1/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <scsi/scsi_tcq.h>
45#include <target/configfs_macros.h>
46#include <target/target_core_base.h>
47#include <target/target_core_fabric_configfs.h>
48#include <target/target_core_fabric.h>
49#include <target/target_core_configfs.h>
50#include "ib_srpt.h"
51
52/* Name of this kernel module. */
53#define DRV_NAME		"ib_srpt"
54#define DRV_VERSION		"2.0.0"
55#define DRV_RELDATE		"2011-02-14"
56
57#define SRPT_ID_STRING	"Linux SRP target"
58
59#undef pr_fmt
60#define pr_fmt(fmt) DRV_NAME " " fmt
61
62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64		   "v" DRV_VERSION " (" DRV_RELDATE ")");
65MODULE_LICENSE("Dual BSD/GPL");
66
67/*
68 * Global Variables
69 */
70
71static u64 srpt_service_guid;
72static DEFINE_SPINLOCK(srpt_dev_lock);	/* Protects srpt_dev_list. */
73static LIST_HEAD(srpt_dev_list);	/* List of srpt_device structures. */
74
75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76module_param(srp_max_req_size, int, 0444);
77MODULE_PARM_DESC(srp_max_req_size,
78		 "Maximum size of SRP request messages in bytes.");
79
80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81module_param(srpt_srq_size, int, 0444);
82MODULE_PARM_DESC(srpt_srq_size,
83		 "Shared receive queue (SRQ) size.");
84
85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86{
87	return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88}
89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90		  0444);
91MODULE_PARM_DESC(srpt_service_guid,
92		 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93		 " instead of using the node_guid of the first HCA.");
94
95static struct ib_client srpt_client;
96static const struct target_core_fabric_ops srpt_template;
97static void srpt_release_channel(struct srpt_rdma_ch *ch);
98static int srpt_queue_status(struct se_cmd *cmd);
99
100/**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103static inline
104enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105{
106	switch (dir) {
107	case DMA_TO_DEVICE:	return DMA_FROM_DEVICE;
108	case DMA_FROM_DEVICE:	return DMA_TO_DEVICE;
109	default:		return dir;
110	}
111}
112
113/**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119{
120	return sdev->device->name;
121}
122
123static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124{
125	unsigned long flags;
126	enum rdma_ch_state state;
127
128	spin_lock_irqsave(&ch->spinlock, flags);
129	state = ch->state;
130	spin_unlock_irqrestore(&ch->spinlock, flags);
131	return state;
132}
133
134static enum rdma_ch_state
135srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136{
137	unsigned long flags;
138	enum rdma_ch_state prev;
139
140	spin_lock_irqsave(&ch->spinlock, flags);
141	prev = ch->state;
142	ch->state = new_state;
143	spin_unlock_irqrestore(&ch->spinlock, flags);
144	return prev;
145}
146
147/**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152static bool
153srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154			   enum rdma_ch_state new)
155{
156	unsigned long flags;
157	enum rdma_ch_state prev;
158
159	spin_lock_irqsave(&ch->spinlock, flags);
160	prev = ch->state;
161	if (prev == old)
162		ch->state = new;
163	spin_unlock_irqrestore(&ch->spinlock, flags);
164	return prev == old;
165}
166
167/**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175static void srpt_event_handler(struct ib_event_handler *handler,
176			       struct ib_event *event)
177{
178	struct srpt_device *sdev;
179	struct srpt_port *sport;
180
181	sdev = ib_get_client_data(event->device, &srpt_client);
182	if (!sdev || sdev->device != event->device)
183		return;
184
185	pr_debug("ASYNC event= %d on device= %s\n", event->event,
186		 srpt_sdev_name(sdev));
187
188	switch (event->event) {
189	case IB_EVENT_PORT_ERR:
190		if (event->element.port_num <= sdev->device->phys_port_cnt) {
191			sport = &sdev->port[event->element.port_num - 1];
192			sport->lid = 0;
193			sport->sm_lid = 0;
194		}
195		break;
196	case IB_EVENT_PORT_ACTIVE:
197	case IB_EVENT_LID_CHANGE:
198	case IB_EVENT_PKEY_CHANGE:
199	case IB_EVENT_SM_CHANGE:
200	case IB_EVENT_CLIENT_REREGISTER:
201	case IB_EVENT_GID_CHANGE:
202		/* Refresh port data asynchronously. */
203		if (event->element.port_num <= sdev->device->phys_port_cnt) {
204			sport = &sdev->port[event->element.port_num - 1];
205			if (!sport->lid && !sport->sm_lid)
206				schedule_work(&sport->work);
207		}
208		break;
209	default:
210		pr_err("received unrecognized IB event %d\n",
211		       event->event);
212		break;
213	}
214}
215
216/**
217 * srpt_srq_event() - SRQ event callback function.
218 */
219static void srpt_srq_event(struct ib_event *event, void *ctx)
220{
221	pr_info("SRQ event %d\n", event->event);
222}
223
224/**
225 * srpt_qp_event() - QP event callback function.
226 */
227static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
228{
229	pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
230		 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
231
232	switch (event->event) {
233	case IB_EVENT_COMM_EST:
234		ib_cm_notify(ch->cm_id, event->event);
235		break;
236	case IB_EVENT_QP_LAST_WQE_REACHED:
237		if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
238					       CH_RELEASING))
239			srpt_release_channel(ch);
240		else
241			pr_debug("%s: state %d - ignored LAST_WQE.\n",
242				 ch->sess_name, srpt_get_ch_state(ch));
243		break;
244	default:
245		pr_err("received unrecognized IB QP event %d\n", event->event);
246		break;
247	}
248}
249
250/**
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252 *
253 * @slot: one-based slot number.
254 * @value: four-bit value.
255 *
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
258 */
259static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260{
261	u16 id;
262	u8 tmp;
263
264	id = (slot - 1) / 2;
265	if (slot & 0x1) {
266		tmp = c_list[id] & 0xf;
267		c_list[id] = (value << 4) | tmp;
268	} else {
269		tmp = c_list[id] & 0xf0;
270		c_list[id] = (value & 0xf) | tmp;
271	}
272}
273
274/**
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276 *
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
279 */
280static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281{
282	struct ib_class_port_info *cif;
283
284	cif = (struct ib_class_port_info *)mad->data;
285	memset(cif, 0, sizeof *cif);
286	cif->base_version = 1;
287	cif->class_version = 1;
288	cif->resp_time_value = 20;
289
290	mad->mad_hdr.status = 0;
291}
292
293/**
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295 *
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
298 */
299static void srpt_get_iou(struct ib_dm_mad *mad)
300{
301	struct ib_dm_iou_info *ioui;
302	u8 slot;
303	int i;
304
305	ioui = (struct ib_dm_iou_info *)mad->data;
306	ioui->change_id = __constant_cpu_to_be16(1);
307	ioui->max_controllers = 16;
308
309	/* set present for slot 1 and empty for the rest */
310	srpt_set_ioc(ioui->controller_list, 1, 1);
311	for (i = 1, slot = 2; i < 16; i++, slot++)
312		srpt_set_ioc(ioui->controller_list, slot, 0);
313
314	mad->mad_hdr.status = 0;
315}
316
317/**
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325			 struct ib_dm_mad *mad)
326{
327	struct srpt_device *sdev = sport->sdev;
328	struct ib_dm_ioc_profile *iocp;
329
330	iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332	if (!slot || slot > 16) {
333		mad->mad_hdr.status
334			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335		return;
336	}
337
338	if (slot > 2) {
339		mad->mad_hdr.status
340			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341		return;
342	}
343
344	memset(iocp, 0, sizeof *iocp);
345	strcpy(iocp->id_string, SRPT_ID_STRING);
346	iocp->guid = cpu_to_be64(srpt_service_guid);
347	iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348	iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349	iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350	iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351	iocp->subsys_device_id = 0x0;
352	iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353	iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354	iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355	iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356	iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357	iocp->rdma_read_depth = 4;
358	iocp->send_size = cpu_to_be32(srp_max_req_size);
359	iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360					  1U << 24));
361	iocp->num_svc_entries = 1;
362	iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363		SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365	mad->mad_hdr.status = 0;
366}
367
368/**
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370 *
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
373 */
374static void srpt_get_svc_entries(u64 ioc_guid,
375				 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376{
377	struct ib_dm_svc_entries *svc_entries;
378
379	WARN_ON(!ioc_guid);
380
381	if (!slot || slot > 16) {
382		mad->mad_hdr.status
383			= __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384		return;
385	}
386
387	if (slot > 2 || lo > hi || hi > 1) {
388		mad->mad_hdr.status
389			= __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390		return;
391	}
392
393	svc_entries = (struct ib_dm_svc_entries *)mad->data;
394	memset(svc_entries, 0, sizeof *svc_entries);
395	svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396	snprintf(svc_entries->service_entries[0].name,
397		 sizeof(svc_entries->service_entries[0].name),
398		 "%s%016llx",
399		 SRP_SERVICE_NAME_PREFIX,
400		 ioc_guid);
401
402	mad->mad_hdr.status = 0;
403}
404
405/**
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp:      source port through which the MAD has been received.
408 * @rq_mad:  received MAD.
409 * @rsp_mad: response MAD.
410 */
411static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412				 struct ib_dm_mad *rsp_mad)
413{
414	u16 attr_id;
415	u32 slot;
416	u8 hi, lo;
417
418	attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419	switch (attr_id) {
420	case DM_ATTR_CLASS_PORT_INFO:
421		srpt_get_class_port_info(rsp_mad);
422		break;
423	case DM_ATTR_IOU_INFO:
424		srpt_get_iou(rsp_mad);
425		break;
426	case DM_ATTR_IOC_PROFILE:
427		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428		srpt_get_ioc(sp, slot, rsp_mad);
429		break;
430	case DM_ATTR_SVC_ENTRIES:
431		slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432		hi = (u8) ((slot >> 8) & 0xff);
433		lo = (u8) (slot & 0xff);
434		slot = (u16) ((slot >> 16) & 0xffff);
435		srpt_get_svc_entries(srpt_service_guid,
436				     slot, hi, lo, rsp_mad);
437		break;
438	default:
439		rsp_mad->mad_hdr.status =
440		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441		break;
442	}
443}
444
445/**
446 * srpt_mad_send_handler() - Post MAD-send callback function.
447 */
448static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449				  struct ib_mad_send_wc *mad_wc)
450{
451	ib_destroy_ah(mad_wc->send_buf->ah);
452	ib_free_send_mad(mad_wc->send_buf);
453}
454
455/**
456 * srpt_mad_recv_handler() - MAD reception callback function.
457 */
458static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459				  struct ib_mad_recv_wc *mad_wc)
460{
461	struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462	struct ib_ah *ah;
463	struct ib_mad_send_buf *rsp;
464	struct ib_dm_mad *dm_mad;
465
466	if (!mad_wc || !mad_wc->recv_buf.mad)
467		return;
468
469	ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470				  mad_wc->recv_buf.grh, mad_agent->port_num);
471	if (IS_ERR(ah))
472		goto err;
473
474	BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476	rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477				 mad_wc->wc->pkey_index, 0,
478				 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479				 GFP_KERNEL);
480	if (IS_ERR(rsp))
481		goto err_rsp;
482
483	rsp->ah = ah;
484
485	dm_mad = rsp->mad;
486	memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487	dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488	dm_mad->mad_hdr.status = 0;
489
490	switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491	case IB_MGMT_METHOD_GET:
492		srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493		break;
494	case IB_MGMT_METHOD_SET:
495		dm_mad->mad_hdr.status =
496		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497		break;
498	default:
499		dm_mad->mad_hdr.status =
500		    __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501		break;
502	}
503
504	if (!ib_post_send_mad(rsp, NULL)) {
505		ib_free_recv_mad(mad_wc);
506		/* will destroy_ah & free_send_mad in send completion */
507		return;
508	}
509
510	ib_free_send_mad(rsp);
511
512err_rsp:
513	ib_destroy_ah(ah);
514err:
515	ib_free_recv_mad(mad_wc);
516}
517
518/**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527static int srpt_refresh_port(struct srpt_port *sport)
528{
529	struct ib_mad_reg_req reg_req;
530	struct ib_port_modify port_modify;
531	struct ib_port_attr port_attr;
532	int ret;
533
534	memset(&port_modify, 0, sizeof port_modify);
535	port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536	port_modify.clr_port_cap_mask = 0;
537
538	ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539	if (ret)
540		goto err_mod_port;
541
542	ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543	if (ret)
544		goto err_query_port;
545
546	sport->sm_lid = port_attr.sm_lid;
547	sport->lid = port_attr.lid;
548
549	ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550	if (ret)
551		goto err_query_port;
552
553	if (!sport->mad_agent) {
554		memset(&reg_req, 0, sizeof reg_req);
555		reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556		reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557		set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558		set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560		sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561							 sport->port,
562							 IB_QPT_GSI,
563							 &reg_req, 0,
564							 srpt_mad_send_handler,
565							 srpt_mad_recv_handler,
566							 sport, 0);
567		if (IS_ERR(sport->mad_agent)) {
568			ret = PTR_ERR(sport->mad_agent);
569			sport->mad_agent = NULL;
570			goto err_query_port;
571		}
572	}
573
574	return 0;
575
576err_query_port:
577
578	port_modify.set_port_cap_mask = 0;
579	port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580	ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582err_mod_port:
583
584	return ret;
585}
586
587/**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593{
594	struct ib_port_modify port_modify = {
595		.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596	};
597	struct srpt_port *sport;
598	int i;
599
600	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601		sport = &sdev->port[i - 1];
602		WARN_ON(sport->port != i);
603		if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604			pr_err("disabling MAD processing failed.\n");
605		if (sport->mad_agent) {
606			ib_unregister_mad_agent(sport->mad_agent);
607			sport->mad_agent = NULL;
608		}
609	}
610}
611
612/**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616					   int ioctx_size, int dma_size,
617					   enum dma_data_direction dir)
618{
619	struct srpt_ioctx *ioctx;
620
621	ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622	if (!ioctx)
623		goto err;
624
625	ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626	if (!ioctx->buf)
627		goto err_free_ioctx;
628
629	ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630	if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631		goto err_free_buf;
632
633	return ioctx;
634
635err_free_buf:
636	kfree(ioctx->buf);
637err_free_ioctx:
638	kfree(ioctx);
639err:
640	return NULL;
641}
642
643/**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647			    int dma_size, enum dma_data_direction dir)
648{
649	if (!ioctx)
650		return;
651
652	ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653	kfree(ioctx->buf);
654	kfree(ioctx);
655}
656
657/**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev:       Device to allocate the I/O context ring for.
