1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2 */
3/*
4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 */
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/sysrq.h>
32#include <linux/slab.h>
33#include <linux/circ_buf.h>
34#include <drm/drmP.h>
35#include <drm/i915_drm.h>
36#include "i915_drv.h"
37#include "i915_trace.h"
38#include "intel_drv.h"
39
40/**
41 * DOC: interrupt handling
42 *
43 * These functions provide the basic support for enabling and disabling the
44 * interrupt handling support. There's a lot more functionality in i915_irq.c
45 * and related files, but that will be described in separate chapters.
46 */
47
48static const u32 hpd_ibx[HPD_NUM_PINS] = {
49	[HPD_CRT] = SDE_CRT_HOTPLUG,
50	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
51	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
52	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
53	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
54};
55
56static const u32 hpd_cpt[HPD_NUM_PINS] = {
57	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
58	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
59	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
60	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
61	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
62};
63
64static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
65	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
66	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
67	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
68	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
69	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
70	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
71};
72
73static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
74	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
75	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
76	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
77	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
78	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
79	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
80};
81
82static const u32 hpd_status_i915[HPD_NUM_PINS] = { /* i915 and valleyview are the same */
83	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
84	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
85	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
86	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
87	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
88	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
89};
90
91/* IIR can theoretically queue up two events. Be paranoid. */
92#define GEN8_IRQ_RESET_NDX(type, which) do { \
93	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
94	POSTING_READ(GEN8_##type##_IMR(which)); \
95	I915_WRITE(GEN8_##type##_IER(which), 0); \
96	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
97	POSTING_READ(GEN8_##type##_IIR(which)); \
98	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
99	POSTING_READ(GEN8_##type##_IIR(which)); \
100} while (0)
101
102#define GEN5_IRQ_RESET(type) do { \
103	I915_WRITE(type##IMR, 0xffffffff); \
104	POSTING_READ(type##IMR); \
105	I915_WRITE(type##IER, 0); \
106	I915_WRITE(type##IIR, 0xffffffff); \
107	POSTING_READ(type##IIR); \
108	I915_WRITE(type##IIR, 0xffffffff); \
109	POSTING_READ(type##IIR); \
110} while (0)
111
112/*
113 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
114 */
115#define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
116	u32 val = I915_READ(reg); \
117	if (val) { \
118		WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
119		     (reg), val); \
120		I915_WRITE((reg), 0xffffffff); \
121		POSTING_READ(reg); \
122		I915_WRITE((reg), 0xffffffff); \
123		POSTING_READ(reg); \
124	} \
125} while (0)
126
127#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
128	GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
129	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
130	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
131	POSTING_READ(GEN8_##type##_IMR(which)); \
132} while (0)
133
134#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
135	GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
136	I915_WRITE(type##IER, (ier_val)); \
137	I915_WRITE(type##IMR, (imr_val)); \
138	POSTING_READ(type##IMR); \
139} while (0)
140
141static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
142
143/* For display hotplug interrupt */
144void
145ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
146{
147	assert_spin_locked(&dev_priv->irq_lock);
148
149	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
150		return;
151
152	if ((dev_priv->irq_mask & mask) != 0) {
153		dev_priv->irq_mask &= ~mask;
154		I915_WRITE(DEIMR, dev_priv->irq_mask);
155		POSTING_READ(DEIMR);
156	}
157}
158
159void
160ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
161{
162	assert_spin_locked(&dev_priv->irq_lock);
163
164	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
165		return;
166
167	if ((dev_priv->irq_mask & mask) != mask) {
168		dev_priv->irq_mask |= mask;
169		I915_WRITE(DEIMR, dev_priv->irq_mask);
170		POSTING_READ(DEIMR);
171	}
172}
173
174/**
175 * ilk_update_gt_irq - update GTIMR
176 * @dev_priv: driver private
177 * @interrupt_mask: mask of interrupt bits to update
178 * @enabled_irq_mask: mask of interrupt bits to enable
179 */
180static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
181			      uint32_t interrupt_mask,
182			      uint32_t enabled_irq_mask)
183{
184	assert_spin_locked(&dev_priv->irq_lock);
185
186	WARN_ON(enabled_irq_mask & ~interrupt_mask);
187
188	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
189		return;
190
191	dev_priv->gt_irq_mask &= ~interrupt_mask;
192	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
193	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
194	POSTING_READ(GTIMR);
195}
196
197void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
198{
199	ilk_update_gt_irq(dev_priv, mask, mask);
200}
201
202void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
203{
204	ilk_update_gt_irq(dev_priv, mask, 0);
205}
206
207static u32 gen6_pm_iir(struct drm_i915_private *dev_priv)
208{
209	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
210}
211
212static u32 gen6_pm_imr(struct drm_i915_private *dev_priv)
213{
214	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
215}
216
217static u32 gen6_pm_ier(struct drm_i915_private *dev_priv)
218{
219	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
220}
221
222/**
223  * snb_update_pm_irq - update GEN6_PMIMR
224  * @dev_priv: driver private
225  * @interrupt_mask: mask of interrupt bits to update
226  * @enabled_irq_mask: mask of interrupt bits to enable
227  */
228static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
229			      uint32_t interrupt_mask,
230			      uint32_t enabled_irq_mask)
231{
232	uint32_t new_val;
233
234	WARN_ON(enabled_irq_mask & ~interrupt_mask);
235
236	assert_spin_locked(&dev_priv->irq_lock);
237
238	new_val = dev_priv->pm_irq_mask;
239	new_val &= ~interrupt_mask;
240	new_val |= (~enabled_irq_mask & interrupt_mask);
241
242	if (new_val != dev_priv->pm_irq_mask) {
243		dev_priv->pm_irq_mask = new_val;
244		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
245		POSTING_READ(gen6_pm_imr(dev_priv));
246	}
247}
248
249void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
250{
251	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
252		return;
253
254	snb_update_pm_irq(dev_priv, mask, mask);
255}
256
257static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
258				  uint32_t mask)
259{
260	snb_update_pm_irq(dev_priv, mask, 0);
261}
262
263void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
264{
265	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
266		return;
267
268	__gen6_disable_pm_irq(dev_priv, mask);
269}
270
271void gen6_reset_rps_interrupts(struct drm_device *dev)
272{
273	struct drm_i915_private *dev_priv = dev->dev_private;
274	uint32_t reg = gen6_pm_iir(dev_priv);
275
276	spin_lock_irq(&dev_priv->irq_lock);
277	I915_WRITE(reg, dev_priv->pm_rps_events);
278	I915_WRITE(reg, dev_priv->pm_rps_events);
279	POSTING_READ(reg);
280	dev_priv->rps.pm_iir = 0;
281	spin_unlock_irq(&dev_priv->irq_lock);
282}
283
284void gen6_enable_rps_interrupts(struct drm_device *dev)
285{
286	struct drm_i915_private *dev_priv = dev->dev_private;
287
288	spin_lock_irq(&dev_priv->irq_lock);
289
290	WARN_ON(dev_priv->rps.pm_iir);
291	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
292	dev_priv->rps.interrupts_enabled = true;
293	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
294				dev_priv->pm_rps_events);
295	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
296
297	spin_unlock_irq(&dev_priv->irq_lock);
298}
299
300u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
301{
302	/*
303	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
304	 * if GEN6_PM_UP_EI_EXPIRED is masked.
305	 *
306	 * TODO: verify if this can be reproduced on VLV,CHV.
307	 */
308	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
309		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
310
311	if (INTEL_INFO(dev_priv)->gen >= 8)
312		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
313
314	return mask;
315}
316
317void gen6_disable_rps_interrupts(struct drm_device *dev)
318{
319	struct drm_i915_private *dev_priv = dev->dev_private;
320
321	spin_lock_irq(&dev_priv->irq_lock);
322	dev_priv->rps.interrupts_enabled = false;
323	spin_unlock_irq(&dev_priv->irq_lock);
324
325	cancel_work_sync(&dev_priv->rps.work);
326
327	spin_lock_irq(&dev_priv->irq_lock);
328
329	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
330
331	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
332	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
333				~dev_priv->pm_rps_events);
334
335	spin_unlock_irq(&dev_priv->irq_lock);
336
337	synchronize_irq(dev->irq);
338}
339
340/**
341 * ibx_display_interrupt_update - update SDEIMR
342 * @dev_priv: driver private
343 * @interrupt_mask: mask of interrupt bits to update
344 * @enabled_irq_mask: mask of interrupt bits to enable
345 */
346void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
347				  uint32_t interrupt_mask,
348				  uint32_t enabled_irq_mask)
349{
350	uint32_t sdeimr = I915_READ(SDEIMR);
351	sdeimr &= ~interrupt_mask;
352	sdeimr |= (~enabled_irq_mask & interrupt_mask);
353
354	WARN_ON(enabled_irq_mask & ~interrupt_mask);
355
356	assert_spin_locked(&dev_priv->irq_lock);
357
358	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
359		return;
360
361	I915_WRITE(SDEIMR, sdeimr);
362	POSTING_READ(SDEIMR);
363}
364
365static void
366__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
367		       u32 enable_mask, u32 status_mask)
368{
369	u32 reg = PIPESTAT(pipe);
370	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
371
372	assert_spin_locked(&dev_priv->irq_lock);
373	WARN_ON(!intel_irqs_enabled(dev_priv));
374
375	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
376		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
377		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
378		      pipe_name(pipe), enable_mask, status_mask))
379		return;
380
381	if ((pipestat & enable_mask) == enable_mask)
382		return;
383
384	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
385
386	/* Enable the interrupt, clear any pending status */
387	pipestat |= enable_mask | status_mask;
388	I915_WRITE(reg, pipestat);
389	POSTING_READ(reg);
390}
391
392static void
393__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
394		        u32 enable_mask, u32 status_mask)
395{
396	u32 reg = PIPESTAT(pipe);
397	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
398
399	assert_spin_locked(&dev_priv->irq_lock);
400	WARN_ON(!intel_irqs_enabled(dev_priv));
401
402	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
403		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
404		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
405		      pipe_name(pipe), enable_mask, status_mask))
406		return;
407
408	if ((pipestat & enable_mask) == 0)
409		return;
410
411	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
412
413	pipestat &= ~enable_mask;
414	I915_WRITE(reg, pipestat);
415	POSTING_READ(reg);
416}
417
418static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
419{
420	u32 enable_mask = status_mask << 16;
421
422	/*
423	 * On pipe A we don't support the PSR interrupt yet,
424	 * on pipe B and C the same bit MBZ.
425	 */
426	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
427		return 0;
428	/*
429	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
430	 * A the same bit is for perf counters which we don't use either.
431	 */
432	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
433		return 0;
434
435	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
436			 SPRITE0_FLIP_DONE_INT_EN_VLV |
437			 SPRITE1_FLIP_DONE_INT_EN_VLV);
438	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
439		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
440	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
441		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
442
443	return enable_mask;
444}
445
446void
447i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
448		     u32 status_mask)
449{
450	u32 enable_mask;
451
452	if (IS_VALLEYVIEW(dev_priv->dev))
453		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
454							   status_mask);
455	else
456		enable_mask = status_mask << 16;
457	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
458}
459
460void
461i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
462		      u32 status_mask)
463{
464	u32 enable_mask;
465
466	if (IS_VALLEYVIEW(dev_priv->dev))
467		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
468							   status_mask);
469	else
470		enable_mask = status_mask << 16;
471	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
472}
473
474/**
475 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
476 */
477static void i915_enable_asle_pipestat(struct drm_device *dev)
478{
479	struct drm_i915_private *dev_priv = dev->dev_private;
480
481	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
482		return;
483
484	spin_lock_irq(&dev_priv->irq_lock);
485
486	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
487	if (INTEL_INFO(dev)->gen >= 4)
488		i915_enable_pipestat(dev_priv, PIPE_A,
489				     PIPE_LEGACY_BLC_EVENT_STATUS);
490
491	spin_unlock_irq(&dev_priv->irq_lock);
492}
493
494/*
495 * This timing diagram depicts the video signal in and
496 * around the vertical blanking period.
497 *
498 * Assumptions about the fictitious mode used in this example:
499 *  vblank_start >= 3
500 *  vsync_start = vblank_start + 1
501 *  vsync_end = vblank_start + 2
502 *  vtotal = vblank_start + 3
503 *
504 *           start of vblank:
505 *           latch double buffered registers
506 *           increment frame counter (ctg+)
507 *           generate start of vblank interrupt (gen4+)
508 *           |
509 *           |          frame start:
510 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
511 *           |          may be shifted forward 1-3 extra lines via PIPECONF
512 *           |          |
513 *           |          |  start of vsync:
514 *           |          |  generate vsync interrupt
515 *           |          |  |
516 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
517 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
518 * ----va---> <-----------------vb--------------------> <--------va-------------
519 *       |          |       <----vs----->                     |
520 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
521 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
522 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
523 *       |          |                                         |
524 *       last visible pixel                                   first visible pixel
525 *                  |                                         increment frame counter (gen3/4)
526 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
527 *
528 * x  = horizontal active
529 * _  = horizontal blanking
530 * hs = horizontal sync
531 * va = vertical active
532 * vb = vertical blanking
533 * vs = vertical sync
534 * vbs = vblank_start (number)
535 *
536 * Summary:
537 * - most events happen at the start of horizontal sync
538 * - frame start happens at the start of horizontal blank, 1-4 lines
539 *   (depending on PIPECONF settings) after the start of vblank
540 * - gen3/4 pixel and frame counter are synchronized with the start
541 *   of horizontal active on the first line of vertical active
542 */
543
544static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
545{
546	/* Gen2 doesn't have a hardware frame counter */
547	return 0;
548}
549
550/* Called from drm generic code, passed a 'crtc', which
551 * we use as a pipe index
552 */
553static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
554{
555	struct drm_i915_private *dev_priv = dev->dev_private;
556	unsigned long high_frame;
557	unsigned long low_frame;
558	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
559	struct intel_crtc *intel_crtc =
560		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
561	const struct drm_display_mode *mode =
562		&intel_crtc->config->base.adjusted_mode;
563
564	htotal = mode->crtc_htotal;
565	hsync_start = mode->crtc_hsync_start;
566	vbl_start = mode->crtc_vblank_start;
567	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
568		vbl_start = DIV_ROUND_UP(vbl_start, 2);
569
570	/* Convert to pixel count */
571	vbl_start *= htotal;
572
573	/* Start of vblank event occurs at start of hsync */
574	vbl_start -= htotal - hsync_start;
575
576	high_frame = PIPEFRAME(pipe);
577	low_frame = PIPEFRAMEPIXEL(pipe);
578
579	/*
580	 * High & low register fields aren't synchronized, so make sure
581	 * we get a low value that's stable across two reads of the high
582	 * register.
583	 */
584	do {
585		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
586		low   = I915_READ(low_frame);
587		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
588	} while (high1 != high2);
589
590	high1 >>= PIPE_FRAME_HIGH_SHIFT;
591	pixel = low & PIPE_PIXEL_MASK;
592	low >>= PIPE_FRAME_LOW_SHIFT;
593
594	/*
595	 * The frame counter increments at beginning of active.
596	 * Cook up a vblank counter by also checking the pixel
597	 * counter against vblank start.
598	 */
599	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
600}
601
602static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
603{
604	struct drm_i915_private *dev_priv = dev->dev_private;
605	int reg = PIPE_FRMCOUNT_GM45(pipe);
606
607	return I915_READ(reg);
608}
609
610/* raw reads, only for fast reads of display block, no need for forcewake etc. */
611#define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
612
613static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
614{
615	struct drm_device *dev = crtc->base.dev;
616	struct drm_i915_private *dev_priv = dev->dev_private;
617	const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
618	enum pipe pipe = crtc->pipe;
619	int position, vtotal;
620
621	vtotal = mode->crtc_vtotal;
622	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
623		vtotal /= 2;
624
625	if (IS_GEN2(dev))
626		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
627	else
628		position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
629
630	/*
631	 * See update_scanline_offset() for the details on the
632	 * scanline_offset adjustment.
633	 */
634	return (position + crtc->scanline_offset) % vtotal;
635}
636
637static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
638				    unsigned int flags, int *vpos, int *hpos,
639				    ktime_t *stime, ktime_t *etime)
640{
641	struct drm_i915_private *dev_priv = dev->dev_private;
642	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
643	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
644	const struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
645	int position;
646	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
647	bool in_vbl = true;
648	int ret = 0;
649	unsigned long irqflags;
650
651	if (!intel_crtc->active) {
652		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
653				 "pipe %c\n", pipe_name(pipe));
654		return 0;
655	}
656
657	htotal = mode->crtc_htotal;
658	hsync_start = mode->crtc_hsync_start;
659	vtotal = mode->crtc_vtotal;
660	vbl_start = mode->crtc_vblank_start;
661	vbl_end = mode->crtc_vblank_end;
662
663	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
664		vbl_start = DIV_ROUND_UP(vbl_start, 2);
665		vbl_end /= 2;
666		vtotal /= 2;
667	}
668
669	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
670
671	/*
672	 * Lock uncore.lock, as we will do multiple timing critical raw
673	 * register reads, potentially with preemption disabled, so the
674	 * following code must not block on uncore.lock.
