffer);
989			p = mem_buffer;
990			space = PAGE_SIZE;
991		}
992		n = snprintf(p, space, "dimm %2d    ", dimm);
993		p += n;
994		space -= n;
995
996		for (channel = 0; channel < pvt->maxch; channel++) {
997			dinfo = &pvt->dimm_info[dimm][channel];
998			handle_channel(pvt, dimm, channel, dinfo);
999			n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1000			p += n;
1001			space -= n;
1002		}
1003		edac_dbg(2, "%s\n", mem_buffer);
1004		p = mem_buffer;
1005		space = PAGE_SIZE;
1006	}
1007
1008	/* Output the last bottom 'boundary' marker */
1009	n = snprintf(p, space, "---------------------------"
1010			"-------------------------------");
1011	p += n;
1012	space -= n;
1013	edac_dbg(2, "%s\n", mem_buffer);
1014	p = mem_buffer;
1015	space = PAGE_SIZE;
1016
1017	/* now output the 'channel' labels */
1018	n = snprintf(p, space, "           ");
1019	p += n;
1020	space -= n;
1021	for (channel = 0; channel < pvt->maxch; channel++) {
1022		n = snprintf(p, space, "channel %d | ", channel);
1023		p += n;
1024		space -= n;
1025	}
1026
1027	space -= n;
1028	edac_dbg(2, "%s\n", mem_buffer);
1029	p = mem_buffer;
1030	space = PAGE_SIZE;
1031
1032	n = snprintf(p, space, "           ");
1033	p += n;
1034	for (branch = 0; branch < MAX_BRANCHES; branch++) {
1035		n = snprintf(p, space, "       branch %d       | ", branch);
1036		p += n;
1037		space -= n;
1038	}
1039
1040	/* output the last message and free buffer */
1041	edac_dbg(2, "%s\n", mem_buffer);
1042	kfree(mem_buffer);
1043}
1044
1045/*
1046 *	i5400_get_mc_regs	read in the necessary registers and
1047 *				cache locally
1048 *
1049 *			Fills in the private data members
1050 */
1051static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1052{
1053	struct i5400_pvt *pvt;
1054	u32 actual_tolm;
1055	u16 limit;
1056	int slot_row;
1057	int maxch;
1058	int maxdimmperch;
1059	int way0, way1;
1060
1061	pvt = mci->pvt_info;
1062
1063	pci_read_config_dword(pvt->system_address, AMBASE,
1064			&pvt->u.ambase_bottom);
1065	pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1066			&pvt->u.ambase_top);
1067
1068	maxdimmperch = pvt->maxdimmperch;
1069	maxch = pvt->maxch;
1070
1071	edac_dbg(2, "AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1072		 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1073
1074	/* Get the Branch Map regs */
1075	pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1076	pvt->tolm >>= 12;
1077	edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1078		 pvt->tolm, pvt->tolm);
1079
1080	actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1081	edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1082		 actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1083
1084	pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1085	pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1086
1087	/* Get the MIR[0-1] regs */
1088	limit = (pvt->mir0 >> 4) & 0x0fff;
1089	way0 = pvt->mir0 & 0x1;
1090	way1 = pvt->mir0 & 0x2;
1091	edac_dbg(2, "MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1092		 limit, way1, way0);
1093	limit = (pvt->mir1 >> 4) & 0xfff;
1094	way0 = pvt->mir1 & 0x1;
1095	way1 = pvt->mir1 & 0x2;
1096	edac_dbg(2, "MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n",
1097		 limit, way1, way0);
1098
1099	/* Get the set of MTR[0-3] regs by each branch */
1100	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1101		int where = MTR0 + (slot_row * sizeof(u16));
1102
1103		/* Branch 0 set of MTR registers */
1104		pci_read_config_word(pvt->branch_0, where,
1105				&pvt->b0_mtr[slot_row]);
1106
1107		edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1108			 slot_row, where, pvt->b0_mtr[slot_row]);
