1/*
2 * Copyright © 2014 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Please try to maintain the following order within this file unless it makes
24 * sense to do otherwise. From top to bottom:
25 * 1. typedefs
26 * 2. #defines, and macros
27 * 3. structure definitions
28 * 4. function prototypes
29 *
30 * Within each section, please try to order by generation in ascending order,
31 * from top to bottom (ie. gen6 on the top, gen8 on the bottom).
32 */
33
34#ifndef __I915_GEM_GTT_H__
35#define __I915_GEM_GTT_H__
36
37struct drm_i915_file_private;
38
39typedef uint32_t gen6_pte_t;
40typedef uint64_t gen8_pte_t;
41typedef uint64_t gen8_pde_t;
42
43#define gtt_total_entries(gtt) ((gtt).base.total >> PAGE_SHIFT)
44
45
46/* gen6-hsw has bit 11-4 for physical addr bit 39-32 */
47#define GEN6_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0xff0))
48#define GEN6_PTE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
49#define GEN6_PDE_ADDR_ENCODE(addr)	GEN6_GTT_ADDR_ENCODE(addr)
50#define GEN6_PTE_CACHE_LLC		(2 << 1)
51#define GEN6_PTE_UNCACHED		(1 << 1)
52#define GEN6_PTE_VALID			(1 << 0)
53
54#define I915_PTES(pte_len)		(PAGE_SIZE / (pte_len))
55#define I915_PTE_MASK(pte_len)		(I915_PTES(pte_len) - 1)
56#define I915_PDES			512
57#define I915_PDE_MASK			(I915_PDES - 1)
58#define NUM_PTE(pde_shift)     (1 << (pde_shift - PAGE_SHIFT))
59
60#define GEN6_PTES			I915_PTES(sizeof(gen6_pte_t))
61#define GEN6_PD_SIZE		        (I915_PDES * PAGE_SIZE)
62#define GEN6_PD_ALIGN			(PAGE_SIZE * 16)
63#define GEN6_PDE_SHIFT			22
64#define GEN6_PDE_VALID			(1 << 0)
65
66#define GEN7_PTE_CACHE_L3_LLC		(3 << 1)
67
68#define BYT_PTE_SNOOPED_BY_CPU_CACHES	(1 << 2)
69#define BYT_PTE_WRITEABLE		(1 << 1)
70
71/* Cacheability Control is a 4-bit value. The low three bits are stored in bits
72 * 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
73 */
74#define HSW_CACHEABILITY_CONTROL(bits)	((((bits) & 0x7) << 1) | \
75					 (((bits) & 0x8) << (11 - 3)))
76#define HSW_WB_LLC_AGE3			HSW_CACHEABILITY_CONTROL(0x2)
77#define HSW_WB_LLC_AGE0			HSW_CACHEABILITY_CONTROL(0x3)
78#define HSW_WB_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x8)
79#define HSW_WB_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0xb)
80#define HSW_WT_ELLC_LLC_AGE3		HSW_CACHEABILITY_CONTROL(0x7)
81#define HSW_WT_ELLC_LLC_AGE0		HSW_CACHEABILITY_CONTROL(0x6)
82#define HSW_PTE_UNCACHED		(0)
83#define HSW_GTT_ADDR_ENCODE(addr)	((addr) | (((addr) >> 28) & 0x7f0))
84#define HSW_PTE_ADDR_ENCODE(addr)	HSW_GTT_ADDR_ENCODE(addr)
85
86/* GEN8 legacy style address is defined as a 3 level page table:
87 * 31:30 | 29:21 | 20:12 |  11:0
88 * PDPE  |  PDE  |  PTE  | offset
89 * The difference as compared to normal x86 3 level page table is the PDPEs are
90 * programmed via register.
