1/*
2 * abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17 */
18/*
19 * This driver supports the sensor part of the first and second revision of
20 * the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
21 * of lack of specs the CPU/RAM voltage & frequency control is not supported!
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/sched.h>
28#include <linux/init.h>
29#include <linux/slab.h>
30#include <linux/jiffies.h>
31#include <linux/mutex.h>
32#include <linux/err.h>
33#include <linux/delay.h>
34#include <linux/platform_device.h>
35#include <linux/hwmon.h>
36#include <linux/hwmon-sysfs.h>
37#include <linux/dmi.h>
38#include <linux/io.h>
39
40/* Banks */
41#define ABIT_UGURU_ALARM_BANK			0x20 /* 1x 3 bytes */
42#define ABIT_UGURU_SENSOR_BANK1			0x21 /* 16x volt and temp */
43#define ABIT_UGURU_FAN_PWM			0x24 /* 3x 5 bytes */
44#define ABIT_UGURU_SENSOR_BANK2			0x26 /* fans */
45/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
46#define ABIT_UGURU_MAX_BANK1_SENSORS		16
47/*
48 * Warning if you increase one of the 2 MAX defines below to 10 or higher you
49 * should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
50 */
51/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
52#define ABIT_UGURU_MAX_BANK2_SENSORS		6
53/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
54#define ABIT_UGURU_MAX_PWMS			5
55/* uGuru sensor bank 1 flags */			     /* Alarm if: */
56#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE	0x01 /*  temp over warn */
57#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE	0x02 /*  volt over max */
58#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE	0x04 /*  volt under min */
59#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG		0x10 /* temp is over warn */
60#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG		0x20 /* volt is over max */
61#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG		0x40 /* volt is under min */
62/* uGuru sensor bank 2 flags */			     /* Alarm if: */
63#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE		0x01 /*   fan under min */
64/* uGuru sensor bank common flags */
65#define ABIT_UGURU_BEEP_ENABLE			0x08 /* beep if alarm */
66#define ABIT_UGURU_SHUTDOWN_ENABLE		0x80 /* shutdown if alarm */
67/* uGuru fan PWM (speed control) flags */
68#define ABIT_UGURU_FAN_PWM_ENABLE		0x80 /* enable speed control */
69/* Values used for conversion */
70#define ABIT_UGURU_FAN_MAX			15300 /* RPM */
71/* Bank1 sensor types */
72#define ABIT_UGURU_IN_SENSOR			0
73#define ABIT_UGURU_TEMP_SENSOR			1
74#define ABIT_UGURU_NC				2
75/*
76 * In many cases we need to wait for the uGuru to reach a certain status, most
77 * of the time it will reach this status within 30 - 90 ISA reads, and thus we
78 * can best busy wait. This define gives the total amount of reads to try.
79 */
80#define ABIT_UGURU_WAIT_TIMEOUT			125
81/*
82 * However sometimes older versions of the uGuru seem to be distracted and they
83 * do not respond for a long time. To handle this we sleep before each of the
84 * last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
85 */
86#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP		5
87/*
88 * Normally all expected status in abituguru_ready, are reported after the
89 * first read, but sometimes not and we need to poll.
90 */
91#define ABIT_UGURU_READY_TIMEOUT		5
92/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
93#define ABIT_UGURU_MAX_RETRIES			3
94#define ABIT_UGURU_RETRY_DELAY			(HZ/5)
95/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
96#define ABIT_UGURU_MAX_TIMEOUTS			2
97/* utility macros */
98#define ABIT_UGURU_NAME				"abituguru"
99#define ABIT_UGURU_DEBUG(level, format, arg...)		\
100	do {						\
101		if (level <= verbose)			\
102			pr_debug(format , ## arg);	\
103	} while (0)
104
105/* Macros to help calculate the sysfs_names array length */
106/*
107 * sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
108 * in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
109 */
110#define ABITUGURU_IN_NAMES_LENGTH	(11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
111/*
112 * sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
113 * temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
114 */
115#define ABITUGURU_TEMP_NAMES_LENGTH	(13 + 11 + 12 + 13 + 20 + 12 + 16)
116/*
117 * sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
118 * fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
119 */
120#define ABITUGURU_FAN_NAMES_LENGTH	(11 + 9 + 11 + 18 + 10 + 14)
121/*
122 * sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
123 * pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
124 */
125#define ABITUGURU_PWM_NAMES_LENGTH	(12 + 24 + 2 * 21 + 2 * 22)
126/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
127#define ABITUGURU_SYSFS_NAMES_LENGTH	( \
128	ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
129	ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
130	ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
131
132/*
133 * All the macros below are named identical to the oguru and oguru2 programs
134 * reverse engineered by Olle Sandberg, hence the names might not be 100%
135 * logical. I could come up with better names, but I prefer keeping the names
136 * identical so that this driver can be compared with his work more easily.
137 */
138/* Two i/o-ports are used by uGuru */
139#define ABIT_UGURU_BASE				0x00E0
140/* Used to tell uGuru what to read and to read the actual data */
141#define ABIT_UGURU_CMD				0x00
142/* Mostly used to check if uGuru is busy */
143#define ABIT_UGURU_DATA				0x04
144#define ABIT_UGURU_REGION_LENGTH		5
145/* uGuru status' */
146#define ABIT_UGURU_STATUS_WRITE			0x00 /* Ready to be written */
147#define ABIT_UGURU_STATUS_READ			0x01 /* Ready to be read */
148#define ABIT_UGURU_STATUS_INPUT			0x08 /* More input */
149#define ABIT_UGURU_STATUS_READY			0x09 /* Ready to be written */
150
151/* Constants */
152/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
153static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
154/*
155 * Min / Max allowed values for sensor2 (fan) alarm threshold, these values
156 * correspond to 300-3000 RPM
157 */
158static const u8 abituguru_bank2_min_threshold = 5;
159static const u8 abituguru_bank2_max_threshold = 50;
160/*
161 * Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
162 * are temperature trip points.
163 */
164static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
165/*
166 * Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
167 * special case the minimum allowed pwm% setting for this is 30% (77) on
168 * some MB's this special case is handled in the code!
169 */
170static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
171static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
172
173
174/* Insmod parameters */
175static bool force;
176module_param(force, bool, 0);
177MODULE_PARM_DESC(force, "Set to one to force detection.");
178static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
179	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
180module_param_array(bank1_types, int, NULL, 0);
181MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
182	"   -1 autodetect\n"
183	"    0 volt sensor\n"
184	"    1 temp sensor\n"
185	"    2 not connected");
186static int fan_sensors;
187module_param(fan_sensors, int, 0);
188MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
189	"(0 = autodetect)");
190static int pwms;
191module_param(pwms, int, 0);
192MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
193	"(0 = autodetect)");
194
195/* Default verbose is 2, since this driver is still in the testing phase */
196static int verbose = 2;
197module_param(verbose, int, 0644);
198MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
199	"   0 normal output\n"
200	"   1 + verbose error reporting\n"
201	"   2 + sensors type probing info\n"
202	"   3 + retryable error reporting");
203
204
205/*
206 * For the Abit uGuru, we need to keep some data in memory.
