1#include <linux/types.h>
2#include <linux/string.h>
3#include <linux/init.h>
4#include <linux/module.h>
5#include <linux/ctype.h>
6#include <linux/dmi.h>
7#include <linux/efi.h>
8#include <linux/bootmem.h>
9#include <linux/random.h>
10#include <asm/dmi.h>
11#include <asm/unaligned.h>
12
13/*
14 * DMI stands for "Desktop Management Interface".  It is part
15 * of and an antecedent to, SMBIOS, which stands for System
16 * Management BIOS.  See further: http://www.dmtf.org/standards
17 */
18static const char dmi_empty_string[] = "        ";
19
20static u32 dmi_ver __initdata;
21static u32 dmi_len;
22static u16 dmi_num;
23/*
24 * Catch too early calls to dmi_check_system():
25 */
26static int dmi_initialized;
27
28/* DMI system identification string used during boot */
29static char dmi_ids_string[128] __initdata;
30
31static struct dmi_memdev_info {
32	const char *device;
33	const char *bank;
34	u16 handle;
35} *dmi_memdev;
36static int dmi_memdev_nr;
37
38static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
39{
40	const u8 *bp = ((u8 *) dm) + dm->length;
41
42	if (s) {
43		s--;
44		while (s > 0 && *bp) {
45			bp += strlen(bp) + 1;
46			s--;
47		}
48
49		if (*bp != 0) {
50			size_t len = strlen(bp)+1;
51			size_t cmp_len = len > 8 ? 8 : len;
52
53			if (!memcmp(bp, dmi_empty_string, cmp_len))
54				return dmi_empty_string;
55			return bp;
56		}
57	}
58
59	return "";
60}
61
62static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
63{
64	const char *bp = dmi_string_nosave(dm, s);
65	char *str;
66	size_t len;
67
68	if (bp == dmi_empty_string)
69		return dmi_empty_string;
70
71	len = strlen(bp) + 1;
72	str = dmi_alloc(len);
73	if (str != NULL)
74		strcpy(str, bp);
75
76	return str;
77}
78
79/*
80 *	We have to be cautious here. We have seen BIOSes with DMI pointers
81 *	pointing to completely the wrong place for example
82 */
83static void dmi_table(u8 *buf,
84		      void (*decode)(const struct dmi_header *, void *),
85		      void *private_data)
86{
87	u8 *data = buf;
88	int i = 0;
89
90	/*
91	 * Stop when we have seen all the items the table claimed to have
92	 * (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
93	 * >= 3.0 only) OR we run off the end of the table (should never
94	 * happen but sometimes does on bogus implementations.)
95	 */
96	while ((!dmi_num || i < dmi_num) &&
97	       (data - buf + sizeof(struct dmi_header)) <= dmi_len) {
98		const struct dmi_header *dm = (const struct dmi_header *)data;
99
100		/*
101		 *  We want to know the total length (formatted area and
102		 *  strings) before decoding to make sure we won't run off the
103		 *  table in dmi_decode or dmi_string
104		 */
105		data += dm->length;
106		while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
107			data++;
108		if (data - buf < dmi_len - 1)
109			decode(dm, private_data);
110
111		/*
112		 * 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
113		 * For tables behind a 64-bit entry point, we have no item
114		 * count and no exact table length, so stop on end-of-table
115		 * marker. For tables behind a 32-bit entry point, we have
116		 * seen OEM structures behind the end-of-table marker on
117		 * some systems, so don't trust it.