91 */
92#define GEN8_PDPE_SHIFT			30
93#define GEN8_PDPE_MASK			0x3
94#define GEN8_PDE_SHIFT			21
95#define GEN8_PDE_MASK			0x1ff
96#define GEN8_PTE_SHIFT			12
97#define GEN8_PTE_MASK			0x1ff
98#define GEN8_LEGACY_PDPES		4
99#define GEN8_PTES			I915_PTES(sizeof(gen8_pte_t))
100
101#define PPAT_UNCACHED_INDEX		(_PAGE_PWT | _PAGE_PCD)
102#define PPAT_CACHED_PDE_INDEX		0 /* WB LLC */
103#define PPAT_CACHED_INDEX		_PAGE_PAT /* WB LLCeLLC */
104#define PPAT_DISPLAY_ELLC_INDEX		_PAGE_PCD /* WT eLLC */
105
106#define CHV_PPAT_SNOOP			(1<<6)
107#define GEN8_PPAT_AGE(x)		(x<<4)
108#define GEN8_PPAT_LLCeLLC		(3<<2)
109#define GEN8_PPAT_LLCELLC		(2<<2)
110#define GEN8_PPAT_LLC			(1<<2)
111#define GEN8_PPAT_WB			(3<<0)
112#define GEN8_PPAT_WT			(2<<0)
113#define GEN8_PPAT_WC			(1<<0)
114#define GEN8_PPAT_UC			(0<<0)
115#define GEN8_PPAT_ELLC_OVERRIDE		(0<<2)
116#define GEN8_PPAT(i, x)			((uint64_t) (x) << ((i) * 8))
117
118enum i915_ggtt_view_type {
119	I915_GGTT_VIEW_NORMAL = 0,
120	I915_GGTT_VIEW_ROTATED
121};
122
123struct intel_rotation_info {
124	unsigned int height;
125	unsigned int pitch;
126	uint32_t pixel_format;
127	uint64_t fb_modifier;
128};
129
130struct i915_ggtt_view {
131	enum i915_ggtt_view_type type;
132
133	struct sg_table *pages;
134
135	union {
136		struct intel_rotation_info rotation_info;
137	};
138};
139
140extern const struct i915_ggtt_view i915_ggtt_view_normal;
141extern const struct i915_ggtt_view i915_ggtt_view_rotated;
142
143enum i915_cache_level;
144
145/**
146 * A VMA represents a GEM BO that is bound into an address space. Therefore, a
147 * VMA's presence cannot be guaranteed before binding, or after unbinding the
148 * object into/from the address space.
149 *
150 * To make things as simple as possible (ie. no refcounting), a VMA's lifetime
151 * will always be <= an objects lifetime. So object refcounting should cover us.
152 */
153struct i915_vma {
154	struct drm_mm_node node;
155	struct drm_i915_gem_object *obj;
156	struct i915_address_space *vm;
157
158	/** Flags and address space this VMA is bound to */
159#define GLOBAL_BIND	(1<<0)
160#define LOCAL_BIND	(1<<1)
161#define PTE_READ_ONLY	(1<<2)
162	unsigned int bound : 4;
163
164	/**
165	 * Support different GGTT views into the same object.
166	 * This means there can be multiple VMA mappings per object and per VM.
167	 * i915_ggtt_view_type is used to distinguish between those entries.
168	 * The default one of zero (I915_GGTT_VIEW_NORMAL) is default and also
169	 * assumed in GEM functions which take no ggtt view parameter.
170	 */
171	struct i915_ggtt_view ggtt_view;
172
173	/** This object's place on the active/inactive lists */
174	struct list_head mm_list;
175
176	struct list_head vma_link; /* Link in the object's VMA list */
177
178	/** This vma's place in the batchbuffer or on the eviction list */
179	struct list_head exec_list;
180
181	/**
182	 * Used for performing relocations during execbuffer insertion.
183	 */
184	struct hlist_node exec_node;
185	unsigned long exec_handle;
186	struct drm_i915_gem_exec_object2 *exec_entry;
187
188	/**
189	 * How many users have pinned this object in GTT space. The following
190	 * users can each hold at most one reference: pwrite/pread, execbuffer
191	 * (objects are not allowed multiple times for the same batchbuffer),
192	 * and the framebuffer code. When switching/pageflipping, the
193	 * framebuffer code has at most two buffers pinned per crtc.
