1/* 2 * EFI stub implementation that is shared by arm and arm64 architectures. 3 * This should be #included by the EFI stub implementation files. 4 * 5 * Copyright (C) 2013,2014 Linaro Limited 6 * Roy Franz <roy.franz@linaro.org 7 * Copyright (C) 2013 Red Hat, Inc. 8 * Mark Salter <msalter@redhat.com> 9 * 10 * This file is part of the Linux kernel, and is made available under the 11 * terms of the GNU General Public License version 2. 12 * 13 */ 14 15#include <linux/efi.h> 16#include <linux/sort.h> 17#include <asm/efi.h> 18 19#include "efistub.h" 20 21static int efi_secureboot_enabled(efi_system_table_t *sys_table_arg) 22{ 23 static efi_guid_t const var_guid = EFI_GLOBAL_VARIABLE_GUID; 24 static efi_char16_t const var_name[] = { 25 'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 }; 26 27 efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable; 28 unsigned long size = sizeof(u8); 29 efi_status_t status; 30 u8 val; 31 32 status = f_getvar((efi_char16_t *)var_name, (efi_guid_t *)&var_guid, 33 NULL, &size, &val); 34 35 switch (status) { 36 case EFI_SUCCESS: 37 return val; 38 case EFI_NOT_FOUND: 39 return 0; 40 default: 41 return 1; 42 } 43} 44 45efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg, 46 void *__image, void **__fh) 47{ 48 efi_file_io_interface_t *io; 49 efi_loaded_image_t *image = __image; 50 efi_file_handle_t *fh; 51 efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID; 52 efi_status_t status; 53 void *handle = (void *)(unsigned long)image->device_handle; 54 55 status = sys_table_arg->boottime->handle_protocol(handle, 56 &fs_proto, (void **)&io); 57 if (status != EFI_SUCCESS) { 58 efi_printk(sys_table_arg, "Failed to handle fs_proto\n"); 59 return status; 60 } 61 62 status = io->open_volume(io, &fh); 63 if (status != EFI_SUCCESS) 64 efi_printk(sys_table_arg, "Failed to open volume\n"); 65 66 *__fh = fh; 67 return status; 68} 69 70efi_status_t efi_file_close(void *handle) 71{ 72 efi_file_handle_t *fh = handle; 73 74 return fh->close(handle); 75} 76 77efi_status_t 78efi_file_read(void *handle, unsigned long *size, void *addr) 79{ 80 efi_file_handle_t *fh = handle; 81 82 return fh->read(handle, size, addr); 83} 84 85 86efi_status_t 87efi_file_size(efi_system_table_t *sys_table_arg, void *__fh, 88 efi_char16_t *filename_16, void **handle, u64 *file_sz) 89{ 90 efi_file_handle_t *h, *fh = __fh; 91 efi_file_info_t *info; 92 efi_status_t status; 93 efi_guid_t info_guid = EFI_FILE_INFO_ID; 94 unsigned long info_sz; 95 96 status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0); 97 if (status != EFI_SUCCESS) { 98 efi_printk(sys_table_arg, "Failed to open file: "); 99 efi_char16_printk(sys_table_arg, filename_16); 100 efi_printk(sys_table_arg, "\n"); 101 return status; 102 } 103 104 *handle = h; 105 106 info_sz = 0; 107 status = h->get_info(h, &info_guid, &info_sz, NULL); 108 if (status != EFI_BUFFER_TOO_SMALL) { 109 efi_printk(sys_table_arg, "Failed to get file info size\n"); 110 return status; 111 } 112 113grow: 114 status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA, 115 info_sz, (void **)&info); 116 if (status != EFI_SUCCESS) { 117 efi_printk(sys_table_arg, "Failed to alloc mem for file info\n"); 118 return status; 119 } 120 121 status = h->get_info(h, &info_guid, &info_sz, 122 info); 123 if (status == EFI_BUFFER_TOO_SMALL) { 124 sys_table_arg->boottime->free_pool(info); 125 goto grow; 126 } 127 128 *file_sz = info->file_size; 129 sys_table_arg->boottime->free_pool(info); 130 131 if (status != EFI_SUCCESS) 132 efi_printk(sys_table_arg, "Failed to get initrd info\n"); 133 134 return status; 135} 136 137 138 139void efi_char16_printk(efi_system_table_t *sys_table_arg, 140 efi_char16_t *str) 141{ 142 struct efi_simple_text_output_protocol *out; 143 144 out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out; 145 out->output_string(out, str); 146} 147 148 149/* 150 * This function handles the architcture specific differences between arm and 151 * arm64 regarding where the kernel image must be loaded and any memory that 152 * must be reserved. On failure it is required to free all 153 * all allocations it has made. 154 */ 155efi_status_t handle_kernel_image(efi_system_table_t *sys_table, 156 unsigned long *image_addr, 157 unsigned long *image_size, 158 unsigned long *reserve_addr, 159 unsigned long *reserve_size, 160 unsigned long dram_base, 161 efi_loaded_image_t *image); 162/* 163 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint 164 * that is described in the PE/COFF header. Most of the code is the same 165 * for both archictectures, with the arch-specific code provided in the 166 * handle_kernel_image() function. 