118		 */
119		if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
120			break;
121
122		data += 2;
123		i++;
124	}
125}
126
127static phys_addr_t dmi_base;
128
129static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
130		void *))
131{
132	u8 *buf;
133
134	buf = dmi_early_remap(dmi_base, dmi_len);
135	if (buf == NULL)
136		return -1;
137
138	dmi_table(buf, decode, NULL);
139
140	add_device_randomness(buf, dmi_len);
141
142	dmi_early_unmap(buf, dmi_len);
143	return 0;
144}
145
146static int __init dmi_checksum(const u8 *buf, u8 len)
147{
148	u8 sum = 0;
149	int a;
150
151	for (a = 0; a < len; a++)
152		sum += buf[a];
153
154	return sum == 0;
155}
156
157static const char *dmi_ident[DMI_STRING_MAX];
158static LIST_HEAD(dmi_devices);
159int dmi_available;
160
161/*
162 *	Save a DMI string
163 */
164static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
165		int string)
166{
167	const char *d = (const char *) dm;
168	const char *p;
169
170	if (dmi_ident[slot])
171		return;
172
173	p = dmi_string(dm, d[string]);
174	if (p == NULL)
175		return;
176
177	dmi_ident[slot] = p;
178}
179
180static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
181		int index)
182{
183	const u8 *d = (u8 *) dm + index;
184	char *s;
185	int is_ff = 1, is_00 = 1, i;
186
187	if (dmi_ident[slot])
188		return;
189
190	for (i = 0; i < 16 && (is_ff || is_00); i++) {
191		if (d[i] != 0x00)
192			is_00 = 0;
193		if (d[i] != 0xFF)
194			is_ff = 0;
195	}
196
197	if (is_ff || is_00)
198		return;
199
200	s = dmi_alloc(16*2+4+1);
201	if (!s)
202		return;
203
204	/*
205	 * As of version 2.6 of the SMBIOS specification, the first 3 fields of
206	 * the UUID are supposed to be little-endian encoded.  The specification
207	 * says that this is the defacto standard.
208	 */
209	if (dmi_ver >= 0x020600)
210		sprintf(s, "%pUL", d);
211	else
212		sprintf(s, "%pUB", d);
213
214	dmi_ident[slot] = s;
215}
216
217static void __init dmi_save_type(const struct dmi_header *dm, int slot,
218		int index)
219{
220	const u8 *d = (u8 *) dm + index;
221	char *s;
222
223	if (dmi_ident[slot])
224		return;
225
226	s = dmi_alloc(4);
227	if (!s)
228		return;
229
230	sprintf(s, "%u", *d & 0x7F);
231	dmi_ident[slot] = s;
232}
233
234static void __init dmi_save_one_device(int type, const char *name)
235{
236	struct dmi_device *dev;
237
238	/* No duplicate device */
239	if (dmi_find_device(type, name, NULL))
240		return;
241
242	dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
243	if (!dev)
244		return;
245
246	dev->type = type;
247	strcpy((char *)(dev + 1), name);
248	dev->name = (char *)(dev + 1);
249	dev->device_data = NULL;
250	list_add(&dev->list, &dmi_devices);
251}
252
253static void __init dmi_save_devices(const struct dmi_header *dm)
254{
255	int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
256
257	for (i = 0; i < count; i++) {
258		const char *d = (char *)(dm + 1) + (i * 2);
259
260		/* Skip disabled device */
261		if ((*d & 0x80) == 0)
262			continue;
263
264		dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
265	}
266}
267
268static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
269{
270	int i, count = *(u8 *)(dm + 1);
271	struct dmi_device *dev;
272
273	for (i = 1; i <= count; i++) {
274		const char *devname = dmi_string(dm, i);
275
276		if (devname == dmi_empty_string)
277			continue;
278
279		dev = dmi_alloc(sizeof(*dev));
280		if (!dev)
281			break;
282
283		dev->type = DMI_DEV_TYPE_OEM_STRING;
284		dev->name = devname;
285		dev->device_data = NULL;
286
287		list_add(&dev->list, &dmi_devices);
288	}
289}
290
291static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
292{
293	struct dmi_device *dev;
294	void *data;
295
296	data = dmi_alloc(dm->length);
297	if (data == NULL)
298		return;
299
300	memcpy(data, dm, dm->length);
301
302	dev = dmi_alloc(sizeof(*dev));
303	if (!dev)
304		return;
305
306	dev->type = DMI_DEV_TYPE_IPMI;
307	dev->name = "IPMI controller";
308	dev->device_data = data;
309
310	list_add_tail(&dev->list, &dmi_devices);
311}
312
313static void __init dmi_save_dev_onboard(int instance, int segment, int bus,
314					int devfn, const char *name)
315{
316	struct dmi_dev_onboard *onboard_dev;
317
318	onboard_dev = dmi_alloc(sizeof(*onboard_dev) + strlen(name) + 1);
319	if (!onboard_dev)
320		return;
321
322	onboard_dev->instance = instance;
323	onboard_dev->segment = segment;
324	onboard_dev->bus = bus;
325	onboard_dev->devfn = devfn;
326
327	strcpy((char *)&onboard_dev[1], name);
328	onboard_dev->dev.type = DMI_DEV_TYPE_DEV_ONBOARD;
329	onboard_dev->dev.name = (char *)&onboard_dev[1];
330	onboard_dev->dev.device_data = onboard_dev;
331
332	list_add(&onboard_dev->dev.list, &dmi_devices);
333}
334