194	 *
195	 * In the worst case this is 1 + 1 + 1 + 2*2 = 7. That would fit into 3
196	 * bits with absolutely no headroom. So use 4 bits. */
197	unsigned int pin_count:4;
198#define DRM_I915_GEM_OBJECT_MAX_PIN_COUNT 0xf
199
200	/** Unmap an object from an address space. This usually consists of
201	 * setting the valid PTE entries to a reserved scratch page. */
202	void (*unbind_vma)(struct i915_vma *vma);
203	/* Map an object into an address space with the given cache flags. */
204	void (*bind_vma)(struct i915_vma *vma,
205			 enum i915_cache_level cache_level,
206			 u32 flags);
207};
208
209struct i915_page_table_entry {
210	struct page *page;
211	dma_addr_t daddr;
212
213	unsigned long *used_ptes;
214};
215
216struct i915_page_directory_entry {
217	struct page *page; /* NULL for GEN6-GEN7 */
218	union {
219		uint32_t pd_offset;
220		dma_addr_t daddr;
221	};
222
223	struct i915_page_table_entry *page_table[I915_PDES]; /* PDEs */
224};
225
226struct i915_page_directory_pointer_entry {
227	/* struct page *page; */
228	struct i915_page_directory_entry *page_directory[GEN8_LEGACY_PDPES];
229};
230
231struct i915_address_space {
232	struct drm_mm mm;
233	struct drm_device *dev;
234	struct list_head global_link;
235	unsigned long start;		/* Start offset always 0 for dri2 */
236	size_t total;		/* size addr space maps (ex. 2GB for ggtt) */
237
238	struct {
239		dma_addr_t addr;
240		struct page *page;
241	} scratch;
242
243	/**
244	 * List of objects currently involved in rendering.
245	 *
246	 * Includes buffers having the contents of their GPU caches
247	 * flushed, not necessarily primitives. last_read_req
248	 * represents when the rendering involved will be completed.
249	 *
250	 * A reference is held on the buffer while on this list.
251	 */
252	struct list_head active_list;
253
254	/**
255	 * LRU list of objects which are not in the ringbuffer and
256	 * are ready to unbind, but are still in the GTT.
257	 *
258	 * last_read_req is NULL while an object is in this list.
259	 *
260	 * A reference is not held on the buffer while on this list,
261	 * as merely being GTT-bound shouldn't prevent its being
262	 * freed, and we'll pull it off the list in the free path.
263	 */
264	struct list_head inactive_list;
265
266	/* FIXME: Need a more generic return type */
267	gen6_pte_t (*pte_encode)(dma_addr_t addr,
268				 enum i915_cache_level level,
269				 bool valid, u32 flags); /* Create a valid PTE */
270	int (*allocate_va_range)(struct i915_address_space *vm,
271				 uint64_t start,
272				 uint64_t length);
273	void (*clear_range)(struct i915_address_space *vm,
274			    uint64_t start,
275			    uint64_t length,
276			    bool use_scratch);
277	void (*insert_entries)(struct i915_address_space *vm,
278			       struct sg_table *st,
279			       uint64_t start,
280			       enum i915_cache_level cache_level, u32 flags);
281	void (*cleanup)(struct i915_address_space *vm);
282};
283
284/* The Graphics Translation Table is the way in which GEN hardware translates a
285 * Graphics Virtual Address into a Physical Address. In addition to the normal
286 * collateral associated with any va->pa translations GEN hardware also has a
287 * portion of the GTT which can be mapped by the CPU and remain both coherent
288 * and correct (in cases like swizzling). That region is referred to as GMADR in
289 * the spec.
290 */
291struct i915_gtt {
292	struct i915_address_space base;
293	size_t stolen_size;		/* Total size of stolen memory */
294
295	unsigned long mappable_end;	/* End offset that we can CPU map */
296	struct io_mapping *mappable;	/* Mapping to our CPU mappable region */
297	phys_addr_t mappable_base;	/* PA of our GMADR */
298
299	/** "Graphics Stolen Memory" holds the global PTEs */
300	void __iomem *gsm;
301
302	bool do_idle_maps;
303
304	int mtrr;
305
306	/* global gtt ops */
307	int (*gtt_probe)(struct drm_device *dev, size_t *gtt_total,
308			  size_t *stolen, phys_addr_t *mappable_base,
309			  unsigned long *mappable_end);
310};
311
312struct i915_hw_ppgtt {
313	struct i915_address_space base;
314	struct kref ref;
315	struct drm_mm_node node;
316	unsigned long pd_dirty_rings;
317	unsigned num_pd_entries;
318	unsigned num_pd_pages; /* gen8+ */
319	union {
320		struct i915_page_directory_pointer_entry pdp;
321		struct i915_page_directory_entry pd;
322	};
323
324	struct i915_page_table_entry *scratch_pt;
325
326	struct drm_i915_file_private *file_priv;
327
328	gen6_pte_t __iomem *pd_addr;
329
330	int (*enable)(struct i915_hw_ppgtt *ppgtt);
331	int (*switch_mm)(struct i915_hw_ppgtt *ppgtt,
332			 struct intel_engine_cs *ring);
333	void (*debug_dump)(struct i915_hw_ppgtt *ppgtt, struct seq_file *m);
334};
335
336/* For each pde iterates over every pde between from start until start + length.