675	 */
676	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
677
678	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
679
680	/* Get optional system timestamp before query. */
681	if (stime)
682		*stime = ktime_get();
683
684	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
685		/* No obvious pixelcount register. Only query vertical
686		 * scanout position from Display scan line register.
687		 */
688		position = __intel_get_crtc_scanline(intel_crtc);
689	} else {
690		/* Have access to pixelcount since start of frame.
691		 * We can split this into vertical and horizontal
692		 * scanout position.
693		 */
694		position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
695
696		/* convert to pixel counts */
697		vbl_start *= htotal;
698		vbl_end *= htotal;
699		vtotal *= htotal;
700
701		/*
702		 * In interlaced modes, the pixel counter counts all pixels,
703		 * so one field will have htotal more pixels. In order to avoid
704		 * the reported position from jumping backwards when the pixel
705		 * counter is beyond the length of the shorter field, just
706		 * clamp the position the length of the shorter field. This
707		 * matches how the scanline counter based position works since
708		 * the scanline counter doesn't count the two half lines.
709		 */
710		if (position >= vtotal)
711			position = vtotal - 1;
712
713		/*
714		 * Start of vblank interrupt is triggered at start of hsync,
715		 * just prior to the first active line of vblank. However we
716		 * consider lines to start at the leading edge of horizontal
717		 * active. So, should we get here before we've crossed into
718		 * the horizontal active of the first line in vblank, we would
719		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
720		 * always add htotal-hsync_start to the current pixel position.
721		 */
722		position = (position + htotal - hsync_start) % vtotal;
723	}
724
725	/* Get optional system timestamp after query. */
726	if (etime)
727		*etime = ktime_get();
728
729	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
730
731	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
732
733	in_vbl = position >= vbl_start && position < vbl_end;
734
735	/*
736	 * While in vblank, position will be negative
737	 * counting up towards 0 at vbl_end. And outside
738	 * vblank, position will be positive counting
739	 * up since vbl_end.
740	 */
741	if (position >= vbl_start)
742		position -= vbl_end;
743	else
744		position += vtotal - vbl_end;
745
746	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
747		*vpos = position;
748		*hpos = 0;
749	} else {
750		*vpos = position / htotal;
751		*hpos = position - (*vpos * htotal);
752	}
753
754	/* In vblank? */
755	if (in_vbl)
756		ret |= DRM_SCANOUTPOS_IN_VBLANK;
757
758	return ret;
759}
760
761int intel_get_crtc_scanline(struct intel_crtc *crtc)
762{
763	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
764	unsigned long irqflags;
765	int position;
766
767	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
768	position = __intel_get_crtc_scanline(crtc);
769	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
770
771	return position;
772}
773
774static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
775			      int *max_error,
776			      struct timeval *vblank_time,
777			      unsigned flags)
778{
779	struct drm_crtc *crtc;
780
781	if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
782		DRM_ERROR("Invalid crtc %d\n", pipe);
783		return -EINVAL;
784	}
785
786	/* Get drm_crtc to timestamp: */
787	crtc = intel_get_crtc_for_pipe(dev, pipe);
788	if (crtc == NULL) {
789		DRM_ERROR("Invalid crtc %d\n", pipe);
790		return -EINVAL;
791	}
792
793	if (!crtc->state->enable) {
794		DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
795		return -EBUSY;
796	}
797
798	/* Helper routine in DRM core does all the work: */
799	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
800						     vblank_time, flags,
801						     crtc,
802						     &to_intel_crtc(crtc)->config->base.adjusted_mode);
803}
804
805static bool intel_hpd_irq_event(struct drm_device *dev,
806				struct drm_connector *connector)
807{
808	enum drm_connector_status old_status;
809
810	WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
811	old_status = connector->status;
812
813	connector->status = connector->funcs->detect(connector, false);
814	if (old_status == connector->status)
815		return false;
816
817	DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
818		      connector->base.id,
819		      connector->name,
820		      drm_get_connector_status_name(old_status),
821		      drm_get_connector_status_name(connector->status));
822
823	return true;
824}
825
826static void i915_digport_work_func(struct work_struct *work)
827{
828	struct drm_i915_private *dev_priv =
829		container_of(work, struct drm_i915_private, dig_port_work);
830	u32 long_port_mask, short_port_mask;
831	struct intel_digital_port *intel_dig_port;
832	int i;
833	u32 old_bits = 0;
834
835	spin_lock_irq(&dev_priv->irq_lock);
836	long_port_mask = dev_priv->long_hpd_port_mask;
837	dev_priv->long_hpd_port_mask = 0;
838	short_port_mask = dev_priv->short_hpd_port_mask;
839	dev_priv->short_hpd_port_mask = 0;
840	spin_unlock_irq(&dev_priv->irq_lock);
841
842	for (i = 0; i < I915_MAX_PORTS; i++) {
843		bool valid = false;
844		bool long_hpd = false;
845		intel_dig_port = dev_priv->hpd_irq_port[i];
846		if (!intel_dig_port || !intel_dig_port->hpd_pulse)
847			continue;
848
849		if (long_port_mask & (1 << i))  {
850			valid = true;
851			long_hpd = true;
852		} else if (short_port_mask & (1 << i))
853			valid = true;
854
855		if (valid) {
856			enum irqreturn ret;
857
858			ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
859			if (ret == IRQ_NONE) {
860				/* fall back to old school hpd */
861				old_bits |= (1 << intel_dig_port->base.hpd_pin);
862			}
863		}
864	}
865
866	if (old_bits) {
867		spin_lock_irq(&dev_priv->irq_lock);
868		dev_priv->hpd_event_bits |= old_bits;
869		spin_unlock_irq(&dev_priv->irq_lock);
870		schedule_work(&dev_priv->hotplug_work);
871	}
872}
873
874/*
875 * Handle hotplug events outside the interrupt handler proper.
876 */
877#define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
878
879static void i915_hotplug_work_func(struct work_struct *work)
880{
881	struct drm_i915_private *dev_priv =
882		container_of(work, struct drm_i915_private, hotplug_work);
883	struct drm_device *dev = dev_priv->dev;
884	struct drm_mode_config *mode_config = &dev->mode_config;
885	struct intel_connector *intel_connector;
886	struct intel_encoder *intel_encoder;
887	struct drm_connector *connector;
888	bool hpd_disabled = false;
889	bool changed = false;
890	u32 hpd_event_bits;
891
892	mutex_lock(&mode_config->mutex);
893	DRM_DEBUG_KMS("running encoder hotplug functions\n");
894
895	spin_lock_irq(&dev_priv->irq_lock);
896
897	hpd_event_bits = dev_priv->hpd_event_bits;
898	dev_priv->hpd_event_bits = 0;
899	list_for_each_entry(connector, &mode_config->connector_list, head) {
900		intel_connector = to_intel_connector(connector);
901		if (!intel_connector->encoder)
902			continue;
903		intel_encoder = intel_connector->encoder;
904		if (intel_encoder->hpd_pin > HPD_NONE &&
905		    dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
906		    connector->polled == DRM_CONNECTOR_POLL_HPD) {
907			DRM_INFO("HPD interrupt storm detected on connector %s: "
908				 "switching from hotplug detection to polling\n",
909				connector->name);
910			dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
911			connector->polled = DRM_CONNECTOR_POLL_CONNECT
912				| DRM_CONNECTOR_POLL_DISCONNECT;
913			hpd_disabled = true;
914		}
915		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
916			DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
917				      connector->name, intel_encoder->hpd_pin);
918		}
919	}
920	 /* if there were no outputs to poll, poll was disabled,
921	  * therefore make sure it's enabled when disabling HPD on
922	  * some connectors */
923	if (hpd_disabled) {
924		drm_kms_helper_poll_enable(dev);
925		mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
926				 msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
927	}
928
929	spin_unlock_irq(&dev_priv->irq_lock);
930
931	list_for_each_entry(connector, &mode_config->connector_list, head) {
932		intel_connector = to_intel_connector(connector);
933		if (!intel_connector->encoder)
934			continue;
935		intel_encoder = intel_connector->encoder;
936		if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
937			if (intel_encoder->hot_plug)
938				intel_encoder->hot_plug(intel_encoder);
939			if (intel_hpd_irq_event(dev, connector))
940				changed = true;
941		}
942	}
943	mutex_unlock(&mode_config->mutex);
944
945	if (changed)
946		drm_kms_helper_hotplug_event(dev);
947}
948
949static void ironlake_rps_change_irq_handler(struct drm_device *dev)
950{
951	struct drm_i915_private *dev_priv = dev->dev_private;
952	u32 busy_up, busy_down, max_avg, min_avg;
953	u8 new_delay;
954
955	spin_lock(&mchdev_lock);
956
957	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
958
959	new_delay = dev_priv->ips.cur_delay;
960
961	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
962	busy_up = I915_READ(RCPREVBSYTUPAVG);
963	busy_down = I915_READ(RCPREVBSYTDNAVG);
964	max_avg = I915_READ(RCBMAXAVG);
965	min_avg = I915_READ(RCBMINAVG);
966
967	/* Handle RCS change request from hw */
968	if (busy_up > max_avg) {
969		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
970			new_delay = dev_priv->ips.cur_delay - 1;
971		if (new_delay < dev_priv->ips.max_delay)
972			new_delay = dev_priv->ips.max_delay;
973	} else if (busy_down < min_avg) {
974		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
975			new_delay = dev_priv->ips.cur_delay + 1;
976		if (new_delay > dev_priv->ips.min_delay)
977			new_delay = dev_priv->ips.min_delay;
978	}
979
980	if (ironlake_set_drps(dev, new_delay))
981		dev_priv->ips.cur_delay = new_delay;
982
983	spin_unlock(&mchdev_lock);
984
985	return;
986}
987
988static void notify_ring(struct drm_device *dev,
989			struct intel_engine_cs *ring)
990{
991	if (!intel_ring_initialized(ring))
992		return;
993
994	trace_i915_gem_request_notify(ring);
995
996	wake_up_all(&ring->irq_queue);
997}
998
999static void vlv_c0_read(struct drm_i915_private *dev_priv,
1000			struct intel_rps_ei *ei)
1001{
1002	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1003	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1004	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1005}
1006
1007static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1008			 const struct intel_rps_ei *old,
1009			 const struct intel_rps_ei *now,
1010			 int threshold)
1011{
1012	u64 time, c0;
1013
1014	if (old->cz_clock == 0)
1015		return false;
1016
1017	time = now->cz_clock - old->cz_clock;
1018	time *= threshold * dev_priv->mem_freq;
1019
1020	/* Workload can be split between render + media, e.g. SwapBuffers
1021	 * being blitted in X after being rendered in mesa. To account for
1022	 * this we need to combine both engines into our activity counter.
1023	 */
1024	c0 = now->render_c0 - old->render_c0;
1025	c0 += now->media_c0 - old->media_c0;
1026	c0 *= 100 * VLV_CZ_CLOCK_TO_MILLI_SEC * 4 / 1000;
1027
1028	return c0 >= time;
1029}
1030
1031void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1032{
1033	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1034	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1035}
1036
1037static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1038{
1039	struct intel_rps_ei now;
1040	u32 events = 0;
1041
1042	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1043		return 0;
1044
1045	vlv_c0_read(dev_priv, &now);
1046	if (now.cz_clock == 0)
1047		return 0;
1048
1049	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1050		if (!vlv_c0_above(dev_priv,
1051				  &dev_priv->rps.down_ei, &now,
1052				  VLV_RP_DOWN_EI_THRESHOLD))
1053			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1054		dev_priv->rps.down_ei = now;
1055	}
1056
1057	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1058		if (vlv_c0_above(dev_priv,
1059				 &dev_priv->rps.up_ei, &now,
1060				 VLV_RP_UP_EI_THRESHOLD))
1061			events |= GEN6_PM_RP_UP_THRESHOLD;
1062		dev_priv->rps.up_ei = now;
1063	}
1064
1065	return events;
1066}
1067
1068static void gen6_pm_rps_work(struct work_struct *work)
1069{
1070	struct drm_i915_private *dev_priv =
1071		container_of(work, struct drm_i915_private, rps.work);
1072	u32 pm_iir;
1073	int new_delay, adj;
1074
1075	spin_lock_irq(&dev_priv->irq_lock);
1076	/* Speed up work cancelation during disabling rps interrupts. */
1077	if (!dev_priv->rps.interrupts_enabled) {
1078		spin_unlock_irq(&dev_priv->irq_lock);
1079		return;
1080	}
1081	pm_iir = dev_priv->rps.pm_iir;
1082	dev_priv->rps.pm_iir = 0;
1083	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1084	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1085	spin_unlock_irq(&dev_priv->irq_lock);
1086
1087	/* Make sure we didn't queue anything we're not going to process. */
1088	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1089
1090	if ((pm_iir & dev_priv->pm_rps_events) == 0)
1091		return;
1092
1093	mutex_lock(&dev_priv->rps.hw_lock);
1094
1095	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1096
1097	adj = dev_priv->rps.last_adj;
1098	if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1099		if (adj > 0)
1100			adj *= 2;
1101		else {
1102			/* CHV needs even encode values */
1103			adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1104		}
1105		new_delay = dev_priv->rps.cur_freq + adj;
1106
1107		/*
1108		 * For better performance, jump directly
1109		 * to RPe if we're below it.
1110		 */
1111		if (new_delay < dev_priv->rps.efficient_freq)
1112			new_delay = dev_priv->rps.efficient_freq;
1113	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1114		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1115			new_delay = dev_priv->rps.efficient_freq;
1116		else
1117			new_delay = dev_priv->rps.min_freq_softlimit;
1118		adj = 0;
1119	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1120		if (adj < 0)
1121			adj *= 2;
1122		else {
1123			/* CHV needs even encode values */
1124			adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1125		}
1126		new_delay = dev_priv->rps.cur_freq + adj;
1127	} else { /* unknown event */
1128		new_delay = dev_priv->rps.cur_freq;
1129	}
1130
1131	/* sysfs frequency interfaces may have snuck in while servicing the
1132	 * interrupt
1133	 */
1134	new_delay = clamp_t(int, new_delay,
1135			    dev_priv->rps.min_freq_softlimit,
1136			    dev_priv->rps.max_freq_softlimit);
1137
1138	dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1139
1140	intel_set_rps(dev_priv->dev, new_delay);
1141
1142	mutex_unlock(&dev_priv->rps.hw_lock);
1143}
1144
1145
1146/**
1147 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1148 * occurred.
1149 * @work: workqueue struct
1150 *
1151 * Doesn't actually do anything except notify userspace. As a consequence of
1152 * this event, userspace should try to remap the bad rows since statistically
1153 * it is likely the same row is more likely to go bad again.
1154 */
1155static void ivybridge_parity_work(struct work_struct *work)
1156{
1157	struct drm_i915_private *dev_priv =
1158		container_of(work, struct drm_i915_private, l3_parity.error_work);
1159	u32 error_status, row, bank, subbank;
1160	char *parity_event[6];
1161	uint32_t misccpctl;
1162	uint8_t slice = 0;
1163
1164	/* We must turn off DOP level clock gating to access the L3 registers.
1165	 * In order to prevent a get/put style interface, acquire struct mutex
1166	 * any time we access those registers.