660 * @ring_size:  Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size:   DMA buffer size.
663 * @dir:        DMA data direction.
664 */
665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666				int ring_size, int ioctx_size,
667				int dma_size, enum dma_data_direction dir)
668{
669	struct srpt_ioctx **ring;
670	int i;
671
672	WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673		&& ioctx_size != sizeof(struct srpt_send_ioctx));
674
675	ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676	if (!ring)
677		goto out;
678	for (i = 0; i < ring_size; ++i) {
679		ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680		if (!ring[i])
681			goto err;
682		ring[i]->index = i;
683	}
684	goto out;
685
686err:
687	while (--i >= 0)
688		srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689	kfree(ring);
690	ring = NULL;
691out:
692	return ring;
693}
694
695/**
696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
697 */
698static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
699				 struct srpt_device *sdev, int ring_size,
700				 int dma_size, enum dma_data_direction dir)
701{
702	int i;
703
704	for (i = 0; i < ring_size; ++i)
705		srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
706	kfree(ioctx_ring);
707}
708
709/**
710 * srpt_get_cmd_state() - Get the state of a SCSI command.
711 */
712static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
713{
714	enum srpt_command_state state;
715	unsigned long flags;
716
717	BUG_ON(!ioctx);
718
719	spin_lock_irqsave(&ioctx->spinlock, flags);
720	state = ioctx->state;
721	spin_unlock_irqrestore(&ioctx->spinlock, flags);
722	return state;
723}
724
725/**
726 * srpt_set_cmd_state() - Set the state of a SCSI command.
727 *
728 * Does not modify the state of aborted commands. Returns the previous command
729 * state.
730 */
731static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
732						  enum srpt_command_state new)
733{
734	enum srpt_command_state previous;
735	unsigned long flags;
736
737	BUG_ON(!ioctx);
738
739	spin_lock_irqsave(&ioctx->spinlock, flags);
740	previous = ioctx->state;
741	if (previous != SRPT_STATE_DONE)
742		ioctx->state = new;
743	spin_unlock_irqrestore(&ioctx->spinlock, flags);
744
745	return previous;
746}
747
748/**
749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
750 *
751 * Returns true if and only if the previous command state was equal to 'old'.
752 */
753static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
754					enum srpt_command_state old,
755					enum srpt_command_state new)
756{
757	enum srpt_command_state previous;
758	unsigned long flags;
759
760	WARN_ON(!ioctx);
761	WARN_ON(old == SRPT_STATE_DONE);
762	WARN_ON(new == SRPT_STATE_NEW);
763
764	spin_lock_irqsave(&ioctx->spinlock, flags);
765	previous = ioctx->state;
766	if (previous == old)
767		ioctx->state = new;
768	spin_unlock_irqrestore(&ioctx->spinlock, flags);
769	return previous == old;
770}
771
772/**
773 * srpt_post_recv() - Post an IB receive request.
774 */
775static int srpt_post_recv(struct srpt_device *sdev,
776			  struct srpt_recv_ioctx *ioctx)
777{
778	struct ib_sge list;
779	struct ib_recv_wr wr, *bad_wr;
780
781	BUG_ON(!sdev);
782	wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
783
784	list.addr = ioctx->ioctx.dma;
785	list.length = srp_max_req_size;
786	list.lkey = sdev->mr->lkey;
787
788	wr.next = NULL;
789	wr.sg_list = &list;
790	wr.num_sge = 1;
791
792	return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
793}
794
795/**
796 * srpt_post_send() - Post an IB send request.
797 *
798 * Returns zero upon success and a non-zero value upon failure.
799 */
800static int srpt_post_send(struct srpt_rdma_ch *ch,
801			  struct srpt_send_ioctx *ioctx, int len)
802{
803	struct ib_sge list;
804	struct ib_send_wr wr, *bad_wr;
805	struct srpt_device *sdev = ch->sport->sdev;
806	int ret;
807
808	atomic_inc(&ch->req_lim);
809
810	ret = -ENOMEM;
811	if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
812		pr_warn("IB send queue full (needed 1)\n");
813		goto out;
814	}
815
816	ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
817				      DMA_TO_DEVICE);
818
819	list.addr = ioctx->ioctx.dma;
820	list.length = len;
821	list.lkey = sdev->mr->lkey;
822
823	wr.next = NULL;
824	wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
825	wr.sg_list = &list;
826	wr.num_sge = 1;
827	wr.opcode = IB_WR_SEND;
828	wr.send_flags = IB_SEND_SIGNALED;
829
830	ret = ib_post_send(ch->qp, &wr, &bad_wr);
831
832out:
833	if (ret < 0) {
834		atomic_inc(&ch->sq_wr_avail);
835		atomic_dec(&ch->req_lim);
836	}
837	return ret;
838}
839
840/**
841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
842 * @ioctx: Pointer to the I/O context associated with the request.
843 * @srp_cmd: Pointer to the SRP_CMD request data.
844 * @dir: Pointer to the variable to which the transfer direction will be
845 *   written.
846 * @data_len: Pointer to the variable to which the total data length of all
847 *   descriptors in the SRP_CMD request will be written.
848 *
849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
850 *
851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
852 * -ENOMEM when memory allocation fails and zero upon success.
853 */
854static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
855			     struct srp_cmd *srp_cmd,
856			     enum dma_data_direction *dir, u64 *data_len)
857{
858	struct srp_indirect_buf *idb;
859	struct srp_direct_buf *db;
860	unsigned add_cdb_offset;
861	int ret;
862
863	/*
864	 * The pointer computations below will only be compiled correctly
865	 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
866	 * whether srp_cmd::add_data has been declared as a byte pointer.
867	 */
868	BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
869		     && !__same_type(srp_cmd->add_data[0], (u8)0));
870
871	BUG_ON(!dir);
872	BUG_ON(!data_len);
873
874	ret = 0;
875	*data_len = 0;
876
877	/*
878	 * The lower four bits of the buffer format field contain the DATA-IN
879	 * buffer descriptor format, and the highest four bits contain the
880	 * DATA-OUT buffer descriptor format.
881	 */
882	*dir = DMA_NONE;
883	if (srp_cmd->buf_fmt & 0xf)
884		/* DATA-IN: transfer data from target to initiator (read). */
885		*dir = DMA_FROM_DEVICE;
886	else if (srp_cmd->buf_fmt >> 4)
887		/* DATA-OUT: transfer data from initiator to target (write). */
888		*dir = DMA_TO_DEVICE;
889
890	/*
891	 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
892	 * CDB LENGTH' field are reserved and the size in bytes of this field
893	 * is four times the value specified in bits 3..7. Hence the "& ~3".
894	 */
895	add_cdb_offset = srp_cmd->add_cdb_len & ~3;
896	if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
897	    ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
898		ioctx->n_rbuf = 1;
899		ioctx->rbufs = &ioctx->single_rbuf;
900
901		db = (struct srp_direct_buf *)(srp_cmd->add_data
902					       + add_cdb_offset);
903		memcpy(ioctx->rbufs, db, sizeof *db);
904		*data_len = be32_to_cpu(db->len);
905	} else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
906		   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
907		idb = (struct srp_indirect_buf *)(srp_cmd->add_data
908						  + add_cdb_offset);
909
910		ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
911
912		if (ioctx->n_rbuf >
913		    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
914			pr_err("received unsupported SRP_CMD request"
915			       " type (%u out + %u in != %u / %zu)\n",
916			       srp_cmd->data_out_desc_cnt,
917			       srp_cmd->data_in_desc_cnt,
918			       be32_to_cpu(idb->table_desc.len),
919			       sizeof(*db));
920			ioctx->n_rbuf = 0;
921			ret = -EINVAL;
922			goto out;
923		}
924
925		if (ioctx->n_rbuf == 1)
926			ioctx->rbufs = &ioctx->single_rbuf;
927		else {
928			ioctx->rbufs =
929				kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
930			if (!ioctx->rbufs) {
931				ioctx->n_rbuf = 0;
932				ret = -ENOMEM;
933				goto out;
934			}
935		}
936
937		db = idb->desc_list;
938		memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
939		*data_len = be32_to_cpu(idb->len);
940	}
941out:
942	return ret;
943}
944
945/**
946 * srpt_init_ch_qp() - Initialize queue pair attributes.
947 *
948 * Initialized the attributes of queue pair 'qp' by allowing local write,
949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
950 */
951static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
952{
953	struct ib_qp_attr *attr;
954	int ret;
955
956	attr = kzalloc(sizeof *attr, GFP_KERNEL);
957	if (!attr)
958		return -ENOMEM;
959
960	attr->qp_state = IB_QPS_INIT;
961	attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
962	    IB_ACCESS_REMOTE_WRITE;
963	attr->port_num = ch->sport->port;
964	attr->pkey_index = 0;
965
966	ret = ib_modify_qp(qp, attr,
967			   IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
968			   IB_QP_PKEY_INDEX);
969
970	kfree(attr);
971	return ret;
972}
973
974/**
975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
976 * @ch: channel of the queue pair.
977 * @qp: queue pair to change the state of.
978 *
979 * Returns zero upon success and a negative value upon failure.
980 *
981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
982 * If this structure ever becomes larger, it might be necessary to allocate
983 * it dynamically instead of on the stack.
984 */
985static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
986{
987	struct ib_qp_attr qp_attr;
988	int attr_mask;
989	int ret;
990
991	qp_attr.qp_state = IB_QPS_RTR;
992	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
993	if (ret)
994		goto out;
995
996	qp_attr.max_dest_rd_atomic = 4;
997
998	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
999
1000out:
1001	return ret;
1002}
1003
1004/**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016{
1017	struct ib_qp_attr qp_attr;
1018	int attr_mask;
1019	int ret;
1020
1021	qp_attr.qp_state = IB_QPS_RTS;
1022	ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023	if (ret)
1024		goto out;
1025
1026	qp_attr.max_rd_atomic = 4;
1027
1028	ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030out:
1031	return ret;
1032}
1033
1034/**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038{
1039	struct ib_qp_attr qp_attr;
1040
1041	qp_attr.qp_state = IB_QPS_ERR;
1042	return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043}
1044
1045/**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049				    struct srpt_send_ioctx *ioctx)
1050{
1051	struct scatterlist *sg;
1052	enum dma_data_direction dir;
1053
1054	BUG_ON(!ch);
1055	BUG_ON(!ioctx);
1056	BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058	while (ioctx->n_rdma)
1059		kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061	kfree(ioctx->rdma_ius);
1062	ioctx->rdma_ius = NULL;
1063
1064	if (ioctx->mapped_sg_count) {
1065		sg = ioctx->sg;
1066		WARN_ON(!sg);
1067		dir = ioctx->cmd.data_direction;
1068		BUG_ON(dir == DMA_NONE);
1069		ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070				opposite_dma_dir(dir));
1071		ioctx->mapped_sg_count = 0;
1072	}
1073}
1074
1075/**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079				 struct srpt_send_ioctx *ioctx)
1080{
1081	struct ib_device *dev = ch->sport->sdev->device;
1082	struct se_cmd *cmd;
1083	struct scatterlist *sg, *sg_orig;
1084	int sg_cnt;
1085	enum dma_data_direction dir;
1086	struct rdma_iu *riu;
1087	struct srp_direct_buf *db;
1088	dma_addr_t dma_addr;
1089	struct ib_sge *sge;
1090	u64 raddr;
1091	u32 rsize;
1092	u32 tsize;
1093	u32 dma_len;
1094	int count, nrdma;
1095	int i, j, k;
1096
1097	BUG_ON(!ch);
1098	BUG_ON(!ioctx);
1099	cmd = &ioctx->cmd;
1100	dir = cmd->data_direction;
1101	BUG_ON(dir == DMA_NONE);
1102
1103	ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1104	ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105
1106	count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107			      opposite_dma_dir(dir));
1108	if (unlikely(!count))
1109		return -EAGAIN;
1110
1111	ioctx->mapped_sg_count = count;
1112
1113	if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114		nrdma = ioctx->n_rdma_ius;
1115	else {
1116		nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117			+ ioctx->n_rbuf;
1118
1119		ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120		if (!ioctx->rdma_ius)
1121			goto free_mem;
1122
1123		ioctx->n_rdma_ius = nrdma;
1124	}
1125
1126	db = ioctx->rbufs;
1127	tsize = cmd->data_length;
1128	dma_len = ib_sg_dma_len(dev, &sg[0]);
1129	riu = ioctx->rdma_ius;
1130
1131	/*
1132	 * For each remote desc - calculate the #ib_sge.
