1/*
2 * Copyright (c) 2013 Intel Corporation. All rights reserved.
3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses.  You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 *     Redistribution and use in source and binary forms, with or
13 *     without modification, are permitted provided that the following
14 *     conditions are met:
15 *
16 *      - Redistributions of source code must retain the above
17 *        copyright notice, this list of conditions and the following
18 *        disclaimer.
19 *
20 *      - Redistributions in binary form must reproduce the above
21 *        copyright notice, this list of conditions and the following
22 *        disclaimer in the documentation and/or other materials
23 *        provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34/*
35 * This file contains all of the code that is specific to the SerDes
36 * on the QLogic_IB 7220 chip.
37 */
38
39#include <linux/pci.h>
40#include <linux/delay.h>
41#include <linux/module.h>
42#include <linux/firmware.h>
43
44#include "qib.h"
45#include "qib_7220.h"
46
47#define SD7220_FW_NAME "qlogic/sd7220.fw"
48MODULE_FIRMWARE(SD7220_FW_NAME);
49
50/*
51 * Same as in qib_iba7220.c, but just the registers needed here.
52 * Could move whole set to qib_7220.h, but decided better to keep
53 * local.
54 */
55#define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
56#define kr_hwerrclear KREG_IDX(HwErrClear)
57#define kr_hwerrmask KREG_IDX(HwErrMask)
58#define kr_hwerrstatus KREG_IDX(HwErrStatus)
59#define kr_ibcstatus KREG_IDX(IBCStatus)
60#define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
61#define kr_scratch KREG_IDX(Scratch)
62#define kr_xgxs_cfg KREG_IDX(XGXSCfg)
63/* these are used only here, not in qib_iba7220.c */
64#define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
65#define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
66#define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
67#define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
68#define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
69
70/*
71 * The IBSerDesMappTable is a memory that holds values to be stored in
72 * various SerDes registers by IBC.
73 */
74#define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
75
76/*
77 * Below used for sdnum parameter, selecting one of the two sections
78 * used for PCIe, or the single SerDes used for IB.
79 */
80#define PCIE_SERDES0 0
81#define PCIE_SERDES1 1
82
83/*
84 * The EPB requires addressing in a particular form. EPB_LOC() is intended
85 * to make #definitions a little more readable.
86 */
87#define EPB_ADDR_SHF 8
88#define EPB_LOC(chn, elt, reg) \
89	(((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90	 EPB_ADDR_SHF)
91#define EPB_IB_QUAD0_CS_SHF (25)
92#define EPB_IB_QUAD0_CS (1U <<  EPB_IB_QUAD0_CS_SHF)
93#define EPB_IB_UC_CS_SHF (26)
94#define EPB_PCIE_UC_CS_SHF (27)
95#define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
96
97/* Forward declarations. */
98static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
99			      u32 data, u32 mask);
100static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
101			     int mask);
102static int qib_sd_trimdone_poll(struct qib_devdata *dd);
103static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
104static int qib_sd_setvals(struct qib_devdata *dd);
105static int qib_sd_early(struct qib_devdata *dd);
106static int qib_sd_dactrim(struct qib_devdata *dd);
107static int qib_internal_presets(struct qib_devdata *dd);
108/* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
109static int qib_sd_trimself(struct qib_devdata *dd, int val);
110static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
111static int qib_sd7220_ib_load(struct qib_devdata *dd,
112			      const struct firmware *fw);
113static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
114			     const struct firmware *fw);
115
116/*
117 * Below keeps track of whether the "once per power-on" initialization has
118 * been done, because uC code Version 1.32.17 or higher allows the uC to
119 * be reset at will, and Automatic Equalization may require it. So the
120 * state of the reset "pin", is no longer valid. Instead, we check for the
121 * actual uC code having been loaded.
122 */
123static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
124				 const struct firmware *fw)
125{
126	struct qib_devdata *dd = ppd->dd;
127
128	if (!dd->cspec->serdes_first_init_done &&
129	    qib_sd7220_ib_vfy(dd, fw) > 0)
130		dd->cspec->serdes_first_init_done = 1;
131	return dd->cspec->serdes_first_init_done;
132}
133
134/* repeat #define for local use. "Real" #define is in qib_iba7220.c */
135#define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR      0x0000004000000000ULL
136#define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
137#define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
138#define UC_PAR_CLR_D 8
139#define UC_PAR_CLR_M 0xC
140#define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
141#define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
142
143void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
144{
145	int ret;
146
147	/* clear, then re-enable parity errs */
148	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
149		UC_PAR_CLR_D, UC_PAR_CLR_M);
150	if (ret < 0) {
151		qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
152		goto bail;
153	}
154	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
155		UC_PAR_CLR_M);
156
157	qib_read_kreg32(dd, kr_scratch);
158	udelay(4);
159	qib_write_kreg(dd, kr_hwerrclear,
160		QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
161	qib_read_kreg32(dd, kr_scratch);
162bail:
163	return;
164}
165
166/*
167 * After a reset or other unusual event, the epb interface may need
168 * to be re-synchronized, between the host and the uC.