1167	 */
1168	mutex_lock(&dev_priv->dev->struct_mutex);
1169
1170	/* If we've screwed up tracking, just let the interrupt fire again */
1171	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1172		goto out;
1173
1174	misccpctl = I915_READ(GEN7_MISCCPCTL);
1175	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1176	POSTING_READ(GEN7_MISCCPCTL);
1177
1178	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1179		u32 reg;
1180
1181		slice--;
1182		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1183			break;
1184
1185		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1186
1187		reg = GEN7_L3CDERRST1 + (slice * 0x200);
1188
1189		error_status = I915_READ(reg);
1190		row = GEN7_PARITY_ERROR_ROW(error_status);
1191		bank = GEN7_PARITY_ERROR_BANK(error_status);
1192		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1193
1194		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1195		POSTING_READ(reg);
1196
1197		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1198		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1199		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1200		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1201		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1202		parity_event[5] = NULL;
1203
1204		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1205				   KOBJ_CHANGE, parity_event);
1206
1207		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1208			  slice, row, bank, subbank);
1209
1210		kfree(parity_event[4]);
1211		kfree(parity_event[3]);
1212		kfree(parity_event[2]);
1213		kfree(parity_event[1]);
1214	}
1215
1216	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1217
1218out:
1219	WARN_ON(dev_priv->l3_parity.which_slice);
1220	spin_lock_irq(&dev_priv->irq_lock);
1221	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1222	spin_unlock_irq(&dev_priv->irq_lock);
1223
1224	mutex_unlock(&dev_priv->dev->struct_mutex);
1225}
1226
1227static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1228{
1229	struct drm_i915_private *dev_priv = dev->dev_private;
1230
1231	if (!HAS_L3_DPF(dev))
1232		return;
1233
1234	spin_lock(&dev_priv->irq_lock);
1235	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1236	spin_unlock(&dev_priv->irq_lock);
1237
1238	iir &= GT_PARITY_ERROR(dev);
1239	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1240		dev_priv->l3_parity.which_slice |= 1 << 1;
1241
1242	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1243		dev_priv->l3_parity.which_slice |= 1 << 0;
1244
1245	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1246}
1247
1248static void ilk_gt_irq_handler(struct drm_device *dev,
1249			       struct drm_i915_private *dev_priv,
1250			       u32 gt_iir)
1251{
1252	if (gt_iir &
1253	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1254		notify_ring(dev, &dev_priv->ring[RCS]);
1255	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1256		notify_ring(dev, &dev_priv->ring[VCS]);
1257}
1258
1259static void snb_gt_irq_handler(struct drm_device *dev,
1260			       struct drm_i915_private *dev_priv,
1261			       u32 gt_iir)
1262{
1263
1264	if (gt_iir &
1265	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1266		notify_ring(dev, &dev_priv->ring[RCS]);
1267	if (gt_iir & GT_BSD_USER_INTERRUPT)
1268		notify_ring(dev, &dev_priv->ring[VCS]);
1269	if (gt_iir & GT_BLT_USER_INTERRUPT)
1270		notify_ring(dev, &dev_priv->ring[BCS]);
1271
1272	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1273		      GT_BSD_CS_ERROR_INTERRUPT |
1274		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1275		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1276
1277	if (gt_iir & GT_PARITY_ERROR(dev))
1278		ivybridge_parity_error_irq_handler(dev, gt_iir);
1279}
1280
1281static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1282				       struct drm_i915_private *dev_priv,
1283				       u32 master_ctl)
1284{
1285	struct intel_engine_cs *ring;
1286	u32 rcs, bcs, vcs;
1287	uint32_t tmp = 0;
1288	irqreturn_t ret = IRQ_NONE;
1289
1290	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1291		tmp = I915_READ(GEN8_GT_IIR(0));
1292		if (tmp) {
1293			I915_WRITE(GEN8_GT_IIR(0), tmp);
1294			ret = IRQ_HANDLED;
1295
1296			rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1297			ring = &dev_priv->ring[RCS];
1298			if (rcs & GT_RENDER_USER_INTERRUPT)
1299				notify_ring(dev, ring);
1300			if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1301				intel_lrc_irq_handler(ring);
1302
1303			bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1304			ring = &dev_priv->ring[BCS];
1305			if (bcs & GT_RENDER_USER_INTERRUPT)
1306				notify_ring(dev, ring);
1307			if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1308				intel_lrc_irq_handler(ring);
1309		} else
1310			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1311	}
1312
1313	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1314		tmp = I915_READ(GEN8_GT_IIR(1));
1315		if (tmp) {
1316			I915_WRITE(GEN8_GT_IIR(1), tmp);
1317			ret = IRQ_HANDLED;
1318
1319			vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1320			ring = &dev_priv->ring[VCS];
1321			if (vcs & GT_RENDER_USER_INTERRUPT)
1322				notify_ring(dev, ring);
1323			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1324				intel_lrc_irq_handler(ring);
1325
1326			vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1327			ring = &dev_priv->ring[VCS2];
1328			if (vcs & GT_RENDER_USER_INTERRUPT)
1329				notify_ring(dev, ring);
1330			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1331				intel_lrc_irq_handler(ring);
1332		} else
1333			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1334	}
1335
1336	if (master_ctl & GEN8_GT_PM_IRQ) {
1337		tmp = I915_READ(GEN8_GT_IIR(2));
1338		if (tmp & dev_priv->pm_rps_events) {
1339			I915_WRITE(GEN8_GT_IIR(2),
1340				   tmp & dev_priv->pm_rps_events);
1341			ret = IRQ_HANDLED;
1342			gen6_rps_irq_handler(dev_priv, tmp);
1343		} else
1344			DRM_ERROR("The master control interrupt lied (PM)!\n");
1345	}
1346
1347	if (master_ctl & GEN8_GT_VECS_IRQ) {
1348		tmp = I915_READ(GEN8_GT_IIR(3));
1349		if (tmp) {
1350			I915_WRITE(GEN8_GT_IIR(3), tmp);
1351			ret = IRQ_HANDLED;
1352
1353			vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1354			ring = &dev_priv->ring[VECS];
1355			if (vcs & GT_RENDER_USER_INTERRUPT)
1356				notify_ring(dev, ring);
1357			if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1358				intel_lrc_irq_handler(ring);
1359		} else
1360			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1361	}
1362
1363	return ret;
1364}
1365
1366#define HPD_STORM_DETECT_PERIOD 1000
1367#define HPD_STORM_THRESHOLD 5
1368
1369static int pch_port_to_hotplug_shift(enum port port)
1370{
1371	switch (port) {
1372	case PORT_A:
1373	case PORT_E:
1374	default:
1375		return -1;
1376	case PORT_B:
1377		return 0;
1378	case PORT_C:
1379		return 8;
1380	case PORT_D:
1381		return 16;
1382	}
1383}
1384
1385static int i915_port_to_hotplug_shift(enum port port)
1386{
1387	switch (port) {
1388	case PORT_A:
1389	case PORT_E:
1390	default:
1391		return -1;
1392	case PORT_B:
1393		return 17;
1394	case PORT_C:
1395		return 19;
1396	case PORT_D:
1397		return 21;
1398	}
1399}
1400
1401static inline enum port get_port_from_pin(enum hpd_pin pin)
1402{
1403	switch (pin) {
1404	case HPD_PORT_B:
1405		return PORT_B;
1406	case HPD_PORT_C:
1407		return PORT_C;
1408	case HPD_PORT_D:
1409		return PORT_D;
1410	default:
1411		return PORT_A; /* no hpd */
1412	}
1413}
1414
1415static inline void intel_hpd_irq_handler(struct drm_device *dev,
1416					 u32 hotplug_trigger,
1417					 u32 dig_hotplug_reg,
1418					 const u32 hpd[HPD_NUM_PINS])
1419{
1420	struct drm_i915_private *dev_priv = dev->dev_private;
1421	int i;
1422	enum port port;
1423	bool storm_detected = false;
1424	bool queue_dig = false, queue_hp = false;
1425	u32 dig_shift;
1426	u32 dig_port_mask = 0;
1427
1428	if (!hotplug_trigger)
1429		return;
1430
1431	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1432			 hotplug_trigger, dig_hotplug_reg);
1433
1434	spin_lock(&dev_priv->irq_lock);
1435	for (i = 1; i < HPD_NUM_PINS; i++) {
1436		if (!(hpd[i] & hotplug_trigger))
1437			continue;
1438
1439		port = get_port_from_pin(i);
1440		if (port && dev_priv->hpd_irq_port[port]) {
1441			bool long_hpd;
1442
1443			if (HAS_PCH_SPLIT(dev)) {
1444				dig_shift = pch_port_to_hotplug_shift(port);
1445				long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1446			} else {
1447				dig_shift = i915_port_to_hotplug_shift(port);
1448				long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1449			}
1450
1451			DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1452					 port_name(port),
1453					 long_hpd ? "long" : "short");
1454			/* for long HPD pulses we want to have the digital queue happen,
1455			   but we still want HPD storm detection to function. */
1456			if (long_hpd) {
1457				dev_priv->long_hpd_port_mask |= (1 << port);
1458				dig_port_mask |= hpd[i];
1459			} else {
1460				/* for short HPD just trigger the digital queue */
1461				dev_priv->short_hpd_port_mask |= (1 << port);
1462				hotplug_trigger &= ~hpd[i];
1463			}
1464			queue_dig = true;
1465		}
1466	}
1467
1468	for (i = 1; i < HPD_NUM_PINS; i++) {
1469		if (hpd[i] & hotplug_trigger &&
1470		    dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1471			/*
1472			 * On GMCH platforms the interrupt mask bits only
1473			 * prevent irq generation, not the setting of the
1474			 * hotplug bits itself. So only WARN about unexpected
1475			 * interrupts on saner platforms.
1476			 */
1477			WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1478				  "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1479				  hotplug_trigger, i, hpd[i]);
1480
1481			continue;
1482		}
1483
1484		if (!(hpd[i] & hotplug_trigger) ||
1485		    dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1486			continue;
1487
1488		if (!(dig_port_mask & hpd[i])) {
1489			dev_priv->hpd_event_bits |= (1 << i);
1490			queue_hp = true;
1491		}
1492
1493		if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1494				   dev_priv->hpd_stats[i].hpd_last_jiffies
1495				   + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1496			dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1497			dev_priv->hpd_stats[i].hpd_cnt = 0;
1498			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1499		} else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1500			dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1501			dev_priv->hpd_event_bits &= ~(1 << i);
1502			DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1503			storm_detected = true;
1504		} else {
1505			dev_priv->hpd_stats[i].hpd_cnt++;
1506			DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1507				      dev_priv->hpd_stats[i].hpd_cnt);
1508		}
1509	}
1510
1511	if (storm_detected)
1512		dev_priv->display.hpd_irq_setup(dev);
1513	spin_unlock(&dev_priv->irq_lock);
1514
1515	/*
1516	 * Our hotplug handler can grab modeset locks (by calling down into the
1517	 * fb helpers). Hence it must not be run on our own dev-priv->wq work
1518	 * queue for otherwise the flush_work in the pageflip code will
1519	 * deadlock.
1520	 */
1521	if (queue_dig)
1522		queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1523	if (queue_hp)
1524		schedule_work(&dev_priv->hotplug_work);
1525}
1526
1527static void gmbus_irq_handler(struct drm_device *dev)
1528{
1529	struct drm_i915_private *dev_priv = dev->dev_private;
1530
1531	wake_up_all(&dev_priv->gmbus_wait_queue);
1532}
1533
1534static void dp_aux_irq_handler(struct drm_device *dev)
1535{
1536	struct drm_i915_private *dev_priv = dev->dev_private;
1537
1538	wake_up_all(&dev_priv->gmbus_wait_queue);
1539}
1540
1541#if defined(CONFIG_DEBUG_FS)
1542static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1543					 uint32_t crc0, uint32_t crc1,
1544					 uint32_t crc2, uint32_t crc3,
1545					 uint32_t crc4)
1546{
1547	struct drm_i915_private *dev_priv = dev->dev_private;
1548	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1549	struct intel_pipe_crc_entry *entry;
1550	int head, tail;
1551
1552	spin_lock(&pipe_crc->lock);
1553
1554	if (!pipe_crc->entries) {
1555		spin_unlock(&pipe_crc->lock);
1556		DRM_DEBUG_KMS("spurious interrupt\n");
1557		return;
1558	}
1559
1560	head = pipe_crc->head;
1561	tail = pipe_crc->tail;
1562
1563	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1564		spin_unlock(&pipe_crc->lock);
1565		DRM_ERROR("CRC buffer overflowing\n");
1566		return;
1567	}
1568
1569	entry = &pipe_crc->entries[head];
1570
1571	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1572	entry->crc[0] = crc0;
1573	entry->crc[1] = crc1;
1574	entry->crc[2] = crc2;
1575	entry->crc[3] = crc3;
1576	entry->crc[4] = crc4;
1577
1578	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1579	pipe_crc->head = head;
1580
1581	spin_unlock(&pipe_crc->lock);
1582
1583	wake_up_interruptible(&pipe_crc->wq);
1584}
1585#else
1586static inline void
1587display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1588			     uint32_t crc0, uint32_t crc1,
1589			     uint32_t crc2, uint32_t crc3,
1590			     uint32_t crc4) {}
1591#endif
1592
1593
1594static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1595{
1596	struct drm_i915_private *dev_priv = dev->dev_private;
1597
1598	display_pipe_crc_irq_handler(dev, pipe,
1599				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1600				     0, 0, 0, 0);
1601}
1602
1603static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1604{
1605	struct drm_i915_private *dev_priv = dev->dev_private;
1606
1607	display_pipe_crc_irq_handler(dev, pipe,
1608				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1609				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1610				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1611				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1612				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1613}
1614
1615static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1616{
1617	struct drm_i915_private *dev_priv = dev->dev_private;
1618	uint32_t res1, res2;
1619
1620	if (INTEL_INFO(dev)->gen >= 3)
1621		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1622	else
1623		res1 = 0;
1624
1625	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1626		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1627	else
1628		res2 = 0;
1629
1630	display_pipe_crc_irq_handler(dev, pipe,
1631				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1632				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1633				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1634				     res1, res2);
1635}
1636
1637/* The RPS events need forcewake, so we add them to a work queue and mask their
1638 * IMR bits until the work is done. Other interrupts can be processed without
1639 * the work queue. */
1640static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1641{
1642	if (pm_iir & dev_priv->pm_rps_events) {
1643		spin_lock(&dev_priv->irq_lock);
1644		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1645		if (dev_priv->rps.interrupts_enabled) {
1646			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1647			queue_work(dev_priv->wq, &dev_priv->rps.work);
1648		}
1649		spin_unlock(&dev_priv->irq_lock);
1650	}
1651
1652	if (INTEL_INFO(dev_priv)->gen >= 8)
1653		return;
1654
1655	if (HAS_VEBOX(dev_priv->dev)) {
1656		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1657			notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1658
1659		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1660			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1661	}
1662}
1663
1664static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1665{
1666	if (!drm_handle_vblank(dev, pipe))
1667		return false;
1668
1669	return true;
1670}
1671
1672static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
1673{
1674	struct drm_i915_private *dev_priv = dev->dev_private;
1675	u32 pipe_stats[I915_MAX_PIPES] = { };
1676	int pipe;
1677
1678	spin_lock(&dev_priv->irq_lock);
1679	for_each_pipe(dev_priv, pipe) {
1680		int reg;
1681		u32 mask, iir_bit = 0;
1682
1683		/*
1684		 * PIPESTAT bits get signalled even when the interrupt is
1685		 * disabled with the mask bits, and some of the status bits do
1686		 * not generate interrupts at all (like the underrun bit). Hence
1687		 * we need to be careful that we only handle what we want to
1688		 * handle.
1689		 */
1690
1691		/* fifo underruns are filterered in the underrun handler. */
1692		mask = PIPE_FIFO_UNDERRUN_STATUS;
1693
1694		switch (pipe) {
1695		case PIPE_A:
1696			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1697			break;
1698		case PIPE_B:
1699			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1700			break;
1701		case PIPE_C:
1702			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1703			break;
1704		}
1705		if (iir & iir_bit)
1706			mask |= dev_priv->pipestat_irq_mask[pipe];
1707
1708		if (!mask)
1709			continue;
1710
1711		reg = PIPESTAT(pipe);
1712		mask |= PIPESTAT_INT_ENABLE_MASK;
1713		pipe_stats[pipe] = I915_READ(reg) & mask;
1714
1715		/*
1716		 * Clear the PIPE*STAT regs before the IIR
1717		 */
1718		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1719					PIPESTAT_INT_STATUS_MASK))
1720			I915_WRITE(reg, pipe_stats[pipe]);
1721	}
1722	spin_unlock(&dev_priv->irq_lock);
1723
1724	for_each_pipe(dev_priv, pipe) {
1725		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1726		    intel_pipe_handle_vblank(dev, pipe))
1727			intel_check_page_flip(dev, pipe);
1728
1729		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1730			intel_prepare_page_flip(dev, pipe);
1731			intel_finish_page_flip(dev, pipe);
1732		}
1733
1734		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1735			i9xx_pipe_crc_irq_handler(dev, pipe);
1736
1737		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1738			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1739	}
1740
1741	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1742		gmbus_irq_handler(dev);
1743}
1744
1745static void i9xx_hpd_irq_handler(struct drm_device *dev)
1746{
1747	struct drm_i915_private *dev_priv = dev->dev_private;
1748	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1749
1750	if (hotplug_status) {
1751		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1752		/*
1753		 * Make sure hotplug status is cleared before we clear IIR, or else we
1754		 * may miss hotplug events.