207 * The structure is dynamically allocated, at the same time when a new
208 * abituguru device is allocated.
209 */
210struct abituguru_data {
211	struct device *hwmon_dev;	/* hwmon registered device */
212	struct mutex update_lock;	/* protect access to data and uGuru */
213	unsigned long last_updated;	/* In jiffies */
214	unsigned short addr;		/* uguru base address */
215	char uguru_ready;		/* is the uguru in ready state? */
216	unsigned char update_timeouts;	/*
217					 * number of update timeouts since last
218					 * successful update
219					 */
220
221	/*
222	 * The sysfs attr and their names are generated automatically, for bank1
223	 * we cannot use a predefined array because we don't know beforehand
224	 * of a sensor is a volt or a temp sensor, for bank2 and the pwms its
225	 * easier todo things the same way.  For in sensors we have 9 (temp 7)
226	 * sysfs entries per sensor, for bank2 and pwms 6.
227	 */
228	struct sensor_device_attribute_2 sysfs_attr[
229		ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
230		ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
231	/* Buffer to store the dynamically generated sysfs names */
232	char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
233
234	/* Bank 1 data */
235	/* number of and addresses of [0] in, [1] temp sensors */
236	u8 bank1_sensors[2];
237	u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
238	u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
239	/*
240	 * This array holds 3 entries per sensor for the bank 1 sensor settings
241	 * (flags, min, max for voltage / flags, warn, shutdown for temp).
242	 */
243	u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
244	/*
245	 * Maximum value for each sensor used for scaling in mV/millidegrees
246	 * Celsius.
247	 */
248	int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
249
250	/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
251	u8 bank2_sensors; /* actual number of bank2 sensors found */
252	u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
253	u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
254
255	/* Alarms 2 bytes for bank1, 1 byte for bank2 */
256	u8 alarms[3];
257
258	/* Fan PWM (speed control) 5 bytes per PWM */
259	u8 pwms; /* actual number of pwms found */
260	u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
261};
262
263static const char *never_happen = "This should never happen.";
264static const char *report_this =
265	"Please report this to the abituguru maintainer (see MAINTAINERS)";
266
267/* wait till the uguru is in the specified state */
268static int abituguru_wait(struct abituguru_data *data, u8 state)
269{
270	int timeout = ABIT_UGURU_WAIT_TIMEOUT;
271
272	while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
273		timeout--;
274		if (timeout == 0)
275			return -EBUSY;
276		/*
277		 * sleep a bit before our last few tries, see the comment on
278		 * this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
279		 */
280		if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
281			msleep(0);
282	}
283	return 0;
284}
285
286/* Put the uguru in ready for input state */
287static int abituguru_ready(struct abituguru_data *data)
288{
289	int timeout = ABIT_UGURU_READY_TIMEOUT;
290
291	if (data->uguru_ready)
292		return 0;
293
294	/* Reset? / Prepare for next read/write cycle */
295	outb(0x00, data->addr + ABIT_UGURU_DATA);
296
297	/* Wait till the uguru is ready */
298	if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
299		ABIT_UGURU_DEBUG(1,
300			"timeout exceeded waiting for ready state\n");
301		return -EIO;
302	}
303
304	/* Cmd port MUST be read now and should contain 0xAC */
305	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
306		timeout--;
307		if (timeout == 0) {
308			ABIT_UGURU_DEBUG(1,
309			   "CMD reg does not hold 0xAC after ready command\n");
310			return -EIO;
311		}
312		msleep(0);
313	}
314
315	/*
316	 * After this the ABIT_UGURU_DATA port should contain
317	 * ABIT_UGURU_STATUS_INPUT
318	 */
319	timeout = ABIT_UGURU_READY_TIMEOUT;
320	while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
321		timeout--;
322		if (timeout == 0) {
323			ABIT_UGURU_DEBUG(1,
324				"state != more input after ready command\n");
325			return -EIO;
326		}
327		msleep(0);
328	}
329
330	data->uguru_ready = 1;
331	return 0;
332}
333
334/*
335 * Send the bank and then sensor address to the uGuru for the next read/write
336 * cycle. This function gets called as the first part of a read/write by
337 * abituguru_read and abituguru_write. This function should never be
338 * called by any other function.
339 */
340static int abituguru_send_address(struct abituguru_data *data,
341	u8 bank_addr, u8 sensor_addr, int retries)
342{
343	/*
344	 * assume the caller does error handling itself if it has not requested
345	 * any retries, and thus be quiet.
346	 */
347	int report_errors = retries;
348
349	for (;;) {
350		/*
351		 * Make sure the uguru is ready and then send the bank address,
352		 * after this the uguru is no longer "ready".
353		 */
354		if (abituguru_ready(data) != 0)
355			return -EIO;
356		outb(bank_addr, data->addr + ABIT_UGURU_DATA);
357		data->uguru_ready = 0;
358
359		/*
360		 * Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
361		 * and send the sensor addr
362		 */
363		if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
364			if (retries) {
365				ABIT_UGURU_DEBUG(3, "timeout exceeded "
366					"waiting for more input state, %d "
367					"tries remaining\n", retries);
368				set_current_state(TASK_UNINTERRUPTIBLE);
369				schedule_timeout(ABIT_UGURU_RETRY_DELAY);
370				retries--;
371				continue;
372			}
373			if (report_errors)
374				ABIT_UGURU_DEBUG(1, "timeout exceeded "
375					"waiting for more input state "
376					"(bank: %d)\n", (int)bank_addr);
377			return -EBUSY;
378		}
379		outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
380		return 0;
381	}
382}
383
384/*
385 * Read count bytes from sensor sensor_addr in bank bank_addr and store the
386 * result in buf, retry the send address part of the read retries times.