1133	 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134	 *      each remote desc rdma_iu is required a rdma wr;
1135	 * else
1136	 *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1137	 *      another rdma wr
1138	 */
1139	for (i = 0, j = 0;
1140	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141		rsize = be32_to_cpu(db->len);
1142		raddr = be64_to_cpu(db->va);
1143		riu->raddr = raddr;
1144		riu->rkey = be32_to_cpu(db->key);
1145		riu->sge_cnt = 0;
1146
1147		/* calculate how many sge required for this remote_buf */
1148		while (rsize > 0 && tsize > 0) {
1149
1150			if (rsize >= dma_len) {
1151				tsize -= dma_len;
1152				rsize -= dma_len;
1153				raddr += dma_len;
1154
1155				if (tsize > 0) {
1156					++j;
1157					if (j < count) {
1158						sg = sg_next(sg);
1159						dma_len = ib_sg_dma_len(
1160								dev, sg);
1161					}
1162				}
1163			} else {
1164				tsize -= rsize;
1165				dma_len -= rsize;
1166				rsize = 0;
1167			}
1168
1169			++riu->sge_cnt;
1170
1171			if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1172				++ioctx->n_rdma;
1173				riu->sge =
1174				    kmalloc(riu->sge_cnt * sizeof *riu->sge,
1175					    GFP_KERNEL);
1176				if (!riu->sge)
1177					goto free_mem;
1178
1179				++riu;
1180				riu->sge_cnt = 0;
1181				riu->raddr = raddr;
1182				riu->rkey = be32_to_cpu(db->key);
1183			}
1184		}
1185
1186		++ioctx->n_rdma;
1187		riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1188				   GFP_KERNEL);
1189		if (!riu->sge)
1190			goto free_mem;
1191	}
1192
1193	db = ioctx->rbufs;
1194	tsize = cmd->data_length;
1195	riu = ioctx->rdma_ius;
1196	sg = sg_orig;
1197	dma_len = ib_sg_dma_len(dev, &sg[0]);
1198	dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199
1200	/* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1201	for (i = 0, j = 0;
1202	     j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1203		rsize = be32_to_cpu(db->len);
1204		sge = riu->sge;
1205		k = 0;
1206
1207		while (rsize > 0 && tsize > 0) {
1208			sge->addr = dma_addr;
1209			sge->lkey = ch->sport->sdev->mr->lkey;
1210
1211			if (rsize >= dma_len) {
1212				sge->length =
1213					(tsize < dma_len) ? tsize : dma_len;
1214				tsize -= dma_len;
1215				rsize -= dma_len;
1216
1217				if (tsize > 0) {
1218					++j;
1219					if (j < count) {
1220						sg = sg_next(sg);
1221						dma_len = ib_sg_dma_len(
1222								dev, sg);
1223						dma_addr = ib_sg_dma_address(
1224								dev, sg);
1225					}
1226				}
1227			} else {
1228				sge->length = (tsize < rsize) ? tsize : rsize;
1229				tsize -= rsize;
1230				dma_len -= rsize;
1231				dma_addr += rsize;
1232				rsize = 0;
1233			}
1234
1235			++k;
1236			if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1237				++riu;
1238				sge = riu->sge;
1239				k = 0;
1240			} else if (rsize > 0 && tsize > 0)
1241				++sge;
1242		}
1243	}
1244
1245	return 0;
1246
1247free_mem:
1248	srpt_unmap_sg_to_ib_sge(ch, ioctx);
1249
1250	return -ENOMEM;
1251}
1252
1253/**
1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255 */
1256static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1257{
1258	struct srpt_send_ioctx *ioctx;
1259	unsigned long flags;
1260
1261	BUG_ON(!ch);
1262
1263	ioctx = NULL;
1264	spin_lock_irqsave(&ch->spinlock, flags);
1265	if (!list_empty(&ch->free_list)) {
1266		ioctx = list_first_entry(&ch->free_list,
1267					 struct srpt_send_ioctx, free_list);
1268		list_del(&ioctx->free_list);
1269	}
1270	spin_unlock_irqrestore(&ch->spinlock, flags);
1271
1272	if (!ioctx)
1273		return ioctx;
1274
1275	BUG_ON(ioctx->ch != ch);
1276	spin_lock_init(&ioctx->spinlock);
1277	ioctx->state = SRPT_STATE_NEW;
1278	ioctx->n_rbuf = 0;
1279	ioctx->rbufs = NULL;
1280	ioctx->n_rdma = 0;
1281	ioctx->n_rdma_ius = 0;
1282	ioctx->rdma_ius = NULL;
1283	ioctx->mapped_sg_count = 0;
1284	init_completion(&ioctx->tx_done);
1285	ioctx->queue_status_only = false;
1286	/*
1287	 * transport_init_se_cmd() does not initialize all fields, so do it
1288	 * here.
1289	 */
1290	memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1291	memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1292
1293	return ioctx;
1294}
1295
1296/**
1297 * srpt_abort_cmd() - Abort a SCSI command.
1298 * @ioctx:   I/O context associated with the SCSI command.
1299 * @context: Preferred execution context.
1300 */
1301static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1302{
1303	enum srpt_command_state state;
1304	unsigned long flags;
1305
1306	BUG_ON(!ioctx);
1307
1308	/*
1309	 * If the command is in a state where the target core is waiting for
1310	 * the ib_srpt driver, change the state to the next state. Changing
1311	 * the state of the command from SRPT_STATE_NEED_DATA to
1312	 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1313	 * function a second time.
1314	 */
1315
1316	spin_lock_irqsave(&ioctx->spinlock, flags);
1317	state = ioctx->state;
1318	switch (state) {
1319	case SRPT_STATE_NEED_DATA:
1320		ioctx->state = SRPT_STATE_DATA_IN;
1321		break;
1322	case SRPT_STATE_DATA_IN:
1323	case SRPT_STATE_CMD_RSP_SENT:
1324	case SRPT_STATE_MGMT_RSP_SENT:
1325		ioctx->state = SRPT_STATE_DONE;
1326		break;
1327	default:
1328		break;
1329	}
1330	spin_unlock_irqrestore(&ioctx->spinlock, flags);
1331
1332	if (state == SRPT_STATE_DONE) {
1333		struct srpt_rdma_ch *ch = ioctx->ch;
1334
1335		BUG_ON(ch->sess == NULL);
1336
1337		target_put_sess_cmd(&ioctx->cmd);
1338		goto out;
1339	}
1340
1341	pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1342		 ioctx->tag);
1343
1344	switch (state) {
1345	case SRPT_STATE_NEW:
1346	case SRPT_STATE_DATA_IN:
1347	case SRPT_STATE_MGMT:
1348		/*
1349		 * Do nothing - defer abort processing until
1350		 * srpt_queue_response() is invoked.
1351		 */
1352		WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1353		break;
1354	case SRPT_STATE_NEED_DATA:
1355		/* DMA_TO_DEVICE (write) - RDMA read error. */
1356
1357		/* XXX(hch): this is a horrible layering violation.. */
1358		spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1359		ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1360		spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1361		break;
1362	case SRPT_STATE_CMD_RSP_SENT:
1363		/*
1364		 * SRP_RSP sending failed or the SRP_RSP send completion has
1365		 * not been received in time.
1366		 */
1367		srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1368		target_put_sess_cmd(&ioctx->cmd);
1369		break;
1370	case SRPT_STATE_MGMT_RSP_SENT:
1371		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1372		target_put_sess_cmd(&ioctx->cmd);
1373		break;
1374	default:
1375		WARN(1, "Unexpected command state (%d)", state);
1376		break;
1377	}
1378
1379out:
1380	return state;
1381}
1382
1383/**
1384 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1385 */
1386static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1387{
1388	struct srpt_send_ioctx *ioctx;
1389	enum srpt_command_state state;
1390	struct se_cmd *cmd;
1391	u32 index;
1392
1393	atomic_inc(&ch->sq_wr_avail);
1394
1395	index = idx_from_wr_id(wr_id);
1396	ioctx = ch->ioctx_ring[index];
1397	state = srpt_get_cmd_state(ioctx);
1398	cmd = &ioctx->cmd;
1399
1400	WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1401		&& state != SRPT_STATE_MGMT_RSP_SENT
1402		&& state != SRPT_STATE_NEED_DATA
1403		&& state != SRPT_STATE_DONE);
1404
1405	/* If SRP_RSP sending failed, undo the ch->req_lim change. */
1406	if (state == SRPT_STATE_CMD_RSP_SENT
1407	    || state == SRPT_STATE_MGMT_RSP_SENT)
1408		atomic_dec(&ch->req_lim);
1409
1410	srpt_abort_cmd(ioctx);
1411}
1412
1413/**
1414 * srpt_handle_send_comp() - Process an IB send completion notification.
1415 */
1416static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1417				  struct srpt_send_ioctx *ioctx)
1418{
1419	enum srpt_command_state state;
1420
1421	atomic_inc(&ch->sq_wr_avail);
1422
1423	state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1424
1425	if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1426		    && state != SRPT_STATE_MGMT_RSP_SENT
1427		    && state != SRPT_STATE_DONE))
1428		pr_debug("state = %d\n", state);
1429
1430	if (state != SRPT_STATE_DONE) {
1431		srpt_unmap_sg_to_ib_sge(ch, ioctx);
1432		transport_generic_free_cmd(&ioctx->cmd, 0);
1433	} else {
1434		pr_err("IB completion has been received too late for"
1435		       " wr_id = %u.\n", ioctx->ioctx.index);
1436	}
1437}
1438
1439/**
1440 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1441 *
1442 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1443 * the data that has been transferred via IB RDMA had to be postponed until the
1444 * check_stop_free() callback.  None of this is necessary anymore and needs to
1445 * be cleaned up.
1446 */
1447static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1448				  struct srpt_send_ioctx *ioctx,
1449				  enum srpt_opcode opcode)
1450{
1451	WARN_ON(ioctx->n_rdma <= 0);
1452	atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1453
1454	if (opcode == SRPT_RDMA_READ_LAST) {
1455		if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1456						SRPT_STATE_DATA_IN))
1457			target_execute_cmd(&ioctx->cmd);
1458		else
1459			pr_err("%s[%d]: wrong state = %d\n", __func__,
1460			       __LINE__, srpt_get_cmd_state(ioctx));
1461	} else if (opcode == SRPT_RDMA_ABORT) {
1462		ioctx->rdma_aborted = true;
1463	} else {
1464		WARN(true, "unexpected opcode %d\n", opcode);
1465	}
1466}
1467
1468/**
1469 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1470 */
1471static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1472				      struct srpt_send_ioctx *ioctx,
1473				      enum srpt_opcode opcode)
1474{
1475	struct se_cmd *cmd;
1476	enum srpt_command_state state;
1477
1478	cmd = &ioctx->cmd;
1479	state = srpt_get_cmd_state(ioctx);
1480	switch (opcode) {
1481	case SRPT_RDMA_READ_LAST:
1482		if (ioctx->n_rdma <= 0) {
1483			pr_err("Received invalid RDMA read"
1484			       " error completion with idx %d\n",
1485			       ioctx->ioctx.index);
1486			break;
1487		}
1488		atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1489		if (state == SRPT_STATE_NEED_DATA)
1490			srpt_abort_cmd(ioctx);
1491		else
1492			pr_err("%s[%d]: wrong state = %d\n",
1493			       __func__, __LINE__, state);
1494		break;
1495	case SRPT_RDMA_WRITE_LAST:
1496		break;
1497	default:
1498		pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1499		break;
1500	}
1501}
1502
1503/**
1504 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1505 * @ch: RDMA channel through which the request has been received.
1506 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1507 *   be built in the buffer ioctx->buf points at and hence this function will
1508 *   overwrite the request data.
1509 * @tag: tag of the request for which this response is being generated.
1510 * @status: value for the STATUS field of the SRP_RSP information unit.
1511 *
1512 * Returns the size in bytes of the SRP_RSP response.
1513 *
1514 * An SRP_RSP response contains a SCSI status or service response. See also
1515 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1516 * response. See also SPC-2 for more information about sense data.
1517 */
1518static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1519			      struct srpt_send_ioctx *ioctx, u64 tag,
1520			      int status)
1521{
1522	struct srp_rsp *srp_rsp;
1523	const u8 *sense_data;
1524	int sense_data_len, max_sense_len;
1525
1526	/*
1527	 * The lowest bit of all SAM-3 status codes is zero (see also
1528	 * paragraph 5.3 in SAM-3).
1529	 */
1530	WARN_ON(status & 1);
1531
1532	srp_rsp = ioctx->ioctx.buf;
1533	BUG_ON(!srp_rsp);
1534
1535	sense_data = ioctx->sense_data;
1536	sense_data_len = ioctx->cmd.scsi_sense_length;
1537	WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1538
1539	memset(srp_rsp, 0, sizeof *srp_rsp);
1540	srp_rsp->opcode = SRP_RSP;
1541	srp_rsp->req_lim_delta =
1542		__constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1543	srp_rsp->tag = tag;
1544	srp_rsp->status = status;
1545
1546	if (sense_data_len) {
1547		BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1548		max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1549		if (sense_data_len > max_sense_len) {
1550			pr_warn("truncated sense data from %d to %d"
1551				" bytes\n", sense_data_len, max_sense_len);
1552			sense_data_len = max_sense_len;
1553		}
1554
1555		srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1556		srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1557		memcpy(srp_rsp + 1, sense_data, sense_data_len);
1558	}
1559
1560	return sizeof(*srp_rsp) + sense_data_len;
1561}
1562
1563/**
1564 * srpt_build_tskmgmt_rsp() - Build a task management response.
1565 * @ch:       RDMA channel through which the request has been received.
1566 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1567 * @rsp_code: RSP_CODE that will be stored in the response.
1568 * @tag:      Tag of the request for which this response is being generated.
1569 *
1570 * Returns the size in bytes of the SRP_RSP response.
1571 *
1572 * An SRP_RSP response contains a SCSI status or service response. See also
1573 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1574 * response.
1575 */
1576static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1577				  struct srpt_send_ioctx *ioctx,
1578				  u8 rsp_code, u64 tag)
1579{
1580	struct srp_rsp *srp_rsp;
1581	int resp_data_len;
1582	int resp_len;
1583
1584	resp_data_len = 4;
1585	resp_len = sizeof(*srp_rsp) + resp_data_len;
1586
1587	srp_rsp = ioctx->ioctx.buf;
1588	BUG_ON(!srp_rsp);
1589	memset(srp_rsp, 0, sizeof *srp_rsp);
1590
1591	srp_rsp->opcode = SRP_RSP;
1592	srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1593				    + atomic_xchg(&ch->req_lim_delta, 0));
1594	srp_rsp->tag = tag;
1595
1596	srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1597	srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1598	srp_rsp->data[3] = rsp_code;
1599
1600	return resp_len;
1601}
1602
1603#define NO_SUCH_LUN ((uint64_t)-1LL)
1604
1605/*
1606 * SCSI LUN addressing method. See also SAM-2 and the section about
1607 * eight byte LUNs.