335static void __init dmi_save_extended_devices(const struct dmi_header *dm)
336{
337	const u8 *d = (u8 *) dm + 5;
338
339	/* Skip disabled device */
340	if ((*d & 0x80) == 0)
341		return;
342
343	dmi_save_dev_onboard(*(d+1), *(u16 *)(d+2), *(d+4), *(d+5),
344			     dmi_string_nosave(dm, *(d-1)));
345	dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d - 1)));
346}
347
348static void __init count_mem_devices(const struct dmi_header *dm, void *v)
349{
350	if (dm->type != DMI_ENTRY_MEM_DEVICE)
351		return;
352	dmi_memdev_nr++;
353}
354
355static void __init save_mem_devices(const struct dmi_header *dm, void *v)
356{
357	const char *d = (const char *)dm;
358	static int nr;
359
360	if (dm->type != DMI_ENTRY_MEM_DEVICE)
361		return;
362	if (nr >= dmi_memdev_nr) {
363		pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
364		return;
365	}
366	dmi_memdev[nr].handle = get_unaligned(&dm->handle);
367	dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
368	dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
369	nr++;
370}
371
372void __init dmi_memdev_walk(void)
373{
374	if (!dmi_available)
375		return;
376
377	if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
378		dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
379		if (dmi_memdev)
380			dmi_walk_early(save_mem_devices);
381	}
382}
383
384/*
385 *	Process a DMI table entry. Right now all we care about are the BIOS
386 *	and machine entries. For 2.5 we should pull the smbus controller info
387 *	out of here.
388 */
389static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
390{
391	switch (dm->type) {
392	case 0:		/* BIOS Information */
393		dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
394		dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
395		dmi_save_ident(dm, DMI_BIOS_DATE, 8);
396		break;
397	case 1:		/* System Information */
398		dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
399		dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
400		dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
401		dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
402		dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
403		break;
404	case 2:		/* Base Board Information */
405		dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
406		dmi_save_ident(dm, DMI_BOARD_NAME, 5);
407		dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
408		dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
409		dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
410		break;
411	case 3:		/* Chassis Information */
412		dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
413		dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
414		dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
415		dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
416		dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
417		break;
418	case 10:	/* Onboard Devices Information */
419		dmi_save_devices(dm);
420		break;
421	case 11:	/* OEM Strings */
422		dmi_save_oem_strings_devices(dm);
423		break;
424	case 38:	/* IPMI Device Information */
425		dmi_save_ipmi_device(dm);
426		break;
427	case 41:	/* Onboard Devices Extended Information */
428		dmi_save_extended_devices(dm);
429	}
430}
431
432static int __init print_filtered(char *buf, size_t len, const char *info)
433{
434	int c = 0;
435	const char *p;
436
437	if (!info)
438		return c;
439
440	for (p = info; *p; p++)
441		if (isprint(*p))
442			c += scnprintf(buf + c, len - c, "%c", *p);
443		else
444			c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
445	return c;
446}
447
448static void __init dmi_format_ids(char *buf, size_t len)
449{
450	int c = 0;
451	const char *board;	/* Board Name is optional */
452
453	c += print_filtered(buf + c, len - c,
454			    dmi_get_system_info(DMI_SYS_VENDOR));
455	c += scnprintf(buf + c, len - c, " ");
456	c += print_filtered(buf + c, len - c,
457			    dmi_get_system_info(DMI_PRODUCT_NAME));
458
459	board = dmi_get_system_info(DMI_BOARD_NAME);
460	if (board) {
461		c += scnprintf(buf + c, len - c, "/");
462		c += print_filtered(buf + c, len - c, board);
463	}
464	c += scnprintf(buf + c, len - c, ", BIOS ");
465	c += print_filtered(buf + c, len - c,
466			    dmi_get_system_info(DMI_BIOS_VERSION));
467	c += scnprintf(buf + c, len - c, " ");
468	c += print_filtered(buf + c, len - c,
469			    dmi_get_system_info(DMI_BIOS_DATE));
470}
471
472/*
473 * Check for DMI/SMBIOS headers in the system firmware image.  Any
474 * SMBIOS header must start 16 bytes before the DMI header, so take a
475 * 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
476 * 0.  If the DMI header is present, set dmi_ver accordingly (SMBIOS
477 * takes precedence) and return 0.  Otherwise return 1.