387 */
388static int abituguru_read(struct abituguru_data *data,
389	u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
390{
391	int i;
392
393	/* Send the address */
394	i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
395	if (i)
396		return i;
397
398	/* And read the data */
399	for (i = 0; i < count; i++) {
400		if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
401			ABIT_UGURU_DEBUG(retries ? 1 : 3,
402				"timeout exceeded waiting for "
403				"read state (bank: %d, sensor: %d)\n",
404				(int)bank_addr, (int)sensor_addr);
405			break;
406		}
407		buf[i] = inb(data->addr + ABIT_UGURU_CMD);
408	}
409
410	/* Last put the chip back in ready state */
411	abituguru_ready(data);
412
413	return i;
414}
415
416/*
417 * Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
418 * address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
419 */
420static int abituguru_write(struct abituguru_data *data,
421	u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
422{
423	/*
424	 * We use the ready timeout as we have to wait for 0xAC just like the
425	 * ready function
426	 */
427	int i, timeout = ABIT_UGURU_READY_TIMEOUT;
428
429	/* Send the address */
430	i = abituguru_send_address(data, bank_addr, sensor_addr,
431		ABIT_UGURU_MAX_RETRIES);
432	if (i)
433		return i;
434
435	/* And write the data */
436	for (i = 0; i < count; i++) {
437		if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
438			ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
439				"write state (bank: %d, sensor: %d)\n",
440				(int)bank_addr, (int)sensor_addr);
441			break;
442		}
443		outb(buf[i], data->addr + ABIT_UGURU_CMD);
444	}
445
446	/*
447	 * Now we need to wait till the chip is ready to be read again,
448	 * so that we can read 0xAC as confirmation that our write has
449	 * succeeded.
450	 */
451	if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
452		ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
453			"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
454			(int)sensor_addr);
455		return -EIO;
456	}
457
458	/* Cmd port MUST be read now and should contain 0xAC */
459	while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
460		timeout--;
461		if (timeout == 0) {
462			ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
463				"write (bank: %d, sensor: %d)\n",
464				(int)bank_addr, (int)sensor_addr);
465			return -EIO;
466		}
467		msleep(0);
468	}
469
470	/* Last put the chip back in ready state */
471	abituguru_ready(data);
472
473	return i;
474}
475
476/*
477 * Detect sensor type. Temp and Volt sensors are enabled with
478 * different masks and will ignore enable masks not meant for them.
479 * This enables us to test what kind of sensor we're dealing with.
480 * By setting the alarm thresholds so that we will always get an
481 * alarm for sensor type X and then enabling the sensor as sensor type
482 * X, if we then get an alarm it is a sensor of type X.
483 */
484static int
485abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
486				   u8 sensor_addr)
487{
488	u8 val, test_flag, buf[3];
489	int i, ret = -ENODEV; /* error is the most common used retval :| */
490
491	/* If overriden by the user return the user selected type */
492	if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
493			bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
494		ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
495			"%d because of \"bank1_types\" module param\n",
496			bank1_types[sensor_addr], (int)sensor_addr);
497		return bank1_types[sensor_addr];
498	}
499
500	/* First read the sensor and the current settings */
501	if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
502			1, ABIT_UGURU_MAX_RETRIES) != 1)
503		return -ENODEV;
504
505	/* Test val is sane / usable for sensor type detection. */
506	if ((val < 10u) || (val > 250u)) {
507		pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
508			"unable to determine sensor type, skipping sensor\n",
509			(int)sensor_addr, (int)val);
510		/*
511		 * assume no sensor is there for sensors for which we can't
512		 * determine the sensor type because their reading is too close
513		 * to their limits, this usually means no sensor is there.
514		 */
515		return ABIT_UGURU_NC;
516	}
517
518	ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
519	/*
520	 * Volt sensor test, enable volt low alarm, set min value ridiculously
521	 * high, or vica versa if the reading is very high. If its a volt
522	 * sensor this should always give us an alarm.
523	 */
524	if (val <= 240u) {
525		buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
526		buf[1] = 245;
527		buf[2] = 250;
528		test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
529	} else {
530		buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
531		buf[1] = 5;
532		buf[2] = 10;
533		test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
534	}
535
536	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
537			buf, 3) != 3)
538		goto abituguru_detect_bank1_sensor_type_exit;
539	/*
540	 * Now we need 20 ms to give the uguru time to read the sensors
541	 * and raise a voltage alarm
542	 */
543	set_current_state(TASK_UNINTERRUPTIBLE);
544	schedule_timeout(HZ/50);
545	/* Check for alarm and check the alarm is a volt low alarm. */
546	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
547			ABIT_UGURU_MAX_RETRIES) != 3)
548		goto abituguru_detect_bank1_sensor_type_exit;
549	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
550		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
551				sensor_addr, buf, 3,
552				ABIT_UGURU_MAX_RETRIES) != 3)
553			goto abituguru_detect_bank1_sensor_type_exit;
554		if (buf[0] & test_flag) {
555			ABIT_UGURU_DEBUG(2, "  found volt sensor\n");
556			ret = ABIT_UGURU_IN_SENSOR;
557			goto abituguru_detect_bank1_sensor_type_exit;
558		} else
559			ABIT_UGURU_DEBUG(2, "  alarm raised during volt "
560				"sensor test, but volt range flag not set\n");
561	} else
562		ABIT_UGURU_DEBUG(2, "  alarm not raised during volt sensor "
563			"test\n");
564
565	/*
566	 * Temp sensor test, enable sensor as a temp sensor, set beep value
567	 * ridiculously low (but not too low, otherwise uguru ignores it).
568	 * If its a temp sensor this should always give us an alarm.
569	 */
570	buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
571	buf[1] = 5;
572	buf[2] = 10;
573	if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
574			buf, 3) != 3)
575		goto abituguru_detect_bank1_sensor_type_exit;
576	/*
577	 * Now we need 50 ms to give the uguru time to read the sensors
578	 * and raise a temp alarm
579	 */
580	set_current_state(TASK_UNINTERRUPTIBLE);
581	schedule_timeout(HZ/20);
582	/* Check for alarm and check the alarm is a temp high alarm. */
583	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
584			ABIT_UGURU_MAX_RETRIES) != 3)
585		goto abituguru_detect_bank1_sensor_type_exit;
586	if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
587		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
588				sensor_addr, buf, 3,
589				ABIT_UGURU_MAX_RETRIES) != 3)
590			goto abituguru_detect_bank1_sensor_type_exit;
591		if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
592			ABIT_UGURU_DEBUG(2, "  found temp sensor\n");
593			ret = ABIT_UGURU_TEMP_SENSOR;
594			goto abituguru_detect_bank1_sensor_type_exit;
595		} else
596			ABIT_UGURU_DEBUG(2, "  alarm raised during temp "
597				"sensor test, but temp high flag not set\n");
598	} else
599		ABIT_UGURU_DEBUG(2, "  alarm not raised during temp sensor "
600			"test\n");
601
602	ret = ABIT_UGURU_NC;
603abituguru_detect_bank1_sensor_type_exit:
604	/*
605	 * Restore original settings, failing here is really BAD, it has been
606	 * reported that some BIOS-es hang when entering the uGuru menu with
607	 * invalid settings present in the uGuru, so we try this 3 times.