1608 */
1609enum scsi_lun_addr_method {
1610	SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1611	SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1612	SCSI_LUN_ADDR_METHOD_LUN          = 2,
1613	SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1614};
1615
1616/*
1617 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1618 *
1619 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1620 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1621 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1622 */
1623static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1624{
1625	uint64_t res = NO_SUCH_LUN;
1626	int addressing_method;
1627
1628	if (unlikely(len < 2)) {
1629		pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1630		       len);
1631		goto out;
1632	}
1633
1634	switch (len) {
1635	case 8:
1636		if ((*((__be64 *)lun) &
1637		     __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1638			goto out_err;
1639		break;
1640	case 4:
1641		if (*((__be16 *)&lun[2]) != 0)
1642			goto out_err;
1643		break;
1644	case 6:
1645		if (*((__be32 *)&lun[2]) != 0)
1646			goto out_err;
1647		break;
1648	case 2:
1649		break;
1650	default:
1651		goto out_err;
1652	}
1653
1654	addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1655	switch (addressing_method) {
1656	case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1657	case SCSI_LUN_ADDR_METHOD_FLAT:
1658	case SCSI_LUN_ADDR_METHOD_LUN:
1659		res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1660		break;
1661
1662	case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1663	default:
1664		pr_err("Unimplemented LUN addressing method %u\n",
1665		       addressing_method);
1666		break;
1667	}
1668
1669out:
1670	return res;
1671
1672out_err:
1673	pr_err("Support for multi-level LUNs has not yet been implemented\n");
1674	goto out;
1675}
1676
1677static int srpt_check_stop_free(struct se_cmd *cmd)
1678{
1679	struct srpt_send_ioctx *ioctx = container_of(cmd,
1680				struct srpt_send_ioctx, cmd);
1681
1682	return target_put_sess_cmd(&ioctx->cmd);
1683}
1684
1685/**
1686 * srpt_handle_cmd() - Process SRP_CMD.
1687 */
1688static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1689			   struct srpt_recv_ioctx *recv_ioctx,
1690			   struct srpt_send_ioctx *send_ioctx)
1691{
1692	struct se_cmd *cmd;
1693	struct srp_cmd *srp_cmd;
1694	uint64_t unpacked_lun;
1695	u64 data_len;
1696	enum dma_data_direction dir;
1697	sense_reason_t ret;
1698	int rc;
1699
1700	BUG_ON(!send_ioctx);
1701
1702	srp_cmd = recv_ioctx->ioctx.buf;
1703	cmd = &send_ioctx->cmd;
1704	send_ioctx->tag = srp_cmd->tag;
1705
1706	switch (srp_cmd->task_attr) {
1707	case SRP_CMD_SIMPLE_Q:
1708		cmd->sam_task_attr = TCM_SIMPLE_TAG;
1709		break;
1710	case SRP_CMD_ORDERED_Q:
1711	default:
1712		cmd->sam_task_attr = TCM_ORDERED_TAG;
1713		break;
1714	case SRP_CMD_HEAD_OF_Q:
1715		cmd->sam_task_attr = TCM_HEAD_TAG;
1716		break;
1717	case SRP_CMD_ACA:
1718		cmd->sam_task_attr = TCM_ACA_TAG;
1719		break;
1720	}
1721
1722	if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1723		pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1724		       srp_cmd->tag);
1725		ret = TCM_INVALID_CDB_FIELD;
1726		goto send_sense;
1727	}
1728
1729	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1730				       sizeof(srp_cmd->lun));
1731	rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1732			&send_ioctx->sense_data[0], unpacked_lun, data_len,
1733			TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1734	if (rc != 0) {
1735		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1736		goto send_sense;
1737	}
1738	return 0;
1739
1740send_sense:
1741	transport_send_check_condition_and_sense(cmd, ret, 0);
1742	return -1;
1743}
1744
1745static int srp_tmr_to_tcm(int fn)
1746{
1747	switch (fn) {
1748	case SRP_TSK_ABORT_TASK:
1749		return TMR_ABORT_TASK;
1750	case SRP_TSK_ABORT_TASK_SET:
1751		return TMR_ABORT_TASK_SET;
1752	case SRP_TSK_CLEAR_TASK_SET:
1753		return TMR_CLEAR_TASK_SET;
1754	case SRP_TSK_LUN_RESET:
1755		return TMR_LUN_RESET;
1756	case SRP_TSK_CLEAR_ACA:
1757		return TMR_CLEAR_ACA;
1758	default:
1759		return -1;
1760	}
1761}
1762
1763/**
1764 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1765 *
1766 * Returns 0 if and only if the request will be processed by the target core.
1767 *
1768 * For more information about SRP_TSK_MGMT information units, see also section
1769 * 6.7 in the SRP r16a document.
1770 */
1771static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1772				 struct srpt_recv_ioctx *recv_ioctx,
1773				 struct srpt_send_ioctx *send_ioctx)
1774{
1775	struct srp_tsk_mgmt *srp_tsk;
1776	struct se_cmd *cmd;
1777	struct se_session *sess = ch->sess;
1778	uint64_t unpacked_lun;
1779	int tcm_tmr;
1780	int rc;
1781
1782	BUG_ON(!send_ioctx);
1783
1784	srp_tsk = recv_ioctx->ioctx.buf;
1785	cmd = &send_ioctx->cmd;
1786
1787	pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1788		 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1789		 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1790
1791	srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1792	send_ioctx->tag = srp_tsk->tag;
1793	tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1794	unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1795				       sizeof(srp_tsk->lun));
1796	rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1797				srp_tsk, tcm_tmr, GFP_KERNEL, srp_tsk->task_tag,
1798				TARGET_SCF_ACK_KREF);
1799	if (rc != 0) {
1800		send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1801		goto fail;
1802	}
1803	return;
1804fail:
1805	transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1806}
1807
1808/**
1809 * srpt_handle_new_iu() - Process a newly received information unit.
1810 * @ch:    RDMA channel through which the information unit has been received.
1811 * @ioctx: SRPT I/O context associated with the information unit.
1812 */
1813static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1814			       struct srpt_recv_ioctx *recv_ioctx,
1815			       struct srpt_send_ioctx *send_ioctx)
1816{
1817	struct srp_cmd *srp_cmd;
1818	enum rdma_ch_state ch_state;
1819
1820	BUG_ON(!ch);
1821	BUG_ON(!recv_ioctx);
1822
1823	ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1824				   recv_ioctx->ioctx.dma, srp_max_req_size,
1825				   DMA_FROM_DEVICE);
1826
1827	ch_state = srpt_get_ch_state(ch);
1828	if (unlikely(ch_state == CH_CONNECTING)) {
1829		list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1830		goto out;
1831	}
1832
1833	if (unlikely(ch_state != CH_LIVE))
1834		goto out;
1835
1836	srp_cmd = recv_ioctx->ioctx.buf;
1837	if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1838		if (!send_ioctx)
1839			send_ioctx = srpt_get_send_ioctx(ch);
1840		if (unlikely(!send_ioctx)) {
1841			list_add_tail(&recv_ioctx->wait_list,
1842				      &ch->cmd_wait_list);
1843			goto out;
1844		}
1845	}
1846
1847	switch (srp_cmd->opcode) {
1848	case SRP_CMD:
1849		srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1850		break;
1851	case SRP_TSK_MGMT:
1852		srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1853		break;
1854	case SRP_I_LOGOUT:
1855		pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1856		break;
1857	case SRP_CRED_RSP:
1858		pr_debug("received SRP_CRED_RSP\n");
1859		break;
1860	case SRP_AER_RSP:
1861		pr_debug("received SRP_AER_RSP\n");
1862		break;
1863	case SRP_RSP:
1864		pr_err("Received SRP_RSP\n");
1865		break;
1866	default:
1867		pr_err("received IU with unknown opcode 0x%x\n",
1868		       srp_cmd->opcode);
1869		break;
1870	}
1871
1872	srpt_post_recv(ch->sport->sdev, recv_ioctx);
1873out:
1874	return;
1875}
1876
1877static void srpt_process_rcv_completion(struct ib_cq *cq,
1878					struct srpt_rdma_ch *ch,
1879					struct ib_wc *wc)
1880{
1881	struct srpt_device *sdev = ch->sport->sdev;
1882	struct srpt_recv_ioctx *ioctx;
1883	u32 index;
1884
1885	index = idx_from_wr_id(wc->wr_id);
1886	if (wc->status == IB_WC_SUCCESS) {
1887		int req_lim;
1888
1889		req_lim = atomic_dec_return(&ch->req_lim);
1890		if (unlikely(req_lim < 0))
1891			pr_err("req_lim = %d < 0\n", req_lim);
1892		ioctx = sdev->ioctx_ring[index];
1893		srpt_handle_new_iu(ch, ioctx, NULL);
1894	} else {
1895		pr_info("receiving failed for idx %u with status %d\n",
1896			index, wc->status);
1897	}
1898}
1899
1900/**
1901 * srpt_process_send_completion() - Process an IB send completion.
1902 *
1903 * Note: Although this has not yet been observed during tests, at least in
1904 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1905 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1906 * value in each response is set to one, and it is possible that this response
1907 * makes the initiator send a new request before the send completion for that
1908 * response has been processed. This could e.g. happen if the call to
1909 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1910 * if IB retransmission causes generation of the send completion to be
1911 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1912 * are queued on cmd_wait_list. The code below processes these delayed
1913 * requests one at a time.
1914 */
1915static void srpt_process_send_completion(struct ib_cq *cq,
1916					 struct srpt_rdma_ch *ch,
1917					 struct ib_wc *wc)
1918{
1919	struct srpt_send_ioctx *send_ioctx;
1920	uint32_t index;
1921	enum srpt_opcode opcode;
1922
1923	index = idx_from_wr_id(wc->wr_id);
1924	opcode = opcode_from_wr_id(wc->wr_id);
1925	send_ioctx = ch->ioctx_ring[index];
1926	if (wc->status == IB_WC_SUCCESS) {
1927		if (opcode == SRPT_SEND)
1928			srpt_handle_send_comp(ch, send_ioctx);
1929		else {
1930			WARN_ON(opcode != SRPT_RDMA_ABORT &&
1931				wc->opcode != IB_WC_RDMA_READ);
1932			srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1933		}
1934	} else {
1935		if (opcode == SRPT_SEND) {
1936			pr_info("sending response for idx %u failed"
1937				" with status %d\n", index, wc->status);
1938			srpt_handle_send_err_comp(ch, wc->wr_id);
1939		} else if (opcode != SRPT_RDMA_MID) {
1940			pr_info("RDMA t %d for idx %u failed with"
1941				" status %d\n", opcode, index, wc->status);
1942			srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1943		}
1944	}
1945
1946	while (unlikely(opcode == SRPT_SEND
1947			&& !list_empty(&ch->cmd_wait_list)
1948			&& srpt_get_ch_state(ch) == CH_LIVE
1949			&& (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
1950		struct srpt_recv_ioctx *recv_ioctx;
1951
1952		recv_ioctx = list_first_entry(&ch->cmd_wait_list,
1953					      struct srpt_recv_ioctx,
1954					      wait_list);
1955		list_del(&recv_ioctx->wait_list);
1956		srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
1957	}
1958}
1959
1960static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
1961{
1962	struct ib_wc *const wc = ch->wc;
1963	int i, n;
1964
1965	WARN_ON(cq != ch->cq);
1966
1967	ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1968	while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
1969		for (i = 0; i < n; i++) {
1970			if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
1971				srpt_process_rcv_completion(cq, ch, &wc[i]);
1972			else
1973				srpt_process_send_completion(cq, ch, &wc[i]);
1974		}
1975	}
1976}
1977
1978/**
1979 * srpt_completion() - IB completion queue callback function.
1980 *
1981 * Notes:
1982 * - It is guaranteed that a completion handler will never be invoked
1983 *   concurrently on two different CPUs for the same completion queue. See also
1984 *   Documentation/infiniband/core_locking.txt and the implementation of
1985 *   handle_edge_irq() in kernel/irq/chip.c.
1986 * - When threaded IRQs are enabled, completion handlers are invoked in thread
1987 *   context instead of interrupt context.
1988 */
1989static void srpt_completion(struct ib_cq *cq, void *ctx)
1990{
1991	struct srpt_rdma_ch *ch = ctx;
1992
1993	wake_up_interruptible(&ch->wait_queue);
1994}
1995
1996static int srpt_compl_thread(void *arg)
1997{
1998	struct srpt_rdma_ch *ch;
1999
2000	/* Hibernation / freezing of the SRPT kernel thread is not supported. */
2001	current->flags |= PF_NOFREEZE;
2002
2003	ch = arg;
2004	BUG_ON(!ch);
2005	pr_info("Session %s: kernel thread %s (PID %d) started\n",
2006		ch->sess_name, ch->thread->comm, current->pid);
2007	while (!kthread_should_stop()) {
2008		wait_event_interruptible(ch->wait_queue,
2009			(srpt_process_completion(ch->cq, ch),
2010			 kthread_should_stop()));
2011	}
2012	pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2013		ch->sess_name, ch->thread->comm, current->pid);
2014	return 0;
2015}
2016
2017/**
2018 * srpt_create_ch_ib() - Create receive and send completion queues.
2019 */
2020static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2021{
2022	struct ib_qp_init_attr *qp_init;
2023	struct srpt_port *sport = ch->sport;
2024	struct srpt_device *sdev = sport->sdev;
2025	u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2026	int ret;
2027
2028	WARN_ON(ch->rq_size < 1);
2029
2030	ret = -ENOMEM;
2031	qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2032	if (!qp_init)
2033		goto out;
2034
2035retry:
2036	ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2037			      ch->rq_size + srp_sq_size, 0);
2038	if (IS_ERR(ch->cq)) {
2039		ret = PTR_ERR(ch->cq);
2040		pr_err("failed to create CQ cqe= %d ret= %d\n",
2041		       ch->rq_size + srp_sq_size, ret);
2042		goto out;
2043	}
2044
2045	qp_init->qp_context = (void *)ch;
2046	qp_init->event_handler
2047		= (void(*)(struct ib_event *, void*))srpt_qp_event;
2048	qp_init->send_cq = ch->cq;
2049	qp_init->recv_cq = ch->cq;
2050	qp_init->srq = sdev->srq;
2051	qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2052	qp_init->qp_type = IB_QPT_RC;
2053	qp_init->cap.max_send_wr = srp_sq_size;
2054	qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2055
2056	ch->qp = ib_create_qp(sdev->pd, qp_init);
2057	if (IS_ERR(ch->qp)) {
2058		ret = PTR_ERR(ch->qp);
2059		if (ret == -ENOMEM) {
2060			srp_sq_size /= 2;
2061			if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2062				ib_destroy_cq(ch->cq);
2063				goto retry;
2064			}
2065		}
2066		pr_err("failed to create_qp ret= %d\n", ret);
2067		goto err_destroy_cq;
2068	}
2069
2070	atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2071
2072	pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2073		 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2074		 qp_init->cap.max_send_wr, ch->cm_id);
2075
2076	ret = srpt_init_ch_qp(ch, ch->qp);
2077	if (ret)
2078		goto err_destroy_qp;
2079
2080	init_waitqueue_head(&ch->wait_queue);
2081
2082	pr_debug("creating thread for session %s\n", ch->sess_name);
2083
2084	ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2085	if (IS_ERR(ch->thread)) {
2086		pr_err("failed to create kernel thread %ld\n",
2087		       PTR_ERR(ch->thread));
2088		ch->thread = NULL;
2089		goto err_destroy_qp;
2090	}
2091
2092out:
2093	kfree(qp_init);
2094	return ret;
2095
2096err_destroy_qp:
2097	ib_destroy_qp(ch->qp);
2098err_destroy_cq:
2099	ib_destroy_cq(ch->cq);
2100	goto out;
2101}
2102
2103static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2104{
2105	if (ch->thread)
2106		kthread_stop(ch->thread);
2107
2108	ib_destroy_qp(ch->qp);
2109	ib_destroy_cq(ch->cq);
2110}
2111
2112/**
2113 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2114 *
2115 * Reset the QP and make sure all resources associated with the channel will
2116 * be deallocated at an appropriate time.
