1/* 2 * 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26#include <linux/kernel.h> 27#include <linux/mm.h> 28#include <linux/hyperv.h> 29#include <linux/uio.h> 30 31#include "hyperv_vmbus.h" 32 33void hv_begin_read(struct hv_ring_buffer_info *rbi) 34{ 35 rbi->ring_buffer->interrupt_mask = 1; 36 mb(); 37} 38 39u32 hv_end_read(struct hv_ring_buffer_info *rbi) 40{ 41 u32 read; 42 u32 write; 43 44 rbi->ring_buffer->interrupt_mask = 0; 45 mb(); 46 47 /* 48 * Now check to see if the ring buffer is still empty. 49 * If it is not, we raced and we need to process new 50 * incoming messages. 51 */ 52 hv_get_ringbuffer_availbytes(rbi, &read, &write); 53 54 return read; 55} 56 57/* 58 * When we write to the ring buffer, check if the host needs to 59 * be signaled. Here is the details of this protocol: 60 * 61 * 1. The host guarantees that while it is draining the 62 * ring buffer, it will set the interrupt_mask to 63 * indicate it does not need to be interrupted when 64 * new data is placed. 65 * 66 * 2. The host guarantees that it will completely drain 67 * the ring buffer before exiting the read loop. Further, 68 * once the ring buffer is empty, it will clear the 69 * interrupt_mask and re-check to see if new data has 70 * arrived. 71 */ 72 73static bool hv_need_to_signal(u32 old_write, struct hv_ring_buffer_info *rbi) 74{ 75 mb(); 76 if (rbi->ring_buffer->interrupt_mask) 77 return false; 78 79 /* check interrupt_mask before read_index */ 80 rmb(); 81 /* 82 * This is the only case we need to signal when the 83 * ring transitions from being empty to non-empty. 84 */ 85 if (old_write == rbi->ring_buffer->read_index) 86 return true; 87 88 return false; 89} 90 91/* 92 * To optimize the flow management on the send-side, 93 * when the sender is blocked because of lack of 94 * sufficient space in the ring buffer, potential the 95 * consumer of the ring buffer can signal the producer. 96 * This is controlled by the following parameters: 97 * 98 * 1. pending_send_sz: This is the size in bytes that the 99 * producer is trying to send. 100 * 2. The feature bit feat_pending_send_sz set to indicate if 101 * the consumer of the ring will signal when the ring 102 * state transitions from being full to a state where 103 * there is room for the producer to send the pending packet. 104 */ 105 106static bool hv_need_to_signal_on_read(struct hv_ring_buffer_info *rbi) 107{ 108 u32 cur_write_sz; 109 u32 r_size; 110 u32 write_loc; 111 u32 read_loc = rbi->ring_buffer->read_index; 112 u32 pending_sz; 113 114 /* 115 * Issue a full memory barrier before making the signaling decision. 116 * Here is the reason for having this barrier: 117 * If the reading of the pend_sz (in this function) 118 * were to be reordered and read before we commit the new read 119 * index (in the calling function) we could 120 * have a problem. If the host were to set the pending_sz after we 121 * have sampled pending_sz and go to sleep before we commit the 122 * read index, we could miss sending the interrupt. Issue a full 123 * memory barrier to address this. 124 */ 125 mb(); 126 127 pending_sz = rbi->ring_buffer->pending_send_sz; 128 write_loc = rbi->ring_buffer->write_index; 129 /* If the other end is not blocked on write don't bother. */ 130 if (pending_sz == 0) 131 return false; 132 133 r_size = rbi->ring_datasize; 134 cur_write_sz = write_loc >= read_loc ? r_size - (write_loc - read_loc) : 135 read_loc - write_loc; 136 137 if (cur_write_sz >= pending_sz) 138 return true; 139 140 return false; 141} 142 143/* Get the next write location for the specified ring buffer. */ 144static inline u32 145hv_get_next_write_location(struct hv_ring_buffer_info *ring_info) 146{ 147 u32 next = ring_info->ring_buffer->write_index; 148 149 return next; 150} 151 152/* Set the next write location for the specified ring buffer. */ 153static inline void 154hv_set_next_write_location(struct hv_ring_buffer_info *ring_info, 155 u32 next_write_location) 156{ 157 ring_info->ring_buffer->write_index = next_write_location; 158} 159 160/* Get the next read location for the specified ring buffer. */ 161static inline u32 162hv_get_next_read_location(struct hv_ring_buffer_info *ring_info) 163{ 164 u32 next = ring_info->ring_buffer->read_index; 165 166 return next; 167} 168 169/* 170 * Get the next read location + offset for the specified ring buffer. 