608	 */
609	for (i = 0; i < 3; i++)
610		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
611				sensor_addr, data->bank1_settings[sensor_addr],
612				3) == 3)
613			break;
614	if (i == 3) {
615		pr_err("Fatal error could not restore original settings. %s %s\n",
616		       never_happen, report_this);
617		return -ENODEV;
618	}
619	return ret;
620}
621
622/*
623 * These functions try to find out how many sensors there are in bank2 and how
624 * many pwms there are. The purpose of this is to make sure that we don't give
625 * the user the possibility to change settings for non-existent sensors / pwm.
626 * The uGuru will happily read / write whatever memory happens to be after the
627 * memory storing the PWM settings when reading/writing to a PWM which is not
628 * there. Notice even if we detect a PWM which doesn't exist we normally won't
629 * write to it, unless the user tries to change the settings.
630 *
631 * Although the uGuru allows reading (settings) from non existing bank2
632 * sensors, my version of the uGuru does seem to stop writing to them, the
633 * write function above aborts in this case with:
634 * "CMD reg does not hold 0xAC after write"
635 *
636 * Notice these 2 tests are non destructive iow read-only tests, otherwise
637 * they would defeat their purpose. Although for the bank2_sensors detection a
638 * read/write test would be feasible because of the reaction above, I've
639 * however opted to stay on the safe side.
640 */
641static void
642abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
643{
644	int i;
645
646	if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
647		data->bank2_sensors = fan_sensors;
648		ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
649			"\"fan_sensors\" module param\n",
650			(int)data->bank2_sensors);
651		return;
652	}
653
654	ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
655	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
656		/*
657		 * 0x89 are the known used bits:
658		 * -0x80 enable shutdown
659		 * -0x08 enable beep
660		 * -0x01 enable alarm
661		 * All other bits should be 0, but on some motherboards
662		 * 0x40 (bit 6) is also high for some of the fans??
663		 */
664		if (data->bank2_settings[i][0] & ~0xC9) {
665			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
666				"to be a fan sensor: settings[0] = %02X\n",
667				i, (unsigned int)data->bank2_settings[i][0]);
668			break;
669		}
670
671		/* check if the threshold is within the allowed range */
672		if (data->bank2_settings[i][1] <
673				abituguru_bank2_min_threshold) {
674			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
675				"to be a fan sensor: the threshold (%d) is "
676				"below the minimum (%d)\n", i,
677				(int)data->bank2_settings[i][1],
678				(int)abituguru_bank2_min_threshold);
679			break;
680		}
681		if (data->bank2_settings[i][1] >
682				abituguru_bank2_max_threshold) {
683			ABIT_UGURU_DEBUG(2, "  bank2 sensor %d does not seem "
684				"to be a fan sensor: the threshold (%d) is "
685				"above the maximum (%d)\n", i,
686				(int)data->bank2_settings[i][1],
687				(int)abituguru_bank2_max_threshold);
688			break;
689		}
690	}
691
692	data->bank2_sensors = i;
693	ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
694		(int)data->bank2_sensors);
695}
696
697static void
698abituguru_detect_no_pwms(struct abituguru_data *data)
699{
700	int i, j;
701
702	if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
703		data->pwms = pwms;
704		ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
705			"\"pwms\" module param\n", (int)data->pwms);
706		return;
707	}
708
709	ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
710	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
711		/*
712		 * 0x80 is the enable bit and the low
713		 * nibble is which temp sensor to use,
714		 * the other bits should be 0
715		 */
716		if (data->pwm_settings[i][0] & ~0x8F) {
717			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
718				"to be a pwm channel: settings[0] = %02X\n",
719				i, (unsigned int)data->pwm_settings[i][0]);
720			break;
721		}
722
723		/*
724		 * the low nibble must correspond to one of the temp sensors
725		 * we've found
726		 */
727		for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
728				j++) {
729			if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
730					(data->pwm_settings[i][0] & 0x0F))
731				break;
732		}
733		if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
734			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
735				"to be a pwm channel: %d is not a valid temp "
736				"sensor address\n", i,
737				data->pwm_settings[i][0] & 0x0F);
738			break;
739		}
740
741		/* check if all other settings are within the allowed range */
742		for (j = 1; j < 5; j++) {
743			u8 min;
744			/* special case pwm1 min pwm% */
745			if ((i == 0) && ((j == 1) || (j == 2)))
746				min = 77;
747			else
748				min = abituguru_pwm_min[j];
749			if (data->pwm_settings[i][j] < min) {
750				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
751					"not seem to be a pwm channel: "
752					"setting %d (%d) is below the minimum "
753					"value (%d)\n", i, j,
754					(int)data->pwm_settings[i][j],
755					(int)min);
756				goto abituguru_detect_no_pwms_exit;
757			}
758			if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
759				ABIT_UGURU_DEBUG(2, "  pwm channel %d does "
760					"not seem to be a pwm channel: "
761					"setting %d (%d) is above the maximum "
762					"value (%d)\n", i, j,
763					(int)data->pwm_settings[i][j],
764					(int)abituguru_pwm_max[j]);
765				goto abituguru_detect_no_pwms_exit;
766			}
767		}
768
769		/* check that min temp < max temp and min pwm < max pwm */
770		if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
771			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
772				"to be a pwm channel: min pwm (%d) >= "
773				"max pwm (%d)\n", i,
774				(int)data->pwm_settings[i][1],
775				(int)data->pwm_settings[i][2]);
776			break;
777		}
778		if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
779			ABIT_UGURU_DEBUG(2, "  pwm channel %d does not seem "
780				"to be a pwm channel: min temp (%d) >= "
781				"max temp (%d)\n", i,
782				(int)data->pwm_settings[i][3],
783				(int)data->pwm_settings[i][4]);
784			break;
785		}
786	}
787
788abituguru_detect_no_pwms_exit:
789	data->pwms = i;
790	ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
791}
792
793/*
794 * Following are the sysfs callback functions. These functions expect:
795 * sensor_device_attribute_2->index:   sensor address/offset in the bank
796 * sensor_device_attribute_2->nr:      register offset, bitmask or NA.