2117 *
2118 * Note: The caller must hold ch->sport->sdev->spinlock.
2119 */
2120static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2121{
2122	struct srpt_device *sdev;
2123	enum rdma_ch_state prev_state;
2124	unsigned long flags;
2125
2126	sdev = ch->sport->sdev;
2127
2128	spin_lock_irqsave(&ch->spinlock, flags);
2129	prev_state = ch->state;
2130	switch (prev_state) {
2131	case CH_CONNECTING:
2132	case CH_LIVE:
2133		ch->state = CH_DISCONNECTING;
2134		break;
2135	default:
2136		break;
2137	}
2138	spin_unlock_irqrestore(&ch->spinlock, flags);
2139
2140	switch (prev_state) {
2141	case CH_CONNECTING:
2142		ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2143			       NULL, 0);
2144		/* fall through */
2145	case CH_LIVE:
2146		if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2147			pr_err("sending CM DREQ failed.\n");
2148		break;
2149	case CH_DISCONNECTING:
2150		break;
2151	case CH_DRAINING:
2152	case CH_RELEASING:
2153		break;
2154	}
2155}
2156
2157/**
2158 * srpt_close_ch() - Close an RDMA channel.
2159 */
2160static void srpt_close_ch(struct srpt_rdma_ch *ch)
2161{
2162	struct srpt_device *sdev;
2163
2164	sdev = ch->sport->sdev;
2165	spin_lock_irq(&sdev->spinlock);
2166	__srpt_close_ch(ch);
2167	spin_unlock_irq(&sdev->spinlock);
2168}
2169
2170/**
2171 * srpt_shutdown_session() - Whether or not a session may be shut down.
2172 */
2173static int srpt_shutdown_session(struct se_session *se_sess)
2174{
2175	struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2176	unsigned long flags;
2177
2178	spin_lock_irqsave(&ch->spinlock, flags);
2179	if (ch->in_shutdown) {
2180		spin_unlock_irqrestore(&ch->spinlock, flags);
2181		return true;
2182	}
2183
2184	ch->in_shutdown = true;
2185	target_sess_cmd_list_set_waiting(se_sess);
2186	spin_unlock_irqrestore(&ch->spinlock, flags);
2187
2188	return true;
2189}
2190
2191/**
2192 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2193 * @cm_id: Pointer to the CM ID of the channel to be drained.
2194 *
2195 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2196 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2197 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2198 * waits until all target sessions for the associated IB device have been
2199 * unregistered and target session registration involves a call to
2200 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2201 * this function has finished).
2202 */
2203static void srpt_drain_channel(struct ib_cm_id *cm_id)
2204{
2205	struct srpt_device *sdev;
2206	struct srpt_rdma_ch *ch;
2207	int ret;
2208	bool do_reset = false;
2209
2210	WARN_ON_ONCE(irqs_disabled());
2211
2212	sdev = cm_id->context;
2213	BUG_ON(!sdev);
2214	spin_lock_irq(&sdev->spinlock);
2215	list_for_each_entry(ch, &sdev->rch_list, list) {
2216		if (ch->cm_id == cm_id) {
2217			do_reset = srpt_test_and_set_ch_state(ch,
2218					CH_CONNECTING, CH_DRAINING) ||
2219				   srpt_test_and_set_ch_state(ch,
2220					CH_LIVE, CH_DRAINING) ||
2221				   srpt_test_and_set_ch_state(ch,
2222					CH_DISCONNECTING, CH_DRAINING);
2223			break;
2224		}
2225	}
2226	spin_unlock_irq(&sdev->spinlock);
2227
2228	if (do_reset) {
2229		if (ch->sess)
2230			srpt_shutdown_session(ch->sess);
2231
2232		ret = srpt_ch_qp_err(ch);
2233		if (ret < 0)
2234			pr_err("Setting queue pair in error state"
2235			       " failed: %d\n", ret);
2236	}
2237}
2238
2239/**
2240 * srpt_find_channel() - Look up an RDMA channel.
2241 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2242 *
2243 * Return NULL if no matching RDMA channel has been found.
2244 */
2245static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2246					      struct ib_cm_id *cm_id)
2247{
2248	struct srpt_rdma_ch *ch;
2249	bool found;
2250
2251	WARN_ON_ONCE(irqs_disabled());
2252	BUG_ON(!sdev);
2253
2254	found = false;
2255	spin_lock_irq(&sdev->spinlock);
2256	list_for_each_entry(ch, &sdev->rch_list, list) {
2257		if (ch->cm_id == cm_id) {
2258			found = true;
2259			break;
2260		}
2261	}
2262	spin_unlock_irq(&sdev->spinlock);
2263
2264	return found ? ch : NULL;
2265}
2266
2267/**
2268 * srpt_release_channel() - Release channel resources.
2269 *
2270 * Schedules the actual release because:
2271 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2272 *   trigger a deadlock.
2273 * - It is not safe to call TCM transport_* functions from interrupt context.
2274 */
2275static void srpt_release_channel(struct srpt_rdma_ch *ch)
2276{
2277	schedule_work(&ch->release_work);
2278}
2279
2280static void srpt_release_channel_work(struct work_struct *w)
2281{
2282	struct srpt_rdma_ch *ch;
2283	struct srpt_device *sdev;
2284	struct se_session *se_sess;
2285
2286	ch = container_of(w, struct srpt_rdma_ch, release_work);
2287	pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2288		 ch->release_done);
2289
2290	sdev = ch->sport->sdev;
2291	BUG_ON(!sdev);
2292
2293	se_sess = ch->sess;
2294	BUG_ON(!se_sess);
2295
2296	target_wait_for_sess_cmds(se_sess);
2297
2298	transport_deregister_session_configfs(se_sess);
2299	transport_deregister_session(se_sess);
2300	ch->sess = NULL;
2301
2302	ib_destroy_cm_id(ch->cm_id);
2303
2304	srpt_destroy_ch_ib(ch);
2305
2306	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2307			     ch->sport->sdev, ch->rq_size,
2308			     ch->rsp_size, DMA_TO_DEVICE);
2309
2310	spin_lock_irq(&sdev->spinlock);
2311	list_del(&ch->list);
2312	spin_unlock_irq(&sdev->spinlock);
2313
2314	if (ch->release_done)
2315		complete(ch->release_done);
2316
2317	wake_up(&sdev->ch_releaseQ);
2318
2319	kfree(ch);
2320}
2321
2322static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2323					       u8 i_port_id[16])
2324{
2325	struct srpt_node_acl *nacl;
2326
2327	list_for_each_entry(nacl, &sport->port_acl_list, list)
2328		if (memcmp(nacl->i_port_id, i_port_id,
2329			   sizeof(nacl->i_port_id)) == 0)
2330			return nacl;
2331
2332	return NULL;
2333}
2334
2335static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2336					     u8 i_port_id[16])
2337{
2338	struct srpt_node_acl *nacl;
2339
2340	spin_lock_irq(&sport->port_acl_lock);
2341	nacl = __srpt_lookup_acl(sport, i_port_id);
2342	spin_unlock_irq(&sport->port_acl_lock);
2343
2344	return nacl;
2345}
2346
2347/**
2348 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2349 *
2350 * Ownership of the cm_id is transferred to the target session if this
2351 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2352 */
2353static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2354			    struct ib_cm_req_event_param *param,
2355			    void *private_data)
2356{
2357	struct srpt_device *sdev = cm_id->context;
2358	struct srpt_port *sport = &sdev->port[param->port - 1];
2359	struct srp_login_req *req;
2360	struct srp_login_rsp *rsp;
2361	struct srp_login_rej *rej;
2362	struct ib_cm_rep_param *rep_param;
2363	struct srpt_rdma_ch *ch, *tmp_ch;
2364	struct srpt_node_acl *nacl;
2365	u32 it_iu_len;
2366	int i;
2367	int ret = 0;
2368
2369	WARN_ON_ONCE(irqs_disabled());
2370
2371	if (WARN_ON(!sdev || !private_data))
2372		return -EINVAL;
2373
2374	req = (struct srp_login_req *)private_data;
2375
2376	it_iu_len = be32_to_cpu(req->req_it_iu_len);
2377
2378	pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2379		" t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2380		" (guid=0x%llx:0x%llx)\n",
2381		be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2382		be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2383		be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2384		be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2385		it_iu_len,
2386		param->port,
2387		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2388		be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2389
2390	rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2391	rej = kzalloc(sizeof *rej, GFP_KERNEL);
2392	rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2393
2394	if (!rsp || !rej || !rep_param) {
2395		ret = -ENOMEM;
2396		goto out;
2397	}
2398
2399	if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2400		rej->reason = __constant_cpu_to_be32(
2401				SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2402		ret = -EINVAL;
2403		pr_err("rejected SRP_LOGIN_REQ because its"
2404		       " length (%d bytes) is out of range (%d .. %d)\n",
2405		       it_iu_len, 64, srp_max_req_size);
2406		goto reject;
2407	}
2408
2409	if (!sport->enabled) {
2410		rej->reason = __constant_cpu_to_be32(
2411			     SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2412		ret = -EINVAL;
2413		pr_err("rejected SRP_LOGIN_REQ because the target port"
2414		       " has not yet been enabled\n");
2415		goto reject;
2416	}
2417
2418	if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2419		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2420
2421		spin_lock_irq(&sdev->spinlock);
2422
2423		list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2424			if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2425			    && !memcmp(ch->t_port_id, req->target_port_id, 16)
2426			    && param->port == ch->sport->port
2427			    && param->listen_id == ch->sport->sdev->cm_id
2428			    && ch->cm_id) {
2429				enum rdma_ch_state ch_state;
2430
2431				ch_state = srpt_get_ch_state(ch);
2432				if (ch_state != CH_CONNECTING
2433				    && ch_state != CH_LIVE)
2434					continue;
2435
2436				/* found an existing channel */
2437				pr_debug("Found existing channel %s"
2438					 " cm_id= %p state= %d\n",
2439					 ch->sess_name, ch->cm_id, ch_state);
2440
2441				__srpt_close_ch(ch);
2442
2443				rsp->rsp_flags =
2444					SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2445			}
2446		}
2447
2448		spin_unlock_irq(&sdev->spinlock);
2449
2450	} else
2451		rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2452
2453	if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2454	    || *(__be64 *)(req->target_port_id + 8) !=
2455	       cpu_to_be64(srpt_service_guid)) {
2456		rej->reason = __constant_cpu_to_be32(
2457				SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2458		ret = -ENOMEM;
2459		pr_err("rejected SRP_LOGIN_REQ because it"
2460		       " has an invalid target port identifier.\n");
2461		goto reject;
2462	}
2463
2464	ch = kzalloc(sizeof *ch, GFP_KERNEL);
2465	if (!ch) {
2466		rej->reason = __constant_cpu_to_be32(
2467					SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2468		pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2469		ret = -ENOMEM;
2470		goto reject;
2471	}
2472
2473	INIT_WORK(&ch->release_work, srpt_release_channel_work);
2474	memcpy(ch->i_port_id, req->initiator_port_id, 16);
2475	memcpy(ch->t_port_id, req->target_port_id, 16);
2476	ch->sport = &sdev->port[param->port - 1];
2477	ch->cm_id = cm_id;
2478	/*
2479	 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2480	 * for the SRP protocol to the command queue size.
2481	 */
2482	ch->rq_size = SRPT_RQ_SIZE;
2483	spin_lock_init(&ch->spinlock);
2484	ch->state = CH_CONNECTING;
2485	INIT_LIST_HEAD(&ch->cmd_wait_list);
2486	ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2487
2488	ch->ioctx_ring = (struct srpt_send_ioctx **)
2489		srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2490				      sizeof(*ch->ioctx_ring[0]),
2491				      ch->rsp_size, DMA_TO_DEVICE);
2492	if (!ch->ioctx_ring)
2493		goto free_ch;
2494
2495	INIT_LIST_HEAD(&ch->free_list);
2496	for (i = 0; i < ch->rq_size; i++) {
2497		ch->ioctx_ring[i]->ch = ch;
2498		list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2499	}
2500
2501	ret = srpt_create_ch_ib(ch);
2502	if (ret) {
2503		rej->reason = __constant_cpu_to_be32(
2504				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2505		pr_err("rejected SRP_LOGIN_REQ because creating"
2506		       " a new RDMA channel failed.\n");
2507		goto free_ring;
2508	}
2509
2510	ret = srpt_ch_qp_rtr(ch, ch->qp);
2511	if (ret) {
2512		rej->reason = __constant_cpu_to_be32(
2513				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2514		pr_err("rejected SRP_LOGIN_REQ because enabling"
2515		       " RTR failed (error code = %d)\n", ret);
2516		goto destroy_ib;
2517	}
2518	/*
2519	 * Use the initator port identifier as the session name.