478 */
479static int __init dmi_present(const u8 *buf)
480{
481	u32 smbios_ver;
482
483	if (memcmp(buf, "_SM_", 4) == 0 &&
484	    buf[5] < 32 && dmi_checksum(buf, buf[5])) {
485		smbios_ver = get_unaligned_be16(buf + 6);
486
487		/* Some BIOS report weird SMBIOS version, fix that up */
488		switch (smbios_ver) {
489		case 0x021F:
490		case 0x0221:
491			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n",
492				 smbios_ver & 0xFF, 3);
493			smbios_ver = 0x0203;
494			break;
495		case 0x0233:
496			pr_debug("SMBIOS version fixup(2.%d->2.%d)\n", 51, 6);
497			smbios_ver = 0x0206;
498			break;
499		}
500	} else {
501		smbios_ver = 0;
502	}
503
504	buf += 16;
505
506	if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
507		if (smbios_ver)
508			dmi_ver = smbios_ver;
509		else
510			dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
511		dmi_num = get_unaligned_le16(buf + 12);
512		dmi_len = get_unaligned_le16(buf + 6);
513		dmi_base = get_unaligned_le32(buf + 8);
514
515		if (dmi_walk_early(dmi_decode) == 0) {
516			if (smbios_ver) {
517				pr_info("SMBIOS %d.%d present.\n",
518				       dmi_ver >> 8, dmi_ver & 0xFF);
519			} else {
520				pr_info("Legacy DMI %d.%d present.\n",
521				       dmi_ver >> 8, dmi_ver & 0xFF);
522			}
523			dmi_ver <<= 8;
524			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
525			printk(KERN_DEBUG "DMI: %s\n", dmi_ids_string);
526			return 0;
527		}
528	}
529
530	return 1;
531}
532
533/*
534 * Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
535 * 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
536 */
537static int __init dmi_smbios3_present(const u8 *buf)
538{
539	if (memcmp(buf, "_SM3_", 5) == 0 &&
540	    buf[6] < 32 && dmi_checksum(buf, buf[6])) {
541		dmi_ver = get_unaligned_be32(buf + 6);
542		dmi_ver &= 0xFFFFFF;
543		dmi_num = 0;			/* No longer specified */
544		dmi_len = get_unaligned_le32(buf + 12);
545		dmi_base = get_unaligned_le64(buf + 16);
546
547		if (dmi_walk_early(dmi_decode) == 0) {
548			pr_info("SMBIOS %d.%d.%d present.\n",
549				dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
550				dmi_ver & 0xFF);
551			dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
552			pr_debug("DMI: %s\n", dmi_ids_string);
553			return 0;
554		}
555	}
556	return 1;
557}
558
559void __init dmi_scan_machine(void)
560{
561	char __iomem *p, *q;
562	char buf[32];
563
564	if (efi_enabled(EFI_CONFIG_TABLES)) {
565		/*
566		 * According to the DMTF SMBIOS reference spec v3.0.0, it is
567		 * allowed to define both the 64-bit entry point (smbios3) and
568		 * the 32-bit entry point (smbios), in which case they should
569		 * either both point to the same SMBIOS structure table, or the
570		 * table pointed to by the 64-bit entry point should contain a
571		 * superset of the table contents pointed to by the 32-bit entry
572		 * point (section 5.2)
573		 * This implies that the 64-bit entry point should have
574		 * precedence if it is defined and supported by the OS. If we
575		 * have the 64-bit entry point, but fail to decode it, fall
576		 * back to the legacy one (if available)
577		 */
578		if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
579			p = dmi_early_remap(efi.smbios3, 32);
580			if (p == NULL)
581				goto error;
582			memcpy_fromio(buf, p, 32);
583			dmi_early_unmap(p, 32);
584
585			if (!dmi_smbios3_present(buf)) {
586				dmi_available = 1;
587				goto out;
588			}
589		}
590		if (efi.smbios == EFI_INVALID_TABLE_ADDR)
591			goto error;
592
593		/* This is called as a core_initcall() because it isn't
594		 * needed during early boot.  This also means we can
595		 * iounmap the space when we're done with it.