797 */
798static struct abituguru_data *abituguru_update_device(struct device *dev);
799
800static ssize_t show_bank1_value(struct device *dev,
801	struct device_attribute *devattr, char *buf)
802{
803	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
804	struct abituguru_data *data = abituguru_update_device(dev);
805	if (!data)
806		return -EIO;
807	return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
808		data->bank1_max_value[attr->index] + 128) / 255);
809}
810
811static ssize_t show_bank1_setting(struct device *dev,
812	struct device_attribute *devattr, char *buf)
813{
814	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
815	struct abituguru_data *data = dev_get_drvdata(dev);
816	return sprintf(buf, "%d\n",
817		(data->bank1_settings[attr->index][attr->nr] *
818		data->bank1_max_value[attr->index] + 128) / 255);
819}
820
821static ssize_t show_bank2_value(struct device *dev,
822	struct device_attribute *devattr, char *buf)
823{
824	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
825	struct abituguru_data *data = abituguru_update_device(dev);
826	if (!data)
827		return -EIO;
828	return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
829		ABIT_UGURU_FAN_MAX + 128) / 255);
830}
831
832static ssize_t show_bank2_setting(struct device *dev,
833	struct device_attribute *devattr, char *buf)
834{
835	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
836	struct abituguru_data *data = dev_get_drvdata(dev);
837	return sprintf(buf, "%d\n",
838		(data->bank2_settings[attr->index][attr->nr] *
839		ABIT_UGURU_FAN_MAX + 128) / 255);
840}
841
842static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
843	*devattr, const char *buf, size_t count)
844{
845	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
846	struct abituguru_data *data = dev_get_drvdata(dev);
847	unsigned long val;
848	ssize_t ret;
849
850	ret = kstrtoul(buf, 10, &val);
851	if (ret)
852		return ret;
853
854	ret = count;
855	val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
856		data->bank1_max_value[attr->index];
857	if (val > 255)
858		return -EINVAL;
859
860	mutex_lock(&data->update_lock);
861	if (data->bank1_settings[attr->index][attr->nr] != val) {
862		u8 orig_val = data->bank1_settings[attr->index][attr->nr];
863		data->bank1_settings[attr->index][attr->nr] = val;
864		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
865				attr->index, data->bank1_settings[attr->index],
866				3) <= attr->nr) {
867			data->bank1_settings[attr->index][attr->nr] = orig_val;
868			ret = -EIO;
869		}
870	}
871	mutex_unlock(&data->update_lock);
872	return ret;
873}
874
875static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
876	*devattr, const char *buf, size_t count)
877{
878	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
879	struct abituguru_data *data = dev_get_drvdata(dev);
880	unsigned long val;
881	ssize_t ret;
882
883	ret = kstrtoul(buf, 10, &val);
884	if (ret)
885		return ret;
886
887	ret = count;
888	val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
889
890	/* this check can be done before taking the lock */
891	if (val < abituguru_bank2_min_threshold ||
892			val > abituguru_bank2_max_threshold)
893		return -EINVAL;
894
895	mutex_lock(&data->update_lock);
896	if (data->bank2_settings[attr->index][attr->nr] != val) {
897		u8 orig_val = data->bank2_settings[attr->index][attr->nr];
898		data->bank2_settings[attr->index][attr->nr] = val;
899		if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
900				attr->index, data->bank2_settings[attr->index],
901				2) <= attr->nr) {
902			data->bank2_settings[attr->index][attr->nr] = orig_val;
903			ret = -EIO;
904		}
905	}
906	mutex_unlock(&data->update_lock);
907	return ret;
908}
909
910static ssize_t show_bank1_alarm(struct device *dev,
911	struct device_attribute *devattr, char *buf)
912{
913	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
914	struct abituguru_data *data = abituguru_update_device(dev);
915	if (!data)
916		return -EIO;
917	/*
918	 * See if the alarm bit for this sensor is set, and if the
919	 * alarm matches the type of alarm we're looking for (for volt
920	 * it can be either low or high). The type is stored in a few
921	 * readonly bits in the settings part of the relevant sensor.
922	 * The bitmask of the type is passed to us in attr->nr.
923	 */
924	if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
925			(data->bank1_settings[attr->index][0] & attr->nr))
926		return sprintf(buf, "1\n");
927	else
928		return sprintf(buf, "0\n");
929}
930
931static ssize_t show_bank2_alarm(struct device *dev,
932	struct device_attribute *devattr, char *buf)
933{
934	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
935	struct abituguru_data *data = abituguru_update_device(dev);
936	if (!data)
937		return -EIO;
938	if (data->alarms[2] & (0x01 << attr->index))
939		return sprintf(buf, "1\n");
940	else
941		return sprintf(buf, "0\n");
942}
943
944static ssize_t show_bank1_mask(struct device *dev,
945	struct device_attribute *devattr, char *buf)
946{
947	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
948	struct abituguru_data *data = dev_get_drvdata(dev);
949	if (data->bank1_settings[attr->index][0] & attr->nr)
950		return sprintf(buf, "1\n");
951	else
952		return sprintf(buf, "0\n");
953}
954
955static ssize_t show_bank2_mask(struct device *dev,
956	struct device_attribute *devattr, char *buf)
957{
958	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
959	struct abituguru_data *data = dev_get_drvdata(dev);
960	if (data->bank2_settings[attr->index][0] & attr->nr)
961		return sprintf(buf, "1\n");
962	else
963		return sprintf(buf, "0\n");
964}
965
966static ssize_t store_bank1_mask(struct device *dev,
967	struct device_attribute *devattr, const char *buf, size_t count)
968{
969	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
970	struct abituguru_data *data = dev_get_drvdata(dev);
971	ssize_t ret;
972	u8 orig_val;
973	unsigned long mask;
974
975	ret = kstrtoul(buf, 10, &mask);
976	if (ret)
977		return ret;
978
979	ret = count;
980	mutex_lock(&data->update_lock);
981	orig_val = data->bank1_settings[attr->index][0];
982
983	if (mask)
984		data->bank1_settings[attr->index][0] |= attr->nr;
985	else
986		data->bank1_settings[attr->index][0] &= ~attr->nr;
987
988	if ((data->bank1_settings[attr->index][0] != orig_val) &&
989			(abituguru_write(data,
990			ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
991			data->bank1_settings[attr->index], 3) < 1)) {
992		data->bank1_settings[attr->index][0] = orig_val;
993		ret = -EIO;
994	}
995	mutex_unlock(&data->update_lock);
996	return ret;
997}
998
999static ssize_t store_bank2_mask(struct device *dev,
1000	struct device_attribute *devattr, const char *buf, size_t count)
1001{
1002	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1003	struct abituguru_data *data = dev_get_drvdata(dev);
1004	ssize_t ret;
1005	u8 orig_val;
1006	unsigned long mask;
1007
1008	ret = kstrtoul(buf, 10, &mask);
1009	if (ret)
1010		return ret;
1011
1012	ret = count;
1013	mutex_lock(&data->update_lock);
1014	orig_val = data->bank2_settings[attr->index][0];
1015
1016	if (mask)
1017		data->bank2_settings[attr->index][0] |= attr->nr;
1018	else
1019		data->bank2_settings[attr->index][0] &= ~attr->nr;
1020
1021	if ((data->bank2_settings[attr->index][0] != orig_val) &&
1022			(abituguru_write(data,
1023			ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
1024			data->bank2_settings[attr->index], 2) < 1)) {
1025		data->bank2_settings[attr->index][0] = orig_val;
1026		ret = -EIO;
1027	}
1028	mutex_unlock(&data->update_lock);
1029	return ret;
1030}
1031
1032/* Fan PWM (speed control) */
1033static ssize_t show_pwm_setting(struct device *dev,
1034	struct device_attribute *devattr, char *buf)
1035{
1036	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1037	struct abituguru_data *data = dev_get_drvdata(dev);
1038	return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
1039		abituguru_pwm_settings_multiplier[attr->nr]);
1040}
1041
1042static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
1043	*devattr, const char *buf, size_t count)
1044{
1045	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1046	struct abituguru_data *data = dev_get_drvdata(dev);
1047	u8 min;
1048	unsigned long val;
1049	ssize_t ret;
1050
1051	ret = kstrtoul(buf, 10, &val);
1052	if (ret)