2520	 */
2521	snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2522			be64_to_cpu(*(__be64 *)ch->i_port_id),
2523			be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2524
2525	pr_debug("registering session %s\n", ch->sess_name);
2526
2527	nacl = srpt_lookup_acl(sport, ch->i_port_id);
2528	if (!nacl) {
2529		pr_info("Rejected login because no ACL has been"
2530			" configured yet for initiator %s.\n", ch->sess_name);
2531		rej->reason = __constant_cpu_to_be32(
2532				SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2533		goto destroy_ib;
2534	}
2535
2536	ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2537	if (IS_ERR(ch->sess)) {
2538		rej->reason = __constant_cpu_to_be32(
2539				SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2540		pr_debug("Failed to create session\n");
2541		goto deregister_session;
2542	}
2543	ch->sess->se_node_acl = &nacl->nacl;
2544	transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2545
2546	pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2547		 ch->sess_name, ch->cm_id);
2548
2549	/* create srp_login_response */
2550	rsp->opcode = SRP_LOGIN_RSP;
2551	rsp->tag = req->tag;
2552	rsp->max_it_iu_len = req->req_it_iu_len;
2553	rsp->max_ti_iu_len = req->req_it_iu_len;
2554	ch->max_ti_iu_len = it_iu_len;
2555	rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2556					      | SRP_BUF_FORMAT_INDIRECT);
2557	rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2558	atomic_set(&ch->req_lim, ch->rq_size);
2559	atomic_set(&ch->req_lim_delta, 0);
2560
2561	/* create cm reply */
2562	rep_param->qp_num = ch->qp->qp_num;
2563	rep_param->private_data = (void *)rsp;
2564	rep_param->private_data_len = sizeof *rsp;
2565	rep_param->rnr_retry_count = 7;
2566	rep_param->flow_control = 1;
2567	rep_param->failover_accepted = 0;
2568	rep_param->srq = 1;
2569	rep_param->responder_resources = 4;
2570	rep_param->initiator_depth = 4;
2571
2572	ret = ib_send_cm_rep(cm_id, rep_param);
2573	if (ret) {
2574		pr_err("sending SRP_LOGIN_REQ response failed"
2575		       " (error code = %d)\n", ret);
2576		goto release_channel;
2577	}
2578
2579	spin_lock_irq(&sdev->spinlock);
2580	list_add_tail(&ch->list, &sdev->rch_list);
2581	spin_unlock_irq(&sdev->spinlock);
2582
2583	goto out;
2584
2585release_channel:
2586	srpt_set_ch_state(ch, CH_RELEASING);
2587	transport_deregister_session_configfs(ch->sess);
2588
2589deregister_session:
2590	transport_deregister_session(ch->sess);
2591	ch->sess = NULL;
2592
2593destroy_ib:
2594	srpt_destroy_ch_ib(ch);
2595
2596free_ring:
2597	srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2598			     ch->sport->sdev, ch->rq_size,
2599			     ch->rsp_size, DMA_TO_DEVICE);
2600free_ch:
2601	kfree(ch);
2602
2603reject:
2604	rej->opcode = SRP_LOGIN_REJ;
2605	rej->tag = req->tag;
2606	rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2607					      | SRP_BUF_FORMAT_INDIRECT);
2608
2609	ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2610			     (void *)rej, sizeof *rej);
2611
2612out:
2613	kfree(rep_param);
2614	kfree(rsp);
2615	kfree(rej);
2616
2617	return ret;
2618}
2619
2620static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2621{
2622	pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2623	srpt_drain_channel(cm_id);
2624}
2625
2626/**
2627 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2628 *
2629 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2630 * and that the recipient may begin transmitting (RTU = ready to use).
2631 */
2632static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2633{
2634	struct srpt_rdma_ch *ch;
2635	int ret;
2636
2637	ch = srpt_find_channel(cm_id->context, cm_id);
2638	BUG_ON(!ch);
2639
2640	if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2641		struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2642
2643		ret = srpt_ch_qp_rts(ch, ch->qp);
2644
2645		list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2646					 wait_list) {
2647			list_del(&ioctx->wait_list);
2648			srpt_handle_new_iu(ch, ioctx, NULL);
2649		}
2650		if (ret)
2651			srpt_close_ch(ch);
2652	}
2653}
2654
2655static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2656{
2657	pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2658	srpt_drain_channel(cm_id);
2659}
2660
2661static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2662{
2663	pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2664	srpt_drain_channel(cm_id);
2665}
2666
2667/**
2668 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2669 */
2670static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2671{
2672	struct srpt_rdma_ch *ch;
2673	unsigned long flags;
2674	bool send_drep = false;
2675
2676	ch = srpt_find_channel(cm_id->context, cm_id);
2677	BUG_ON(!ch);
2678
2679	pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2680
2681	spin_lock_irqsave(&ch->spinlock, flags);
2682	switch (ch->state) {
2683	case CH_CONNECTING:
2684	case CH_LIVE:
2685		send_drep = true;
2686		ch->state = CH_DISCONNECTING;
2687		break;
2688	case CH_DISCONNECTING:
2689	case CH_DRAINING:
2690	case CH_RELEASING:
2691		WARN(true, "unexpected channel state %d\n", ch->state);
2692		break;
2693	}
2694	spin_unlock_irqrestore(&ch->spinlock, flags);
2695
2696	if (send_drep) {
2697		if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2698			pr_err("Sending IB DREP failed.\n");
2699		pr_info("Received DREQ and sent DREP for session %s.\n",
2700			ch->sess_name);
2701	}
2702}
2703
2704/**
2705 * srpt_cm_drep_recv() - Process reception of a DREP message.
2706 */
2707static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2708{
2709	pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2710	srpt_drain_channel(cm_id);
2711}
2712
2713/**
2714 * srpt_cm_handler() - IB connection manager callback function.
2715 *
2716 * A non-zero return value will cause the caller destroy the CM ID.
2717 *
2718 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2719 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2720 * a non-zero value in any other case will trigger a race with the
2721 * ib_destroy_cm_id() call in srpt_release_channel().
2722 */
2723static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2724{
2725	int ret;
2726
2727	ret = 0;
2728	switch (event->event) {
2729	case IB_CM_REQ_RECEIVED:
2730		ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2731				       event->private_data);
2732		break;
2733	case IB_CM_REJ_RECEIVED:
2734		srpt_cm_rej_recv(cm_id);
2735		break;
2736	case IB_CM_RTU_RECEIVED:
2737	case IB_CM_USER_ESTABLISHED:
2738		srpt_cm_rtu_recv(cm_id);
2739		break;
2740	case IB_CM_DREQ_RECEIVED:
2741		srpt_cm_dreq_recv(cm_id);
2742		break;
2743	case IB_CM_DREP_RECEIVED:
2744		srpt_cm_drep_recv(cm_id);
2745		break;
2746	case IB_CM_TIMEWAIT_EXIT:
2747		srpt_cm_timewait_exit(cm_id);
2748		break;
2749	case IB_CM_REP_ERROR:
2750		srpt_cm_rep_error(cm_id);
2751		break;
2752	case IB_CM_DREQ_ERROR:
2753		pr_info("Received IB DREQ ERROR event.\n");
2754		break;
2755	case IB_CM_MRA_RECEIVED:
2756		pr_info("Received IB MRA event\n");
2757		break;
2758	default:
2759		pr_err("received unrecognized IB CM event %d\n", event->event);
2760		break;
2761	}
2762
2763	return ret;
2764}
2765
2766/**
2767 * srpt_perform_rdmas() - Perform IB RDMA.
2768 *
2769 * Returns zero upon success or a negative number upon failure.
2770 */
2771static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2772			      struct srpt_send_ioctx *ioctx)
2773{
2774	struct ib_send_wr wr;
2775	struct ib_send_wr *bad_wr;
2776	struct rdma_iu *riu;
2777	int i;
2778	int ret;
2779	int sq_wr_avail;
2780	enum dma_data_direction dir;
2781	const int n_rdma = ioctx->n_rdma;
2782
2783	dir = ioctx->cmd.data_direction;
2784	if (dir == DMA_TO_DEVICE) {
2785		/* write */
2786		ret = -ENOMEM;
2787		sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2788		if (sq_wr_avail < 0) {
2789			pr_warn("IB send queue full (needed %d)\n",
2790				n_rdma);
2791			goto out;
2792		}
2793	}
2794
2795	ioctx->rdma_aborted = false;
2796	ret = 0;
2797	riu = ioctx->rdma_ius;
2798	memset(&wr, 0, sizeof wr);
2799
2800	for (i = 0; i < n_rdma; ++i, ++riu) {
2801		if (dir == DMA_FROM_DEVICE) {
2802			wr.opcode = IB_WR_RDMA_WRITE;
2803			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2804						SRPT_RDMA_WRITE_LAST :
2805						SRPT_RDMA_MID,
2806						ioctx->ioctx.index);
2807		} else {
2808			wr.opcode = IB_WR_RDMA_READ;
2809			wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2810						SRPT_RDMA_READ_LAST :
2811						SRPT_RDMA_MID,
2812						ioctx->ioctx.index);
2813		}
2814		wr.next = NULL;
2815		wr.wr.rdma.remote_addr = riu->raddr;
2816		wr.wr.rdma.rkey = riu->rkey;
2817		wr.num_sge = riu->sge_cnt;
2818		wr.sg_list = riu->sge;
2819
2820		/* only get completion event for the last rdma write */
2821		if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2822			wr.send_flags = IB_SEND_SIGNALED;
2823
2824		ret = ib_post_send(ch->qp, &wr, &bad_wr);
2825		if (ret)
2826			break;
2827	}
2828
2829	if (ret)
2830		pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2831				 __func__, __LINE__, ret, i, n_rdma);
2832	if (ret && i > 0) {
2833		wr.num_sge = 0;
2834		wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2835		wr.send_flags = IB_SEND_SIGNALED;
2836		while (ch->state == CH_LIVE &&
2837			ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2838			pr_info("Trying to abort failed RDMA transfer [%d]\n",
2839				ioctx->ioctx.index);
2840			msleep(1000);
2841		}
2842		while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2843			pr_info("Waiting until RDMA abort finished [%d]\n",
2844				ioctx->ioctx.index);
2845			msleep(1000);
2846		}
2847	}
2848out:
2849	if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2850		atomic_add(n_rdma, &ch->sq_wr_avail);
2851	return ret;
2852}
2853
2854/**
2855 * srpt_xfer_data() - Start data transfer from initiator to target.
2856 */
2857static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2858			  struct srpt_send_ioctx *ioctx)
2859{
2860	int ret;
2861
2862	ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2863	if (ret) {
2864		pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2865		goto out;
2866	}
2867
2868	ret = srpt_perform_rdmas(ch, ioctx);
2869	if (ret) {
2870		if (ret == -EAGAIN || ret == -ENOMEM)
2871			pr_info("%s[%d] queue full -- ret=%d\n",
2872				__func__, __LINE__, ret);
2873		else
2874			pr_err("%s[%d] fatal error -- ret=%d\n",
2875			       __func__, __LINE__, ret);
2876		goto out_unmap;
2877	}
2878
2879out:
2880	return ret;
2881out_unmap:
2882	srpt_unmap_sg_to_ib_sge(ch, ioctx);
2883	goto out;
2884}
2885
2886static int srpt_write_pending_status(struct se_cmd *se_cmd)
2887{
2888	struct srpt_send_ioctx *ioctx;
2889
2890	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2891	return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2892}
2893
2894/*
2895 * srpt_write_pending() - Start data transfer from initiator to target (write).
2896 */
2897static int srpt_write_pending(struct se_cmd *se_cmd)
2898{
2899	struct srpt_rdma_ch *ch;
2900	struct srpt_send_ioctx *ioctx;
2901	enum srpt_command_state new_state;
2902	enum rdma_ch_state ch_state;
2903	int ret;
2904
2905	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2906
2907	new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2908	WARN_ON(new_state == SRPT_STATE_DONE);
2909
2910	ch = ioctx->ch;
2911	BUG_ON(!ch);
2912
2913	ch_state = srpt_get_ch_state(ch);
2914	switch (ch_state) {
2915	case CH_CONNECTING:
2916		WARN(true, "unexpected channel state %d\n", ch_state);
2917		ret = -EINVAL;
2918		goto out;
2919	case CH_LIVE:
2920		break;
2921	case CH_DISCONNECTING:
2922	case CH_DRAINING:
2923	case CH_RELEASING:
2924		pr_debug("cmd with tag %lld: channel disconnecting\n",
2925			 ioctx->tag);
2926		srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2927		ret = -EINVAL;
2928		goto out;
2929	}
2930	ret = srpt_xfer_data(ch, ioctx);
2931
2932out:
2933	return ret;
2934}
2935
2936static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2937{
2938	switch (tcm_mgmt_status) {
2939	case TMR_FUNCTION_COMPLETE:
2940		return SRP_TSK_MGMT_SUCCESS;
2941	case TMR_FUNCTION_REJECTED:
2942		return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2943	}
2944	return SRP_TSK_MGMT_FAILED;
2945}
2946
2947/**
2948 * srpt_queue_response() - Transmits the response to a SCSI command.
2949 *
2950 * Callback function called by the TCM core. Must not block since it can be
2951 * invoked on the context of the IB completion handler.