1755		 */
1756		POSTING_READ(PORT_HOTPLUG_STAT);
1757
1758		if (IS_G4X(dev)) {
1759			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1760
1761			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
1762		} else {
1763			u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1764
1765			intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
1766		}
1767
1768		if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
1769		    hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1770			dp_aux_irq_handler(dev);
1771	}
1772}
1773
1774static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1775{
1776	struct drm_device *dev = arg;
1777	struct drm_i915_private *dev_priv = dev->dev_private;
1778	u32 iir, gt_iir, pm_iir;
1779	irqreturn_t ret = IRQ_NONE;
1780
1781	if (!intel_irqs_enabled(dev_priv))
1782		return IRQ_NONE;
1783
1784	while (true) {
1785		/* Find, clear, then process each source of interrupt */
1786
1787		gt_iir = I915_READ(GTIIR);
1788		if (gt_iir)
1789			I915_WRITE(GTIIR, gt_iir);
1790
1791		pm_iir = I915_READ(GEN6_PMIIR);
1792		if (pm_iir)
1793			I915_WRITE(GEN6_PMIIR, pm_iir);
1794
1795		iir = I915_READ(VLV_IIR);
1796		if (iir) {
1797			/* Consume port before clearing IIR or we'll miss events */
1798			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1799				i9xx_hpd_irq_handler(dev);
1800			I915_WRITE(VLV_IIR, iir);
1801		}
1802
1803		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1804			goto out;
1805
1806		ret = IRQ_HANDLED;
1807
1808		if (gt_iir)
1809			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1810		if (pm_iir)
1811			gen6_rps_irq_handler(dev_priv, pm_iir);
1812		/* Call regardless, as some status bits might not be
1813		 * signalled in iir */
1814		valleyview_pipestat_irq_handler(dev, iir);
1815	}
1816
1817out:
1818	return ret;
1819}
1820
1821static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1822{
1823	struct drm_device *dev = arg;
1824	struct drm_i915_private *dev_priv = dev->dev_private;
1825	u32 master_ctl, iir;
1826	irqreturn_t ret = IRQ_NONE;
1827
1828	if (!intel_irqs_enabled(dev_priv))
1829		return IRQ_NONE;
1830
1831	for (;;) {
1832		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1833		iir = I915_READ(VLV_IIR);
1834
1835		if (master_ctl == 0 && iir == 0)
1836			break;
1837
1838		ret = IRQ_HANDLED;
1839
1840		I915_WRITE(GEN8_MASTER_IRQ, 0);
1841
1842		/* Find, clear, then process each source of interrupt */
1843
1844		if (iir) {
1845			/* Consume port before clearing IIR or we'll miss events */
1846			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1847				i9xx_hpd_irq_handler(dev);
1848			I915_WRITE(VLV_IIR, iir);
1849		}
1850
1851		gen8_gt_irq_handler(dev, dev_priv, master_ctl);
1852
1853		/* Call regardless, as some status bits might not be
1854		 * signalled in iir */
1855		valleyview_pipestat_irq_handler(dev, iir);
1856
1857		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1858		POSTING_READ(GEN8_MASTER_IRQ);
1859	}
1860
1861	return ret;
1862}
1863
1864static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1865{
1866	struct drm_i915_private *dev_priv = dev->dev_private;
1867	int pipe;
1868	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1869	u32 dig_hotplug_reg;
1870
1871	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1872	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1873
1874	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
1875
1876	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1877		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1878			       SDE_AUDIO_POWER_SHIFT);
1879		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1880				 port_name(port));
1881	}
1882
1883	if (pch_iir & SDE_AUX_MASK)
1884		dp_aux_irq_handler(dev);
1885
1886	if (pch_iir & SDE_GMBUS)
1887		gmbus_irq_handler(dev);
1888
1889	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1890		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1891
1892	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1893		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1894
1895	if (pch_iir & SDE_POISON)
1896		DRM_ERROR("PCH poison interrupt\n");
1897
1898	if (pch_iir & SDE_FDI_MASK)
1899		for_each_pipe(dev_priv, pipe)
1900			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1901					 pipe_name(pipe),
1902					 I915_READ(FDI_RX_IIR(pipe)));
1903
1904	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1905		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1906
1907	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1908		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1909
1910	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1911		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1912
1913	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1914		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1915}
1916
1917static void ivb_err_int_handler(struct drm_device *dev)
1918{
1919	struct drm_i915_private *dev_priv = dev->dev_private;
1920	u32 err_int = I915_READ(GEN7_ERR_INT);
1921	enum pipe pipe;
1922
1923	if (err_int & ERR_INT_POISON)
1924		DRM_ERROR("Poison interrupt\n");
1925
1926	for_each_pipe(dev_priv, pipe) {
1927		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1928			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1929
1930		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1931			if (IS_IVYBRIDGE(dev))
1932				ivb_pipe_crc_irq_handler(dev, pipe);
1933			else
1934				hsw_pipe_crc_irq_handler(dev, pipe);
1935		}
1936	}
1937
1938	I915_WRITE(GEN7_ERR_INT, err_int);
1939}
1940
1941static void cpt_serr_int_handler(struct drm_device *dev)
1942{
1943	struct drm_i915_private *dev_priv = dev->dev_private;
1944	u32 serr_int = I915_READ(SERR_INT);
1945
1946	if (serr_int & SERR_INT_POISON)
1947		DRM_ERROR("PCH poison interrupt\n");
1948
1949	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1950		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1951
1952	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1953		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1954
1955	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1956		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1957
1958	I915_WRITE(SERR_INT, serr_int);
1959}
1960
1961static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1962{
1963	struct drm_i915_private *dev_priv = dev->dev_private;
1964	int pipe;
1965	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1966	u32 dig_hotplug_reg;
1967
1968	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1969	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1970
1971	intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
1972
1973	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
1974		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
1975			       SDE_AUDIO_POWER_SHIFT_CPT);
1976		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
1977				 port_name(port));
1978	}
1979
1980	if (pch_iir & SDE_AUX_MASK_CPT)
1981		dp_aux_irq_handler(dev);
1982
1983	if (pch_iir & SDE_GMBUS_CPT)
1984		gmbus_irq_handler(dev);
1985
1986	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
1987		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
1988
1989	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
1990		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
1991
1992	if (pch_iir & SDE_FDI_MASK_CPT)
1993		for_each_pipe(dev_priv, pipe)
1994			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1995					 pipe_name(pipe),
1996					 I915_READ(FDI_RX_IIR(pipe)));
1997
1998	if (pch_iir & SDE_ERROR_CPT)
1999		cpt_serr_int_handler(dev);
2000}
2001
2002static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2003{
2004	struct drm_i915_private *dev_priv = dev->dev_private;
2005	enum pipe pipe;
2006
2007	if (de_iir & DE_AUX_CHANNEL_A)
2008		dp_aux_irq_handler(dev);
2009
2010	if (de_iir & DE_GSE)
2011		intel_opregion_asle_intr(dev);
2012
2013	if (de_iir & DE_POISON)
2014		DRM_ERROR("Poison interrupt\n");
2015
2016	for_each_pipe(dev_priv, pipe) {
2017		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2018		    intel_pipe_handle_vblank(dev, pipe))
2019			intel_check_page_flip(dev, pipe);
2020
2021		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2022			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2023
2024		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2025			i9xx_pipe_crc_irq_handler(dev, pipe);
2026
2027		/* plane/pipes map 1:1 on ilk+ */
2028		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2029			intel_prepare_page_flip(dev, pipe);
2030			intel_finish_page_flip_plane(dev, pipe);
2031		}
2032	}
2033
2034	/* check event from PCH */
2035	if (de_iir & DE_PCH_EVENT) {
2036		u32 pch_iir = I915_READ(SDEIIR);
2037
2038		if (HAS_PCH_CPT(dev))
2039			cpt_irq_handler(dev, pch_iir);
2040		else
2041			ibx_irq_handler(dev, pch_iir);
2042
2043		/* should clear PCH hotplug event before clear CPU irq */
2044		I915_WRITE(SDEIIR, pch_iir);
2045	}
2046
2047	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2048		ironlake_rps_change_irq_handler(dev);
2049}
2050
2051static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2052{
2053	struct drm_i915_private *dev_priv = dev->dev_private;
2054	enum pipe pipe;
2055
2056	if (de_iir & DE_ERR_INT_IVB)
2057		ivb_err_int_handler(dev);
2058
2059	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2060		dp_aux_irq_handler(dev);
2061
2062	if (de_iir & DE_GSE_IVB)
2063		intel_opregion_asle_intr(dev);
2064
2065	for_each_pipe(dev_priv, pipe) {
2066		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2067		    intel_pipe_handle_vblank(dev, pipe))
2068			intel_check_page_flip(dev, pipe);
2069
2070		/* plane/pipes map 1:1 on ilk+ */
2071		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2072			intel_prepare_page_flip(dev, pipe);
2073			intel_finish_page_flip_plane(dev, pipe);
2074		}
2075	}
2076
2077	/* check event from PCH */
2078	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2079		u32 pch_iir = I915_READ(SDEIIR);
2080
2081		cpt_irq_handler(dev, pch_iir);
2082
2083		/* clear PCH hotplug event before clear CPU irq */
2084		I915_WRITE(SDEIIR, pch_iir);
2085	}
2086}
2087
2088/*
2089 * To handle irqs with the minimum potential races with fresh interrupts, we:
2090 * 1 - Disable Master Interrupt Control.
2091 * 2 - Find the source(s) of the interrupt.
2092 * 3 - Clear the Interrupt Identity bits (IIR).
2093 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2094 * 5 - Re-enable Master Interrupt Control.
2095 */
2096static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2097{
2098	struct drm_device *dev = arg;
2099	struct drm_i915_private *dev_priv = dev->dev_private;
2100	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2101	irqreturn_t ret = IRQ_NONE;
2102
2103	if (!intel_irqs_enabled(dev_priv))
2104		return IRQ_NONE;
2105
2106	/* We get interrupts on unclaimed registers, so check for this before we
2107	 * do any I915_{READ,WRITE}. */
2108	intel_uncore_check_errors(dev);
2109
2110	/* disable master interrupt before clearing iir  */
2111	de_ier = I915_READ(DEIER);
2112	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2113	POSTING_READ(DEIER);
2114
2115	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2116	 * interrupts will will be stored on its back queue, and then we'll be
2117	 * able to process them after we restore SDEIER (as soon as we restore
2118	 * it, we'll get an interrupt if SDEIIR still has something to process
2119	 * due to its back queue). */
2120	if (!HAS_PCH_NOP(dev)) {
2121		sde_ier = I915_READ(SDEIER);
2122		I915_WRITE(SDEIER, 0);
2123		POSTING_READ(SDEIER);
2124	}
2125
2126	/* Find, clear, then process each source of interrupt */
2127
2128	gt_iir = I915_READ(GTIIR);
2129	if (gt_iir) {
2130		I915_WRITE(GTIIR, gt_iir);
2131		ret = IRQ_HANDLED;
2132		if (INTEL_INFO(dev)->gen >= 6)
2133			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2134		else
2135			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2136	}
2137
2138	de_iir = I915_READ(DEIIR);
2139	if (de_iir) {
2140		I915_WRITE(DEIIR, de_iir);
2141		ret = IRQ_HANDLED;
2142		if (INTEL_INFO(dev)->gen >= 7)
2143			ivb_display_irq_handler(dev, de_iir);
2144		else
2145			ilk_display_irq_handler(dev, de_iir);
2146	}
2147
2148	if (INTEL_INFO(dev)->gen >= 6) {
2149		u32 pm_iir = I915_READ(GEN6_PMIIR);
2150		if (pm_iir) {
2151			I915_WRITE(GEN6_PMIIR, pm_iir);
2152			ret = IRQ_HANDLED;
2153			gen6_rps_irq_handler(dev_priv, pm_iir);
2154		}
2155	}
2156
2157	I915_WRITE(DEIER, de_ier);
2158	POSTING_READ(DEIER);
2159	if (!HAS_PCH_NOP(dev)) {
2160		I915_WRITE(SDEIER, sde_ier);
2161		POSTING_READ(SDEIER);
2162	}
2163
2164	return ret;
2165}
2166
2167static irqreturn_t gen8_irq_handler(int irq, void *arg)
2168{
2169	struct drm_device *dev = arg;
2170	struct drm_i915_private *dev_priv = dev->dev_private;
2171	u32 master_ctl;
2172	irqreturn_t ret = IRQ_NONE;
2173	uint32_t tmp = 0;
2174	enum pipe pipe;
2175	u32 aux_mask = GEN8_AUX_CHANNEL_A;
2176
2177	if (!intel_irqs_enabled(dev_priv))
2178		return IRQ_NONE;
2179
2180	if (IS_GEN9(dev))
2181		aux_mask |=  GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
2182			GEN9_AUX_CHANNEL_D;
2183
2184	master_ctl = I915_READ(GEN8_MASTER_IRQ);
2185	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2186	if (!master_ctl)
2187		return IRQ_NONE;
2188
2189	I915_WRITE(GEN8_MASTER_IRQ, 0);
2190	POSTING_READ(GEN8_MASTER_IRQ);
2191
2192	/* Find, clear, then process each source of interrupt */
2193
2194	ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2195
2196	if (master_ctl & GEN8_DE_MISC_IRQ) {
2197		tmp = I915_READ(GEN8_DE_MISC_IIR);
2198		if (tmp) {
2199			I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2200			ret = IRQ_HANDLED;
2201			if (tmp & GEN8_DE_MISC_GSE)
2202				intel_opregion_asle_intr(dev);
2203			else
2204				DRM_ERROR("Unexpected DE Misc interrupt\n");
2205		}
2206		else
2207			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2208	}
2209
2210	if (master_ctl & GEN8_DE_PORT_IRQ) {
2211		tmp = I915_READ(GEN8_DE_PORT_IIR);
2212		if (tmp) {
2213			I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2214			ret = IRQ_HANDLED;
2215
2216			if (tmp & aux_mask)
2217				dp_aux_irq_handler(dev);
2218			else
2219				DRM_ERROR("Unexpected DE Port interrupt\n");
2220		}
2221		else
2222			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2223	}
2224
2225	for_each_pipe(dev_priv, pipe) {
2226		uint32_t pipe_iir, flip_done = 0, fault_errors = 0;
2227
2228		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2229			continue;
2230
2231		pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2232		if (pipe_iir) {
2233			ret = IRQ_HANDLED;
2234			I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2235
2236			if (pipe_iir & GEN8_PIPE_VBLANK &&
2237			    intel_pipe_handle_vblank(dev, pipe))
2238				intel_check_page_flip(dev, pipe);
2239
2240			if (IS_GEN9(dev))
2241				flip_done = pipe_iir & GEN9_PIPE_PLANE1_FLIP_DONE;
2242			else
2243				flip_done = pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE;
2244
2245			if (flip_done) {
2246				intel_prepare_page_flip(dev, pipe);
2247				intel_finish_page_flip_plane(dev, pipe);
2248			}
2249
2250			if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2251				hsw_pipe_crc_irq_handler(dev, pipe);
2252
2253			if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN)
2254				intel_cpu_fifo_underrun_irq_handler(dev_priv,
2255								    pipe);
2256
2257
2258			if (IS_GEN9(dev))
2259				fault_errors = pipe_iir & GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2260			else
2261				fault_errors = pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2262
2263			if (fault_errors)
2264				DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2265					  pipe_name(pipe),
2266					  pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2267		} else
2268			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2269	}
2270
2271	if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2272		/*
2273		 * FIXME(BDW): Assume for now that the new interrupt handling
2274		 * scheme also closed the SDE interrupt handling race we've seen
2275		 * on older pch-split platforms. But this needs testing.
2276		 */
2277		u32 pch_iir = I915_READ(SDEIIR);
2278		if (pch_iir) {
2279			I915_WRITE(SDEIIR, pch_iir);
2280			ret = IRQ_HANDLED;
2281			cpt_irq_handler(dev, pch_iir);
2282		} else
2283			DRM_ERROR("The master control interrupt lied (SDE)!\n");
2284
2285	}
2286
2287	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2288	POSTING_READ(GEN8_MASTER_IRQ);
2289
2290	return ret;
2291}
2292
2293static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2294			       bool reset_completed)
2295{
2296	struct intel_engine_cs *ring;
2297	int i;
2298
2299	/*
2300	 * Notify all waiters for GPU completion events that reset state has
2301	 * been changed, and that they need to restart their wait after
2302	 * checking for potential errors (and bail out to drop locks if there is
2303	 * a gpu reset pending so that i915_error_work_func can acquire them).