167 */ 168unsigned long efi_entry(void *handle, efi_system_table_t *sys_table, 169 unsigned long *image_addr) 170{ 171 efi_loaded_image_t *image; 172 efi_status_t status; 173 unsigned long image_size = 0; 174 unsigned long dram_base; 175 /* addr/point and size pairs for memory management*/ 176 unsigned long initrd_addr; 177 u64 initrd_size = 0; 178 unsigned long fdt_addr = 0; /* Original DTB */ 179 unsigned long fdt_size = 0; 180 char *cmdline_ptr = NULL; 181 int cmdline_size = 0; 182 unsigned long new_fdt_addr; 183 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID; 184 unsigned long reserve_addr = 0; 185 unsigned long reserve_size = 0; 186 187 /* Check if we were booted by the EFI firmware */ 188 if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) 189 goto fail; 190 191 pr_efi(sys_table, "Booting Linux Kernel...\n"); 192 193 /* 194 * Get a handle to the loaded image protocol. This is used to get 195 * information about the running image, such as size and the command 196 * line. 197 */ 198 status = sys_table->boottime->handle_protocol(handle, 199 &loaded_image_proto, (void *)&image); 200 if (status != EFI_SUCCESS) { 201 pr_efi_err(sys_table, "Failed to get loaded image protocol\n"); 202 goto fail; 203 } 204 205 dram_base = get_dram_base(sys_table); 206 if (dram_base == EFI_ERROR) { 207 pr_efi_err(sys_table, "Failed to find DRAM base\n"); 208 goto fail; 209 } 210 status = handle_kernel_image(sys_table, image_addr, &image_size, 211 &reserve_addr, 212 &reserve_size, 213 dram_base, image); 214 if (status != EFI_SUCCESS) { 215 pr_efi_err(sys_table, "Failed to relocate kernel\n"); 216 goto fail; 217 } 218 219 /* 220 * Get the command line from EFI, using the LOADED_IMAGE 221 * protocol. We are going to copy the command line into the 222 * device tree, so this can be allocated anywhere. 223 */ 224 cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size); 225 if (!cmdline_ptr) { 226 pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n"); 227 goto fail_free_image; 228 } 229 230 status = efi_parse_options(cmdline_ptr); 231 if (status != EFI_SUCCESS) 232 pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n"); 233 234 /* 235 * Unauthenticated device tree data is a security hazard, so 236 * ignore 'dtb=' unless UEFI Secure Boot is disabled. 237 */ 238 if (efi_secureboot_enabled(sys_table)) { 239 pr_efi(sys_table, "UEFI Secure Boot is enabled.\n"); 240 } else { 241 status = handle_cmdline_files(sys_table, image, cmdline_ptr, 242 "dtb=", 243 ~0UL, &fdt_addr, &fdt_size); 244 245 if (status != EFI_SUCCESS) { 246 pr_efi_err(sys_table, "Failed to load device tree!\n"); 247 goto fail_free_cmdline; 248 } 249 } 250 251 if (fdt_addr) { 252 pr_efi(sys_table, "Using DTB from command line\n"); 253 } else { 254 /* Look for a device tree configuration table entry. */ 255 fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size); 256 if (fdt_addr) 257 pr_efi(sys_table, "Using DTB from configuration table\n"); 258 } 259 260 if (!fdt_addr) 261 pr_efi(sys_table, "Generating empty DTB\n"); 262 263 status = handle_cmdline_files(sys_table, image, cmdline_ptr, 264 "initrd=", dram_base + SZ_512M, 265 (unsigned long *)&initrd_addr, 266 (unsigned long *)&initrd_size); 267 if (status != EFI_SUCCESS) 268 pr_efi_err(sys_table, "Failed initrd from command line!\n"); 269 270 new_fdt_addr = fdt_addr; 271 status = allocate_new_fdt_and_exit_boot(sys_table, handle, 272 &new_fdt_addr, dram_base + MAX_FDT_OFFSET, 273 initrd_addr, initrd_size, cmdline_ptr, 274 fdt_addr, fdt_size); 275 276 /* 277 * If all went well, we need to return the FDT address to the 278 * calling function so it can be passed to kernel as part of 279 * the kernel boot protocol. 