1053		return ret;
1054
1055	ret = count;
1056	val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
1057				abituguru_pwm_settings_multiplier[attr->nr];
1058
1059	/* special case pwm1 min pwm% */
1060	if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
1061		min = 77;
1062	else
1063		min = abituguru_pwm_min[attr->nr];
1064
1065	/* this check can be done before taking the lock */
1066	if (val < min || val > abituguru_pwm_max[attr->nr])
1067		return -EINVAL;
1068
1069	mutex_lock(&data->update_lock);
1070	/* this check needs to be done after taking the lock */
1071	if ((attr->nr & 1) &&
1072			(val >= data->pwm_settings[attr->index][attr->nr + 1]))
1073		ret = -EINVAL;
1074	else if (!(attr->nr & 1) &&
1075			(val <= data->pwm_settings[attr->index][attr->nr - 1]))
1076		ret = -EINVAL;
1077	else if (data->pwm_settings[attr->index][attr->nr] != val) {
1078		u8 orig_val = data->pwm_settings[attr->index][attr->nr];
1079		data->pwm_settings[attr->index][attr->nr] = val;
1080		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1081				attr->index, data->pwm_settings[attr->index],
1082				5) <= attr->nr) {
1083			data->pwm_settings[attr->index][attr->nr] =
1084				orig_val;
1085			ret = -EIO;
1086		}
1087	}
1088	mutex_unlock(&data->update_lock);
1089	return ret;
1090}
1091
1092static ssize_t show_pwm_sensor(struct device *dev,
1093	struct device_attribute *devattr, char *buf)
1094{
1095	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1096	struct abituguru_data *data = dev_get_drvdata(dev);
1097	int i;
1098	/*
1099	 * We need to walk to the temp sensor addresses to find what
1100	 * the userspace id of the configured temp sensor is.
1101	 */
1102	for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
1103		if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
1104				(data->pwm_settings[attr->index][0] & 0x0F))
1105			return sprintf(buf, "%d\n", i+1);
1106
1107	return -ENXIO;
1108}
1109
1110static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
1111	*devattr, const char *buf, size_t count)
1112{
1113	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1114	struct abituguru_data *data = dev_get_drvdata(dev);
1115	ssize_t ret;
1116	unsigned long val;
1117	u8 orig_val;
1118	u8 address;
1119
1120	ret = kstrtoul(buf, 10, &val);
1121	if (ret)
1122		return ret;
1123
1124	if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
1125		return -EINVAL;
1126
1127	val -= 1;
1128	ret = count;
1129	mutex_lock(&data->update_lock);
1130	orig_val = data->pwm_settings[attr->index][0];
1131	address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
1132	data->pwm_settings[attr->index][0] &= 0xF0;
1133	data->pwm_settings[attr->index][0] |= address;
1134	if (data->pwm_settings[attr->index][0] != orig_val) {
1135		if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
1136				    data->pwm_settings[attr->index], 5) < 1) {
1137			data->pwm_settings[attr->index][0] = orig_val;
1138			ret = -EIO;
1139		}
1140	}
1141	mutex_unlock(&data->update_lock);
1142	return ret;
1143}
1144
1145static ssize_t show_pwm_enable(struct device *dev,
1146	struct device_attribute *devattr, char *buf)
1147{
1148	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1149	struct abituguru_data *data = dev_get_drvdata(dev);
1150	int res = 0;
1151	if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
1152		res = 2;
1153	return sprintf(buf, "%d\n", res);
1154}
1155
1156static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
1157	*devattr, const char *buf, size_t count)
1158{
1159	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
1160	struct abituguru_data *data = dev_get_drvdata(dev);
1161	u8 orig_val;
1162	ssize_t ret;
1163	unsigned long user_val;
1164
1165	ret = kstrtoul(buf, 10, &user_val);
1166	if (ret)
1167		return ret;
1168
1169	ret = count;
1170	mutex_lock(&data->update_lock);
1171	orig_val = data->pwm_settings[attr->index][0];
1172	switch (user_val) {
1173	case 0:
1174		data->pwm_settings[attr->index][0] &=
1175			~ABIT_UGURU_FAN_PWM_ENABLE;
1176		break;
1177	case 2:
1178		data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
1179		break;
1180	default:
1181		ret = -EINVAL;
1182	}
1183	if ((data->pwm_settings[attr->index][0] != orig_val) &&
1184			(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
1185			attr->index, data->pwm_settings[attr->index],
1186			5) < 1)) {
1187		data->pwm_settings[attr->index][0] = orig_val;
1188		ret = -EIO;
1189	}
1190	mutex_unlock(&data->update_lock);
1191	return ret;
1192}
1193
1194static ssize_t show_name(struct device *dev,
1195	struct device_attribute *devattr, char *buf)
1196{
1197	return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
1198}
1199
1200/* Sysfs attr templates, the real entries are generated automatically. */
1201static const
1202struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
1203	{
1204	SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
1205	SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
1206		store_bank1_setting, 1, 0),
1207	SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
1208		ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
1209	SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
1210		store_bank1_setting, 2, 0),
1211	SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
1212		ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
1213	SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
1214		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1215	SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
1216		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1217	SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
1218		store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
1219	SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
1220		store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
1221	}, {
1222	SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
1223	SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
1224		ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
1225	SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
1226		store_bank1_setting, 1, 0),
1227	SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
1228		store_bank1_setting, 2, 0),
1229	SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
1230		store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1231	SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
1232		store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1233	SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
1234		store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
1235	}
1236};
1237
1238static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
1239	SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
1240	SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
1241	SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
1242		store_bank2_setting, 1, 0),
1243	SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
1244		store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
1245	SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
1246		store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
1247	SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
1248		store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
1249};
1250
1251static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
1252	SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
1253		store_pwm_enable, 0, 0),
1254	SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
1255		store_pwm_sensor, 0, 0),
1256	SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
1257		store_pwm_setting, 1, 0),
1258	SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
1259		store_pwm_setting, 2, 0),
1260	SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
1261		store_pwm_setting, 3, 0),
1262	SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
1263		store_pwm_setting, 4, 0),
1264};
1265
1266static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
1267	SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
1268};
1269
1270static int abituguru_probe(struct platform_device *pdev)
1271{
1272	struct abituguru_data *data;
1273	int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
1274	char *sysfs_filename;
1275
1276	/*
1277	 * El weirdo probe order, to keep the sysfs order identical to the
1278	 * BIOS and window-appliction listing order.