169 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
170 */
171#define IBSD_RESYNC_TRIES 3
172#define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
173#define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
174
175static int qib_resync_ibepb(struct qib_devdata *dd)
176{
177	int ret, pat, tries, chn;
178	u32 loc;
179
180	ret = -1;
181	chn = 0;
182	for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
183		loc = IB_PGUDP(chn);
184		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185		if (ret < 0) {
186			qib_dev_err(dd, "Failed read in resync\n");
187			continue;
188		}
189		if (ret != 0xF0 && ret != 0x55 && tries == 0)
190			qib_dev_err(dd, "unexpected pattern in resync\n");
191		pat = ret ^ 0xA5; /* alternate F0 and 55 */
192		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
193		if (ret < 0) {
194			qib_dev_err(dd, "Failed write in resync\n");
195			continue;
196		}
197		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
198		if (ret < 0) {
199			qib_dev_err(dd, "Failed re-read in resync\n");
200			continue;
201		}
202		if (ret != pat) {
203			qib_dev_err(dd, "Failed compare1 in resync\n");
204			continue;
205		}
206		loc = IB_CMUDONE(chn);
207		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
208		if (ret < 0) {
209			qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
210			continue;
211		}
212		if ((ret & 0x70) != ((chn << 4) | 0x40)) {
213			qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
214				    ret, chn);
215			continue;
216		}
217		if (++chn == 4)
218			break;  /* Success */
219	}
220	return (ret > 0) ? 0 : ret;
221}
222
223/*
224 * Localize the stuff that should be done to change IB uC reset
225 * returns <0 for errors.
226 */
227static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
228{
229	u64 rst_val;
230	int ret = 0;
231	unsigned long flags;
232
233	rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
234	if (assert_rst) {
235		/*
236		 * Vendor recommends "interrupting" uC before reset, to
237		 * minimize possible glitches.
238		 */
239		spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
240		epb_access(dd, IB_7220_SERDES, 1);
241		rst_val |= 1ULL;
242		/* Squelch possible parity error from _asserting_ reset */
243		qib_write_kreg(dd, kr_hwerrmask,
244			       dd->cspec->hwerrmask &
245			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
246		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
247		/* flush write, delay to ensure it took effect */
248		qib_read_kreg32(dd, kr_scratch);
249		udelay(2);
250		/* once it's reset, can remove interrupt */
251		epb_access(dd, IB_7220_SERDES, -1);
252		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
253	} else {
254		/*
255		 * Before we de-assert reset, we need to deal with
256		 * possible glitch on the Parity-error line.
257		 * Suppress it around the reset, both in chip-level
258		 * hwerrmask and in IB uC control reg. uC will allow
259		 * it again during startup.
260		 */
261		u64 val;
262
263		rst_val &= ~(1ULL);
264		qib_write_kreg(dd, kr_hwerrmask,
265			       dd->cspec->hwerrmask &
266			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
267
268		ret = qib_resync_ibepb(dd);
269		if (ret < 0)
270			qib_dev_err(dd, "unable to re-sync IB EPB\n");
271
272		/* set uC control regs to suppress parity errs */
273		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
274		if (ret < 0)
275			goto bail;
276		/* IB uC code past Version 1.32.17 allow suppression of wdog */
277		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
278			0x80);
279		if (ret < 0) {
280			qib_dev_err(dd, "Failed to set WDOG disable\n");
281			goto bail;
282		}
283		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
284		/* flush write, delay for startup */
285		qib_read_kreg32(dd, kr_scratch);
286		udelay(1);
287		/* clear, then re-enable parity errs */
288		qib_sd7220_clr_ibpar(dd);
289		val = qib_read_kreg64(dd, kr_hwerrstatus);
290		if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
291			qib_dev_err(dd, "IBUC Parity still set after RST\n");
292			dd->cspec->hwerrmask &=
293				~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
294		}
295		qib_write_kreg(dd, kr_hwerrmask,
296			dd->cspec->hwerrmask);
297	}
298
299bail:
300	return ret;
301}
302
303static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
304	const char *where)
305{
306	int ret, chn, baduns;
307	u64 val;
308
309	if (!where)
310		where = "?";
311
312	/* give time for reset to settle out in EPB */
313	udelay(2);
314
315	ret = qib_resync_ibepb(dd);
316	if (ret < 0)
317		qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
318
319	/* Do "sacrificial read" to get EPB in sane state after reset */
320	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
321	if (ret < 0)
322		qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
323
324	/* Check/show "summary" Trim-done bit in IBCStatus */
325	val = qib_read_kreg64(dd, kr_ibcstatus);
326	if (!(val & (1ULL << 11)))
327		qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
328	/*
329	 * Do "dummy read/mod/wr" to get EPB in sane state after reset
330	 * The default value for MPREG6 is 0.
331	 */
332	udelay(2);
333
334	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
335	if (ret < 0)
336		qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
337	udelay(10);
338
339	baduns = 0;
340
341	for (chn = 3; chn >= 0; --chn) {
342		/* Read CTRL reg for each channel to check TRIMDONE */
343		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
344			IB_CTRL2(chn), 0, 0);
345		if (ret < 0)
346			qib_dev_err(dd,
347				"Failed checking TRIMDONE, chn %d (%s)\n",
348				chn, where);
349
350		if (!(ret & 0x10)) {
351			int probe;
352
353			baduns |= (1 << chn);
354			qib_dev_err(dd,
355				"TRIMDONE cleared on chn %d (%02X). (%s)\n",
356				chn, ret, where);
357			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
358				IB_PGUDP(0), 0, 0);
359			qib_dev_err(dd, "probe is %d (%02X)\n",
360				probe, probe);
361			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
362				IB_CTRL2(chn), 0, 0);
363			qib_dev_err(dd, "re-read: %d (%02X)\n",
364				probe, probe);
365			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
366				IB_CTRL2(chn), 0x10, 0x10);
367			if (ret < 0)
368				qib_dev_err(dd,
369					"Err on TRIMDONE rewrite1\n");
370		}
371	}
372	for (chn = 3; chn >= 0; --chn) {
373		/* Read CTRL reg for each channel to check TRIMDONE */
374		if (baduns & (1 << chn)) {
375			qib_dev_err(dd,
376				"Resetting TRIMDONE on chn %d (%s)\n",
377				chn, where);
378			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
379				IB_CTRL2(chn), 0x10, 0x10);
380			if (ret < 0)
381				qib_dev_err(dd,
382					"Failed re-setting TRIMDONE, chn %d (%s)\n",
383					chn, where);
384		}
385	}
386}
387
388/*
389 * Below is portion of IBA7220-specific bringup_serdes() that actually
390 * deals with registers and memory within the SerDes itself.