2304	 */
2305
2306	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2307	for_each_ring(ring, dev_priv, i)
2308		wake_up_all(&ring->irq_queue);
2309
2310	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2311	wake_up_all(&dev_priv->pending_flip_queue);
2312
2313	/*
2314	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2315	 * reset state is cleared.
2316	 */
2317	if (reset_completed)
2318		wake_up_all(&dev_priv->gpu_error.reset_queue);
2319}
2320
2321/**
2322 * i915_reset_and_wakeup - do process context error handling work
2323 *
2324 * Fire an error uevent so userspace can see that a hang or error
2325 * was detected.
2326 */
2327static void i915_reset_and_wakeup(struct drm_device *dev)
2328{
2329	struct drm_i915_private *dev_priv = to_i915(dev);
2330	struct i915_gpu_error *error = &dev_priv->gpu_error;
2331	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2332	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2333	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2334	int ret;
2335
2336	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2337
2338	/*
2339	 * Note that there's only one work item which does gpu resets, so we
2340	 * need not worry about concurrent gpu resets potentially incrementing
2341	 * error->reset_counter twice. We only need to take care of another
2342	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2343	 * quick check for that is good enough: schedule_work ensures the
2344	 * correct ordering between hang detection and this work item, and since
2345	 * the reset in-progress bit is only ever set by code outside of this
2346	 * work we don't need to worry about any other races.
2347	 */
2348	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2349		DRM_DEBUG_DRIVER("resetting chip\n");
2350		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2351				   reset_event);
2352
2353		/*
2354		 * In most cases it's guaranteed that we get here with an RPM
2355		 * reference held, for example because there is a pending GPU
2356		 * request that won't finish until the reset is done. This
2357		 * isn't the case at least when we get here by doing a
2358		 * simulated reset via debugs, so get an RPM reference.
2359		 */
2360		intel_runtime_pm_get(dev_priv);
2361
2362		intel_prepare_reset(dev);
2363
2364		/*
2365		 * All state reset _must_ be completed before we update the
2366		 * reset counter, for otherwise waiters might miss the reset
2367		 * pending state and not properly drop locks, resulting in
2368		 * deadlocks with the reset work.
2369		 */
2370		ret = i915_reset(dev);
2371
2372		intel_finish_reset(dev);
2373
2374		intel_runtime_pm_put(dev_priv);
2375
2376		if (ret == 0) {
2377			/*
2378			 * After all the gem state is reset, increment the reset
2379			 * counter and wake up everyone waiting for the reset to
2380			 * complete.
2381			 *
2382			 * Since unlock operations are a one-sided barrier only,
2383			 * we need to insert a barrier here to order any seqno
2384			 * updates before
2385			 * the counter increment.
2386			 */
2387			smp_mb__before_atomic();
2388			atomic_inc(&dev_priv->gpu_error.reset_counter);
2389
2390			kobject_uevent_env(&dev->primary->kdev->kobj,
2391					   KOBJ_CHANGE, reset_done_event);
2392		} else {
2393			atomic_set_mask(I915_WEDGED, &error->reset_counter);
2394		}
2395
2396		/*
2397		 * Note: The wake_up also serves as a memory barrier so that
2398		 * waiters see the update value of the reset counter atomic_t.
2399		 */
2400		i915_error_wake_up(dev_priv, true);
2401	}
2402}
2403
2404static void i915_report_and_clear_eir(struct drm_device *dev)
2405{
2406	struct drm_i915_private *dev_priv = dev->dev_private;
2407	uint32_t instdone[I915_NUM_INSTDONE_REG];
2408	u32 eir = I915_READ(EIR);
2409	int pipe, i;
2410
2411	if (!eir)
2412		return;
2413
2414	pr_err("render error detected, EIR: 0x%08x\n", eir);
2415
2416	i915_get_extra_instdone(dev, instdone);
2417
2418	if (IS_G4X(dev)) {
2419		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2420			u32 ipeir = I915_READ(IPEIR_I965);
2421
2422			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2423			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2424			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2425				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2426			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2427			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2428			I915_WRITE(IPEIR_I965, ipeir);
2429			POSTING_READ(IPEIR_I965);
2430		}
2431		if (eir & GM45_ERROR_PAGE_TABLE) {
2432			u32 pgtbl_err = I915_READ(PGTBL_ER);
2433			pr_err("page table error\n");
2434			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2435			I915_WRITE(PGTBL_ER, pgtbl_err);
2436			POSTING_READ(PGTBL_ER);
2437		}
2438	}
2439
2440	if (!IS_GEN2(dev)) {
2441		if (eir & I915_ERROR_PAGE_TABLE) {
2442			u32 pgtbl_err = I915_READ(PGTBL_ER);
2443			pr_err("page table error\n");
2444			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2445			I915_WRITE(PGTBL_ER, pgtbl_err);
2446			POSTING_READ(PGTBL_ER);
2447		}
2448	}
2449
2450	if (eir & I915_ERROR_MEMORY_REFRESH) {
2451		pr_err("memory refresh error:\n");
2452		for_each_pipe(dev_priv, pipe)
2453			pr_err("pipe %c stat: 0x%08x\n",
2454			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2455		/* pipestat has already been acked */
2456	}
2457	if (eir & I915_ERROR_INSTRUCTION) {
2458		pr_err("instruction error\n");
2459		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2460		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2461			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2462		if (INTEL_INFO(dev)->gen < 4) {
2463			u32 ipeir = I915_READ(IPEIR);
2464
2465			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2466			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2467			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2468			I915_WRITE(IPEIR, ipeir);
2469			POSTING_READ(IPEIR);
2470		} else {
2471			u32 ipeir = I915_READ(IPEIR_I965);
2472
2473			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2474			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2475			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2476			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2477			I915_WRITE(IPEIR_I965, ipeir);
2478			POSTING_READ(IPEIR_I965);
2479		}
2480	}
2481
2482	I915_WRITE(EIR, eir);
2483	POSTING_READ(EIR);
2484	eir = I915_READ(EIR);
2485	if (eir) {
2486		/*
2487		 * some errors might have become stuck,
2488		 * mask them.
2489		 */
2490		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2491		I915_WRITE(EMR, I915_READ(EMR) | eir);
2492		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2493	}
2494}
2495
2496/**
2497 * i915_handle_error - handle a gpu error
2498 * @dev: drm device
2499 *
2500 * Do some basic checking of regsiter state at error time and
2501 * dump it to the syslog.  Also call i915_capture_error_state() to make
2502 * sure we get a record and make it available in debugfs.  Fire a uevent
2503 * so userspace knows something bad happened (should trigger collection
2504 * of a ring dump etc.).
2505 */
2506void i915_handle_error(struct drm_device *dev, bool wedged,
2507		       const char *fmt, ...)
2508{
2509	struct drm_i915_private *dev_priv = dev->dev_private;
2510	va_list args;
2511	char error_msg[80];
2512
2513	va_start(args, fmt);
2514	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2515	va_end(args);
2516
2517	i915_capture_error_state(dev, wedged, error_msg);
2518	i915_report_and_clear_eir(dev);
2519
2520	if (wedged) {
2521		atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2522				&dev_priv->gpu_error.reset_counter);
2523
2524		/*
2525		 * Wakeup waiting processes so that the reset function
2526		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2527		 * various locks. By bumping the reset counter first, the woken
2528		 * processes will see a reset in progress and back off,
2529		 * releasing their locks and then wait for the reset completion.
2530		 * We must do this for _all_ gpu waiters that might hold locks
2531		 * that the reset work needs to acquire.
2532		 *
2533		 * Note: The wake_up serves as the required memory barrier to
2534		 * ensure that the waiters see the updated value of the reset
2535		 * counter atomic_t.
2536		 */
2537		i915_error_wake_up(dev_priv, false);
2538	}
2539
2540	i915_reset_and_wakeup(dev);
2541}
2542
2543/* Called from drm generic code, passed 'crtc' which
2544 * we use as a pipe index
2545 */
2546static int i915_enable_vblank(struct drm_device *dev, int pipe)
2547{
2548	struct drm_i915_private *dev_priv = dev->dev_private;
2549	unsigned long irqflags;
2550
2551	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2552	if (INTEL_INFO(dev)->gen >= 4)
2553		i915_enable_pipestat(dev_priv, pipe,
2554				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2555	else
2556		i915_enable_pipestat(dev_priv, pipe,
2557				     PIPE_VBLANK_INTERRUPT_STATUS);
2558	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2559
2560	return 0;
2561}
2562
2563static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2564{
2565	struct drm_i915_private *dev_priv = dev->dev_private;
2566	unsigned long irqflags;
2567	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2568						     DE_PIPE_VBLANK(pipe);
2569
2570	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2571	ironlake_enable_display_irq(dev_priv, bit);
2572	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2573
2574	return 0;
2575}
2576
2577static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2578{
2579	struct drm_i915_private *dev_priv = dev->dev_private;
2580	unsigned long irqflags;
2581
2582	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2583	i915_enable_pipestat(dev_priv, pipe,
2584			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2585	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2586
2587	return 0;
2588}
2589
2590static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2591{
2592	struct drm_i915_private *dev_priv = dev->dev_private;
2593	unsigned long irqflags;
2594
2595	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2596	dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2597	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2598	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2599	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2600	return 0;
2601}
2602
2603/* Called from drm generic code, passed 'crtc' which
2604 * we use as a pipe index
2605 */
2606static void i915_disable_vblank(struct drm_device *dev, int pipe)
2607{
2608	struct drm_i915_private *dev_priv = dev->dev_private;
2609	unsigned long irqflags;
2610
2611	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2612	i915_disable_pipestat(dev_priv, pipe,
2613			      PIPE_VBLANK_INTERRUPT_STATUS |
2614			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2615	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2616}
2617
2618static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2619{
2620	struct drm_i915_private *dev_priv = dev->dev_private;
2621	unsigned long irqflags;
2622	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2623						     DE_PIPE_VBLANK(pipe);
2624
2625	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2626	ironlake_disable_display_irq(dev_priv, bit);
2627	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2628}
2629
2630static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2631{
2632	struct drm_i915_private *dev_priv = dev->dev_private;
2633	unsigned long irqflags;
2634
2635	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2636	i915_disable_pipestat(dev_priv, pipe,
2637			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2638	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2639}
2640
2641static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2642{
2643	struct drm_i915_private *dev_priv = dev->dev_private;
2644	unsigned long irqflags;
2645
2646	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2647	dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
2648	I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2649	POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2650	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2651}
2652
2653static bool
2654ring_idle(struct intel_engine_cs *ring, u32 seqno)
2655{
2656	return (list_empty(&ring->request_list) ||
2657		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2658}
2659
2660static bool
2661ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2662{
2663	if (INTEL_INFO(dev)->gen >= 8) {
2664		return (ipehr >> 23) == 0x1c;
2665	} else {
2666		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2667		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2668				 MI_SEMAPHORE_REGISTER);
2669	}
2670}
2671
2672static struct intel_engine_cs *
2673semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2674{
2675	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2676	struct intel_engine_cs *signaller;
2677	int i;
2678
2679	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2680		for_each_ring(signaller, dev_priv, i) {
2681			if (ring == signaller)
2682				continue;
2683
2684			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2685				return signaller;
2686		}
2687	} else {
2688		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2689
2690		for_each_ring(signaller, dev_priv, i) {
2691			if(ring == signaller)
2692				continue;
2693
2694			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2695				return signaller;
2696		}
2697	}
2698
2699	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2700		  ring->id, ipehr, offset);
2701
2702	return NULL;
2703}
2704
2705static struct intel_engine_cs *
2706semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2707{
2708	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2709	u32 cmd, ipehr, head;
2710	u64 offset = 0;
2711	int i, backwards;
2712
2713	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2714	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2715		return NULL;
2716
2717	/*
2718	 * HEAD is likely pointing to the dword after the actual command,
2719	 * so scan backwards until we find the MBOX. But limit it to just 3
2720	 * or 4 dwords depending on the semaphore wait command size.
2721	 * Note that we don't care about ACTHD here since that might
2722	 * point at at batch, and semaphores are always emitted into the
2723	 * ringbuffer itself.
2724	 */
2725	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2726	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2727
2728	for (i = backwards; i; --i) {
2729		/*
2730		 * Be paranoid and presume the hw has gone off into the wild -
2731		 * our ring is smaller than what the hardware (and hence
2732		 * HEAD_ADDR) allows. Also handles wrap-around.
2733		 */
2734		head &= ring->buffer->size - 1;
2735
2736		/* This here seems to blow up */
2737		cmd = ioread32(ring->buffer->virtual_start + head);
2738		if (cmd == ipehr)
2739			break;
2740
2741		head -= 4;
2742	}
2743
2744	if (!i)
2745		return NULL;
2746
2747	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2748	if (INTEL_INFO(ring->dev)->gen >= 8) {
2749		offset = ioread32(ring->buffer->virtual_start + head + 12);
2750		offset <<= 32;
2751		offset = ioread32(ring->buffer->virtual_start + head + 8);
2752	}
2753	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2754}
2755
2756static int semaphore_passed(struct intel_engine_cs *ring)
2757{
2758	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2759	struct intel_engine_cs *signaller;
2760	u32 seqno;
2761
2762	ring->hangcheck.deadlock++;
2763
2764	signaller = semaphore_waits_for(ring, &seqno);
2765	if (signaller == NULL)
2766		return -1;
2767
2768	/* Prevent pathological recursion due to driver bugs */
2769	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2770		return -1;
2771
2772	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2773		return 1;
2774
2775	/* cursory check for an unkickable deadlock */
2776	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2777	    semaphore_passed(signaller) < 0)
2778		return -1;
2779
2780	return 0;
2781}
2782
2783static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2784{
2785	struct intel_engine_cs *ring;
2786	int i;
2787
2788	for_each_ring(ring, dev_priv, i)
2789		ring->hangcheck.deadlock = 0;
2790}
2791
2792static enum intel_ring_hangcheck_action
2793ring_stuck(struct intel_engine_cs *ring, u64 acthd)
2794{
2795	struct drm_device *dev = ring->dev;
2796	struct drm_i915_private *dev_priv = dev->dev_private;
2797	u32 tmp;
2798
2799	if (acthd != ring->hangcheck.acthd) {
2800		if (acthd > ring->hangcheck.max_acthd) {
2801			ring->hangcheck.max_acthd = acthd;
2802			return HANGCHECK_ACTIVE;
2803		}
2804
2805		return HANGCHECK_ACTIVE_LOOP;
2806	}
2807
2808	if (IS_GEN2(dev))
2809		return HANGCHECK_HUNG;
2810
2811	/* Is the chip hanging on a WAIT_FOR_EVENT?
2812	 * If so we can simply poke the RB_WAIT bit
2813	 * and break the hang. This should work on
2814	 * all but the second generation chipsets.
2815	 */
2816	tmp = I915_READ_CTL(ring);
2817	if (tmp & RING_WAIT) {
2818		i915_handle_error(dev, false,
2819				  "Kicking stuck wait on %s",
2820				  ring->name);
2821		I915_WRITE_CTL(ring, tmp);
2822		return HANGCHECK_KICK;
2823	}
2824
2825	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
2826		switch (semaphore_passed(ring)) {
2827		default:
2828			return HANGCHECK_HUNG;
2829		case 1:
2830			i915_handle_error(dev, false,
2831					  "Kicking stuck semaphore on %s",
2832					  ring->name);
2833			I915_WRITE_CTL(ring, tmp);
2834			return HANGCHECK_KICK;
2835		case 0:
2836			return HANGCHECK_WAIT;
2837		}
2838	}
2839
2840	return HANGCHECK_HUNG;
2841}
2842
2843/*
2844 * This is called when the chip hasn't reported back with completed
2845 * batchbuffers in a long time. We keep track per ring seqno progress and
2846 * if there are no progress, hangcheck score for that ring is increased.
2847 * Further, acthd is inspected to see if the ring is stuck. On stuck case
2848 * we kick the ring. If we see no progress on three subsequent calls
2849 * we assume chip is wedged and try to fix it by resetting the chip.