171 * This allows the caller to skip. 172 */ 173static inline u32 174hv_get_next_readlocation_withoffset(struct hv_ring_buffer_info *ring_info, 175 u32 offset) 176{ 177 u32 next = ring_info->ring_buffer->read_index; 178 179 next += offset; 180 next %= ring_info->ring_datasize; 181 182 return next; 183} 184 185/* Set the next read location for the specified ring buffer. */ 186static inline void 187hv_set_next_read_location(struct hv_ring_buffer_info *ring_info, 188 u32 next_read_location) 189{ 190 ring_info->ring_buffer->read_index = next_read_location; 191} 192 193 194/* Get the start of the ring buffer. */ 195static inline void * 196hv_get_ring_buffer(struct hv_ring_buffer_info *ring_info) 197{ 198 return (void *)ring_info->ring_buffer->buffer; 199} 200 201 202/* Get the size of the ring buffer. */ 203static inline u32 204hv_get_ring_buffersize(struct hv_ring_buffer_info *ring_info) 205{ 206 return ring_info->ring_datasize; 207} 208 209/* Get the read and write indices as u64 of the specified ring buffer. */ 210static inline u64 211hv_get_ring_bufferindices(struct hv_ring_buffer_info *ring_info) 212{ 213 return (u64)ring_info->ring_buffer->write_index << 32; 214} 215 216/* 217 * Helper routine to copy to source from ring buffer. 218 * Assume there is enough room. Handles wrap-around in src case only!! 219 */ 220static u32 hv_copyfrom_ringbuffer( 221 struct hv_ring_buffer_info *ring_info, 222 void *dest, 223 u32 destlen, 224 u32 start_read_offset) 225{ 226 void *ring_buffer = hv_get_ring_buffer(ring_info); 227 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 228 229 u32 frag_len; 230 231 /* wrap-around detected at the src */ 232 if (destlen > ring_buffer_size - start_read_offset) { 233 frag_len = ring_buffer_size - start_read_offset; 234 235 memcpy(dest, ring_buffer + start_read_offset, frag_len); 236 memcpy(dest + frag_len, ring_buffer, destlen - frag_len); 237 } else 238 239 memcpy(dest, ring_buffer + start_read_offset, destlen); 240 241 242 start_read_offset += destlen; 243 start_read_offset %= ring_buffer_size; 244 245 return start_read_offset; 246} 247 248 249/* 250 * Helper routine to copy from source to ring buffer. 251 * Assume there is enough room. Handles wrap-around in dest case only!! 252 */ 253static u32 hv_copyto_ringbuffer( 254 struct hv_ring_buffer_info *ring_info, 255 u32 start_write_offset, 256 void *src, 257 u32 srclen) 258{ 259 void *ring_buffer = hv_get_ring_buffer(ring_info); 260 u32 ring_buffer_size = hv_get_ring_buffersize(ring_info); 261 u32 frag_len; 262 263 /* wrap-around detected! */ 264 if (srclen > ring_buffer_size - start_write_offset) { 265 frag_len = ring_buffer_size - start_write_offset; 266 memcpy(ring_buffer + start_write_offset, src, frag_len); 267 memcpy(ring_buffer, src + frag_len, srclen - frag_len); 268 } else 269 memcpy(ring_buffer + start_write_offset, src, srclen); 270 271 start_write_offset += srclen; 272 start_write_offset %= ring_buffer_size; 273 274 return start_write_offset; 275} 276 277/* Get various debug metrics for the specified ring buffer. */ 278void hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 279 struct hv_ring_buffer_debug_info *debug_info) 280{ 281 u32 bytes_avail_towrite; 282 u32 bytes_avail_toread; 283 284 if (ring_info->ring_buffer) { 285 hv_get_ringbuffer_availbytes(ring_info, 286 &bytes_avail_toread, 287 &bytes_avail_towrite); 288 289 debug_info->bytes_avail_toread = bytes_avail_toread; 290 debug_info->bytes_avail_towrite = bytes_avail_towrite; 291 debug_info->current_read_index = 292 ring_info->ring_buffer->read_index; 293 debug_info->current_write_index = 294 ring_info->ring_buffer->write_index; 295 debug_info->current_interrupt_mask = 296 ring_info->ring_buffer->interrupt_mask; 297 } 298} 299 300/* Initialize the ring buffer. */ 301int hv_ringbuffer_init(struct hv_ring_buffer_info *ring_info, 302 void *buffer, u32 buflen) 303{ 304 if (sizeof(struct hv_ring_buffer) != PAGE_SIZE) 305 return -EINVAL; 306 307 memset(ring_info, 0, sizeof(struct hv_ring_buffer_info)); 308 309 ring_info->ring_buffer = (struct hv_ring_buffer *)buffer; 310 ring_info->ring_buffer->read_index = 311 ring_info->ring_buffer->write_index = 0; 312 313 /* Set the feature bit for enabling flow control. */ 314 ring_info->ring_buffer->feature_bits.value = 1; 315 316 ring_info->ring_size = buflen; 317 ring_info->ring_datasize = buflen - sizeof(struct hv_ring_buffer); 318 319 spin_lock_init(&ring_info->ring_lock); 320 321 return 0; 322} 323 