596		 */
597		p = dmi_early_remap(efi.smbios, 32);
598		if (p == NULL)
599			goto error;
600		memcpy_fromio(buf, p, 32);
601		dmi_early_unmap(p, 32);
602
603		if (!dmi_present(buf)) {
604			dmi_available = 1;
605			goto out;
606		}
607	} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
608		p = dmi_early_remap(0xF0000, 0x10000);
609		if (p == NULL)
610			goto error;
611
612		/*
613		 * Iterate over all possible DMI header addresses q.
614		 * Maintain the 32 bytes around q in buf.  On the
615		 * first iteration, substitute zero for the
616		 * out-of-range bytes so there is no chance of falsely
617		 * detecting an SMBIOS header.
618		 */
619		memset(buf, 0, 16);
620		for (q = p; q < p + 0x10000; q += 16) {
621			memcpy_fromio(buf + 16, q, 16);
622			if (!dmi_smbios3_present(buf) || !dmi_present(buf)) {
623				dmi_available = 1;
624				dmi_early_unmap(p, 0x10000);
625				goto out;
626			}
627			memcpy(buf, buf + 16, 16);
628		}
629		dmi_early_unmap(p, 0x10000);
630	}
631 error:
632	pr_info("DMI not present or invalid.\n");
633 out:
634	dmi_initialized = 1;
635}
636
637/**
638 * dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
639 *
640 * Invoke dump_stack_set_arch_desc() with DMI system information so that
641 * DMI identifiers are printed out on task dumps.  Arch boot code should
642 * call this function after dmi_scan_machine() if it wants to print out DMI
643 * identifiers on task dumps.
644 */
645void __init dmi_set_dump_stack_arch_desc(void)
646{
647	dump_stack_set_arch_desc("%s", dmi_ids_string);
648}
649
650/**
651 *	dmi_matches - check if dmi_system_id structure matches system DMI data
652 *	@dmi: pointer to the dmi_system_id structure to check
653 */
654static bool dmi_matches(const struct dmi_system_id *dmi)
655{
656	int i;
657
658	WARN(!dmi_initialized, KERN_ERR "dmi check: not initialized yet.\n");
659
660	for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
661		int s = dmi->matches[i].slot;
662		if (s == DMI_NONE)
663			break;
664		if (dmi_ident[s]) {
665			if (!dmi->matches[i].exact_match &&
666			    strstr(dmi_ident[s], dmi->matches[i].substr))
667				continue;
668			else if (dmi->matches[i].exact_match &&
669				 !strcmp(dmi_ident[s], dmi->matches[i].substr))
670				continue;
671		}
672
673		/* No match */
674		return false;
675	}
676	return true;
677}
678
679/**
680 *	dmi_is_end_of_table - check for end-of-table marker
681 *	@dmi: pointer to the dmi_system_id structure to check
682 */
683static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
684{
685	return dmi->matches[0].slot == DMI_NONE;
686}
687
688/**
689 *	dmi_check_system - check system DMI data
690 *	@list: array of dmi_system_id structures to match against
691 *		All non-null elements of the list must match
692 *		their slot's (field index's) data (i.e., each
693 *		list string must be a substring of the specified
694 *		DMI slot's string data) to be considered a
695 *		successful match.