2850 */
2851static void i915_hangcheck_elapsed(struct work_struct *work)
2852{
2853	struct drm_i915_private *dev_priv =
2854		container_of(work, typeof(*dev_priv),
2855			     gpu_error.hangcheck_work.work);
2856	struct drm_device *dev = dev_priv->dev;
2857	struct intel_engine_cs *ring;
2858	int i;
2859	int busy_count = 0, rings_hung = 0;
2860	bool stuck[I915_NUM_RINGS] = { 0 };
2861#define BUSY 1
2862#define KICK 5
2863#define HUNG 20
2864
2865	if (!i915.enable_hangcheck)
2866		return;
2867
2868	for_each_ring(ring, dev_priv, i) {
2869		u64 acthd;
2870		u32 seqno;
2871		bool busy = true;
2872
2873		semaphore_clear_deadlocks(dev_priv);
2874
2875		seqno = ring->get_seqno(ring, false);
2876		acthd = intel_ring_get_active_head(ring);
2877
2878		if (ring->hangcheck.seqno == seqno) {
2879			if (ring_idle(ring, seqno)) {
2880				ring->hangcheck.action = HANGCHECK_IDLE;
2881
2882				if (waitqueue_active(&ring->irq_queue)) {
2883					/* Issue a wake-up to catch stuck h/w. */
2884					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
2885						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
2886							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
2887								  ring->name);
2888						else
2889							DRM_INFO("Fake missed irq on %s\n",
2890								 ring->name);
2891						wake_up_all(&ring->irq_queue);
2892					}
2893					/* Safeguard against driver failure */
2894					ring->hangcheck.score += BUSY;
2895				} else
2896					busy = false;
2897			} else {
2898				/* We always increment the hangcheck score
2899				 * if the ring is busy and still processing
2900				 * the same request, so that no single request
2901				 * can run indefinitely (such as a chain of
2902				 * batches). The only time we do not increment
2903				 * the hangcheck score on this ring, if this
2904				 * ring is in a legitimate wait for another
2905				 * ring. In that case the waiting ring is a
2906				 * victim and we want to be sure we catch the
2907				 * right culprit. Then every time we do kick
2908				 * the ring, add a small increment to the
2909				 * score so that we can catch a batch that is
2910				 * being repeatedly kicked and so responsible
2911				 * for stalling the machine.
2912				 */
2913				ring->hangcheck.action = ring_stuck(ring,
2914								    acthd);
2915
2916				switch (ring->hangcheck.action) {
2917				case HANGCHECK_IDLE:
2918				case HANGCHECK_WAIT:
2919				case HANGCHECK_ACTIVE:
2920					break;
2921				case HANGCHECK_ACTIVE_LOOP:
2922					ring->hangcheck.score += BUSY;
2923					break;
2924				case HANGCHECK_KICK:
2925					ring->hangcheck.score += KICK;
2926					break;
2927				case HANGCHECK_HUNG:
2928					ring->hangcheck.score += HUNG;
2929					stuck[i] = true;
2930					break;
2931				}
2932			}
2933		} else {
2934			ring->hangcheck.action = HANGCHECK_ACTIVE;
2935
2936			/* Gradually reduce the count so that we catch DoS
2937			 * attempts across multiple batches.
2938			 */
2939			if (ring->hangcheck.score > 0)
2940				ring->hangcheck.score--;
2941
2942			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
2943		}
2944
2945		ring->hangcheck.seqno = seqno;
2946		ring->hangcheck.acthd = acthd;
2947		busy_count += busy;
2948	}
2949
2950	for_each_ring(ring, dev_priv, i) {
2951		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
2952			DRM_INFO("%s on %s\n",
2953				 stuck[i] ? "stuck" : "no progress",
2954				 ring->name);
2955			rings_hung++;
2956		}
2957	}
2958
2959	if (rings_hung)
2960		return i915_handle_error(dev, true, "Ring hung");
2961
2962	if (busy_count)
2963		/* Reset timer case chip hangs without another request
2964		 * being added */
2965		i915_queue_hangcheck(dev);
2966}
2967
2968void i915_queue_hangcheck(struct drm_device *dev)
2969{
2970	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
2971
2972	if (!i915.enable_hangcheck)
2973		return;
2974
2975	/* Don't continually defer the hangcheck so that it is always run at
2976	 * least once after work has been scheduled on any ring. Otherwise,
2977	 * we will ignore a hung ring if a second ring is kept busy.
2978	 */
2979
2980	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
2981			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
2982}
2983
2984static void ibx_irq_reset(struct drm_device *dev)
2985{
2986	struct drm_i915_private *dev_priv = dev->dev_private;
2987
2988	if (HAS_PCH_NOP(dev))
2989		return;
2990
2991	GEN5_IRQ_RESET(SDE);
2992
2993	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
2994		I915_WRITE(SERR_INT, 0xffffffff);
2995}
2996
2997/*
2998 * SDEIER is also touched by the interrupt handler to work around missed PCH
2999 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3000 * instead we unconditionally enable all PCH interrupt sources here, but then
3001 * only unmask them as needed with SDEIMR.
3002 *
3003 * This function needs to be called before interrupts are enabled.
3004 */
3005static void ibx_irq_pre_postinstall(struct drm_device *dev)
3006{
3007	struct drm_i915_private *dev_priv = dev->dev_private;
3008
3009	if (HAS_PCH_NOP(dev))
3010		return;
3011
3012	WARN_ON(I915_READ(SDEIER) != 0);
3013	I915_WRITE(SDEIER, 0xffffffff);
3014	POSTING_READ(SDEIER);
3015}
3016
3017static void gen5_gt_irq_reset(struct drm_device *dev)
3018{
3019	struct drm_i915_private *dev_priv = dev->dev_private;
3020
3021	GEN5_IRQ_RESET(GT);
3022	if (INTEL_INFO(dev)->gen >= 6)
3023		GEN5_IRQ_RESET(GEN6_PM);
3024}
3025
3026/* drm_dma.h hooks
3027*/
3028static void ironlake_irq_reset(struct drm_device *dev)
3029{
3030	struct drm_i915_private *dev_priv = dev->dev_private;
3031
3032	I915_WRITE(HWSTAM, 0xffffffff);
3033
3034	GEN5_IRQ_RESET(DE);
3035	if (IS_GEN7(dev))
3036		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3037
3038	gen5_gt_irq_reset(dev);
3039
3040	ibx_irq_reset(dev);
3041}
3042
3043static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3044{
3045	enum pipe pipe;
3046
3047	I915_WRITE(PORT_HOTPLUG_EN, 0);
3048	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3049
3050	for_each_pipe(dev_priv, pipe)
3051		I915_WRITE(PIPESTAT(pipe), 0xffff);
3052
3053	GEN5_IRQ_RESET(VLV_);
3054}
3055
3056static void valleyview_irq_preinstall(struct drm_device *dev)
3057{
3058	struct drm_i915_private *dev_priv = dev->dev_private;
3059
3060	/* VLV magic */
3061	I915_WRITE(VLV_IMR, 0);
3062	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3063	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3064	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3065
3066	gen5_gt_irq_reset(dev);
3067
3068	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3069
3070	vlv_display_irq_reset(dev_priv);
3071}
3072
3073static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3074{
3075	GEN8_IRQ_RESET_NDX(GT, 0);
3076	GEN8_IRQ_RESET_NDX(GT, 1);
3077	GEN8_IRQ_RESET_NDX(GT, 2);
3078	GEN8_IRQ_RESET_NDX(GT, 3);
3079}
3080
3081static void gen8_irq_reset(struct drm_device *dev)
3082{
3083	struct drm_i915_private *dev_priv = dev->dev_private;
3084	int pipe;
3085
3086	I915_WRITE(GEN8_MASTER_IRQ, 0);
3087	POSTING_READ(GEN8_MASTER_IRQ);
3088
3089	gen8_gt_irq_reset(dev_priv);
3090
3091	for_each_pipe(dev_priv, pipe)
3092		if (intel_display_power_is_enabled(dev_priv,
3093						   POWER_DOMAIN_PIPE(pipe)))
3094			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3095
3096	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3097	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3098	GEN5_IRQ_RESET(GEN8_PCU_);
3099
3100	ibx_irq_reset(dev);
3101}
3102
3103void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3104				     unsigned int pipe_mask)
3105{
3106	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3107
3108	spin_lock_irq(&dev_priv->irq_lock);
3109	if (pipe_mask & 1 << PIPE_A)
3110		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_A,
3111				  dev_priv->de_irq_mask[PIPE_A],
3112				  ~dev_priv->de_irq_mask[PIPE_A] | extra_ier);
3113	if (pipe_mask & 1 << PIPE_B)
3114		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B,
3115				  dev_priv->de_irq_mask[PIPE_B],
3116				  ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3117	if (pipe_mask & 1 << PIPE_C)
3118		GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C,
3119				  dev_priv->de_irq_mask[PIPE_C],
3120				  ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3121	spin_unlock_irq(&dev_priv->irq_lock);
3122}
3123
3124static void cherryview_irq_preinstall(struct drm_device *dev)
3125{
3126	struct drm_i915_private *dev_priv = dev->dev_private;
3127
3128	I915_WRITE(GEN8_MASTER_IRQ, 0);
3129	POSTING_READ(GEN8_MASTER_IRQ);
3130
3131	gen8_gt_irq_reset(dev_priv);
3132
3133	GEN5_IRQ_RESET(GEN8_PCU_);
3134
3135	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3136
3137	vlv_display_irq_reset(dev_priv);
3138}
3139
3140static void ibx_hpd_irq_setup(struct drm_device *dev)
3141{
3142	struct drm_i915_private *dev_priv = dev->dev_private;
3143	struct intel_encoder *intel_encoder;
3144	u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3145
3146	if (HAS_PCH_IBX(dev)) {
3147		hotplug_irqs = SDE_HOTPLUG_MASK;
3148		for_each_intel_encoder(dev, intel_encoder)
3149			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3150				enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3151	} else {
3152		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3153		for_each_intel_encoder(dev, intel_encoder)
3154			if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3155				enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3156	}
3157
3158	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3159
3160	/*
3161	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3162	 * duration to 2ms (which is the minimum in the Display Port spec)
3163	 *
3164	 * This register is the same on all known PCH chips.
3165	 */
3166	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3167	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3168	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3169	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3170	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3171	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3172}
3173
3174static void ibx_irq_postinstall(struct drm_device *dev)
3175{
3176	struct drm_i915_private *dev_priv = dev->dev_private;
3177	u32 mask;
3178
3179	if (HAS_PCH_NOP(dev))
3180		return;
3181
3182	if (HAS_PCH_IBX(dev))
3183		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3184	else
3185		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3186
3187	GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3188	I915_WRITE(SDEIMR, ~mask);
3189}
3190
3191static void gen5_gt_irq_postinstall(struct drm_device *dev)
3192{
3193	struct drm_i915_private *dev_priv = dev->dev_private;
3194	u32 pm_irqs, gt_irqs;
3195
3196	pm_irqs = gt_irqs = 0;
3197
3198	dev_priv->gt_irq_mask = ~0;
3199	if (HAS_L3_DPF(dev)) {
3200		/* L3 parity interrupt is always unmasked. */
3201		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3202		gt_irqs |= GT_PARITY_ERROR(dev);
3203	}
3204
3205	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3206	if (IS_GEN5(dev)) {
3207		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3208			   ILK_BSD_USER_INTERRUPT;
3209	} else {
3210		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3211	}
3212
3213	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3214
3215	if (INTEL_INFO(dev)->gen >= 6) {
3216		/*
3217		 * RPS interrupts will get enabled/disabled on demand when RPS
3218		 * itself is enabled/disabled.
3219		 */
3220		if (HAS_VEBOX(dev))
3221			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3222
3223		dev_priv->pm_irq_mask = 0xffffffff;
3224		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3225	}
3226}
3227
3228static int ironlake_irq_postinstall(struct drm_device *dev)
3229{
3230	struct drm_i915_private *dev_priv = dev->dev_private;
3231	u32 display_mask, extra_mask;
3232
3233	if (INTEL_INFO(dev)->gen >= 7) {
3234		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3235				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3236				DE_PLANEB_FLIP_DONE_IVB |
3237				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3238		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3239			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3240	} else {
3241		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3242				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3243				DE_AUX_CHANNEL_A |
3244				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3245				DE_POISON);
3246		extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3247				DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3248	}
3249
3250	dev_priv->irq_mask = ~display_mask;
3251
3252	I915_WRITE(HWSTAM, 0xeffe);
3253
3254	ibx_irq_pre_postinstall(dev);
3255
3256	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3257
3258	gen5_gt_irq_postinstall(dev);
3259
3260	ibx_irq_postinstall(dev);
3261
3262	if (IS_IRONLAKE_M(dev)) {
3263		/* Enable PCU event interrupts
3264		 *
3265		 * spinlocking not required here for correctness since interrupt
3266		 * setup is guaranteed to run in single-threaded context. But we
3267		 * need it to make the assert_spin_locked happy. */
3268		spin_lock_irq(&dev_priv->irq_lock);
3269		ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3270		spin_unlock_irq(&dev_priv->irq_lock);
3271	}
3272
3273	return 0;
3274}
3275
3276static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3277{
3278	u32 pipestat_mask;
3279	u32 iir_mask;
3280	enum pipe pipe;
3281
3282	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3283			PIPE_FIFO_UNDERRUN_STATUS;
3284
3285	for_each_pipe(dev_priv, pipe)
3286		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3287	POSTING_READ(PIPESTAT(PIPE_A));
3288
3289	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3290			PIPE_CRC_DONE_INTERRUPT_STATUS;
3291
3292	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3293	for_each_pipe(dev_priv, pipe)
3294		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3295
3296	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3297		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3298		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3299	if (IS_CHERRYVIEW(dev_priv))
3300		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3301	dev_priv->irq_mask &= ~iir_mask;
3302
3303	I915_WRITE(VLV_IIR, iir_mask);
3304	I915_WRITE(VLV_IIR, iir_mask);
3305	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3306	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3307	POSTING_READ(VLV_IMR);
3308}
3309
3310static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3311{
3312	u32 pipestat_mask;
3313	u32 iir_mask;
3314	enum pipe pipe;
3315
3316	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3317		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3318		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3319	if (IS_CHERRYVIEW(dev_priv))
3320		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3321
3322	dev_priv->irq_mask |= iir_mask;
3323	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3324	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3325	I915_WRITE(VLV_IIR, iir_mask);
3326	I915_WRITE(VLV_IIR, iir_mask);
3327	POSTING_READ(VLV_IIR);
3328
3329	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3330			PIPE_CRC_DONE_INTERRUPT_STATUS;
3331
3332	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3333	for_each_pipe(dev_priv, pipe)
3334		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3335
3336	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3337			PIPE_FIFO_UNDERRUN_STATUS;
3338
3339	for_each_pipe(dev_priv, pipe)
3340		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3341	POSTING_READ(PIPESTAT(PIPE_A));
3342}
3343
3344void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3345{
3346	assert_spin_locked(&dev_priv->irq_lock);
3347
3348	if (dev_priv->display_irqs_enabled)
3349		return;
3350
3351	dev_priv->display_irqs_enabled = true;
3352
3353	if (intel_irqs_enabled(dev_priv))
3354		valleyview_display_irqs_install(dev_priv);
3355}
3356
3357void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3358{
3359	assert_spin_locked(&dev_priv->irq_lock);
3360
3361	if (!dev_priv->display_irqs_enabled)
3362		return;
3363
3364	dev_priv->display_irqs_enabled = false;
3365
3366	if (intel_irqs_enabled(dev_priv))
3367		valleyview_display_irqs_uninstall(dev_priv);
3368}
3369
3370static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3371{
3372	dev_priv->irq_mask = ~0;
3373
3374	I915_WRITE(PORT_HOTPLUG_EN, 0);
3375	POSTING_READ(PORT_HOTPLUG_EN);
3376
3377	I915_WRITE(VLV_IIR, 0xffffffff);
3378	I915_WRITE(VLV_IIR, 0xffffffff);
3379	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3380	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3381	POSTING_READ(VLV_IMR);
3382
3383	/* Interrupt setup is already guaranteed to be single-threaded, this is
3384	 * just to make the assert_spin_locked check happy. */
3385	spin_lock_irq(&dev_priv->irq_lock);
3386	if (dev_priv->display_irqs_enabled)
3387		valleyview_display_irqs_install(dev_priv);
3388	spin_unlock_irq(&dev_priv->irq_lock);
3389}
3390
3391static int valleyview_irq_postinstall(struct drm_device *dev)
3392{
3393	struct drm_i915_private *dev_priv = dev->dev_private;
3394
3395	vlv_display_irq_postinstall(dev_priv);
3396
3397	gen5_gt_irq_postinstall(dev);
3398
3399	/* ack & enable invalid PTE error interrupts */
3400#if 0 /* FIXME: add support to irq handler for checking these bits */
3401	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3402	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3403#endif
3404
3405	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3406
3407	return 0;
3408}
3409
3410static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3411{
3412	/* These are interrupts we'll toggle with the ring mask register */
3413	uint32_t gt_interrupts[] = {
3414		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3415			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3416			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3417			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3418			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3419		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3420			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3421			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3422			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3423		0,
3424		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3425			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3426		};
3427
3428	dev_priv->pm_irq_mask = 0xffffffff;
3429	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3430	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3431	/*
3432	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3433	 * is enabled/disabled.
