1/*
2 * Copyright 2012 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24#include "nv50.h"
25#include "pll.h"
26#include "seq.h"
27
28#include <core/device.h>
29#include <subdev/bios.h>
30#include <subdev/bios/pll.h>
31
32static u32
33read_div(struct nv50_clk_priv *priv)
34{
35	switch (nv_device(priv)->chipset) {
36	case 0x50: /* it exists, but only has bit 31, not the dividers.. */
37	case 0x84:
38	case 0x86:
39	case 0x98:
40	case 0xa0:
41		return nv_rd32(priv, 0x004700);
42	case 0x92:
43	case 0x94:
44	case 0x96:
45		return nv_rd32(priv, 0x004800);
46	default:
47		return 0x00000000;
48	}
49}
50
51static u32
52read_pll_src(struct nv50_clk_priv *priv, u32 base)
53{
54	struct nvkm_clk *clk = &priv->base;
55	u32 coef, ref = clk->read(clk, nv_clk_src_crystal);
56	u32 rsel = nv_rd32(priv, 0x00e18c);
57	int P, N, M, id;
58
59	switch (nv_device(priv)->chipset) {
60	case 0x50:
61	case 0xa0:
62		switch (base) {
63		case 0x4020:
64		case 0x4028: id = !!(rsel & 0x00000004); break;
65		case 0x4008: id = !!(rsel & 0x00000008); break;
66		case 0x4030: id = 0; break;
67		default:
68			nv_error(priv, "ref: bad pll 0x%06x\n", base);
69			return 0;
70		}
71
72		coef = nv_rd32(priv, 0x00e81c + (id * 0x0c));
73		ref *=  (coef & 0x01000000) ? 2 : 4;
74		P    =  (coef & 0x00070000) >> 16;
75		N    = ((coef & 0x0000ff00) >> 8) + 1;
76		M    = ((coef & 0x000000ff) >> 0) + 1;
77		break;
78	case 0x84:
79	case 0x86:
80	case 0x92:
81		coef = nv_rd32(priv, 0x00e81c);
82		P    = (coef & 0x00070000) >> 16;
83		N    = (coef & 0x0000ff00) >> 8;
84		M    = (coef & 0x000000ff) >> 0;
85		break;
86	case 0x94:
87	case 0x96:
88	case 0x98:
89		rsel = nv_rd32(priv, 0x00c050);
90		switch (base) {
91		case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
92		case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
93		case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
94		case 0x4030: rsel = 3; break;
95		default:
96			nv_error(priv, "ref: bad pll 0x%06x\n", base);
97			return 0;
98		}
99
100		switch (rsel) {
101		case 0: id = 1; break;
102		case 1: return clk->read(clk, nv_clk_src_crystal);
103		case 2: return clk->read(clk, nv_clk_src_href);
104		case 3: id = 0; break;
105		}
106
107		coef =  nv_rd32(priv, 0x00e81c + (id * 0x28));
108		P    = (nv_rd32(priv, 0x00e824 + (id * 0x28)) >> 16) & 7;
109		P   += (coef & 0x00070000) >> 16;
110		N    = (coef & 0x0000ff00) >> 8;
111		M    = (coef & 0x000000ff) >> 0;
112		break;
113	default:
114		BUG_ON(1);
115	}
116
117	if (M)
118		return (ref * N / M) >> P;
119
120	return 0;
121}
122
123static u32
124read_pll_ref(struct nv50_clk_priv *priv, u32 base)
125{
126	struct nvkm_clk *clk = &priv->base;
127	u32 src, mast = nv_rd32(priv, 0x00c040);
128
129	switch (base) {
130	case 0x004028:
131		src = !!(mast & 0x00200000);
132		break;
133	case 0x004020:
134		src = !!(mast & 0x00400000);
135		break;
136	case 0x004008:
137		src = !!(mast & 0x00010000);
138		break;
139	case 0x004030:
140		src = !!(mast & 0x02000000);
141		break;
142	case 0x00e810:
143		return clk->read(clk, nv_clk_src_crystal);
144	default:
145		nv_error(priv, "bad pll 0x%06x\n", base);
146		return 0;
147	}
148
149	if (src)
150		return clk->read(clk, nv_clk_src_href);
151
152	return read_pll_src(priv, base);
153}
154
155static u32
156read_pll(struct nv50_clk_priv *priv, u32 base)
157{
158	struct nvkm_clk *clk = &priv->base;