324/* Cleanup the ring buffer. */ 325void hv_ringbuffer_cleanup(struct hv_ring_buffer_info *ring_info) 326{ 327} 328 329/* Write to the ring buffer. */ 330int hv_ringbuffer_write(struct hv_ring_buffer_info *outring_info, 331 struct kvec *kv_list, u32 kv_count, bool *signal) 332{ 333 int i = 0; 334 u32 bytes_avail_towrite; 335 u32 bytes_avail_toread; 336 u32 totalbytes_towrite = 0; 337 338 u32 next_write_location; 339 u32 old_write; 340 u64 prev_indices = 0; 341 unsigned long flags; 342 343 for (i = 0; i < kv_count; i++) 344 totalbytes_towrite += kv_list[i].iov_len; 345 346 totalbytes_towrite += sizeof(u64); 347 348 spin_lock_irqsave(&outring_info->ring_lock, flags); 349 350 hv_get_ringbuffer_availbytes(outring_info, 351 &bytes_avail_toread, 352 &bytes_avail_towrite); 353 354 /* 355 * If there is only room for the packet, assume it is full. 356 * Otherwise, the next time around, we think the ring buffer 357 * is empty since the read index == write index. 358 */ 359 if (bytes_avail_towrite <= totalbytes_towrite) { 360 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 361 return -EAGAIN; 362 } 363 364 /* Write to the ring buffer */ 365 next_write_location = hv_get_next_write_location(outring_info); 366 367 old_write = next_write_location; 368 369 for (i = 0; i < kv_count; i++) { 370 next_write_location = hv_copyto_ringbuffer(outring_info, 371 next_write_location, 372 kv_list[i].iov_base, 373 kv_list[i].iov_len); 374 } 375 376 /* Set previous packet start */ 377 prev_indices = hv_get_ring_bufferindices(outring_info); 378 379 next_write_location = hv_copyto_ringbuffer(outring_info, 380 next_write_location, 381 &prev_indices, 382 sizeof(u64)); 383 384 /* Issue a full memory barrier before updating the write index */ 385 mb(); 386 387 /* Now, update the write location */ 388 hv_set_next_write_location(outring_info, next_write_location); 389 390 391 spin_unlock_irqrestore(&outring_info->ring_lock, flags); 392 393 *signal = hv_need_to_signal(old_write, outring_info); 394 return 0; 395} 396 397 398/* Read without advancing the read index. */ 399int hv_ringbuffer_peek(struct hv_ring_buffer_info *Inring_info, 400 void *Buffer, u32 buflen) 401{ 402 u32 bytes_avail_towrite; 403 u32 bytes_avail_toread; 404 u32 next_read_location = 0; 405 unsigned long flags; 406 407 spin_lock_irqsave(&Inring_info->ring_lock, flags); 408 409 hv_get_ringbuffer_availbytes(Inring_info, 410 &bytes_avail_toread, 411 &bytes_avail_towrite); 412 413 /* Make sure there is something to read */ 414 if (bytes_avail_toread < buflen) { 415 416 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 417 418 return -EAGAIN; 419 } 420 421 /* Convert to byte offset */ 422 next_read_location = hv_get_next_read_location(Inring_info); 423 424 next_read_location = hv_copyfrom_ringbuffer(Inring_info, 425 Buffer, 426 buflen, 427 next_read_location); 428 429 spin_unlock_irqrestore(&Inring_info->ring_lock, flags); 430 431 return 0; 432} 433 434 435/* Read and advance the read index. */ 436int hv_ringbuffer_read(struct hv_ring_buffer_info *inring_info, void *buffer, 437 u32 buflen, u32 offset, bool *signal) 438{ 439 u32 bytes_avail_towrite; 440 u32 bytes_avail_toread; 441 u32 next_read_location = 0; 442 u64 prev_indices = 0; 443 unsigned long flags; 444 445 if (buflen <= 0) 446 return -EINVAL; 447 448 spin_lock_irqsave(&inring_info->ring_lock, flags); 449 450 hv_get_ringbuffer_availbytes(inring_info, 451 &bytes_avail_toread, 452 &bytes_avail_towrite); 453 454 /* Make sure there is something to read */ 455 if (bytes_avail_toread < buflen) { 456 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 457 458 return -EAGAIN; 459 } 460 461 next_read_location = 462 hv_get_next_readlocation_withoffset(inring_info, offset); 463 464 next_read_location = hv_copyfrom_ringbuffer(inring_info, 465 buffer, 466 buflen, 467 next_read_location); 468 469 next_read_location = hv_copyfrom_ringbuffer(inring_info, 470 &prev_indices, 471 sizeof(u64), 472 next_read_location); 473 474 /* 475 * Make sure all reads are done before we update the read index since 476 * the writer may start writing to the read area once the read index 477 * is updated. 478 */ 479 mb(); 480 481 /* Update the read index */ 482 hv_set_next_read_location(inring_info, next_read_location); 483 484 spin_unlock_irqrestore(&inring_info->ring_lock, flags); 485 486 *signal = hv_need_to_signal_on_read(inring_info); 487 488 return 0; 489} 490