391 * Post IB uC code version 1.32.17, was_reset being 1 is not really
392 * informative, so we double-check.
393 */
394int qib_sd7220_init(struct qib_devdata *dd)
395{
396	const struct firmware *fw;
397	int ret = 1; /* default to failure */
398	int first_reset, was_reset;
399
400	/* SERDES MPU reset recorded in D0 */
401	was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
402	if (!was_reset) {
403		/* entered with reset not asserted, we need to do it */
404		qib_ibsd_reset(dd, 1);
405		qib_sd_trimdone_monitor(dd, "Driver-reload");
406	}
407
408	ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
409	if (ret) {
410		qib_dev_err(dd, "Failed to load IB SERDES image\n");
411		goto done;
412	}
413
414	/* Substitute our deduced value for was_reset */
415	ret = qib_ibsd_ucode_loaded(dd->pport, fw);
416	if (ret < 0)
417		goto bail;
418
419	first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
420	/*
421	 * Alter some regs per vendor latest doc, reset-defaults
422	 * are not right for IB.
423	 */
424	ret = qib_sd_early(dd);
425	if (ret < 0) {
426		qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
427		goto bail;
428	}
429	/*
430	 * Set DAC manual trim IB.
431	 * We only do this once after chip has been reset (usually
432	 * same as once per system boot).
433	 */
434	if (first_reset) {
435		ret = qib_sd_dactrim(dd);
436		if (ret < 0) {
437			qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
438			goto bail;
439		}
440	}
441	/*
442	 * Set various registers (DDS and RXEQ) that will be
443	 * controlled by IBC (in 1.2 mode) to reasonable preset values
444	 * Calling the "internal" version avoids the "check for needed"
445	 * and "trimdone monitor" that might be counter-productive.
446	 */
447	ret = qib_internal_presets(dd);
448	if (ret < 0) {
449		qib_dev_err(dd, "Failed to set IB SERDES presets\n");
450		goto bail;
451	}
452	ret = qib_sd_trimself(dd, 0x80);
453	if (ret < 0) {
454		qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
455		goto bail;
456	}
457
458	/* Load image, then try to verify */
459	ret = 0;        /* Assume success */
460	if (first_reset) {
461		int vfy;
462		int trim_done;
463
464		ret = qib_sd7220_ib_load(dd, fw);
465		if (ret < 0) {
466			qib_dev_err(dd, "Failed to load IB SERDES image\n");
467			goto bail;
468		} else {
469			/* Loaded image, try to verify */
470			vfy = qib_sd7220_ib_vfy(dd, fw);
471			if (vfy != ret) {
472				qib_dev_err(dd, "SERDES PRAM VFY failed\n");
473				goto bail;
474			} /* end if verified */
475		} /* end if loaded */
476
477		/*
478		 * Loaded and verified. Almost good...
479		 * hold "success" in ret
480		 */
481		ret = 0;
482		/*
483		 * Prev steps all worked, continue bringup
484		 * De-assert RESET to uC, only in first reset, to allow
485		 * trimming.
486		 *
487		 * Since our default setup sets START_EQ1 to
488		 * PRESET, we need to clear that for this very first run.
489		 */
490		ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
491		if (ret < 0) {
492			qib_dev_err(dd, "Failed clearing START_EQ1\n");
493			goto bail;
494		}
495
496		qib_ibsd_reset(dd, 0);
497		/*
498		 * If this is not the first reset, trimdone should be set
499		 * already. We may need to check about this.
500		 */
501		trim_done = qib_sd_trimdone_poll(dd);
502		/*
503		 * Whether or not trimdone succeeded, we need to put the
504		 * uC back into reset to avoid a possible fight with the
505		 * IBC state-machine.
506		 */
507		qib_ibsd_reset(dd, 1);
508
509		if (!trim_done) {
510			qib_dev_err(dd, "No TRIMDONE seen\n");
511			goto bail;
512		}
513		/*
514		 * DEBUG: check each time we reset if trimdone bits have
515		 * gotten cleared, and re-set them.
516		 */
517		qib_sd_trimdone_monitor(dd, "First-reset");
518		/* Remember so we do not re-do the load, dactrim, etc. */
519		dd->cspec->serdes_first_init_done = 1;
520	}
521	/*
522	 * setup for channel training and load values for
523	 * RxEq and DDS in tables used by IBC in IB1.2 mode
524	 */
525	ret = 0;
526	if (qib_sd_setvals(dd) >= 0)
527		goto done;
528bail:
529	ret = 1;
530done:
531	/* start relock timer regardless, but start at 1 second */
532	set_7220_relock_poll(dd, -1);
533
534	release_firmware(fw);
535	return ret;
536}
537
538#define EPB_ACC_REQ 1
539#define EPB_ACC_GNT 0x100
540#define EPB_DATA_MASK 0xFF
541#define EPB_RD (1ULL << 24)
542#define EPB_TRANS_RDY (1ULL << 31)
543#define EPB_TRANS_ERR (1ULL << 30)
544#define EPB_TRANS_TRIES 5
545
546/*
547 * query, claim, release ownership of the EPB (External Parallel Bus)
548 * for a specified SERDES.