1109
1110		if (pvt->maxch < CHANNELS_PER_BRANCH) {
1111			pvt->b1_mtr[slot_row] = 0;
1112			continue;
1113		}
1114
1115		/* Branch 1 set of MTR registers */
1116		pci_read_config_word(pvt->branch_1, where,
1117				&pvt->b1_mtr[slot_row]);
1118		edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1119			 slot_row, where, pvt->b1_mtr[slot_row]);
1120	}
1121
1122	/* Read and dump branch 0's MTRs */
1123	edac_dbg(2, "Memory Technology Registers:\n");
1124	edac_dbg(2, "   Branch 0:\n");
1125	for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1126		decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1127
1128	pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1129			&pvt->b0_ambpresent0);
1130	edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1131	pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1132			&pvt->b0_ambpresent1);
1133	edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1134
1135	/* Only if we have 2 branchs (4 channels) */
1136	if (pvt->maxch < CHANNELS_PER_BRANCH) {
1137		pvt->b1_ambpresent0 = 0;
1138		pvt->b1_ambpresent1 = 0;
1139	} else {
1140		/* Read and dump  branch 1's MTRs */
1141		edac_dbg(2, "   Branch 1:\n");
1142		for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1143			decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1144
1145		pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1146				&pvt->b1_ambpresent0);
1147		edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1148			 pvt->b1_ambpresent0);
1149		pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1150				&pvt->b1_ambpresent1);
1151		edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1152			 pvt->b1_ambpresent1);
1153	}
1154
1155	/* Go and determine the size of each DIMM and place in an
1156	 * orderly matrix */
1157	calculate_dimm_size(pvt);
1158}
1159
1160/*
1161 *	i5400_init_dimms	Initialize the 'dimms' table within
1162 *				the mci control	structure with the
1163 *				addressing of memory.
1164 *
1165 *	return:
1166 *		0	success
1167 *		1	no actual memory found on this MC
1168 */
1169static int i5400_init_dimms(struct mem_ctl_info *mci)
1170{
1171	struct i5400_pvt *pvt;
1172	struct dimm_info *dimm;
1173	int ndimms, channel_count;
1174	int max_dimms;
1175	int mtr;
1176	int size_mb;
1177	int  channel, slot;
1178
1179	pvt = mci->pvt_info;
1180
1181	channel_count = pvt->maxch;
1182	max_dimms = pvt->maxdimmperch;
1183
1184	ndimms = 0;
1185
1186	/*
1187	 * FIXME: remove  pvt->dimm_info[slot][channel] and use the 3
1188	 * layers here.
1189	 */
1190	for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1191	     channel++) {
1192		for (slot = 0; slot < mci->layers[2].size; slot++) {
1193			mtr = determine_mtr(pvt, slot, channel);
1194
1195			/* if no DIMMS on this slot, continue */
1196			if (!MTR_DIMMS_PRESENT(mtr))
1197				continue;
1198
1199			dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1200				       channel / 2, channel % 2, slot);
1201
1202			size_mb =  pvt->dimm_info[slot][channel].megabytes;
1203
1204			edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1205				 channel / 2, channel % 2, slot,
1206				 size_mb / 1000, size_mb % 1000);
1207
1208			dimm->nr_pages = size_mb << 8;
1209			dimm->grain = 8;
1210			dimm->dtype = MTR_DRAM_WIDTH(mtr) ? DEV_X8 : DEV_X4;
1211			dimm->mtype = MEM_FB_DDR2;
1212			/*
1213			 * The eccc mechanism is SDDC (aka SECC), with
1214			 * is similar to Chipkill.
1215			 */
1216			dimm->edac_mode = MTR_DRAM_WIDTH(mtr) ?
1217					  EDAC_S8ECD8ED : EDAC_S4ECD4ED;
1218			ndimms++;
1219		}
1220	}
1221
1222	/*
1223	 * When just one memory is provided, it should be at location (0,0,0).