1279	 */
1280	const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
1281		0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
1282		0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
1283
1284	data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
1285			    GFP_KERNEL);
1286	if (!data)
1287		return -ENOMEM;
1288
1289	data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
1290	mutex_init(&data->update_lock);
1291	platform_set_drvdata(pdev, data);
1292
1293	/* See if the uGuru is ready */
1294	if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
1295		data->uguru_ready = 1;
1296
1297	/*
1298	 * Completely read the uGuru this has 2 purposes:
1299	 * - testread / see if one really is there.
1300	 * - make an in memory copy of all the uguru settings for future use.
1301	 */
1302	if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1303			data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
1304		goto abituguru_probe_error;
1305
1306	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1307		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
1308				&data->bank1_value[i], 1,
1309				ABIT_UGURU_MAX_RETRIES) != 1)
1310			goto abituguru_probe_error;
1311		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
1312				data->bank1_settings[i], 3,
1313				ABIT_UGURU_MAX_RETRIES) != 3)
1314			goto abituguru_probe_error;
1315	}
1316	/*
1317	 * Note: We don't know how many bank2 sensors / pwms there really are,
1318	 * but in order to "detect" this we need to read the maximum amount
1319	 * anyways. If we read sensors/pwms not there we'll just read crap
1320	 * this can't hurt. We need the detection because we don't want
1321	 * unwanted writes, which will hurt!
1322	 */
1323	for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
1324		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1325				&data->bank2_value[i], 1,
1326				ABIT_UGURU_MAX_RETRIES) != 1)
1327			goto abituguru_probe_error;
1328		if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
1329				data->bank2_settings[i], 2,
1330				ABIT_UGURU_MAX_RETRIES) != 2)
1331			goto abituguru_probe_error;
1332	}
1333	for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
1334		if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
1335				data->pwm_settings[i], 5,
1336				ABIT_UGURU_MAX_RETRIES) != 5)
1337			goto abituguru_probe_error;
1338	}
1339	data->last_updated = jiffies;
1340
1341	/* Detect sensor types and fill the sysfs attr for bank1 */
1342	sysfs_attr_i = 0;
1343	sysfs_filename = data->sysfs_names;
1344	sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
1345	for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1346		res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
1347		if (res < 0)
1348			goto abituguru_probe_error;
1349		if (res == ABIT_UGURU_NC)
1350			continue;
1351
1352		/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
1353		for (j = 0; j < (res ? 7 : 9); j++) {
1354			used = snprintf(sysfs_filename, sysfs_names_free,
1355				abituguru_sysfs_bank1_templ[res][j].dev_attr.
1356				attr.name, data->bank1_sensors[res] + res)
1357				+ 1;
1358			data->sysfs_attr[sysfs_attr_i] =
1359				abituguru_sysfs_bank1_templ[res][j];
1360			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1361				sysfs_filename;
1362			data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
1363			sysfs_filename += used;
1364			sysfs_names_free -= used;
1365			sysfs_attr_i++;
1366		}
1367		data->bank1_max_value[probe_order[i]] =
1368			abituguru_bank1_max_value[res];
1369		data->bank1_address[res][data->bank1_sensors[res]] =
1370			probe_order[i];
1371		data->bank1_sensors[res]++;
1372	}
1373	/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
1374	abituguru_detect_no_bank2_sensors(data);
1375	for (i = 0; i < data->bank2_sensors; i++) {
1376		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
1377			used = snprintf(sysfs_filename, sysfs_names_free,
1378				abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
1379				i + 1) + 1;
1380			data->sysfs_attr[sysfs_attr_i] =
1381				abituguru_sysfs_fan_templ[j];
1382			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1383				sysfs_filename;
1384			data->sysfs_attr[sysfs_attr_i].index = i;
1385			sysfs_filename += used;
1386			sysfs_names_free -= used;
1387			sysfs_attr_i++;
1388		}
1389	}
1390	/* Detect number of sensors and fill the sysfs attr for pwms */
1391	abituguru_detect_no_pwms(data);
1392	for (i = 0; i < data->pwms; i++) {
1393		for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
1394			used = snprintf(sysfs_filename, sysfs_names_free,
1395				abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
1396				i + 1) + 1;
1397			data->sysfs_attr[sysfs_attr_i] =
1398				abituguru_sysfs_pwm_templ[j];
1399			data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
1400				sysfs_filename;
1401			data->sysfs_attr[sysfs_attr_i].index = i;
1402			sysfs_filename += used;
1403			sysfs_names_free -= used;
1404			sysfs_attr_i++;
1405		}
1406	}
1407	/* Fail safe check, this should never happen! */
1408	if (sysfs_names_free < 0) {
1409		pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
1410		       never_happen, report_this);
1411		res = -ENAMETOOLONG;
1412		goto abituguru_probe_error;
1413	}
1414	pr_info("found Abit uGuru\n");
1415
1416	/* Register sysfs hooks */
1417	for (i = 0; i < sysfs_attr_i; i++) {
1418		res = device_create_file(&pdev->dev,
1419					 &data->sysfs_attr[i].dev_attr);
1420		if (res)
1421			goto abituguru_probe_error;
1422	}
1423	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
1424		res = device_create_file(&pdev->dev,
1425					 &abituguru_sysfs_attr[i].dev_attr);
1426		if (res)
1427			goto abituguru_probe_error;
1428	}
1429
1430	data->hwmon_dev = hwmon_device_register(&pdev->dev);
1431	if (!IS_ERR(data->hwmon_dev))
1432		return 0; /* success */
1433
1434	res = PTR_ERR(data->hwmon_dev);
1435abituguru_probe_error:
1436	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1437		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1438	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1439		device_remove_file(&pdev->dev,
1440			&abituguru_sysfs_attr[i].dev_attr);
1441	return res;
1442}
1443
1444static int abituguru_remove(struct platform_device *pdev)
1445{
1446	int i;
1447	struct abituguru_data *data = platform_get_drvdata(pdev);