549 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
550 * Returns <0 for errors, >0 if we had ownership, else 0.
551 */
552static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
553{
554	u16 acc;
555	u64 accval;
556	int owned = 0;
557	u64 oct_sel = 0;
558
559	switch (sdnum) {
560	case IB_7220_SERDES:
561		/*
562		 * The IB SERDES "ownership" is fairly simple. A single each
563		 * request/grant.
564		 */
565		acc = kr_ibsd_epb_access_ctrl;
566		break;
567
568	case PCIE_SERDES0:
569	case PCIE_SERDES1:
570		/* PCIe SERDES has two "octants", need to select which */
571		acc = kr_pciesd_epb_access_ctrl;
572		oct_sel = (2 << (sdnum - PCIE_SERDES0));
573		break;
574
575	default:
576		return 0;
577	}
578
579	/* Make sure any outstanding transaction was seen */
580	qib_read_kreg32(dd, kr_scratch);
581	udelay(15);
582
583	accval = qib_read_kreg32(dd, acc);
584
585	owned = !!(accval & EPB_ACC_GNT);
586	if (claim < 0) {
587		/* Need to release */
588		u64 pollval;
589		/*
590		 * The only writeable bits are the request and CS.
591		 * Both should be clear
592		 */
593		u64 newval = 0;
594
595		qib_write_kreg(dd, acc, newval);
596		/* First read after write is not trustworthy */
597		pollval = qib_read_kreg32(dd, acc);
598		udelay(5);
599		pollval = qib_read_kreg32(dd, acc);
600		if (pollval & EPB_ACC_GNT)
601			owned = -1;
602	} else if (claim > 0) {
603		/* Need to claim */
604		u64 pollval;
605		u64 newval = EPB_ACC_REQ | oct_sel;
606
607		qib_write_kreg(dd, acc, newval);
608		/* First read after write is not trustworthy */
609		pollval = qib_read_kreg32(dd, acc);
610		udelay(5);
611		pollval = qib_read_kreg32(dd, acc);
612		if (!(pollval & EPB_ACC_GNT))
613			owned = -1;
614	}
615	return owned;
616}
617
618/*
619 * Lemma to deal with race condition of write..read to epb regs
620 */
621static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
622{
623	int tries;
624	u64 transval;
625
626	qib_write_kreg(dd, reg, i_val);
627	/* Throw away first read, as RDY bit may be stale */
628	transval = qib_read_kreg64(dd, reg);
629
630	for (tries = EPB_TRANS_TRIES; tries; --tries) {
631		transval = qib_read_kreg32(dd, reg);
632		if (transval & EPB_TRANS_RDY)
633			break;
634		udelay(5);
635	}
636	if (transval & EPB_TRANS_ERR)
637		return -1;
638	if (tries > 0 && o_vp)
639		*o_vp = transval;
640	return tries;
641}
642
643/**
644 * qib_sd7220_reg_mod - modify SERDES register
645 * @dd: the qlogic_ib device
646 * @sdnum: which SERDES to access
647 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
648 * @wd: Write Data - value to set in register
649 * @mask: ones where data should be spliced into reg.
650 *
651 * Basic register read/modify/write, with un-needed acesses elided. That is,
652 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
653 * returns current (presumed, if a write was done) contents of selected
654 * register, or <0 if errors.
655 */
656static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
657			      u32 wd, u32 mask)
658{
659	u16 trans;
660	u64 transval;
661	int owned;
662	int tries, ret;
663	unsigned long flags;
664
665	switch (sdnum) {
666	case IB_7220_SERDES:
667		trans = kr_ibsd_epb_transaction_reg;
668		break;
669
670	case PCIE_SERDES0:
671	case PCIE_SERDES1:
672		trans = kr_pciesd_epb_transaction_reg;
673		break;
674
675	default:
676		return -1;
677	}
678
679	/*
680	 * All access is locked in software (vs other host threads) and
681	 * hardware (vs uC access).
682	 */
683	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
684
685	owned = epb_access(dd, sdnum, 1);
686	if (owned < 0) {
687		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
688		return -1;
689	}
690	ret = 0;
691	for (tries = EPB_TRANS_TRIES; tries; --tries) {
692		transval = qib_read_kreg32(dd, trans);
693		if (transval & EPB_TRANS_RDY)
694			break;
695		udelay(5);
696	}
697
698	if (tries > 0) {
699		tries = 1;      /* to make read-skip work */
700		if (mask != 0xFF) {
701			/*
702			 * Not a pure write, so need to read.
703			 * loc encodes chip-select as well as address
704			 */
705			transval = loc | EPB_RD;
706			tries = epb_trans(dd, trans, transval, &transval);
707		}
708		if (tries > 0 && mask != 0) {
709			/*
710			 * Not a pure read, so need to write.
711			 */
712			wd = (wd & mask) | (transval & ~mask);
713			transval = loc | (wd & EPB_DATA_MASK);
714			tries = epb_trans(dd, trans, transval, &transval);
715		}
716	}
717	/* else, failed to see ready, what error-handling? */
718
719	/*
720	 * Release bus. Failure is an error.
721	 */
722	if (epb_access(dd, sdnum, -1) < 0)
723		ret = -1;
724	else
725		ret = transval & EPB_DATA_MASK;
726
727	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
728	if (tries <= 0)
729		ret = -1;
730	return ret;
731}
732
733#define EPB_ROM_R (2)
734#define EPB_ROM_W (1)
735/*
736 * Below, all uC-related, use appropriate UC_CS, depending
737 * on which SerDes is used.
