1/* 2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. 3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 * 33 */ 34 35#include <linux/module.h> 36#include <linux/init.h> 37#include <linux/slab.h> 38#include <linux/err.h> 39#include <linux/ctype.h> 40#include <linux/kthread.h> 41#include <linux/string.h> 42#include <linux/delay.h> 43#include <linux/atomic.h> 44#include <scsi/scsi_tcq.h> 45#include <target/configfs_macros.h> 46#include <target/target_core_base.h> 47#include <target/target_core_fabric_configfs.h> 48#include <target/target_core_fabric.h> 49#include <target/target_core_configfs.h> 50#include "ib_srpt.h" 51 52/* Name of this kernel module. */ 53#define DRV_NAME "ib_srpt" 54#define DRV_VERSION "2.0.0" 55#define DRV_RELDATE "2011-02-14" 56 57#define SRPT_ID_STRING "Linux SRP target" 58 59#undef pr_fmt 60#define pr_fmt(fmt) DRV_NAME " " fmt 61 62MODULE_AUTHOR("Vu Pham and Bart Van Assche"); 63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " 64 "v" DRV_VERSION " (" DRV_RELDATE ")"); 65MODULE_LICENSE("Dual BSD/GPL"); 66 67/* 68 * Global Variables 69 */ 70 71static u64 srpt_service_guid; 72static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ 73static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ 74 75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; 76module_param(srp_max_req_size, int, 0444); 77MODULE_PARM_DESC(srp_max_req_size, 78 "Maximum size of SRP request messages in bytes."); 79 80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; 81module_param(srpt_srq_size, int, 0444); 82MODULE_PARM_DESC(srpt_srq_size, 83 "Shared receive queue (SRQ) size."); 84 85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) 86{ 87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); 88} 89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 90 0444); 91MODULE_PARM_DESC(srpt_service_guid, 92 "Using this value for ioc_guid, id_ext, and cm_listen_id" 93 " instead of using the node_guid of the first HCA."); 94 95static struct ib_client srpt_client; 96static const struct target_core_fabric_ops srpt_template; 97static void srpt_release_channel(struct srpt_rdma_ch *ch); 98static int srpt_queue_status(struct se_cmd *cmd); 99 100/** 101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. 102 */ 103static inline 104enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) 105{ 106 switch (dir) { 107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE; 108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE; 109 default: return dir; 110 } 111} 112 113/** 114 * srpt_sdev_name() - Return the name associated with the HCA. 115 * 116 * Examples are ib0, ib1, ... 117 */ 118static inline const char *srpt_sdev_name(struct srpt_device *sdev) 119{ 120 return sdev->device->name; 121} 122 123static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) 124{ 125 unsigned long flags; 126 enum rdma_ch_state state; 127 128 spin_lock_irqsave(&ch->spinlock, flags); 129 state = ch->state; 130 spin_unlock_irqrestore(&ch->spinlock, flags); 131 return state; 132} 133 134static enum rdma_ch_state 135srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) 136{ 137 unsigned long flags; 138 enum rdma_ch_state prev; 139 140 spin_lock_irqsave(&ch->spinlock, flags); 141 prev = ch->state; 142 ch->state = new_state; 143 spin_unlock_irqrestore(&ch->spinlock, flags); 144 return prev; 145} 146 147/** 148 * srpt_test_and_set_ch_state() - Test and set the channel state. 149 * 150 * Returns true if and only if the channel state has been set to the new state. 151 */ 152static bool 153srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, 154 enum rdma_ch_state new) 155{ 156 unsigned long flags; 157 enum rdma_ch_state prev; 158 159 spin_lock_irqsave(&ch->spinlock, flags); 160 prev = ch->state; 161 if (prev == old) 162 ch->state = new; 163 spin_unlock_irqrestore(&ch->spinlock, flags); 164 return prev == old; 165} 166 167/** 168 * srpt_event_handler() - Asynchronous IB event callback function. 169 * 170 * Callback function called by the InfiniBand core when an asynchronous IB 171 * event occurs. This callback may occur in interrupt context. See also 172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand 173 * Architecture Specification. 