1224	 * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1225	 */
1226	if (ndimms == 1)
1227		mci->dimms[0]->edac_mode = EDAC_SECDED;
1228
1229	return (ndimms == 0);
1230}
1231
1232/*
1233 *	i5400_enable_error_reporting
1234 *			Turn on the memory reporting features of the hardware
1235 */
1236static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1237{
1238	struct i5400_pvt *pvt;
1239	u32 fbd_error_mask;
1240
1241	pvt = mci->pvt_info;
1242
1243	/* Read the FBD Error Mask Register */
1244	pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1245			&fbd_error_mask);
1246
1247	/* Enable with a '0' */
1248	fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1249
1250	pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1251			fbd_error_mask);
1252}
1253
1254/*
1255 *	i5400_probe1	Probe for ONE instance of device to see if it is
1256 *			present.
1257 *	return:
1258 *		0 for FOUND a device
1259 *		< 0 for error code
1260 */
1261static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1262{
1263	struct mem_ctl_info *mci;
1264	struct i5400_pvt *pvt;
1265	struct edac_mc_layer layers[3];
1266
1267	if (dev_idx >= ARRAY_SIZE(i5400_devs))
1268		return -EINVAL;
1269
1270	edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1271		 pdev->bus->number,
1272		 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1273
1274	/* We only are looking for func 0 of the set */
1275	if (PCI_FUNC(pdev->devfn) != 0)
1276		return -ENODEV;
1277
1278	/*
1279	 * allocate a new MC control structure
1280	 *
1281	 * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1282	 */
1283	layers[0].type = EDAC_MC_LAYER_BRANCH;
1284	layers[0].size = MAX_BRANCHES;
1285	layers[0].is_virt_csrow = false;
1286	layers[1].type = EDAC_MC_LAYER_CHANNEL;
1287	layers[1].size = CHANNELS_PER_BRANCH;
1288	layers[1].is_virt_csrow = false;
1289	layers[2].type = EDAC_MC_LAYER_SLOT;
1290	layers[2].size = DIMMS_PER_CHANNEL;
1291	layers[2].is_virt_csrow = true;
1292	mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1293	if (mci == NULL)
1294		return -ENOMEM;
1295
1296	edac_dbg(0, "MC: mci = %p\n", mci);
1297
1298	mci->pdev = &pdev->dev;	/* record ptr  to the generic device */
1299
1300	pvt = mci->pvt_info;
1301	pvt->system_address = pdev;	/* Record this device in our private */
1302	pvt->maxch = MAX_CHANNELS;
1303	pvt->maxdimmperch = DIMMS_PER_CHANNEL;
1304
1305	/* 'get' the pci devices we want to reserve for our use */
1306	if (i5400_get_devices(mci, dev_idx))
1307		goto fail0;
1308
1309	/* Time to get serious */
1310	i5400_get_mc_regs(mci);	/* retrieve the hardware registers */
1311
1312	mci->mc_idx = 0;
1313	mci->mtype_cap = MEM_FLAG_FB_DDR2;
1314	mci->edac_ctl_cap = EDAC_FLAG_NONE;
1315	mci->edac_cap = EDAC_FLAG_NONE;
1316	mci->mod_name = "i5400_edac.c";
1317	mci->mod_ver = I5400_REVISION;
1318	mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1319	mci->dev_name = pci_name(pdev);
1320	mci->ctl_page_to_phys = NULL;
1321
1322	/* Set the function pointer to an actual operation function */
1323	mci->edac_check = i5400_check_error;
1324
1325	/* initialize the MC control structure 'dimms' table
1326	 * with the mapping and control information */
1327	if (i5400_init_dimms(mci)) {
1328		edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1329		mci->edac_cap = EDAC_FLAG_NONE;	/* no dimms found */
1330	} else {
1331		edac_dbg(1, "MC: Enable error reporting now\n");
1332		i5400_enable_error_reporting(mci);
1333	}
1334
1335	/* add this new MC control structure to EDAC's list of MCs */