738 */
739#define EPB_UC_CTL EPB_LOC(6, 0, 0)
740#define EPB_MADDRL EPB_LOC(6, 0, 2)
741#define EPB_MADDRH EPB_LOC(6, 0, 3)
742#define EPB_ROMDATA EPB_LOC(6, 0, 4)
743#define EPB_RAMDATA EPB_LOC(6, 0, 5)
744
745/* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
746static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
747			       u8 *buf, int cnt, int rd_notwr)
748{
749	u16 trans;
750	u64 transval;
751	u64 csbit;
752	int owned;
753	int tries;
754	int sofar;
755	int addr;
756	int ret;
757	unsigned long flags;
758	const char *op;
759
760	/* Pick appropriate transaction reg and "Chip select" for this serdes */
761	switch (sdnum) {
762	case IB_7220_SERDES:
763		csbit = 1ULL << EPB_IB_UC_CS_SHF;
764		trans = kr_ibsd_epb_transaction_reg;
765		break;
766
767	case PCIE_SERDES0:
768	case PCIE_SERDES1:
769		/* PCIe SERDES has uC "chip select" in different bit, too */
770		csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
771		trans = kr_pciesd_epb_transaction_reg;
772		break;
773
774	default:
775		return -1;
776	}
777
778	op = rd_notwr ? "Rd" : "Wr";
779	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
780
781	owned = epb_access(dd, sdnum, 1);
782	if (owned < 0) {
783		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
784		return -1;
785	}
786
787	/*
788	 * In future code, we may need to distinguish several address ranges,
789	 * and select various memories based on this. For now, just trim
790	 * "loc" (location including address and memory select) to
791	 * "addr" (address within memory). we will only support PRAM
792	 * The memory is 8KB.
793	 */
794	addr = loc & 0x1FFF;
795	for (tries = EPB_TRANS_TRIES; tries; --tries) {
796		transval = qib_read_kreg32(dd, trans);
797		if (transval & EPB_TRANS_RDY)
798			break;
799		udelay(5);
800	}
801
802	sofar = 0;
803	if (tries > 0) {
804		/*
805		 * Every "memory" access is doubly-indirect.
806		 * We set two bytes of address, then read/write
807		 * one or mores bytes of data.
808		 */
809
810		/* First, we set control to "Read" or "Write" */
811		transval = csbit | EPB_UC_CTL |
812			(rd_notwr ? EPB_ROM_R : EPB_ROM_W);
813		tries = epb_trans(dd, trans, transval, &transval);
814		while (tries > 0 && sofar < cnt) {
815			if (!sofar) {
816				/* Only set address at start of chunk */
817				int addrbyte = (addr + sofar) >> 8;
818
819				transval = csbit | EPB_MADDRH | addrbyte;
820				tries = epb_trans(dd, trans, transval,
821						  &transval);
822				if (tries <= 0)
823					break;
824				addrbyte = (addr + sofar) & 0xFF;
825				transval = csbit | EPB_MADDRL | addrbyte;
826				tries = epb_trans(dd, trans, transval,
827						 &transval);
828				if (tries <= 0)
829					break;
830			}
831
832			if (rd_notwr)
833				transval = csbit | EPB_ROMDATA | EPB_RD;
834			else
835				transval = csbit | EPB_ROMDATA | buf[sofar];
836			tries = epb_trans(dd, trans, transval, &transval);
837			if (tries <= 0)
838				break;
839			if (rd_notwr)
840				buf[sofar] = transval & EPB_DATA_MASK;
841			++sofar;
842		}
843		/* Finally, clear control-bit for Read or Write */
844		transval = csbit | EPB_UC_CTL;
845		tries = epb_trans(dd, trans, transval, &transval);
846	}
847
848	ret = sofar;
849	/* Release bus. Failure is an error */
850	if (epb_access(dd, sdnum, -1) < 0)
851		ret = -1;
852
853	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
854	if (tries <= 0)
855		ret = -1;
856	return ret;
857}
858
859#define PROG_CHUNK 64
860
861static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
862			      const u8 *img, int len, int offset)
863{
864	int cnt, sofar, req;
865
866	sofar = 0;
867	while (sofar < len) {
868		req = len - sofar;
869		if (req > PROG_CHUNK)
870			req = PROG_CHUNK;
871		cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
872					  (u8 *)img + sofar, req, 0);
873		if (cnt < req) {
874			sofar = -1;
875			break;
876		}
877		sofar += req;
878	}
879	return sofar;
880}
881
882#define VFY_CHUNK 64
883#define SD_PRAM_ERROR_LIMIT 42
884
885static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
886			       const u8 *img, int len, int offset)
887{
888	int cnt, sofar, req, idx, errors;
889	unsigned char readback[VFY_CHUNK];
890
891	errors = 0;
892	sofar = 0;
893	while (sofar < len) {
894		req = len - sofar;
895		if (req > VFY_CHUNK)
896			req = VFY_CHUNK;
897		cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
898					  readback, req, 1);
899		if (cnt < req) {
900			/* failed in read itself */
901			sofar = -1;
902			break;
903		}
904		for (idx = 0; idx < cnt; ++idx) {
905			if (readback[idx] != img[idx+sofar])
906				++errors;
907		}
908		sofar += cnt;
909	}
910	return errors ? -errors : sofar;
911}
912
913static int
914qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
915{
916	return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
917}
918
919static int
920qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
921{
922	return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
923}
924
925/*
926 * IRQ not set up at this point in init, so we poll.