159	u32 mast = nv_rd32(priv, 0x00c040);
160	u32 ctrl = nv_rd32(priv, base + 0);
161	u32 coef = nv_rd32(priv, base + 4);
162	u32 ref = read_pll_ref(priv, base);
163	u32 freq = 0;
164	int N1, N2, M1, M2;
165
166	if (base == 0x004028 && (mast & 0x00100000)) {
167		/* wtf, appears to only disable post-divider on gt200 */
168		if (nv_device(priv)->chipset != 0xa0)
169			return clk->read(clk, nv_clk_src_dom6);
170	}
171
172	N2 = (coef & 0xff000000) >> 24;
173	M2 = (coef & 0x00ff0000) >> 16;
174	N1 = (coef & 0x0000ff00) >> 8;
175	M1 = (coef & 0x000000ff);
176	if ((ctrl & 0x80000000) && M1) {
177		freq = ref * N1 / M1;
178		if ((ctrl & 0x40000100) == 0x40000000) {
179			if (M2)
180				freq = freq * N2 / M2;
181			else
182				freq = 0;
183		}
184	}
185
186	return freq;
187}
188
189static int
190nv50_clk_read(struct nvkm_clk *clk, enum nv_clk_src src)
191{
192	struct nv50_clk_priv *priv = (void *)clk;
193	u32 mast = nv_rd32(priv, 0x00c040);
194	u32 P = 0;
195
196	switch (src) {
197	case nv_clk_src_crystal:
198		return nv_device(priv)->crystal;
199	case nv_clk_src_href:
200		return 100000; /* PCIE reference clock */
201	case nv_clk_src_hclk:
202		return div_u64((u64)clk->read(clk, nv_clk_src_href) * 27778, 10000);
203	case nv_clk_src_hclkm3:
204		return clk->read(clk, nv_clk_src_hclk) * 3;
205	case nv_clk_src_hclkm3d2:
206		return clk->read(clk, nv_clk_src_hclk) * 3 / 2;
207	case nv_clk_src_host:
208		switch (mast & 0x30000000) {
209		case 0x00000000: return clk->read(clk, nv_clk_src_href);
210		case 0x10000000: break;
211		case 0x20000000: /* !0x50 */
212		case 0x30000000: return clk->read(clk, nv_clk_src_hclk);
213		}
214		break;
215	case nv_clk_src_core:
216		if (!(mast & 0x00100000))
217			P = (nv_rd32(priv, 0x004028) & 0x00070000) >> 16;
218		switch (mast & 0x00000003) {
219		case 0x00000000: return clk->read(clk, nv_clk_src_crystal) >> P;
220		case 0x00000001: return clk->read(clk, nv_clk_src_dom6);
221		case 0x00000002: return read_pll(priv, 0x004020) >> P;
222		case 0x00000003: return read_pll(priv, 0x004028) >> P;
223		}
224		break;
225	case nv_clk_src_shader:
226		P = (nv_rd32(priv, 0x004020) & 0x00070000) >> 16;
227		switch (mast & 0x00000030) {
228		case 0x00000000:
229			if (mast & 0x00000080)
230				return clk->read(clk, nv_clk_src_host) >> P;
231			return clk->read(clk, nv_clk_src_crystal) >> P;
232		case 0x00000010: break;
233		case 0x00000020: return read_pll(priv, 0x004028) >> P;
234		case 0x00000030: return read_pll(priv, 0x004020) >> P;
235		}
236		break;
237	case nv_clk_src_mem:
238		P = (nv_rd32(priv, 0x004008) & 0x00070000) >> 16;
239		if (nv_rd32(priv, 0x004008) & 0x00000200) {
240			switch (mast & 0x0000c000) {
241			case 0x00000000:
242				return clk->read(clk, nv_clk_src_crystal) >> P;
243			case 0x00008000:
244			case 0x0000c000:
245				return clk->read(clk, nv_clk_src_href) >> P;
246			}
247		} else {
248			return read_pll(priv, 0x004008) >> P;
249		}
250		break;
251	case nv_clk_src_vdec:
252		P = (read_div(priv) & 0x00000700) >> 8;
253		switch (nv_device(priv)->chipset) {
254		case 0x84:
255		case 0x86:
256		case 0x92:
257		case 0x94:
258		case 0x96:
259		case 0xa0:
260			switch (mast & 0x00000c00) {
261			case 0x00000000:
262				if (nv_device(priv)->chipset == 0xa0) /* wtf?? */
263					return clk->read(clk, nv_clk_src_core) >> P;