696 *
697 *	Walk the blacklist table running matching functions until someone
698 *	returns non zero or we hit the end. Callback function is called for
699 *	each successful match. Returns the number of matches.
700 */
701int dmi_check_system(const struct dmi_system_id *list)
702{
703	int count = 0;
704	const struct dmi_system_id *d;
705
706	for (d = list; !dmi_is_end_of_table(d); d++)
707		if (dmi_matches(d)) {
708			count++;
709			if (d->callback && d->callback(d))
710				break;
711		}
712
713	return count;
714}
715EXPORT_SYMBOL(dmi_check_system);
716
717/**
718 *	dmi_first_match - find dmi_system_id structure matching system DMI data
719 *	@list: array of dmi_system_id structures to match against
720 *		All non-null elements of the list must match
721 *		their slot's (field index's) data (i.e., each
722 *		list string must be a substring of the specified
723 *		DMI slot's string data) to be considered a
724 *		successful match.
725 *
726 *	Walk the blacklist table until the first match is found.  Return the
727 *	pointer to the matching entry or NULL if there's no match.
728 */
729const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
730{
731	const struct dmi_system_id *d;
732
733	for (d = list; !dmi_is_end_of_table(d); d++)
734		if (dmi_matches(d))
735			return d;
736
737	return NULL;
738}
739EXPORT_SYMBOL(dmi_first_match);
740
741/**
742 *	dmi_get_system_info - return DMI data value
743 *	@field: data index (see enum dmi_field)
744 *
745 *	Returns one DMI data value, can be used to perform
746 *	complex DMI data checks.
747 */
748const char *dmi_get_system_info(int field)
749{
750	return dmi_ident[field];
751}
752EXPORT_SYMBOL(dmi_get_system_info);
753
754/**
755 * dmi_name_in_serial - Check if string is in the DMI product serial information
756 * @str: string to check for
757 */
758int dmi_name_in_serial(const char *str)
759{
760	int f = DMI_PRODUCT_SERIAL;
761	if (dmi_ident[f] && strstr(dmi_ident[f], str))
762		return 1;
763	return 0;
764}
765
766/**
767 *	dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
768 *	@str: Case sensitive Name
769 */
770int dmi_name_in_vendors(const char *str)
771{
772	static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
773	int i;
774	for (i = 0; fields[i] != DMI_NONE; i++) {
775		int f = fields[i];
776		if (dmi_ident[f] && strstr(dmi_ident[f], str))
777			return 1;
778	}
779	return 0;
780}
781EXPORT_SYMBOL(dmi_name_in_vendors);
782
783/**
784 *	dmi_find_device - find onboard device by type/name
785 *	@type: device type or %DMI_DEV_TYPE_ANY to match all device types
786 *	@name: device name string or %NULL to match all
787 *	@from: previous device found in search, or %NULL for new search.
788 *
789 *	Iterates through the list of known onboard devices. If a device is
790 *	found with a matching @vendor and @device, a pointer to its device
791 *	structure is returned.  Otherwise, %NULL is returned.
792 *	A new search is initiated by passing %NULL as the @from argument.
793 *	If @from is not %NULL, searches continue from next device.
794 */
795const struct dmi_device *dmi_find_device(int type, const char *name,
796				    const struct dmi_device *from)
797{
798	const struct list_head *head = from ? &from->list : &dmi_devices;
799	struct list_head *d;
800
801	for (d = head->next; d != &dmi_devices; d = d->next) {
802		const struct dmi_device *dev =
803			list_entry(d, struct dmi_device, list);
804
805		if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
806		    ((name == NULL) || (strcmp(dev->name, name) == 0)))
807			return dev;
808	}
809
810	return NULL;
811}
812EXPORT_SYMBOL(dmi_find_device);
813
814/**
815 *	dmi_get_date - parse a DMI date
816 *	@field:	data index (see enum dmi_field)
817 *	@yearp: optional out parameter for the year
818 *	@monthp: optional out parameter for the month
819 *	@dayp: optional out parameter for the day
820 *
821 *	The date field is assumed to be in the form resembling
822 *	[mm[/dd]]/yy[yy] and the result is stored in the out
823 *	parameters any or all of which can be omitted.