927 */
928#define IB_SERDES_TRIM_DONE (1ULL << 11)
929#define TRIM_TMO (15)
930
931static int qib_sd_trimdone_poll(struct qib_devdata *dd)
932{
933	int trim_tmo, ret;
934	uint64_t val;
935
936	/*
937	 * Default to failure, so IBC will not start
938	 * without IB_SERDES_TRIM_DONE.
939	 */
940	ret = 0;
941	for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
942		val = qib_read_kreg64(dd, kr_ibcstatus);
943		if (val & IB_SERDES_TRIM_DONE) {
944			ret = 1;
945			break;
946		}
947		msleep(20);
948	}
949	if (trim_tmo >= TRIM_TMO) {
950		qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
951		ret = 0;
952	}
953	return ret;
954}
955
956#define TX_FAST_ELT (9)
957
958/*
959 * Set the "negotiation" values for SERDES. These are used by the IB1.2
960 * link negotiation. Macros below are attempt to keep the values a
961 * little more human-editable.
962 * First, values related to Drive De-emphasis Settings.
963 */
964
965#define NUM_DDS_REGS 6
966#define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
967
968#define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
969	{ { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
970	  (main_d << 3) | 4 | (ipre_d >> 2), \
971	  (main_s << 3) | 4 | (ipre_s >> 2), \
972	  ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
973	  ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
974
975static struct dds_init {
976	uint8_t reg_vals[NUM_DDS_REGS];
977} dds_init_vals[] = {
978	/*       DDR(FDR)       SDR(HDR)   */
979	/* Vendor recommends below for 3m cable */
980#define DDS_3M 0
981	DDS_VAL(31, 19, 12, 0, 29, 22,  9, 0),
982	DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
983	DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
984	DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
985	DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
986	DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
987	DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
988	DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
989	DDS_VAL(31, 20, 11, 0, 28, 23,  8, 0),
990	DDS_VAL(31, 21, 10, 0, 27, 24,  7, 0),
991	DDS_VAL(31, 22,  9, 0, 26, 25,  6, 0),
992	DDS_VAL(30, 23,  8, 0, 25, 26,  5, 0),
993	DDS_VAL(29, 24,  7, 0, 23, 27,  4, 0),
994	/* Vendor recommends below for 1m cable */
995#define DDS_1M 13
996	DDS_VAL(28, 25,  6, 0, 21, 28,  3, 0),
997	DDS_VAL(27, 26,  5, 0, 19, 29,  2, 0),
998	DDS_VAL(25, 27,  4, 0, 17, 30,  1, 0)
999};
1000
1001/*
1002 * Now the RXEQ section of the table.
1003 */
1004/* Hardware packs an element number and register address thus: */
1005#define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
1006#define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1007	{RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1008
1009#define RXEQ_VAL_ALL(elt, adr, val)  \
1010	{RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1011
1012#define RXEQ_SDR_DFELTH 0
1013#define RXEQ_SDR_TLTH 0
1014#define RXEQ_SDR_G1CNT_Z1CNT 0x11
1015#define RXEQ_SDR_ZCNT 23
1016
1017static struct rxeq_init {
1018	u16 rdesc;      /* in form used in SerDesDDSRXEQ */
1019	u8  rdata[4];
1020} rxeq_init_vals[] = {
1021	/* Set Rcv Eq. to Preset node */
1022	RXEQ_VAL_ALL(7, 0x27, 0x10),
1023	/* Set DFELTHFDR/HDR thresholds */
1024	RXEQ_VAL(7, 8,    0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1025	RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1026	/* Set TLTHFDR/HDR theshold */
1027	RXEQ_VAL(7, 9,    2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1028	RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was  0, 1, 2, 3 */
1029	/* Set Preamp setting 2 (ZFR/ZCNT) */
1030	RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1031	RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1032	/* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1033	RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1034	RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1035	/* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1036	RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1037	RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1038};
1039
1040/* There are 17 values from vendor, but IBC only accesses the first 16 */
1041#define DDS_ROWS (16)
1042#define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1043
1044static int qib_sd_setvals(struct qib_devdata *dd)
1045{
1046	int idx, midx;
1047	int min_idx;     /* Minimum index for this portion of table */
1048	uint32_t dds_reg_map;
1049	u64 __iomem *taddr, *iaddr;
1050	uint64_t data;
1051	uint64_t sdctl;
1052
1053	taddr = dd->kregbase + kr_serdes_maptable;
1054	iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1055
1056	/*
1057	 * Init the DDS section of the table.
1058	 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1059	 * registers indicated in DDS_REG_MAP.
1060	 */
1061	sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1062	sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1063	sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1064	qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1065
1066	/*
1067	 * Iterate down table within loop for each register to store.
1068	 */
1069	dds_reg_map = DDS_REG_MAP;
1070	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1071		data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1072		writeq(data, iaddr + idx);
1073		mmiowb();
1074		qib_read_kreg32(dd, kr_scratch);
1075		dds_reg_map >>= 4;
1076		for (midx = 0; midx < DDS_ROWS; ++midx) {
1077			u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1078
1079			data = dds_init_vals[midx].reg_vals[idx];
1080			writeq(data, daddr);
1081			mmiowb();
1082			qib_read_kreg32(dd, kr_scratch);
1083		} /* End inner for (vals for this reg, each row) */
1084	} /* end outer for (regs to be stored) */
1085
1086	/*
1087	 * Init the RXEQ section of the table.