264				return clk->read(clk, nv_clk_src_crystal) >> P;
265			case 0x00000400:
266				return 0;
267			case 0x00000800:
268				if (mast & 0x01000000)
269					return read_pll(priv, 0x004028) >> P;
270				return read_pll(priv, 0x004030) >> P;
271			case 0x00000c00:
272				return clk->read(clk, nv_clk_src_core) >> P;
273			}
274			break;
275		case 0x98:
276			switch (mast & 0x00000c00) {
277			case 0x00000000:
278				return clk->read(clk, nv_clk_src_core) >> P;
279			case 0x00000400:
280				return 0;
281			case 0x00000800:
282				return clk->read(clk, nv_clk_src_hclkm3d2) >> P;
283			case 0x00000c00:
284				return clk->read(clk, nv_clk_src_mem) >> P;
285			}
286			break;
287		}
288		break;
289	case nv_clk_src_dom6:
290		switch (nv_device(priv)->chipset) {
291		case 0x50:
292		case 0xa0:
293			return read_pll(priv, 0x00e810) >> 2;
294		case 0x84:
295		case 0x86:
296		case 0x92:
297		case 0x94:
298		case 0x96:
299		case 0x98:
300			P = (read_div(priv) & 0x00000007) >> 0;
301			switch (mast & 0x0c000000) {
302			case 0x00000000: return clk->read(clk, nv_clk_src_href);
303			case 0x04000000: break;
304			case 0x08000000: return clk->read(clk, nv_clk_src_hclk);
305			case 0x0c000000:
306				return clk->read(clk, nv_clk_src_hclkm3) >> P;
307			}
308			break;
309		default:
310			break;
311		}
312	default:
313		break;
314	}
315
316	nv_debug(priv, "unknown clock source %d 0x%08x\n", src, mast);
317	return -EINVAL;
318}
319
320static u32
321calc_pll(struct nv50_clk_priv *priv, u32 reg, u32 clk, int *N, int *M, int *P)
322{
323	struct nvkm_bios *bios = nvkm_bios(priv);
324	struct nvbios_pll pll;
325	int ret;
326
327	ret = nvbios_pll_parse(bios, reg, &pll);
328	if (ret)
329		return 0;
330
331	pll.vco2.max_freq = 0;
332	pll.refclk = read_pll_ref(priv, reg);
333	if (!pll.refclk)
334		return 0;
335
336	return nv04_pll_calc(nv_subdev(priv), &pll, clk, N, M, NULL, NULL, P);
337}
338
339static inline u32
340calc_div(u32 src, u32 target, int *div)
341{
342	u32 clk0 = src, clk1 = src;
343	for (*div = 0; *div <= 7; (*div)++) {
344		if (clk0 <= target) {
345			clk1 = clk0 << (*div ? 1 : 0);
346			break;
347		}
348		clk0 >>= 1;
349	}
350
351	if (target - clk0 <= clk1 - target)
352		return clk0;
353	(*div)--;
354	return clk1;
355}
356
357static inline u32
358clk_same(u32 a, u32 b)
359{
360	return ((a / 1000) == (b / 1000));
361}
362
363static int
364nv50_clk_calc(struct nvkm_clk *clk, struct nvkm_cstate *cstate)
365{
366	struct nv50_clk_priv *priv = (void *)clk;
367	struct nv50_clk_hwsq *hwsq = &priv->hwsq;
368	const int shader = cstate->domain[nv_clk_src_shader];
369	const int core = cstate->domain[nv_clk_src_core];
370	const int vdec = cstate->domain[nv_clk_src_vdec];
371	const int dom6 = cstate->domain[nv_clk_src_dom6];
372	u32 mastm = 0, mastv = 0;
373	u32 divsm = 0, divsv = 0;
374	int N, M, P1, P2;
375	int freq, out;
376
377	/* prepare a hwsq script from which we'll perform the reclock */
378	out = clk_init(hwsq, nv_subdev(clk));
379	if (out)
380		return out;
381
382	clk_wr32(hwsq, fifo, 0x00000001); /* block fifo */
383	clk_nsec(hwsq, 8000);
384	clk_setf(hwsq, 0x10, 0x00); /* disable fb */
385	clk_wait(hwsq, 0x00, 0x01); /* wait for fb disabled */
386
387	/* vdec: avoid modifying xpll until we know exactly how the other
388	 * clock domains work, i suspect at least some of them can also be
389	 * tied to xpll...