3434	 */
3435	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3436	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3437}
3438
3439static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3440{
3441	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3442	uint32_t de_pipe_enables;
3443	int pipe;
3444	u32 aux_en = GEN8_AUX_CHANNEL_A;
3445
3446	if (IS_GEN9(dev_priv)) {
3447		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3448				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3449		aux_en |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3450			GEN9_AUX_CHANNEL_D;
3451	} else
3452		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3453				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3454
3455	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3456					   GEN8_PIPE_FIFO_UNDERRUN;
3457
3458	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3459	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3460	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3461
3462	for_each_pipe(dev_priv, pipe)
3463		if (intel_display_power_is_enabled(dev_priv,
3464				POWER_DOMAIN_PIPE(pipe)))
3465			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3466					  dev_priv->de_irq_mask[pipe],
3467					  de_pipe_enables);
3468
3469	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~aux_en, aux_en);
3470}
3471
3472static int gen8_irq_postinstall(struct drm_device *dev)
3473{
3474	struct drm_i915_private *dev_priv = dev->dev_private;
3475
3476	ibx_irq_pre_postinstall(dev);
3477
3478	gen8_gt_irq_postinstall(dev_priv);
3479	gen8_de_irq_postinstall(dev_priv);
3480
3481	ibx_irq_postinstall(dev);
3482
3483	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3484	POSTING_READ(GEN8_MASTER_IRQ);
3485
3486	return 0;
3487}
3488
3489static int cherryview_irq_postinstall(struct drm_device *dev)
3490{
3491	struct drm_i915_private *dev_priv = dev->dev_private;
3492
3493	vlv_display_irq_postinstall(dev_priv);
3494
3495	gen8_gt_irq_postinstall(dev_priv);
3496
3497	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3498	POSTING_READ(GEN8_MASTER_IRQ);
3499
3500	return 0;
3501}
3502
3503static void gen8_irq_uninstall(struct drm_device *dev)
3504{
3505	struct drm_i915_private *dev_priv = dev->dev_private;
3506
3507	if (!dev_priv)
3508		return;
3509
3510	gen8_irq_reset(dev);
3511}
3512
3513static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3514{
3515	/* Interrupt setup is already guaranteed to be single-threaded, this is
3516	 * just to make the assert_spin_locked check happy. */
3517	spin_lock_irq(&dev_priv->irq_lock);
3518	if (dev_priv->display_irqs_enabled)
3519		valleyview_display_irqs_uninstall(dev_priv);
3520	spin_unlock_irq(&dev_priv->irq_lock);
3521
3522	vlv_display_irq_reset(dev_priv);
3523
3524	dev_priv->irq_mask = ~0;
3525}
3526
3527static void valleyview_irq_uninstall(struct drm_device *dev)
3528{
3529	struct drm_i915_private *dev_priv = dev->dev_private;
3530
3531	if (!dev_priv)
3532		return;
3533
3534	I915_WRITE(VLV_MASTER_IER, 0);
3535
3536	gen5_gt_irq_reset(dev);
3537
3538	I915_WRITE(HWSTAM, 0xffffffff);
3539
3540	vlv_display_irq_uninstall(dev_priv);
3541}
3542
3543static void cherryview_irq_uninstall(struct drm_device *dev)
3544{
3545	struct drm_i915_private *dev_priv = dev->dev_private;
3546
3547	if (!dev_priv)
3548		return;
3549
3550	I915_WRITE(GEN8_MASTER_IRQ, 0);
3551	POSTING_READ(GEN8_MASTER_IRQ);
3552
3553	gen8_gt_irq_reset(dev_priv);
3554
3555	GEN5_IRQ_RESET(GEN8_PCU_);
3556
3557	vlv_display_irq_uninstall(dev_priv);
3558}
3559
3560static void ironlake_irq_uninstall(struct drm_device *dev)
3561{
3562	struct drm_i915_private *dev_priv = dev->dev_private;
3563
3564	if (!dev_priv)
3565		return;
3566
3567	ironlake_irq_reset(dev);
3568}
3569
3570static void i8xx_irq_preinstall(struct drm_device * dev)
3571{
3572	struct drm_i915_private *dev_priv = dev->dev_private;
3573	int pipe;
3574
3575	for_each_pipe(dev_priv, pipe)
3576		I915_WRITE(PIPESTAT(pipe), 0);
3577	I915_WRITE16(IMR, 0xffff);
3578	I915_WRITE16(IER, 0x0);
3579	POSTING_READ16(IER);
3580}
3581
3582static int i8xx_irq_postinstall(struct drm_device *dev)
3583{
3584	struct drm_i915_private *dev_priv = dev->dev_private;
3585
3586	I915_WRITE16(EMR,
3587		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3588
3589	/* Unmask the interrupts that we always want on. */
3590	dev_priv->irq_mask =
3591		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3592		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3593		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3594		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3595	I915_WRITE16(IMR, dev_priv->irq_mask);
3596
3597	I915_WRITE16(IER,
3598		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3599		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3600		     I915_USER_INTERRUPT);
3601	POSTING_READ16(IER);
3602
3603	/* Interrupt setup is already guaranteed to be single-threaded, this is
3604	 * just to make the assert_spin_locked check happy. */
3605	spin_lock_irq(&dev_priv->irq_lock);
3606	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3607	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3608	spin_unlock_irq(&dev_priv->irq_lock);
3609
3610	return 0;
3611}
3612
3613/*
3614 * Returns true when a page flip has completed.
3615 */
3616static bool i8xx_handle_vblank(struct drm_device *dev,
3617			       int plane, int pipe, u32 iir)
3618{
3619	struct drm_i915_private *dev_priv = dev->dev_private;
3620	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3621
3622	if (!intel_pipe_handle_vblank(dev, pipe))
3623		return false;
3624
3625	if ((iir & flip_pending) == 0)
3626		goto check_page_flip;
3627
3628	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3629	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3630	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3631	 * the flip is completed (no longer pending). Since this doesn't raise
3632	 * an interrupt per se, we watch for the change at vblank.
3633	 */
3634	if (I915_READ16(ISR) & flip_pending)
3635		goto check_page_flip;
3636
3637	intel_prepare_page_flip(dev, plane);
3638	intel_finish_page_flip(dev, pipe);
3639	return true;
3640
3641check_page_flip:
3642	intel_check_page_flip(dev, pipe);
3643	return false;
3644}
3645
3646static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3647{
3648	struct drm_device *dev = arg;
3649	struct drm_i915_private *dev_priv = dev->dev_private;
3650	u16 iir, new_iir;
3651	u32 pipe_stats[2];
3652	int pipe;
3653	u16 flip_mask =
3654		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3655		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3656
3657	if (!intel_irqs_enabled(dev_priv))
3658		return IRQ_NONE;
3659
3660	iir = I915_READ16(IIR);
3661	if (iir == 0)
3662		return IRQ_NONE;
3663
3664	while (iir & ~flip_mask) {
3665		/* Can't rely on pipestat interrupt bit in iir as it might
3666		 * have been cleared after the pipestat interrupt was received.
3667		 * It doesn't set the bit in iir again, but it still produces
3668		 * interrupts (for non-MSI).
3669		 */
3670		spin_lock(&dev_priv->irq_lock);
3671		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3672			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3673
3674		for_each_pipe(dev_priv, pipe) {
3675			int reg = PIPESTAT(pipe);
3676			pipe_stats[pipe] = I915_READ(reg);
3677
3678			/*
3679			 * Clear the PIPE*STAT regs before the IIR
3680			 */
3681			if (pipe_stats[pipe] & 0x8000ffff)
3682				I915_WRITE(reg, pipe_stats[pipe]);
3683		}
3684		spin_unlock(&dev_priv->irq_lock);
3685
3686		I915_WRITE16(IIR, iir & ~flip_mask);
3687		new_iir = I915_READ16(IIR); /* Flush posted writes */
3688
3689		if (iir & I915_USER_INTERRUPT)
3690			notify_ring(dev, &dev_priv->ring[RCS]);
3691
3692		for_each_pipe(dev_priv, pipe) {
3693			int plane = pipe;
3694			if (HAS_FBC(dev))
3695				plane = !plane;
3696
3697			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3698			    i8xx_handle_vblank(dev, plane, pipe, iir))
3699				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3700
3701			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3702				i9xx_pipe_crc_irq_handler(dev, pipe);
3703
3704			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3705				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3706								    pipe);
3707		}
3708
3709		iir = new_iir;
3710	}
3711
3712	return IRQ_HANDLED;
3713}
3714
3715static void i8xx_irq_uninstall(struct drm_device * dev)
3716{
3717	struct drm_i915_private *dev_priv = dev->dev_private;
3718	int pipe;
3719
3720	for_each_pipe(dev_priv, pipe) {
3721		/* Clear enable bits; then clear status bits */
3722		I915_WRITE(PIPESTAT(pipe), 0);
3723		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3724	}
3725	I915_WRITE16(IMR, 0xffff);
3726	I915_WRITE16(IER, 0x0);
3727	I915_WRITE16(IIR, I915_READ16(IIR));
3728}
3729
3730static void i915_irq_preinstall(struct drm_device * dev)
3731{
3732	struct drm_i915_private *dev_priv = dev->dev_private;
3733	int pipe;
3734
3735	if (I915_HAS_HOTPLUG(dev)) {
3736		I915_WRITE(PORT_HOTPLUG_EN, 0);
3737		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3738	}
3739
3740	I915_WRITE16(HWSTAM, 0xeffe);
3741	for_each_pipe(dev_priv, pipe)
3742		I915_WRITE(PIPESTAT(pipe), 0);
3743	I915_WRITE(IMR, 0xffffffff);
3744	I915_WRITE(IER, 0x0);
3745	POSTING_READ(IER);
3746}
3747
3748static int i915_irq_postinstall(struct drm_device *dev)
3749{
3750	struct drm_i915_private *dev_priv = dev->dev_private;
3751	u32 enable_mask;
3752
3753	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3754
3755	/* Unmask the interrupts that we always want on. */
3756	dev_priv->irq_mask =
3757		~(I915_ASLE_INTERRUPT |
3758		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3759		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3760		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3761		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3762
3763	enable_mask =
3764		I915_ASLE_INTERRUPT |
3765		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3766		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3767		I915_USER_INTERRUPT;
3768
3769	if (I915_HAS_HOTPLUG(dev)) {
3770		I915_WRITE(PORT_HOTPLUG_EN, 0);
3771		POSTING_READ(PORT_HOTPLUG_EN);
3772
3773		/* Enable in IER... */
3774		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3775		/* and unmask in IMR */
3776		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3777	}
3778
3779	I915_WRITE(IMR, dev_priv->irq_mask);
3780	I915_WRITE(IER, enable_mask);
3781	POSTING_READ(IER);
3782
3783	i915_enable_asle_pipestat(dev);
3784
3785	/* Interrupt setup is already guaranteed to be single-threaded, this is
3786	 * just to make the assert_spin_locked check happy. */
3787	spin_lock_irq(&dev_priv->irq_lock);
3788	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3789	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3790	spin_unlock_irq(&dev_priv->irq_lock);
3791
3792	return 0;
3793}
3794
3795/*
3796 * Returns true when a page flip has completed.
3797 */
3798static bool i915_handle_vblank(struct drm_device *dev,
3799			       int plane, int pipe, u32 iir)
3800{
3801	struct drm_i915_private *dev_priv = dev->dev_private;
3802	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3803
3804	if (!intel_pipe_handle_vblank(dev, pipe))
3805		return false;
3806
3807	if ((iir & flip_pending) == 0)
3808		goto check_page_flip;
3809
3810	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3811	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3812	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3813	 * the flip is completed (no longer pending). Since this doesn't raise
3814	 * an interrupt per se, we watch for the change at vblank.
3815	 */
3816	if (I915_READ(ISR) & flip_pending)
3817		goto check_page_flip;
3818
3819	intel_prepare_page_flip(dev, plane);
3820	intel_finish_page_flip(dev, pipe);
3821	return true;
3822
3823check_page_flip:
3824	intel_check_page_flip(dev, pipe);
3825	return false;
3826}
3827
3828static irqreturn_t i915_irq_handler(int irq, void *arg)
3829{
3830	struct drm_device *dev = arg;
3831	struct drm_i915_private *dev_priv = dev->dev_private;
3832	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3833	u32 flip_mask =
3834		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3835		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3836	int pipe, ret = IRQ_NONE;
3837
3838	if (!intel_irqs_enabled(dev_priv))
3839		return IRQ_NONE;
3840
3841	iir = I915_READ(IIR);
3842	do {
3843		bool irq_received = (iir & ~flip_mask) != 0;
3844		bool blc_event = false;
3845
3846		/* Can't rely on pipestat interrupt bit in iir as it might
3847		 * have been cleared after the pipestat interrupt was received.
3848		 * It doesn't set the bit in iir again, but it still produces
3849		 * interrupts (for non-MSI).
3850		 */
3851		spin_lock(&dev_priv->irq_lock);
3852		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3853			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3854
3855		for_each_pipe(dev_priv, pipe) {
3856			int reg = PIPESTAT(pipe);
3857			pipe_stats[pipe] = I915_READ(reg);
3858
3859			/* Clear the PIPE*STAT regs before the IIR */
3860			if (pipe_stats[pipe] & 0x8000ffff) {
3861				I915_WRITE(reg, pipe_stats[pipe]);
3862				irq_received = true;
3863			}
3864		}
3865		spin_unlock(&dev_priv->irq_lock);
3866
3867		if (!irq_received)
3868			break;
3869
3870		/* Consume port.  Then clear IIR or we'll miss events */
3871		if (I915_HAS_HOTPLUG(dev) &&
3872		    iir & I915_DISPLAY_PORT_INTERRUPT)
3873			i9xx_hpd_irq_handler(dev);
3874
3875		I915_WRITE(IIR, iir & ~flip_mask);
3876		new_iir = I915_READ(IIR); /* Flush posted writes */
3877
3878		if (iir & I915_USER_INTERRUPT)
3879			notify_ring(dev, &dev_priv->ring[RCS]);
3880
3881		for_each_pipe(dev_priv, pipe) {
3882			int plane = pipe;
3883			if (HAS_FBC(dev))
3884				plane = !plane;
3885
3886			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3887			    i915_handle_vblank(dev, plane, pipe, iir))
3888				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3889
3890			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3891				blc_event = true;
3892
3893			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3894				i9xx_pipe_crc_irq_handler(dev, pipe);
3895
3896			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3897				intel_cpu_fifo_underrun_irq_handler(dev_priv,
3898								    pipe);
3899		}
3900
3901		if (blc_event || (iir & I915_ASLE_INTERRUPT))
3902			intel_opregion_asle_intr(dev);
3903
3904		/* With MSI, interrupts are only generated when iir
3905		 * transitions from zero to nonzero.  If another bit got
3906		 * set while we were handling the existing iir bits, then
3907		 * we would never get another interrupt.
3908		 *
3909		 * This is fine on non-MSI as well, as if we hit this path
3910		 * we avoid exiting the interrupt handler only to generate
3911		 * another one.
3912		 *
3913		 * Note that for MSI this could cause a stray interrupt report
3914		 * if an interrupt landed in the time between writing IIR and
3915		 * the posting read.  This should be rare enough to never
3916		 * trigger the 99% of 100,000 interrupts test for disabling
3917		 * stray interrupts.