1088	 * This runs in a different order, as the pattern of
1089	 * register references is more complex, but there are only
1090	 * four "data" values per register.
1091	 */
1092	min_idx = idx; /* RXEQ indices pick up where DDS left off */
1093	taddr += 0x100; /* RXEQ data is in second half of table */
1094	/* Iterate through RXEQ register addresses */
1095	for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1096		int didx; /* "destination" */
1097		int vidx;
1098
1099		/* didx is offset by min_idx to address RXEQ range of regs */
1100		didx = idx + min_idx;
1101		/* Store the next RXEQ register address */
1102		writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1103		mmiowb();
1104		qib_read_kreg32(dd, kr_scratch);
1105		/* Iterate through RXEQ values */
1106		for (vidx = 0; vidx < 4; vidx++) {
1107			data = rxeq_init_vals[idx].rdata[vidx];
1108			writeq(data, taddr + (vidx << 6) + idx);
1109			mmiowb();
1110			qib_read_kreg32(dd, kr_scratch);
1111		}
1112	} /* end outer for (Reg-writes for RXEQ) */
1113	return 0;
1114}
1115
1116#define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1117#define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1118#define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1119#define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1120#define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1121#define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1122
1123/*
1124 * Repeat a "store" across all channels of the IB SerDes.
1125 * Although nominally it inherits the "read value" of the last
1126 * channel it modified, the only really useful return is <0 for
1127 * failure, >= 0 for success. The parameter 'loc' is assumed to
1128 * be the location in some channel of the register to be modified
1129 * The caller can specify use of the "gang write" option of EPB,
1130 * in which case we use the specified channel data for any fields
1131 * not explicitely written.
1132 */
1133static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1134			     int mask)
1135{
1136	int ret = -1;
1137	int chnl;
1138
1139	if (loc & EPB_GLOBAL_WR) {
1140		/*
1141		 * Our caller has assured us that we can set all four
1142		 * channels at once. Trust that. If mask is not 0xFF,
1143		 * we will read the _specified_ channel for our starting
1144		 * value.
1145		 */
1146		loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1147		chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1148		if (mask != 0xFF) {
1149			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1150						 loc & ~EPB_GLOBAL_WR, 0, 0);
1151			if (ret < 0) {
1152				int sloc = loc >> EPB_ADDR_SHF;
1153
1154				qib_dev_err(dd,
1155					"pre-read failed: elt %d, addr 0x%X, chnl %d\n",
1156					(sloc & 0xF),
1157					(sloc >> 9) & 0x3f, chnl);
1158				return ret;
1159			}
1160			val = (ret & ~mask) | (val & mask);
1161		}
1162		loc &=  ~(7 << (4+EPB_ADDR_SHF));
1163		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1164		if (ret < 0) {
1165			int sloc = loc >> EPB_ADDR_SHF;
1166
1167			qib_dev_err(dd,
1168				"Global WR failed: elt %d, addr 0x%X, val %02X\n",
1169				(sloc & 0xF), (sloc >> 9) & 0x3f, val);
1170		}
1171		return ret;
1172	}
1173	/* Clear "channel" and set CS so we can simply iterate */
1174	loc &=  ~(7 << (4+EPB_ADDR_SHF));
1175	loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1176	for (chnl = 0; chnl < 4; ++chnl) {
1177		int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1178
1179		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1180		if (ret < 0) {
1181			int sloc = loc >> EPB_ADDR_SHF;
1182
1183			qib_dev_err(dd,
1184				"Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
1185				(sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1186				val & 0xFF, mask & 0xFF);
1187			break;
1188		}
1189	}
1190	return ret;
1191}
1192
1193/*
1194 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1195 * values, as gotten from first row of init table.
1196 */
1197static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1198{
1199	int ret;
1200	int idx, reg, data;
1201	uint32_t regmap;
1202
1203	regmap = DDS_REG_MAP;
1204	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1205		reg = (regmap & 0xF);
1206		regmap >>= 4;
1207		data = ddi->reg_vals[idx];
1208		/* Vendor says RMW not needed for these regs, use 0xFF mask */
1209		ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1210		if (ret < 0)
1211			break;
1212	}
1213	return ret;
1214}
1215
1216/*
1217 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1218 * values, as gotten from selected column of init table.
1219 */
1220static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1221{
1222	int ret;
1223	int ridx;
1224	int cnt = ARRAY_SIZE(rxeq_init_vals);
1225
1226	for (ridx = 0; ridx < cnt; ++ridx) {
1227		int elt, reg, val, loc;
1228
1229		elt = rxeq_init_vals[ridx].rdesc & 0xF;
1230		reg = rxeq_init_vals[ridx].rdesc >> 4;
1231		loc = EPB_LOC(0, elt, reg);
1232		val = rxeq_init_vals[ridx].rdata[vsel];
1233		/* mask of 0xFF, because hardware does full-byte store. */
1234		ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1235		if (ret < 0)
1236			break;
1237	}
1238	return ret;
1239}
1240
1241/*
1242 * Set the default values (row 0) for DDR Driver Demphasis.
1243 * we do this initially and whenever we turn off IB-1.2
1244 *
1245 * The "default" values for Rx equalization are also stored to
1246 * SerDes registers. Formerly (and still default), we used set 2.
1247 * For experimenting with cables and link-partners, we allow changing
1248 * that via a module parameter.