390	 */
391	if (vdec) {
392		/* see how close we can get using nvclk as a source */
393		freq = calc_div(core, vdec, &P1);
394
395		/* see how close we can get using xpll/hclk as a source */
396		if (nv_device(priv)->chipset != 0x98)
397			out = read_pll(priv, 0x004030);
398		else
399			out = clk->read(clk, nv_clk_src_hclkm3d2);
400		out = calc_div(out, vdec, &P2);
401
402		/* select whichever gets us closest */
403		if (abs(vdec - freq) <= abs(vdec - out)) {
404			if (nv_device(priv)->chipset != 0x98)
405				mastv |= 0x00000c00;
406			divsv |= P1 << 8;
407		} else {
408			mastv |= 0x00000800;
409			divsv |= P2 << 8;
410		}
411
412		mastm |= 0x00000c00;
413		divsm |= 0x00000700;
414	}
415
416	/* dom6: nfi what this is, but we're limited to various combinations
417	 * of the host clock frequency
418	 */
419	if (dom6) {
420		if (clk_same(dom6, clk->read(clk, nv_clk_src_href))) {
421			mastv |= 0x00000000;
422		} else
423		if (clk_same(dom6, clk->read(clk, nv_clk_src_hclk))) {
424			mastv |= 0x08000000;
425		} else {
426			freq = clk->read(clk, nv_clk_src_hclk) * 3;
427			freq = calc_div(freq, dom6, &P1);
428
429			mastv |= 0x0c000000;
430			divsv |= P1;
431		}
432
433		mastm |= 0x0c000000;
434		divsm |= 0x00000007;
435	}
436
437	/* vdec/dom6: switch to "safe" clocks temporarily, update dividers
438	 * and then switch to target clocks
439	 */
440	clk_mask(hwsq, mast, mastm, 0x00000000);
441	clk_mask(hwsq, divs, divsm, divsv);
442	clk_mask(hwsq, mast, mastm, mastv);
443
444	/* core/shader: disconnect nvclk/sclk from their PLLs (nvclk to dom6,
445	 * sclk to hclk) before reprogramming
446	 */
447	if (nv_device(priv)->chipset < 0x92)
448		clk_mask(hwsq, mast, 0x001000b0, 0x00100080);
449	else
450		clk_mask(hwsq, mast, 0x000000b3, 0x00000081);
451
452	/* core: for the moment at least, always use nvpll */
453	freq = calc_pll(priv, 0x4028, core, &N, &M, &P1);
454	if (freq == 0)
455		return -ERANGE;
456
457	clk_mask(hwsq, nvpll[0], 0xc03f0100,
458				 0x80000000 | (P1 << 19) | (P1 << 16));
459	clk_mask(hwsq, nvpll[1], 0x0000ffff, (N << 8) | M);
460
461	/* shader: tie to nvclk if possible, otherwise use spll.  have to be
462	 * very careful that the shader clock is at least twice the core, or
463	 * some chipsets will be very unhappy.  i expect most or all of these
464	 * cases will be handled by tying to nvclk, but it's possible there's
465	 * corners
466	 */
467	if (P1-- && shader == (core << 1)) {
468		clk_mask(hwsq, spll[0], 0xc03f0100, (P1 << 19) | (P1 << 16));
469		clk_mask(hwsq, mast, 0x00100033, 0x00000023);
470	} else {