2952 */
2953static void srpt_queue_response(struct se_cmd *cmd)
2954{
2955	struct srpt_rdma_ch *ch;
2956	struct srpt_send_ioctx *ioctx;
2957	enum srpt_command_state state;
2958	unsigned long flags;
2959	int ret;
2960	enum dma_data_direction dir;
2961	int resp_len;
2962	u8 srp_tm_status;
2963
2964	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
2965	ch = ioctx->ch;
2966	BUG_ON(!ch);
2967
2968	spin_lock_irqsave(&ioctx->spinlock, flags);
2969	state = ioctx->state;
2970	switch (state) {
2971	case SRPT_STATE_NEW:
2972	case SRPT_STATE_DATA_IN:
2973		ioctx->state = SRPT_STATE_CMD_RSP_SENT;
2974		break;
2975	case SRPT_STATE_MGMT:
2976		ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
2977		break;
2978	default:
2979		WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
2980			ch, ioctx->ioctx.index, ioctx->state);
2981		break;
2982	}
2983	spin_unlock_irqrestore(&ioctx->spinlock, flags);
2984
2985	if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
2986		     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
2987		atomic_inc(&ch->req_lim_delta);
2988		srpt_abort_cmd(ioctx);
2989		return;
2990	}
2991
2992	dir = ioctx->cmd.data_direction;
2993
2994	/* For read commands, transfer the data to the initiator. */
2995	if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
2996	    !ioctx->queue_status_only) {
2997		ret = srpt_xfer_data(ch, ioctx);
2998		if (ret) {
2999			pr_err("xfer_data failed for tag %llu\n",
3000			       ioctx->tag);
3001			return;
3002		}
3003	}
3004
3005	if (state != SRPT_STATE_MGMT)
3006		resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3007					      cmd->scsi_status);
3008	else {
3009		srp_tm_status
3010			= tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3011		resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3012						 ioctx->tag);
3013	}
3014	ret = srpt_post_send(ch, ioctx, resp_len);
3015	if (ret) {
3016		pr_err("sending cmd response failed for tag %llu\n",
3017		       ioctx->tag);
3018		srpt_unmap_sg_to_ib_sge(ch, ioctx);
3019		srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3020		target_put_sess_cmd(&ioctx->cmd);
3021	}
3022}
3023
3024static int srpt_queue_data_in(struct se_cmd *cmd)
3025{
3026	srpt_queue_response(cmd);
3027	return 0;
3028}
3029
3030static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3031{
3032	srpt_queue_response(cmd);
3033}
3034
3035static void srpt_aborted_task(struct se_cmd *cmd)
3036{
3037	struct srpt_send_ioctx *ioctx = container_of(cmd,
3038				struct srpt_send_ioctx, cmd);
3039
3040	srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3041}
3042
3043static int srpt_queue_status(struct se_cmd *cmd)
3044{
3045	struct srpt_send_ioctx *ioctx;
3046
3047	ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3048	BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3049	if (cmd->se_cmd_flags &
3050	    (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3051		WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3052	ioctx->queue_status_only = true;
3053	srpt_queue_response(cmd);
3054	return 0;
3055}
3056
3057static void srpt_refresh_port_work(struct work_struct *work)
3058{
3059	struct srpt_port *sport = container_of(work, struct srpt_port, work);
3060
3061	srpt_refresh_port(sport);
3062}
3063
3064static int srpt_ch_list_empty(struct srpt_device *sdev)
3065{
3066	int res;
3067
3068	spin_lock_irq(&sdev->spinlock);
3069	res = list_empty(&sdev->rch_list);
3070	spin_unlock_irq(&sdev->spinlock);
3071
3072	return res;
3073}
3074
3075/**
3076 * srpt_release_sdev() - Free the channel resources associated with a target.
3077 */
3078static int srpt_release_sdev(struct srpt_device *sdev)
3079{
3080	struct srpt_rdma_ch *ch, *tmp_ch;
3081	int res;
3082
3083	WARN_ON_ONCE(irqs_disabled());
3084
3085	BUG_ON(!sdev);
3086
3087	spin_lock_irq(&sdev->spinlock);
3088	list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3089		__srpt_close_ch(ch);
3090	spin_unlock_irq(&sdev->spinlock);
3091
3092	res = wait_event_interruptible(sdev->ch_releaseQ,
3093				       srpt_ch_list_empty(sdev));
3094	if (res)
3095		pr_err("%s: interrupted.\n", __func__);
3096
3097	return 0;
3098}
3099
3100static struct srpt_port *__srpt_lookup_port(const char *name)
3101{
3102	struct ib_device *dev;
3103	struct srpt_device *sdev;
3104	struct srpt_port *sport;
3105	int i;
3106
3107	list_for_each_entry(sdev, &srpt_dev_list, list) {
3108		dev = sdev->device;
3109		if (!dev)
3110			continue;
3111
3112		for (i = 0; i < dev->phys_port_cnt; i++) {
3113			sport = &sdev->port[i];
3114
3115			if (!strcmp(sport->port_guid, name))
3116				return sport;
3117		}
3118	}
3119
3120	return NULL;
3121}
3122
3123static struct srpt_port *srpt_lookup_port(const char *name)
3124{
3125	struct srpt_port *sport;
3126
3127	spin_lock(&srpt_dev_lock);
3128	sport = __srpt_lookup_port(name);
3129	spin_unlock(&srpt_dev_lock);
3130
3131	return sport;
3132}
3133
3134/**
3135 * srpt_add_one() - Infiniband device addition callback function.
3136 */
3137static void srpt_add_one(struct ib_device *device)
3138{
3139	struct srpt_device *sdev;
3140	struct srpt_port *sport;
3141	struct ib_srq_init_attr srq_attr;
3142	int i;
3143
3144	pr_debug("device = %p, device->dma_ops = %p\n", device,
3145		 device->dma_ops);
3146
3147	sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3148	if (!sdev)
3149		goto err;
3150
3151	sdev->device = device;
3152	INIT_LIST_HEAD(&sdev->rch_list);
3153	init_waitqueue_head(&sdev->ch_releaseQ);
3154	spin_lock_init(&sdev->spinlock);
3155
3156	if (ib_query_device(device, &sdev->dev_attr))
3157		goto free_dev;
3158
3159	sdev->pd = ib_alloc_pd(device);
3160	if (IS_ERR(sdev->pd))
3161		goto free_dev;
3162
3163	sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3164	if (IS_ERR(sdev->mr))
3165		goto err_pd;
3166
3167	sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3168
3169	srq_attr.event_handler = srpt_srq_event;
3170	srq_attr.srq_context = (void *)sdev;
3171	srq_attr.attr.max_wr = sdev->srq_size;
3172	srq_attr.attr.max_sge = 1;
3173	srq_attr.attr.srq_limit = 0;
3174	srq_attr.srq_type = IB_SRQT_BASIC;
3175
3176	sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3177	if (IS_ERR(sdev->srq))
3178		goto err_mr;
3179
3180	pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3181		 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3182		 device->name);
3183
3184	if (!srpt_service_guid)
3185		srpt_service_guid = be64_to_cpu(device->node_guid);
3186
3187	sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3188	if (IS_ERR(sdev->cm_id))
3189		goto err_srq;
3190
3191	/* print out target login information */
3192	pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3193		 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3194		 srpt_service_guid, srpt_service_guid);
3195
3196	/*
3197	 * We do not have a consistent service_id (ie. also id_ext of target_id)
3198	 * to identify this target. We currently use the guid of the first HCA
3199	 * in the system as service_id; therefore, the target_id will change
3200	 * if this HCA is gone bad and replaced by different HCA
3201	 */
3202	if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3203		goto err_cm;
3204
3205	INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3206			      srpt_event_handler);
3207	if (ib_register_event_handler(&sdev->event_handler))
3208		goto err_cm;
3209
3210	sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3211		srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3212				      sizeof(*sdev->ioctx_ring[0]),
3213				      srp_max_req_size, DMA_FROM_DEVICE);
3214	if (!sdev->ioctx_ring)
3215		goto err_event;
3216
3217	for (i = 0; i < sdev->srq_size; ++i)
3218		srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3219
3220	WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3221
3222	for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3223		sport = &sdev->port[i - 1];
3224		sport->sdev = sdev;
3225		sport->port = i;
3226		sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3227		sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3228		sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3229		INIT_WORK(&sport->work, srpt_refresh_port_work);
3230		INIT_LIST_HEAD(&sport->port_acl_list);
3231		spin_lock_init(&sport->port_acl_lock);
3232
3233		if (srpt_refresh_port(sport)) {
3234			pr_err("MAD registration failed for %s-%d.\n",
3235			       srpt_sdev_name(sdev), i);
3236			goto err_ring;
3237		}
3238		snprintf(sport->port_guid, sizeof(sport->port_guid),
3239			"0x%016llx%016llx",
3240			be64_to_cpu(sport->gid.global.subnet_prefix),
3241			be64_to_cpu(sport->gid.global.interface_id));
3242	}
3243
3244	spin_lock(&srpt_dev_lock);
3245	list_add_tail(&sdev->list, &srpt_dev_list);
3246	spin_unlock(&srpt_dev_lock);
3247
3248out:
3249	ib_set_client_data(device, &srpt_client, sdev);
3250	pr_debug("added %s.\n", device->name);
3251	return;
3252
3253err_ring:
3254	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3255			     sdev->srq_size, srp_max_req_size,
3256			     DMA_FROM_DEVICE);
3257err_event:
3258	ib_unregister_event_handler(&sdev->event_handler);
3259err_cm:
3260	ib_destroy_cm_id(sdev->cm_id);
3261err_srq:
3262	ib_destroy_srq(sdev->srq);
3263err_mr:
3264	ib_dereg_mr(sdev->mr);
3265err_pd:
3266	ib_dealloc_pd(sdev->pd);
3267free_dev:
3268	kfree(sdev);
3269err:
3270	sdev = NULL;
3271	pr_info("%s(%s) failed.\n", __func__, device->name);
3272	goto out;
3273}
3274
3275/**
3276 * srpt_remove_one() - InfiniBand device removal callback function.
3277 */
3278static void srpt_remove_one(struct ib_device *device)
3279{
3280	struct srpt_device *sdev;
3281	int i;
3282
3283	sdev = ib_get_client_data(device, &srpt_client);
3284	if (!sdev) {
3285		pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3286		return;
3287	}
3288
3289	srpt_unregister_mad_agent(sdev);
3290
3291	ib_unregister_event_handler(&sdev->event_handler);
3292
3293	/* Cancel any work queued by the just unregistered IB event handler. */
3294	for (i = 0; i < sdev->device->phys_port_cnt; i++)
3295		cancel_work_sync(&sdev->port[i].work);
3296
3297	ib_destroy_cm_id(sdev->cm_id);
3298
3299	/*
3300	 * Unregistering a target must happen after destroying sdev->cm_id
3301	 * such that no new SRP_LOGIN_REQ information units can arrive while
3302	 * destroying the target.
3303	 */
3304	spin_lock(&srpt_dev_lock);
3305	list_del(&sdev->list);
3306	spin_unlock(&srpt_dev_lock);
3307	srpt_release_sdev(sdev);
3308
3309	ib_destroy_srq(sdev->srq);
3310	ib_dereg_mr(sdev->mr);
3311	ib_dealloc_pd(sdev->pd);
3312
3313	srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3314			     sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3315	sdev->ioctx_ring = NULL;
3316	kfree(sdev);
3317}
3318
3319static struct ib_client srpt_client = {
3320	.name = DRV_NAME,
3321	.add = srpt_add_one,
3322	.remove = srpt_remove_one
3323};
3324
3325static int srpt_check_true(struct se_portal_group *se_tpg)
3326{
3327	return 1;
3328}
3329
3330static int srpt_check_false(struct se_portal_group *se_tpg)
3331{
3332	return 0;
3333}
3334
3335static char *srpt_get_fabric_name(void)
3336{
3337	return "srpt";
3338}
3339
3340static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3341{
3342	return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3343}
3344
3345static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3346{
3347	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3348
3349	return sport->port_guid;
3350}
3351
3352static u16 srpt_get_tag(struct se_portal_group *tpg)
3353{
3354	return 1;
3355}
3356
3357static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3358{
3359	return 1;
3360}
3361
3362static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3363				    struct se_node_acl *se_nacl,
3364				    struct t10_pr_registration *pr_reg,
3365				    int *format_code, unsigned char *buf)
3366{
3367	struct srpt_node_acl *nacl;
3368	struct spc_rdma_transport_id *tr_id;
3369
3370	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3371	tr_id = (void *)buf;
3372	tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3373	memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3374	return sizeof(*tr_id);
3375}
3376
3377static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3378					struct se_node_acl *se_nacl,
3379					struct t10_pr_registration *pr_reg,
3380					int *format_code)
3381{
3382	*format_code = 0;
3383	return sizeof(struct spc_rdma_transport_id);
3384}
3385
3386static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3387					    const char *buf, u32 *out_tid_len,
3388					    char **port_nexus_ptr)
3389{
3390	struct spc_rdma_transport_id *tr_id;
3391
3392	*port_nexus_ptr = NULL;
3393	*out_tid_len = sizeof(struct spc_rdma_transport_id);
3394	tr_id = (void *)buf;
3395	return (char *)tr_id->i_port_id;
3396}
3397
3398static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3399{
3400	struct srpt_node_acl *nacl;
3401
3402	nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3403	if (!nacl) {
3404		pr_err("Unable to allocate struct srpt_node_acl\n");
3405		return NULL;
3406	}
3407
3408	return &nacl->nacl;
3409}
3410
3411static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3412				    struct se_node_acl *se_nacl)
3413{
3414	struct srpt_node_acl *nacl;
3415
3416	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3417	kfree(nacl);
3418}
3419
3420static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3421{
3422	return 1;
3423}
3424
3425static void srpt_release_cmd(struct se_cmd *se_cmd)
3426{
3427	struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3428				struct srpt_send_ioctx, cmd);
3429	struct srpt_rdma_ch *ch = ioctx->ch;
3430	unsigned long flags;
3431
3432	WARN_ON(ioctx->state != SRPT_STATE_DONE);
3433	WARN_ON(ioctx->mapped_sg_count != 0);
3434
3435	if (ioctx->n_rbuf > 1) {
3436		kfree(ioctx->rbufs);
3437		ioctx->rbufs = NULL;
3438		ioctx->n_rbuf = 0;
3439	}
3440
3441	spin_lock_irqsave(&ch->spinlock, flags);
3442	list_add(&ioctx->free_list, &ch->free_list);
3443	spin_unlock_irqrestore(&ch->spinlock, flags);
3444}
3445
3446/**
3447 * srpt_close_session() - Forcibly close a session.
3448 *
3449 * Callback function invoked by the TCM core to clean up sessions associated
3450 * with a node ACL when the user invokes
3451 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3452 */
3453static void srpt_close_session(struct se_session *se_sess)
3454{
3455	DECLARE_COMPLETION_ONSTACK(release_done);
3456	struct srpt_rdma_ch *ch;
3457	struct srpt_device *sdev;
3458	unsigned long res;
3459
3460	ch = se_sess->fabric_sess_ptr;
3461	WARN_ON(ch->sess != se_sess);
3462
3463	pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3464
3465	sdev = ch->sport->sdev;
3466	spin_lock_irq(&sdev->spinlock);
3467	BUG_ON(ch->release_done);
3468	ch->release_done = &release_done;
3469	__srpt_close_ch(ch);
3470	spin_unlock_irq(&sdev->spinlock);
3471
3472	res = wait_for_completion_timeout(&release_done, 60 * HZ);
3473	WARN_ON(res == 0);
3474}
3475
3476/**
3477 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3478 *
3479 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3480 * This object represents an arbitrary integer used to uniquely identify a
3481 * particular attached remote initiator port to a particular SCSI target port
3482 * within a particular SCSI target device within a particular SCSI instance.