1249 */
1250static unsigned qib_rxeq_set = 2;
1251module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1252		   S_IWUSR | S_IRUGO);
1253MODULE_PARM_DESC(rxeq_default_set,
1254		 "Which set [0..3] of Rx Equalization values is default");
1255
1256static int qib_internal_presets(struct qib_devdata *dd)
1257{
1258	int ret = 0;
1259
1260	ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1261
1262	if (ret < 0)
1263		qib_dev_err(dd, "Failed to set default DDS values\n");
1264	ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1265	if (ret < 0)
1266		qib_dev_err(dd, "Failed to set default RXEQ values\n");
1267	return ret;
1268}
1269
1270int qib_sd7220_presets(struct qib_devdata *dd)
1271{
1272	int ret = 0;
1273
1274	if (!dd->cspec->presets_needed)
1275		return ret;
1276	dd->cspec->presets_needed = 0;
1277	/* Assert uC reset, so we don't clash with it. */
1278	qib_ibsd_reset(dd, 1);
1279	udelay(2);
1280	qib_sd_trimdone_monitor(dd, "link-down");
1281
1282	ret = qib_internal_presets(dd);
1283	return ret;
1284}
1285
1286static int qib_sd_trimself(struct qib_devdata *dd, int val)
1287{
1288	int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1289
1290	return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1291}
1292
1293static int qib_sd_early(struct qib_devdata *dd)
1294{
1295	int ret;
1296
1297	ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1298	if (ret < 0)
1299		goto bail;
1300	ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1301	if (ret < 0)
1302		goto bail;
1303	ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1304bail:
1305	return ret;
1306}
1307
1308#define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1309#define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1310#define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1311
1312static int qib_sd_dactrim(struct qib_devdata *dd)
1313{
1314	int ret;
1315
1316	ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1317	if (ret < 0)
1318		goto bail;
1319
1320	/* more fine-tuning of what will be default */
1321	ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1322	if (ret < 0)
1323		goto bail;
1324
1325	ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1326	if (ret < 0)
1327		goto bail;
1328
1329	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1330	if (ret < 0)
1331		goto bail;
1332
1333	ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1334	if (ret < 0)
1335		goto bail;
1336
1337	/*
1338	 * Delay for max possible number of steps, with slop.
1339	 * Each step is about 4usec.
1340	 */
1341	udelay(415);
1342
1343	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1344
1345bail:
1346	return ret;
1347}
1348
1349#define RELOCK_FIRST_MS 3
1350#define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1351void toggle_7220_rclkrls(struct qib_devdata *dd)
1352{
1353	int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1354	int ret;
1355
1356	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1357	if (ret < 0)
1358		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1359	else {
1360		udelay(1);
1361		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1362	}
1363	/* And again for good measure */
1364	udelay(1);
1365	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1366	if (ret < 0)
1367		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1368	else {
1369		udelay(1);
1370		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1371	}
1372	/* Now reset xgxs and IBC to complete the recovery */
1373	dd->f_xgxs_reset(dd->pport);
1374}
1375
1376/*
1377 * Shut down the timer that polls for relock occasions, if needed
1378 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1379 * just before qib_shutdown_device() in qib_driver.c shuts down all
1380 * the other timers
1381 */
1382void shutdown_7220_relock_poll(struct qib_devdata *dd)
1383{
1384	if (dd->cspec->relock_timer_active)
1385		del_timer_sync(&dd->cspec->relock_timer);
1386}
1387
1388static unsigned qib_relock_by_timer = 1;
1389module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1390		   S_IWUSR | S_IRUGO);
1391MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1392
1393static void qib_run_relock(unsigned long opaque)
1394{
1395	struct qib_devdata *dd = (struct qib_devdata *)opaque;
1396	struct qib_pportdata *ppd = dd->pport;
1397	struct qib_chip_specific *cs = dd->cspec;
1398	int timeoff;
1399
1400	/*
1401	 * Check link-training state for "stuck" state, when down.
1402	 * if found, try relock and schedule another try at
1403	 * exponentially growing delay, maxed at one second.
1404	 * if not stuck, our work is done.
1405	 */
1406	if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1407	    (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1408	     QIBL_LINKACTIVE))) {
1409		if (qib_relock_by_timer) {
1410			if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1411				toggle_7220_rclkrls(dd);
1412		}
1413		/* re-set timer for next check */
1414		timeoff = cs->relock_interval << 1;
1415		if (timeoff > HZ)
1416			timeoff = HZ;
1417		cs->relock_interval = timeoff;
1418	} else
1419		timeoff = HZ;
1420	mod_timer(&cs->relock_timer, jiffies + timeoff);
1421}
1422
1423void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1424{
1425	struct qib_chip_specific *cs = dd->cspec;
1426
1427	if (ibup) {
1428		/* We are now up, relax timer to 1 second interval */
1429		if (cs->relock_timer_active) {
1430			cs->relock_interval = HZ;
1431			mod_timer(&cs->relock_timer, jiffies + HZ);
1432		}
1433	} else {
1434		/* Transition to down, (re-)set timer to short interval. */
1435		unsigned int timeout;
1436
1437		timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1438		if (timeout == 0)
1439			timeout = 1;
1440		/* If timer has not yet been started, do so. */
1441		if (!cs->relock_timer_active) {
1442			cs->relock_timer_active = 1;
1443			init_timer(&cs->relock_timer);
1444			cs->relock_timer.function = qib_run_relock;
1445			cs->relock_timer.data = (unsigned long) dd;
1446			cs->relock_interval = timeout;
1447			cs->relock_timer.expires = jiffies + timeout;
1448			add_timer(&cs->relock_timer);
1449		} else {
1450			cs->relock_interval = timeout;
1451			mod_timer(&cs->relock_timer, jiffies + timeout);
1452		}
1453	}
1454}
1455