1448
1449	hwmon_device_unregister(data->hwmon_dev);
1450	for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
1451		device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
1452	for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
1453		device_remove_file(&pdev->dev,
1454			&abituguru_sysfs_attr[i].dev_attr);
1455
1456	return 0;
1457}
1458
1459static struct abituguru_data *abituguru_update_device(struct device *dev)
1460{
1461	int i, err;
1462	struct abituguru_data *data = dev_get_drvdata(dev);
1463	/* fake a complete successful read if no update necessary. */
1464	char success = 1;
1465
1466	mutex_lock(&data->update_lock);
1467	if (time_after(jiffies, data->last_updated + HZ)) {
1468		success = 0;
1469		err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
1470				     data->alarms, 3, 0);
1471		if (err != 3)
1472			goto LEAVE_UPDATE;
1473		for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
1474			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
1475					     i, &data->bank1_value[i], 1, 0);
1476			if (err != 1)
1477				goto LEAVE_UPDATE;
1478			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
1479					     i, data->bank1_settings[i], 3, 0);
1480			if (err != 3)
1481				goto LEAVE_UPDATE;
1482		}
1483		for (i = 0; i < data->bank2_sensors; i++) {
1484			err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
1485					     &data->bank2_value[i], 1, 0);
1486			if (err != 1)
1487				goto LEAVE_UPDATE;
1488		}
1489		/* success! */
1490		success = 1;
1491		data->update_timeouts = 0;
1492LEAVE_UPDATE:
1493		/* handle timeout condition */
1494		if (!success && (err == -EBUSY || err >= 0)) {
1495			/* No overflow please */
1496			if (data->update_timeouts < 255u)
1497				data->update_timeouts++;
1498			if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
1499				ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
1500					"try again next update\n");
1501				/* Just a timeout, fake a successful read */
1502				success = 1;
1503			} else
1504				ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
1505					"times waiting for more input state\n",
1506					(int)data->update_timeouts);
1507		}
1508		/* On success set last_updated */
1509		if (success)
1510			data->last_updated = jiffies;
1511	}
1512	mutex_unlock(&data->update_lock);
1513
1514	if (success)
1515		return data;
1516	else
1517		return NULL;
1518}
1519
1520#ifdef CONFIG_PM_SLEEP
1521static int abituguru_suspend(struct device *dev)
1522{
1523	struct abituguru_data *data = dev_get_drvdata(dev);
1524	/*
1525	 * make sure all communications with the uguru are done and no new
1526	 * ones are started
1527	 */
1528	mutex_lock(&data->update_lock);
1529	return 0;
1530}
1531
1532static int abituguru_resume(struct device *dev)
1533{
1534	struct abituguru_data *data = dev_get_drvdata(dev);
1535	/* See if the uGuru is still ready */
1536	if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
1537		data->uguru_ready = 0;
1538	mutex_unlock(&data->update_lock);
1539	return 0;
1540}
1541
1542static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
1543#define ABIT_UGURU_PM	(&abituguru_pm)
1544#else
1545#define ABIT_UGURU_PM	NULL
1546#endif /* CONFIG_PM */
1547
1548static struct platform_driver abituguru_driver = {
1549	.driver = {
1550		.name	= ABIT_UGURU_NAME,
1551		.pm	= ABIT_UGURU_PM,
1552	},
1553	.probe		= abituguru_probe,
1554	.remove		= abituguru_remove,
1555};
1556
1557static int __init abituguru_detect(void)
1558{
1559	/*
1560	 * See if there is an uguru there. After a reboot uGuru will hold 0x00
1561	 * at DATA and 0xAC, when this driver has already been loaded once
1562	 * DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
1563	 * scenario but some will hold 0x00.
1564	 * Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
1565	 * after reading CMD first, so CMD must be read first!
1566	 */
1567	u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
1568	u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
1569	if (((data_val == 0x00) || (data_val == 0x08)) &&
1570	    ((cmd_val == 0x00) || (cmd_val == 0xAC)))
1571		return ABIT_UGURU_BASE;
1572
1573	ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
1574		"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
1575
1576	if (force) {
1577		pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
1578		return ABIT_UGURU_BASE;
1579	}
1580
1581	/* No uGuru found */
1582	return -ENODEV;
1583}
1584
1585static struct platform_device *abituguru_pdev;
1586
1587static int __init abituguru_init(void)
1588{
1589	int address, err;
1590	struct resource res = { .flags = IORESOURCE_IO };
1591	const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
1592
1593	/* safety check, refuse to load on non Abit motherboards */
1594	if (!force && (!board_vendor ||
1595			strcmp(board_vendor, "http://www.abit.com.tw/")))
1596		return -ENODEV;
1597
1598	address = abituguru_detect();
1599	if (address < 0)
1600		return address;
1601
1602	err = platform_driver_register(&abituguru_driver);
1603	if (err)
1604		goto exit;
1605
1606	abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
1607	if (!abituguru_pdev) {
1608		pr_err("Device allocation failed\n");
1609		err = -ENOMEM;
1610		goto exit_driver_unregister;
1611	}
1612
1613	res.start = address;
1614	res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
1615	res.name = ABIT_UGURU_NAME;
1616
1617	err = platform_device_add_resources(abituguru_pdev, &res, 1);
1618	if (err) {
1619		pr_err("Device resource addition failed (%d)\n", err);
1620		goto exit_device_put;
1621	}
1622
1623	err = platform_device_add(abituguru_pdev);
1624	if (err) {
1625		pr_err("Device addition failed (%d)\n", err);
1626		goto exit_device_put;
1627	}
1628
1629	return 0;
1630
1631exit_device_put:
1632	platform_device_put(abituguru_pdev);
1633exit_driver_unregister:
1634	platform_driver_unregister(&abituguru_driver);
1635exit:
1636	return err;
1637}
1638
1639static void __exit abituguru_exit(void)
1640{
1641	platform_device_unregister(abituguru_pdev);
1642	platform_driver_unregister(&abituguru_driver);
1643}
1644
1645MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
1646MODULE_DESCRIPTION("Abit uGuru Sensor device");
1647MODULE_LICENSE("GPL");
1648
1649module_init(abituguru_init);
1650module_exit(abituguru_exit);
1651