824 *
825 *	If the field doesn't exist, all out parameters are set to zero
826 *	and false is returned.  Otherwise, true is returned with any
827 *	invalid part of date set to zero.
828 *
829 *	On return, year, month and day are guaranteed to be in the
830 *	range of [0,9999], [0,12] and [0,31] respectively.
831 */
832bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
833{
834	int year = 0, month = 0, day = 0;
835	bool exists;
836	const char *s, *y;
837	char *e;
838
839	s = dmi_get_system_info(field);
840	exists = s;
841	if (!exists)
842		goto out;
843
844	/*
845	 * Determine year first.  We assume the date string resembles
846	 * mm/dd/yy[yy] but the original code extracted only the year
847	 * from the end.  Keep the behavior in the spirit of no
848	 * surprises.
849	 */
850	y = strrchr(s, '/');
851	if (!y)
852		goto out;
853
854	y++;
855	year = simple_strtoul(y, &e, 10);
856	if (y != e && year < 100) {	/* 2-digit year */
857		year += 1900;
858		if (year < 1996)	/* no dates < spec 1.0 */
859			year += 100;
860	}
861	if (year > 9999)		/* year should fit in %04d */
862		year = 0;
863
864	/* parse the mm and dd */
865	month = simple_strtoul(s, &e, 10);
866	if (s == e || *e != '/' || !month || month > 12) {
867		month = 0;
868		goto out;
869	}
870
871	s = e + 1;
872	day = simple_strtoul(s, &e, 10);
873	if (s == y || s == e || *e != '/' || day > 31)
874		day = 0;
875out:
876	if (yearp)
877		*yearp = year;
878	if (monthp)
879		*monthp = month;
880	if (dayp)
881		*dayp = day;
882	return exists;
883}
884EXPORT_SYMBOL(dmi_get_date);
885
886/**
887 *	dmi_walk - Walk the DMI table and get called back for every record
888 *	@decode: Callback function
889 *	@private_data: Private data to be passed to the callback function
890 *
891 *	Returns -1 when the DMI table can't be reached, 0 on success.
892 */
893int dmi_walk(void (*decode)(const struct dmi_header *, void *),
894	     void *private_data)
895{
896	u8 *buf;
897
898	if (!dmi_available)
899		return -1;
900
901	buf = dmi_remap(dmi_base, dmi_len);
902	if (buf == NULL)
903		return -1;
904
905	dmi_table(buf, decode, private_data);
906
907	dmi_unmap(buf);
908	return 0;
909}
910EXPORT_SYMBOL_GPL(dmi_walk);
911
912/**
913 * dmi_match - compare a string to the dmi field (if exists)
914 * @f: DMI field identifier
915 * @str: string to compare the DMI field to
916 *
917 * Returns true if the requested field equals to the str (including NULL).
918 */
919bool dmi_match(enum dmi_field f, const char *str)
920{
921	const char *info = dmi_get_system_info(f);
922
923	if (info == NULL || str == NULL)
924		return info == str;
925
926	return !strcmp(info, str);
927}
928EXPORT_SYMBOL_GPL(dmi_match);
929
930void dmi_memdev_name(u16 handle, const char **bank, const char **device)
931{
932	int n;
933
934	if (dmi_memdev == NULL)
935		return;
936
937	for (n = 0; n < dmi_memdev_nr; n++) {
938		if (handle == dmi_memdev[n].handle) {
939			*bank = dmi_memdev[n].bank;
940			*device = dmi_memdev[n].device;
941			break;
942		}
943	}
944}
945EXPORT_SYMBOL_GPL(dmi_memdev_name);
946