337 * If start, and start+length are not perfectly divisible, the macro will round
338 * down, and up as needed. The macro modifies pde, start, and length. Dev is
339 * only used to differentiate shift values. Temp is temp.  On gen6/7, start = 0,
340 * and length = 2G effectively iterates over every PDE in the system.
341 *
342 * XXX: temp is not actually needed, but it saves doing the ALIGN operation.
343 */
344#define gen6_for_each_pde(pt, pd, start, length, temp, iter) \
345	for (iter = gen6_pde_index(start); \
346	     pt = (pd)->page_table[iter], length > 0 && iter < I915_PDES; \
347	     iter++, \
348	     temp = ALIGN(start+1, 1 << GEN6_PDE_SHIFT) - start, \
349	     temp = min_t(unsigned, temp, length), \
350	     start += temp, length -= temp)
351
352static inline uint32_t i915_pte_index(uint64_t address, uint32_t pde_shift)
353{
354	const uint32_t mask = NUM_PTE(pde_shift) - 1;
355
356	return (address >> PAGE_SHIFT) & mask;
357}
358
359/* Helper to counts the number of PTEs within the given length. This count
360 * does not cross a page table boundary, so the max value would be
361 * GEN6_PTES for GEN6, and GEN8_PTES for GEN8.
362*/
363static inline uint32_t i915_pte_count(uint64_t addr, size_t length,
364				      uint32_t pde_shift)
365{
366	const uint64_t mask = ~((1 << pde_shift) - 1);
367	uint64_t end;
368
369	WARN_ON(length == 0);
370	WARN_ON(offset_in_page(addr|length));
371
372	end = addr + length;
373
374	if ((addr & mask) != (end & mask))
375		return NUM_PTE(pde_shift) - i915_pte_index(addr, pde_shift);
376
377	return i915_pte_index(end, pde_shift) - i915_pte_index(addr, pde_shift);
378}
379
380static inline uint32_t i915_pde_index(uint64_t addr, uint32_t shift)
381{
382	return (addr >> shift) & I915_PDE_MASK;
383}
384
385static inline uint32_t gen6_pte_index(uint32_t addr)
386{
387	return i915_pte_index(addr, GEN6_PDE_SHIFT);
388}
389
390static inline size_t gen6_pte_count(uint32_t addr, uint32_t length)
391{
392	return i915_pte_count(addr, length, GEN6_PDE_SHIFT);
393}
394
395static inline uint32_t gen6_pde_index(uint32_t addr)
396{
397	return i915_pde_index(addr, GEN6_PDE_SHIFT);
398}
399
400int i915_gem_gtt_init(struct drm_device *dev);
401void i915_gem_init_global_gtt(struct drm_device *dev);
402void i915_global_gtt_cleanup(struct drm_device *dev);
403
404
405int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt);
406int i915_ppgtt_init_hw(struct drm_device *dev);
407void i915_ppgtt_release(struct kref *kref);
408struct i915_hw_ppgtt *i915_ppgtt_create(struct drm_device *dev,
409					struct drm_i915_file_private *fpriv);
410static inline void i915_ppgtt_get(struct i915_hw_ppgtt *ppgtt)
411{
412	if (ppgtt)
413		kref_get(&ppgtt->ref);
414}
415static inline void i915_ppgtt_put(struct i915_hw_ppgtt *ppgtt)
416{
417	if (ppgtt)
418		kref_put(&ppgtt->ref, i915_ppgtt_release);
419}
420
421void i915_check_and_clear_faults(struct drm_device *dev);
422void i915_gem_suspend_gtt_mappings(struct drm_device *dev);
423void i915_gem_restore_gtt_mappings(struct drm_device *dev);
424
425int __must_check i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj);
426void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj);
427
428static inline bool
429i915_ggtt_view_equal(const struct i915_ggtt_view *a,
430                     const struct i915_ggtt_view *b)
431{
432	if (WARN_ON(!a || !b))
433		return false;
434
435	return a->type == b->type;
436}
437
438#endif
439