3918		 */
3919		ret = IRQ_HANDLED;
3920		iir = new_iir;
3921	} while (iir & ~flip_mask);
3922
3923	return ret;
3924}
3925
3926static void i915_irq_uninstall(struct drm_device * dev)
3927{
3928	struct drm_i915_private *dev_priv = dev->dev_private;
3929	int pipe;
3930
3931	if (I915_HAS_HOTPLUG(dev)) {
3932		I915_WRITE(PORT_HOTPLUG_EN, 0);
3933		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3934	}
3935
3936	I915_WRITE16(HWSTAM, 0xffff);
3937	for_each_pipe(dev_priv, pipe) {
3938		/* Clear enable bits; then clear status bits */
3939		I915_WRITE(PIPESTAT(pipe), 0);
3940		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3941	}
3942	I915_WRITE(IMR, 0xffffffff);
3943	I915_WRITE(IER, 0x0);
3944
3945	I915_WRITE(IIR, I915_READ(IIR));
3946}
3947
3948static void i965_irq_preinstall(struct drm_device * dev)
3949{
3950	struct drm_i915_private *dev_priv = dev->dev_private;
3951	int pipe;
3952
3953	I915_WRITE(PORT_HOTPLUG_EN, 0);
3954	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3955
3956	I915_WRITE(HWSTAM, 0xeffe);
3957	for_each_pipe(dev_priv, pipe)
3958		I915_WRITE(PIPESTAT(pipe), 0);
3959	I915_WRITE(IMR, 0xffffffff);
3960	I915_WRITE(IER, 0x0);
3961	POSTING_READ(IER);
3962}
3963
3964static int i965_irq_postinstall(struct drm_device *dev)
3965{
3966	struct drm_i915_private *dev_priv = dev->dev_private;
3967	u32 enable_mask;
3968	u32 error_mask;
3969
3970	/* Unmask the interrupts that we always want on. */
3971	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3972			       I915_DISPLAY_PORT_INTERRUPT |
3973			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3974			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3975			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3976			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3977			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3978
3979	enable_mask = ~dev_priv->irq_mask;
3980	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3981			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3982	enable_mask |= I915_USER_INTERRUPT;
3983
3984	if (IS_G4X(dev))
3985		enable_mask |= I915_BSD_USER_INTERRUPT;
3986
3987	/* Interrupt setup is already guaranteed to be single-threaded, this is
3988	 * just to make the assert_spin_locked check happy. */
3989	spin_lock_irq(&dev_priv->irq_lock);
3990	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3991	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3992	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3993	spin_unlock_irq(&dev_priv->irq_lock);
3994
3995	/*
3996	 * Enable some error detection, note the instruction error mask
3997	 * bit is reserved, so we leave it masked.
3998	 */
3999	if (IS_G4X(dev)) {
4000		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4001			       GM45_ERROR_MEM_PRIV |
4002			       GM45_ERROR_CP_PRIV |
4003			       I915_ERROR_MEMORY_REFRESH);
4004	} else {
4005		error_mask = ~(I915_ERROR_PAGE_TABLE |
4006			       I915_ERROR_MEMORY_REFRESH);
4007	}
4008	I915_WRITE(EMR, error_mask);
4009
4010	I915_WRITE(IMR, dev_priv->irq_mask);
4011	I915_WRITE(IER, enable_mask);
4012	POSTING_READ(IER);
4013
4014	I915_WRITE(PORT_HOTPLUG_EN, 0);
4015	POSTING_READ(PORT_HOTPLUG_EN);
4016
4017	i915_enable_asle_pipestat(dev);
4018
4019	return 0;
4020}
4021
4022static void i915_hpd_irq_setup(struct drm_device *dev)
4023{
4024	struct drm_i915_private *dev_priv = dev->dev_private;
4025	struct intel_encoder *intel_encoder;
4026	u32 hotplug_en;
4027
4028	assert_spin_locked(&dev_priv->irq_lock);
4029
4030	hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4031	hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4032	/* Note HDMI and DP share hotplug bits */
4033	/* enable bits are the same for all generations */
4034	for_each_intel_encoder(dev, intel_encoder)
4035		if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4036			hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4037	/* Programming the CRT detection parameters tends
4038	   to generate a spurious hotplug event about three
4039	   seconds later.  So just do it once.
4040	*/
4041	if (IS_G4X(dev))
4042		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4043	hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4044	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4045
4046	/* Ignore TV since it's buggy */
4047	I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4048}
4049
4050static irqreturn_t i965_irq_handler(int irq, void *arg)
4051{
4052	struct drm_device *dev = arg;
4053	struct drm_i915_private *dev_priv = dev->dev_private;
4054	u32 iir, new_iir;
4055	u32 pipe_stats[I915_MAX_PIPES];
4056	int ret = IRQ_NONE, pipe;
4057	u32 flip_mask =
4058		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4059		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4060
4061	if (!intel_irqs_enabled(dev_priv))
4062		return IRQ_NONE;
4063
4064	iir = I915_READ(IIR);
4065
4066	for (;;) {
4067		bool irq_received = (iir & ~flip_mask) != 0;
4068		bool blc_event = false;
4069
4070		/* Can't rely on pipestat interrupt bit in iir as it might
4071		 * have been cleared after the pipestat interrupt was received.
4072		 * It doesn't set the bit in iir again, but it still produces
4073		 * interrupts (for non-MSI).
4074		 */
4075		spin_lock(&dev_priv->irq_lock);
4076		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4077			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4078
4079		for_each_pipe(dev_priv, pipe) {
4080			int reg = PIPESTAT(pipe);
4081			pipe_stats[pipe] = I915_READ(reg);
4082
4083			/*
4084			 * Clear the PIPE*STAT regs before the IIR
4085			 */
4086			if (pipe_stats[pipe] & 0x8000ffff) {
4087				I915_WRITE(reg, pipe_stats[pipe]);
4088				irq_received = true;
4089			}
4090		}
4091		spin_unlock(&dev_priv->irq_lock);
4092
4093		if (!irq_received)
4094			break;
4095
4096		ret = IRQ_HANDLED;
4097
4098		/* Consume port.  Then clear IIR or we'll miss events */
4099		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4100			i9xx_hpd_irq_handler(dev);
4101
4102		I915_WRITE(IIR, iir & ~flip_mask);
4103		new_iir = I915_READ(IIR); /* Flush posted writes */
4104
4105		if (iir & I915_USER_INTERRUPT)
4106			notify_ring(dev, &dev_priv->ring[RCS]);
4107		if (iir & I915_BSD_USER_INTERRUPT)
4108			notify_ring(dev, &dev_priv->ring[VCS]);
4109
4110		for_each_pipe(dev_priv, pipe) {
4111			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4112			    i915_handle_vblank(dev, pipe, pipe, iir))
4113				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4114
4115			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4116				blc_event = true;
4117
4118			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4119				i9xx_pipe_crc_irq_handler(dev, pipe);
4120
4121			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4122				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4123		}
4124
4125		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4126			intel_opregion_asle_intr(dev);
4127
4128		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4129			gmbus_irq_handler(dev);
4130
4131		/* With MSI, interrupts are only generated when iir
4132		 * transitions from zero to nonzero.  If another bit got
4133		 * set while we were handling the existing iir bits, then
4134		 * we would never get another interrupt.
4135		 *
4136		 * This is fine on non-MSI as well, as if we hit this path
4137		 * we avoid exiting the interrupt handler only to generate
4138		 * another one.
4139		 *
4140		 * Note that for MSI this could cause a stray interrupt report
4141		 * if an interrupt landed in the time between writing IIR and
4142		 * the posting read.  This should be rare enough to never
4143		 * trigger the 99% of 100,000 interrupts test for disabling
4144		 * stray interrupts.
4145		 */
4146		iir = new_iir;
4147	}
4148
4149	return ret;
4150}
4151
4152static void i965_irq_uninstall(struct drm_device * dev)
4153{
4154	struct drm_i915_private *dev_priv = dev->dev_private;
4155	int pipe;
4156
4157	if (!dev_priv)
4158		return;
4159
4160	I915_WRITE(PORT_HOTPLUG_EN, 0);
4161	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4162
4163	I915_WRITE(HWSTAM, 0xffffffff);
4164	for_each_pipe(dev_priv, pipe)
4165		I915_WRITE(PIPESTAT(pipe), 0);
4166	I915_WRITE(IMR, 0xffffffff);
4167	I915_WRITE(IER, 0x0);
4168
4169	for_each_pipe(dev_priv, pipe)
4170		I915_WRITE(PIPESTAT(pipe),
4171			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4172	I915_WRITE(IIR, I915_READ(IIR));
4173}
4174
4175static void intel_hpd_irq_reenable_work(struct work_struct *work)
4176{
4177	struct drm_i915_private *dev_priv =
4178		container_of(work, typeof(*dev_priv),
4179			     hotplug_reenable_work.work);
4180	struct drm_device *dev = dev_priv->dev;
4181	struct drm_mode_config *mode_config = &dev->mode_config;
4182	int i;
4183
4184	intel_runtime_pm_get(dev_priv);
4185
4186	spin_lock_irq(&dev_priv->irq_lock);
4187	for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4188		struct drm_connector *connector;
4189
4190		if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4191			continue;
4192
4193		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4194
4195		list_for_each_entry(connector, &mode_config->connector_list, head) {
4196			struct intel_connector *intel_connector = to_intel_connector(connector);
4197
4198			if (intel_connector->encoder->hpd_pin == i) {
4199				if (connector->polled != intel_connector->polled)
4200					DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4201							 connector->name);
4202				connector->polled = intel_connector->polled;
4203				if (!connector->polled)
4204					connector->polled = DRM_CONNECTOR_POLL_HPD;
4205			}
4206		}
4207	}
4208	if (dev_priv->display.hpd_irq_setup)
4209		dev_priv->display.hpd_irq_setup(dev);
4210	spin_unlock_irq(&dev_priv->irq_lock);
4211
4212	intel_runtime_pm_put(dev_priv);
4213}
4214
4215/**
4216 * intel_irq_init - initializes irq support
4217 * @dev_priv: i915 device instance
4218 *
4219 * This function initializes all the irq support including work items, timers
4220 * and all the vtables. It does not setup the interrupt itself though.
4221 */
4222void intel_irq_init(struct drm_i915_private *dev_priv)
4223{
4224	struct drm_device *dev = dev_priv->dev;
4225
4226	INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4227	INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4228	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4229	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4230
4231	/* Let's track the enabled rps events */
4232	if (IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
4233		/* WaGsvRC0ResidencyMethod:vlv */
4234		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4235	else
4236		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4237
4238	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4239			  i915_hangcheck_elapsed);
4240	INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4241			  intel_hpd_irq_reenable_work);
4242
4243	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4244
4245	if (IS_GEN2(dev_priv)) {
4246		dev->max_vblank_count = 0;
4247		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4248	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4249		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4250		dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4251	} else {
4252		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4253		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4254	}
4255
4256	/*
4257	 * Opt out of the vblank disable timer on everything except gen2.
4258	 * Gen2 doesn't have a hardware frame counter and so depends on
4259	 * vblank interrupts to produce sane vblank seuquence numbers.
4260	 */
4261	if (!IS_GEN2(dev_priv))
4262		dev->vblank_disable_immediate = true;
4263
4264	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4265	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4266
4267	if (IS_CHERRYVIEW(dev_priv)) {
4268		dev->driver->irq_handler = cherryview_irq_handler;
4269		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4270		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4271		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4272		dev->driver->enable_vblank = valleyview_enable_vblank;
4273		dev->driver->disable_vblank = valleyview_disable_vblank;
4274		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4275	} else if (IS_VALLEYVIEW(dev_priv)) {
4276		dev->driver->irq_handler = valleyview_irq_handler;
4277		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4278		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4279		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4280		dev->driver->enable_vblank = valleyview_enable_vblank;
4281		dev->driver->disable_vblank = valleyview_disable_vblank;
4282		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4283	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4284		dev->driver->irq_handler = gen8_irq_handler;
4285		dev->driver->irq_preinstall = gen8_irq_reset;
4286		dev->driver->irq_postinstall = gen8_irq_postinstall;
4287		dev->driver->irq_uninstall = gen8_irq_uninstall;
4288		dev->driver->enable_vblank = gen8_enable_vblank;
4289		dev->driver->disable_vblank = gen8_disable_vblank;
4290		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4291	} else if (HAS_PCH_SPLIT(dev)) {
4292		dev->driver->irq_handler = ironlake_irq_handler;
4293		dev->driver->irq_preinstall = ironlake_irq_reset;
4294		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4295		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4296		dev->driver->enable_vblank = ironlake_enable_vblank;
4297		dev->driver->disable_vblank = ironlake_disable_vblank;
4298		dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4299	} else {
4300		if (INTEL_INFO(dev_priv)->gen == 2) {
4301			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4302			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4303			dev->driver->irq_handler = i8xx_irq_handler;
4304			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4305		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4306			dev->driver->irq_preinstall = i915_irq_preinstall;
4307			dev->driver->irq_postinstall = i915_irq_postinstall;
4308			dev->driver->irq_uninstall = i915_irq_uninstall;
4309			dev->driver->irq_handler = i915_irq_handler;
4310		} else {
4311			dev->driver->irq_preinstall = i965_irq_preinstall;
4312			dev->driver->irq_postinstall = i965_irq_postinstall;
4313			dev->driver->irq_uninstall = i965_irq_uninstall;
4314			dev->driver->irq_handler = i965_irq_handler;
4315		}
4316		if (I915_HAS_HOTPLUG(dev_priv))
4317			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4318		dev->driver->enable_vblank = i915_enable_vblank;
4319		dev->driver->disable_vblank = i915_disable_vblank;
4320	}
4321}
4322
4323/**
4324 * intel_hpd_init - initializes and enables hpd support
4325 * @dev_priv: i915 device instance
4326 *
4327 * This function enables the hotplug support. It requires that interrupts have
4328 * already been enabled with intel_irq_init_hw(). From this point on hotplug and
4329 * poll request can run concurrently to other code, so locking rules must be
4330 * obeyed.
4331 *
4332 * This is a separate step from interrupt enabling to simplify the locking rules
4333 * in the driver load and resume code.
4334 */
4335void intel_hpd_init(struct drm_i915_private *dev_priv)
4336{
4337	struct drm_device *dev = dev_priv->dev;
4338	struct drm_mode_config *mode_config = &dev->mode_config;
4339	struct drm_connector *connector;
4340	int i;
4341
4342	for (i = 1; i < HPD_NUM_PINS; i++) {
4343		dev_priv->hpd_stats[i].hpd_cnt = 0;
4344		dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4345	}
4346	list_for_each_entry(connector, &mode_config->connector_list, head) {
4347		struct intel_connector *intel_connector = to_intel_connector(connector);
4348		connector->polled = intel_connector->polled;
4349		if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4350			connector->polled = DRM_CONNECTOR_POLL_HPD;
4351		if (intel_connector->mst_port)
4352			connector->polled = DRM_CONNECTOR_POLL_HPD;
4353	}
4354
4355	/* Interrupt setup is already guaranteed to be single-threaded, this is
4356	 * just to make the assert_spin_locked checks happy. */
4357	spin_lock_irq(&dev_priv->irq_lock);
4358	if (dev_priv->display.hpd_irq_setup)
4359		dev_priv->display.hpd_irq_setup(dev);
4360	spin_unlock_irq(&dev_priv->irq_lock);
4361}
4362
4363/**
4364 * intel_irq_install - enables the hardware interrupt
4365 * @dev_priv: i915 device instance
4366 *
4367 * This function enables the hardware interrupt handling, but leaves the hotplug
4368 * handling still disabled. It is called after intel_irq_init().
4369 *
4370 * In the driver load and resume code we need working interrupts in a few places
4371 * but don't want to deal with the hassle of concurrent probe and hotplug
4372 * workers. Hence the split into this two-stage approach.
4373 */
4374int intel_irq_install(struct drm_i915_private *dev_priv)
4375{
4376	/*
4377	 * We enable some interrupt sources in our postinstall hooks, so mark
4378	 * interrupts as enabled _before_ actually enabling them to avoid
4379	 * special cases in our ordering checks.
4380	 */
4381	dev_priv->pm.irqs_enabled = true;
4382
4383	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
4384}
4385
4386/**
4387 * intel_irq_uninstall - finilizes all irq handling
4388 * @dev_priv: i915 device instance
4389 *
4390 * This stops interrupt and hotplug handling and unregisters and frees all
4391 * resources acquired in the init functions.
4392 */
4393void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4394{
4395	drm_irq_uninstall(dev_priv->dev);
4396	intel_hpd_cancel_work(dev_priv);
4397	dev_priv->pm.irqs_enabled = false;
4398}
4399
4400/**
4401 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4402 * @dev_priv: i915 device instance
4403 *
4404 * This function is used to disable interrupts at runtime, both in the runtime
4405 * pm and the system suspend/resume code.
4406 */
4407void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4408{
4409	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4410	dev_priv->pm.irqs_enabled = false;
4411	synchronize_irq(dev_priv->dev->irq);
4412}
4413
4414/**
4415 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4416 * @dev_priv: i915 device instance
4417 *
4418 * This function is used to enable interrupts at runtime, both in the runtime
4419 * pm and the system suspend/resume code.
4420 */
4421void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4422{
4423	dev_priv->pm.irqs_enabled = true;
4424	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4425	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
4426}
4427