280 */ 281 if (status == EFI_SUCCESS) 282 return new_fdt_addr; 283 284 pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n"); 285 286 efi_free(sys_table, initrd_size, initrd_addr); 287 efi_free(sys_table, fdt_size, fdt_addr); 288 289fail_free_cmdline: 290 efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr); 291 292fail_free_image: 293 efi_free(sys_table, image_size, *image_addr); 294 efi_free(sys_table, reserve_size, reserve_addr); 295fail: 296 return EFI_ERROR; 297} 298 299/* 300 * This is the base address at which to start allocating virtual memory ranges 301 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use 302 * any allocation we choose, and eliminate the risk of a conflict after kexec. 303 * The value chosen is the largest non-zero power of 2 suitable for this purpose 304 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can 305 * be mapped efficiently. 306 */ 307#define EFI_RT_VIRTUAL_BASE 0x40000000 308 309static int cmp_mem_desc(const void *l, const void *r) 310{ 311 const efi_memory_desc_t *left = l, *right = r; 312 313 return (left->phys_addr > right->phys_addr) ? 1 : -1; 314} 315 316/* 317 * Returns whether region @left ends exactly where region @right starts, 318 * or false if either argument is NULL. 319 */ 320static bool regions_are_adjacent(efi_memory_desc_t *left, 321 efi_memory_desc_t *right) 322{ 323 u64 left_end; 324 325 if (left == NULL || right == NULL) 326 return false; 327 328 left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE; 329 330 return left_end == right->phys_addr; 331} 332 333/* 334 * Returns whether region @left and region @right have compatible memory type 335 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions. 336 */ 337static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left, 338 efi_memory_desc_t *right) 339{ 340 static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT | 341 EFI_MEMORY_WC | EFI_MEMORY_UC | 342 EFI_MEMORY_RUNTIME; 343 344 return ((left->attribute ^ right->attribute) & mem_type_mask) == 0; 345} 346 347/* 348 * efi_get_virtmap() - create a virtual mapping for the EFI memory map 349 * 350 * This function populates the virt_addr fields of all memory region descriptors 351 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors 352 * are also copied to @runtime_map, and their total count is returned in @count. 353 */ 354void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size, 355 unsigned long desc_size, efi_memory_desc_t *runtime_map, 356 int *count) 357{ 358 u64 efi_virt_base = EFI_RT_VIRTUAL_BASE; 359 efi_memory_desc_t *in, *prev = NULL, *out = runtime_map; 360 int l; 361 362 /* 363 * To work around potential issues with the Properties Table feature 364 * introduced in UEFI 2.5, which may split PE/COFF executable images 365 * in memory into several RuntimeServicesCode and RuntimeServicesData 366 * regions, we need to preserve the relative offsets between adjacent 367 * EFI_MEMORY_RUNTIME regions with the same memory type attributes. 368 * The easiest way to find adjacent regions is to sort the memory map 369 * before traversing it. 370 */ 371 sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc, NULL); 372 373 for (l = 0; l < map_size; l += desc_size, prev = in) { 374 u64 paddr, size; 375 376 in = (void *)memory_map + l; 377 if (!(in->attribute & EFI_MEMORY_RUNTIME)) 378 continue; 379 380 paddr = in->phys_addr; 381 size = in->num_pages * EFI_PAGE_SIZE; 382 383 /* 384 * Make the mapping compatible with 64k pages: this allows 385 * a 4k page size kernel to kexec a 64k page size kernel and 386 * vice versa. 387 */ 388 if (!regions_are_adjacent(prev, in) || 389 !regions_have_compatible_memory_type_attrs(prev, in)) { 390 391 paddr = round_down(in->phys_addr, SZ_64K); 392 size += in->phys_addr - paddr; 393 394 /* 395 * Avoid wasting memory on PTEs by choosing a virtual 396 * base that is compatible with section mappings if this 397 * region has the appropriate size and physical 398 * alignment. (Sections are 2 MB on 4k granule kernels) 399 */ 400 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M) 401 efi_virt_base = round_up(efi_virt_base, SZ_2M); 402 else 403 efi_virt_base = round_up(efi_virt_base, SZ_64K); 404 } 405 406 in->virt_addr = efi_virt_base + in->phys_addr - paddr; 407 efi_virt_base += size; 408 409 memcpy(out, in, desc_size); 410 out = (void *)out + desc_size; 411 ++*count; 412 } 413} 414