471		freq = calc_pll(priv, 0x4020, shader, &N, &M, &P1);
472		if (freq == 0)
473			return -ERANGE;
474
475		clk_mask(hwsq, spll[0], 0xc03f0100,
476					0x80000000 | (P1 << 19) | (P1 << 16));
477		clk_mask(hwsq, spll[1], 0x0000ffff, (N << 8) | M);
478		clk_mask(hwsq, mast, 0x00100033, 0x00000033);
479	}
480
481	/* restore normal operation */
482	clk_setf(hwsq, 0x10, 0x01); /* enable fb */
483	clk_wait(hwsq, 0x00, 0x00); /* wait for fb enabled */
484	clk_wr32(hwsq, fifo, 0x00000000); /* un-block fifo */
485	return 0;
486}
487
488static int
489nv50_clk_prog(struct nvkm_clk *clk)
490{
491	struct nv50_clk_priv *priv = (void *)clk;
492	return clk_exec(&priv->hwsq, true);
493}
494
495static void
496nv50_clk_tidy(struct nvkm_clk *clk)
497{
498	struct nv50_clk_priv *priv = (void *)clk;
499	clk_exec(&priv->hwsq, false);
500}
501
502int
503nv50_clk_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
504	      struct nvkm_oclass *oclass, void *data, u32 size,
505	      struct nvkm_object **pobject)
506{
507	struct nv50_clk_oclass *pclass = (void *)oclass;
508	struct nv50_clk_priv *priv;
509	int ret;
510
511	ret = nvkm_clk_create(parent, engine, oclass, pclass->domains,
512			      NULL, 0, false, &priv);
513	*pobject = nv_object(priv);
514	if (ret)
515		return ret;
516
517	priv->hwsq.r_fifo = hwsq_reg(0x002504);
518	priv->hwsq.r_spll[0] = hwsq_reg(0x004020);
519	priv->hwsq.r_spll[1] = hwsq_reg(0x004024);
520	priv->hwsq.r_nvpll[0] = hwsq_reg(0x004028);
521	priv->hwsq.r_nvpll[1] = hwsq_reg(0x00402c);
522	switch (nv_device(priv)->chipset) {
523	case 0x92:
524	case 0x94:
525	case 0x96:
526		priv->hwsq.r_divs = hwsq_reg(0x004800);
527		break;
528	default:
529		priv->hwsq.r_divs = hwsq_reg(0x004700);
530		break;
531	}
532	priv->hwsq.r_mast = hwsq_reg(0x00c040);
533
534	priv->base.read = nv50_clk_read;
535	priv->base.calc = nv50_clk_calc;
536	priv->base.prog = nv50_clk_prog;
537	priv->base.tidy = nv50_clk_tidy;
538	return 0;
539}
540
541static struct nvkm_domain
542nv50_domains[] = {
543	{ nv_clk_src_crystal, 0xff },
544	{ nv_clk_src_href   , 0xff },
545	{ nv_clk_src_core   , 0xff, 0, "core", 1000 },
546	{ nv_clk_src_shader , 0xff, 0, "shader", 1000 },
547	{ nv_clk_src_mem    , 0xff, 0, "memory", 1000 },
548	{ nv_clk_src_max }
549};
550
551struct nvkm_oclass *
552nv50_clk_oclass = &(struct nv50_clk_oclass) {
553	.base.handle = NV_SUBDEV(CLK, 0x50),
554	.base.ofuncs = &(struct nvkm_ofuncs) {
555		.ctor = nv50_clk_ctor,
556		.dtor = _nvkm_clk_dtor,
557		.init = _nvkm_clk_init,
558		.fini = _nvkm_clk_fini,
559	},
560	.domains = nv50_domains,
561}.base;
562