1336	if (edac_mc_add_mc(mci)) {
1337		edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1338		/* FIXME: perhaps some code should go here that disables error
1339		 * reporting if we just enabled it
1340		 */
1341		goto fail1;
1342	}
1343
1344	i5400_clear_error(mci);
1345
1346	/* allocating generic PCI control info */
1347	i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1348	if (!i5400_pci) {
1349		printk(KERN_WARNING
1350			"%s(): Unable to create PCI control\n",
1351			__func__);
1352		printk(KERN_WARNING
1353			"%s(): PCI error report via EDAC not setup\n",
1354			__func__);
1355	}
1356
1357	return 0;
1358
1359	/* Error exit unwinding stack */
1360fail1:
1361
1362	i5400_put_devices(mci);
1363
1364fail0:
1365	edac_mc_free(mci);
1366	return -ENODEV;
1367}
1368
1369/*
1370 *	i5400_init_one	constructor for one instance of device
1371 *
1372 * 	returns:
1373 *		negative on error
1374 *		count (>= 0)
1375 */
1376static int i5400_init_one(struct pci_dev *pdev, const struct pci_device_id *id)
1377{
1378	int rc;
1379
1380	edac_dbg(0, "MC:\n");
1381
1382	/* wake up device */
1383	rc = pci_enable_device(pdev);
1384	if (rc)
1385		return rc;
1386
1387	/* now probe and enable the device */
1388	return i5400_probe1(pdev, id->driver_data);
1389}
1390
1391/*
1392 *	i5400_remove_one	destructor for one instance of device
1393 *
1394 */
1395static void i5400_remove_one(struct pci_dev *pdev)
1396{
1397	struct mem_ctl_info *mci;
1398
1399	edac_dbg(0, "\n");
1400
1401	if (i5400_pci)
1402		edac_pci_release_generic_ctl(i5400_pci);
1403
1404	mci = edac_mc_del_mc(&pdev->dev);
1405	if (!mci)
1406		return;
1407
1408	/* retrieve references to resources, and free those resources */
1409	i5400_put_devices(mci);
1410
1411	pci_disable_device(pdev);
1412
1413	edac_mc_free(mci);
1414}
1415
1416/*
1417 *	pci_device_id	table for which devices we are looking for
1418 *
1419 *	The "E500P" device is the first device supported.
1420 */
1421static const struct pci_device_id i5400_pci_tbl[] = {
1422	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_5400_ERR)},
1423	{0,}			/* 0 terminated list. */
1424};
1425
1426MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1427
1428/*
1429 *	i5400_driver	pci_driver structure for this module
1430 *
1431 */
1432static struct pci_driver i5400_driver = {
1433	.name = "i5400_edac",
1434	.probe = i5400_init_one,
1435	.remove = i5400_remove_one,
1436	.id_table = i5400_pci_tbl,
1437};
1438
1439/*
1440 *	i5400_init		Module entry function
1441 *			Try to initialize this module for its devices
1442 */
1443static int __init i5400_init(void)
1444{
1445	int pci_rc;
1446
1447	edac_dbg(2, "MC:\n");
1448
1449	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
1450	opstate_init();
1451
1452	pci_rc = pci_register_driver(&i5400_driver);
1453
1454	return (pci_rc < 0) ? pci_rc : 0;
1455}
1456
1457/*
1458 *	i5400_exit()	Module exit function
1459 *			Unregister the driver
1460 */
1461static void __exit i5400_exit(void)
1462{
1463	edac_dbg(2, "MC:\n");
1464	pci_unregister_driver(&i5400_driver);
1465}
1466
1467module_init(i5400_init);
1468module_exit(i5400_exit);
1469
1470MODULE_LICENSE("GPL");
1471MODULE_AUTHOR("Ben Woodard <woodard@redhat.com>");
1472MODULE_AUTHOR("Mauro Carvalho Chehab");
1473MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1474MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1475		   I5400_REVISION);
1476
1477module_param(edac_op_state, int, 0444);
1478MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1479