3483 */
3484static u32 srpt_sess_get_index(struct se_session *se_sess)
3485{
3486	return 0;
3487}
3488
3489static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3490{
3491}
3492
3493static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3494{
3495	struct srpt_send_ioctx *ioctx;
3496
3497	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3498	return ioctx->tag;
3499}
3500
3501/* Note: only used from inside debug printk's by the TCM core. */
3502static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3503{
3504	struct srpt_send_ioctx *ioctx;
3505
3506	ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3507	return srpt_get_cmd_state(ioctx);
3508}
3509
3510/**
3511 * srpt_parse_i_port_id() - Parse an initiator port ID.
3512 * @name: ASCII representation of a 128-bit initiator port ID.
3513 * @i_port_id: Binary 128-bit port ID.
3514 */
3515static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3516{
3517	const char *p;
3518	unsigned len, count, leading_zero_bytes;
3519	int ret, rc;
3520
3521	p = name;
3522	if (strncasecmp(p, "0x", 2) == 0)
3523		p += 2;
3524	ret = -EINVAL;
3525	len = strlen(p);
3526	if (len % 2)
3527		goto out;
3528	count = min(len / 2, 16U);
3529	leading_zero_bytes = 16 - count;
3530	memset(i_port_id, 0, leading_zero_bytes);
3531	rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3532	if (rc < 0)
3533		pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3534	ret = 0;
3535out:
3536	return ret;
3537}
3538
3539/*
3540 * configfs callback function invoked for
3541 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3542 */
3543static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3544					     struct config_group *group,
3545					     const char *name)
3546{
3547	struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3548	struct se_node_acl *se_nacl, *se_nacl_new;
3549	struct srpt_node_acl *nacl;
3550	int ret = 0;
3551	u32 nexus_depth = 1;
3552	u8 i_port_id[16];
3553
3554	if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3555		pr_err("invalid initiator port ID %s\n", name);
3556		ret = -EINVAL;
3557		goto err;
3558	}
3559
3560	se_nacl_new = srpt_alloc_fabric_acl(tpg);
3561	if (!se_nacl_new) {
3562		ret = -ENOMEM;
3563		goto err;
3564	}
3565	/*
3566	 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3567	 * when converting a node ACL from demo mode to explict
3568	 */
3569	se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3570						  nexus_depth);
3571	if (IS_ERR(se_nacl)) {
3572		ret = PTR_ERR(se_nacl);
3573		goto err;
3574	}
3575	/* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3576	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3577	memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3578	nacl->sport = sport;
3579
3580	spin_lock_irq(&sport->port_acl_lock);
3581	list_add_tail(&nacl->list, &sport->port_acl_list);
3582	spin_unlock_irq(&sport->port_acl_lock);
3583
3584	return se_nacl;
3585err:
3586	return ERR_PTR(ret);
3587}
3588
3589/*
3590 * configfs callback function invoked for
3591 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3592 */
3593static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3594{
3595	struct srpt_node_acl *nacl;
3596	struct srpt_device *sdev;
3597	struct srpt_port *sport;
3598
3599	nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3600	sport = nacl->sport;
3601	sdev = sport->sdev;
3602	spin_lock_irq(&sport->port_acl_lock);
3603	list_del(&nacl->list);
3604	spin_unlock_irq(&sport->port_acl_lock);
3605	core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3606	srpt_release_fabric_acl(NULL, se_nacl);
3607}
3608
3609static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3610	struct se_portal_group *se_tpg,
3611	char *page)
3612{
3613	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3614
3615	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3616}
3617
3618static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3619	struct se_portal_group *se_tpg,
3620	const char *page,
3621	size_t count)
3622{
3623	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3624	unsigned long val;
3625	int ret;
3626
3627	ret = kstrtoul(page, 0, &val);
3628	if (ret < 0) {
3629		pr_err("kstrtoul() failed with ret: %d\n", ret);
3630		return -EINVAL;
3631	}
3632	if (val > MAX_SRPT_RDMA_SIZE) {
3633		pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3634			MAX_SRPT_RDMA_SIZE);
3635		return -EINVAL;
3636	}
3637	if (val < DEFAULT_MAX_RDMA_SIZE) {
3638		pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3639			val, DEFAULT_MAX_RDMA_SIZE);
3640		return -EINVAL;
3641	}
3642	sport->port_attrib.srp_max_rdma_size = val;
3643
3644	return count;
3645}
3646
3647TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3648
3649static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3650	struct se_portal_group *se_tpg,
3651	char *page)
3652{
3653	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3654
3655	return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3656}
3657
3658static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3659	struct se_portal_group *se_tpg,
3660	const char *page,
3661	size_t count)
3662{
3663	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3664	unsigned long val;
3665	int ret;
3666
3667	ret = kstrtoul(page, 0, &val);
3668	if (ret < 0) {
3669		pr_err("kstrtoul() failed with ret: %d\n", ret);
3670		return -EINVAL;
3671	}
3672	if (val > MAX_SRPT_RSP_SIZE) {
3673		pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3674			MAX_SRPT_RSP_SIZE);
3675		return -EINVAL;
3676	}
3677	if (val < MIN_MAX_RSP_SIZE) {
3678		pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3679			MIN_MAX_RSP_SIZE);
3680		return -EINVAL;
3681	}
3682	sport->port_attrib.srp_max_rsp_size = val;
3683
3684	return count;
3685}
3686
3687TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3688
3689static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3690	struct se_portal_group *se_tpg,
3691	char *page)
3692{
3693	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3694
3695	return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3696}
3697
3698static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3699	struct se_portal_group *se_tpg,
3700	const char *page,
3701	size_t count)
3702{
3703	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3704	unsigned long val;
3705	int ret;
3706
3707	ret = kstrtoul(page, 0, &val);
3708	if (ret < 0) {
3709		pr_err("kstrtoul() failed with ret: %d\n", ret);
3710		return -EINVAL;
3711	}
3712	if (val > MAX_SRPT_SRQ_SIZE) {
3713		pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3714			MAX_SRPT_SRQ_SIZE);
3715		return -EINVAL;
3716	}
3717	if (val < MIN_SRPT_SRQ_SIZE) {
3718		pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3719			MIN_SRPT_SRQ_SIZE);
3720		return -EINVAL;
3721	}
3722	sport->port_attrib.srp_sq_size = val;
3723
3724	return count;
3725}
3726
3727TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3728
3729static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3730	&srpt_tpg_attrib_srp_max_rdma_size.attr,
3731	&srpt_tpg_attrib_srp_max_rsp_size.attr,
3732	&srpt_tpg_attrib_srp_sq_size.attr,
3733	NULL,
3734};
3735
3736static ssize_t srpt_tpg_show_enable(
3737	struct se_portal_group *se_tpg,
3738	char *page)
3739{
3740	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3741
3742	return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3743}
3744
3745static ssize_t srpt_tpg_store_enable(
3746	struct se_portal_group *se_tpg,
3747	const char *page,
3748	size_t count)
3749{
3750	struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3751	unsigned long tmp;
3752        int ret;
3753
3754	ret = kstrtoul(page, 0, &tmp);
3755	if (ret < 0) {
3756		pr_err("Unable to extract srpt_tpg_store_enable\n");
3757		return -EINVAL;
3758	}
3759
3760	if ((tmp != 0) && (tmp != 1)) {
3761		pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3762		return -EINVAL;
3763	}
3764	if (tmp == 1)
3765		sport->enabled = true;
3766	else
3767		sport->enabled = false;
3768
3769	return count;
3770}
3771
3772TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3773
3774static struct configfs_attribute *srpt_tpg_attrs[] = {
3775	&srpt_tpg_enable.attr,
3776	NULL,
3777};
3778
3779/**
3780 * configfs callback invoked for
3781 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3782 */
3783static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3784					     struct config_group *group,
3785					     const char *name)
3786{
3787	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3788	int res;
3789
3790	/* Initialize sport->port_wwn and sport->port_tpg_1 */
3791	res = core_tpg_register(&srpt_template, &sport->port_wwn,
3792			&sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3793	if (res)
3794		return ERR_PTR(res);
3795
3796	return &sport->port_tpg_1;
3797}
3798
3799/**
3800 * configfs callback invoked for
3801 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3802 */
3803static void srpt_drop_tpg(struct se_portal_group *tpg)
3804{
3805	struct srpt_port *sport = container_of(tpg,
3806				struct srpt_port, port_tpg_1);
3807
3808	sport->enabled = false;
3809	core_tpg_deregister(&sport->port_tpg_1);
3810}
3811
3812/**
3813 * configfs callback invoked for
3814 * mkdir /sys/kernel/config/target/$driver/$port
3815 */
3816static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3817				      struct config_group *group,
3818				      const char *name)
3819{
3820	struct srpt_port *sport;
3821	int ret;
3822
3823	sport = srpt_lookup_port(name);
3824	pr_debug("make_tport(%s)\n", name);
3825	ret = -EINVAL;
3826	if (!sport)
3827		goto err;
3828
3829	return &sport->port_wwn;
3830
3831err:
3832	return ERR_PTR(ret);
3833}
3834
3835/**
3836 * configfs callback invoked for
3837 * rmdir /sys/kernel/config/target/$driver/$port
3838 */
3839static void srpt_drop_tport(struct se_wwn *wwn)
3840{
3841	struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3842
3843	pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3844}
3845
3846static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3847					      char *buf)
3848{
3849	return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3850}
3851
3852TF_WWN_ATTR_RO(srpt, version);
3853
3854static struct configfs_attribute *srpt_wwn_attrs[] = {
3855	&srpt_wwn_version.attr,
3856	NULL,
3857};
3858
3859static const struct target_core_fabric_ops srpt_template = {
3860	.module				= THIS_MODULE,
3861	.name				= "srpt",
3862	.get_fabric_name		= srpt_get_fabric_name,
3863	.get_fabric_proto_ident		= srpt_get_fabric_proto_ident,
3864	.tpg_get_wwn			= srpt_get_fabric_wwn,
3865	.tpg_get_tag			= srpt_get_tag,
3866	.tpg_get_default_depth		= srpt_get_default_depth,
3867	.tpg_get_pr_transport_id	= srpt_get_pr_transport_id,
3868	.tpg_get_pr_transport_id_len	= srpt_get_pr_transport_id_len,
3869	.tpg_parse_pr_out_transport_id	= srpt_parse_pr_out_transport_id,
3870	.tpg_check_demo_mode		= srpt_check_false,
3871	.tpg_check_demo_mode_cache	= srpt_check_true,
3872	.tpg_check_demo_mode_write_protect = srpt_check_true,
3873	.tpg_check_prod_mode_write_protect = srpt_check_false,
3874	.tpg_alloc_fabric_acl		= srpt_alloc_fabric_acl,
3875	.tpg_release_fabric_acl		= srpt_release_fabric_acl,
3876	.tpg_get_inst_index		= srpt_tpg_get_inst_index,
3877	.release_cmd			= srpt_release_cmd,
3878	.check_stop_free		= srpt_check_stop_free,
3879	.shutdown_session		= srpt_shutdown_session,
3880	.close_session			= srpt_close_session,
3881	.sess_get_index			= srpt_sess_get_index,
3882	.sess_get_initiator_sid		= NULL,
3883	.write_pending			= srpt_write_pending,
3884	.write_pending_status		= srpt_write_pending_status,
3885	.set_default_node_attributes	= srpt_set_default_node_attrs,
3886	.get_task_tag			= srpt_get_task_tag,
3887	.get_cmd_state			= srpt_get_tcm_cmd_state,
3888	.queue_data_in			= srpt_queue_data_in,
3889	.queue_status			= srpt_queue_status,
3890	.queue_tm_rsp			= srpt_queue_tm_rsp,
3891	.aborted_task			= srpt_aborted_task,
3892	/*
3893	 * Setup function pointers for generic logic in
3894	 * target_core_fabric_configfs.c
3895	 */
3896	.fabric_make_wwn		= srpt_make_tport,
3897	.fabric_drop_wwn		= srpt_drop_tport,
3898	.fabric_make_tpg		= srpt_make_tpg,
3899	.fabric_drop_tpg		= srpt_drop_tpg,
3900	.fabric_post_link		= NULL,
3901	.fabric_pre_unlink		= NULL,
3902	.fabric_make_np			= NULL,
3903	.fabric_drop_np			= NULL,
3904	.fabric_make_nodeacl		= srpt_make_nodeacl,
3905	.fabric_drop_nodeacl		= srpt_drop_nodeacl,
3906
3907	.tfc_wwn_attrs			= srpt_wwn_attrs,
3908	.tfc_tpg_base_attrs		= srpt_tpg_attrs,
3909	.tfc_tpg_attrib_attrs		= srpt_tpg_attrib_attrs,
3910};
3911
3912/**
3913 * srpt_init_module() - Kernel module initialization.
3914 *
3915 * Note: Since ib_register_client() registers callback functions, and since at
3916 * least one of these callback functions (srpt_add_one()) calls target core
3917 * functions, this driver must be registered with the target core before
3918 * ib_register_client() is called.
3919 */
3920static int __init srpt_init_module(void)
3921{
3922	int ret;
3923
3924	ret = -EINVAL;
3925	if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3926		pr_err("invalid value %d for kernel module parameter"
3927		       " srp_max_req_size -- must be at least %d.\n",
3928		       srp_max_req_size, MIN_MAX_REQ_SIZE);
3929		goto out;
3930	}
3931
3932	if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3933	    || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3934		pr_err("invalid value %d for kernel module parameter"
3935		       " srpt_srq_size -- must be in the range [%d..%d].\n",
3936		       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3937		goto out;
3938	}
3939
3940	ret = target_register_template(&srpt_template);
3941	if (ret)
3942		goto out;
3943
3944	ret = ib_register_client(&srpt_client);
3945	if (ret) {
3946		pr_err("couldn't register IB client\n");
3947		goto out_unregister_target;
3948	}
3949
3950	return 0;
3951
3952out_unregister_target:
3953	target_unregister_template(&srpt_template);
3954out:
3955	return ret;
3956}
3957
3958static void __exit srpt_cleanup_module(void)
3959{
3960	ib_unregister_client(&srpt_client);
3961	target_unregister_template(&srpt_template);
3962}
3963
3964module_init(srpt_init_module);
3965module_exit(srpt_cleanup_module);
3966