174 */ 175static void srpt_event_handler(struct ib_event_handler *handler, 176 struct ib_event *event) 177{ 178 struct srpt_device *sdev; 179 struct srpt_port *sport; 180 181 sdev = ib_get_client_data(event->device, &srpt_client); 182 if (!sdev || sdev->device != event->device) 183 return; 184 185 pr_debug("ASYNC event= %d on device= %s\n", event->event, 186 srpt_sdev_name(sdev)); 187 188 switch (event->event) { 189 case IB_EVENT_PORT_ERR: 190 if (event->element.port_num <= sdev->device->phys_port_cnt) { 191 sport = &sdev->port[event->element.port_num - 1]; 192 sport->lid = 0; 193 sport->sm_lid = 0; 194 } 195 break; 196 case IB_EVENT_PORT_ACTIVE: 197 case IB_EVENT_LID_CHANGE: 198 case IB_EVENT_PKEY_CHANGE: 199 case IB_EVENT_SM_CHANGE: 200 case IB_EVENT_CLIENT_REREGISTER: 201 case IB_EVENT_GID_CHANGE: 202 /* Refresh port data asynchronously. */ 203 if (event->element.port_num <= sdev->device->phys_port_cnt) { 204 sport = &sdev->port[event->element.port_num - 1]; 205 if (!sport->lid && !sport->sm_lid) 206 schedule_work(&sport->work); 207 } 208 break; 209 default: 210 pr_err("received unrecognized IB event %d\n", 211 event->event); 212 break; 213 } 214} 215 216/** 217 * srpt_srq_event() - SRQ event callback function. 218 */ 219static void srpt_srq_event(struct ib_event *event, void *ctx) 220{ 221 pr_info("SRQ event %d\n", event->event); 222} 223 224/** 225 * srpt_qp_event() - QP event callback function. 226 */ 227static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) 228{ 229 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", 230 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); 231 232 switch (event->event) { 233 case IB_EVENT_COMM_EST: 234 ib_cm_notify(ch->cm_id, event->event); 235 break; 236 case IB_EVENT_QP_LAST_WQE_REACHED: 237 if (srpt_test_and_set_ch_state(ch, CH_DRAINING, 238 CH_RELEASING)) 239 srpt_release_channel(ch); 240 else 241 pr_debug("%s: state %d - ignored LAST_WQE.\n", 242 ch->sess_name, srpt_get_ch_state(ch)); 243 break; 244 default: 245 pr_err("received unrecognized IB QP event %d\n", event->event); 246 break; 247 } 248} 249 250/** 251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. 252 * 253 * @slot: one-based slot number. 254 * @value: four-bit value. 255 * 256 * Copies the lowest four bits of value in element slot of the array of four 257 * bit elements called c_list (controller list). The index slot is one-based. 258 */ 259static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) 260{ 261 u16 id; 262 u8 tmp; 263 264 id = (slot - 1) / 2; 265 if (slot & 0x1) { 266 tmp = c_list[id] & 0xf; 267 c_list[id] = (value << 4) | tmp; 268 } else { 269 tmp = c_list[id] & 0xf0; 270 c_list[id] = (value & 0xf) | tmp; 271 } 272} 273 274/** 275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. 276 * 277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture 278 * Specification. 279 */ 280static void srpt_get_class_port_info(struct ib_dm_mad *mad) 281{ 282 struct ib_class_port_info *cif; 283 284 cif = (struct ib_class_port_info *)mad->data; 285 memset(cif, 0, sizeof *cif); 286 cif->base_version = 1; 287 cif->class_version = 1; 288 cif->resp_time_value = 20; 289 290 mad->mad_hdr.status = 0; 291} 292 293/** 294 * srpt_get_iou() - Write IOUnitInfo to a management datagram. 295 * 296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture 297 * Specification. See also section B.7, table B.6 in the SRP r16a document. 298 */ 299static void srpt_get_iou(struct ib_dm_mad *mad) 300{ 301 struct ib_dm_iou_info *ioui; 302 u8 slot; 303 int i; 304 305 ioui = (struct ib_dm_iou_info *)mad->data; 306 ioui->change_id = __constant_cpu_to_be16(1); 307 ioui->max_controllers = 16; 308 309 /* set present for slot 1 and empty for the rest */ 310 srpt_set_ioc(ioui->controller_list, 1, 1); 311 for (i = 1, slot = 2; i < 16; i++, slot++) 312 srpt_set_ioc(ioui->controller_list, slot, 0); 313 314 mad->mad_hdr.status = 0; 315} 316 317/** 318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram. 319 * 320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand 321 * Architecture Specification. See also section B.7, table B.7 in the SRP 322 * r16a document. 323 */ 324static void srpt_get_ioc(struct srpt_port *sport, u32 slot, 325 struct ib_dm_mad *mad) 326{ 327 struct srpt_device *sdev = sport->sdev; 328 struct ib_dm_ioc_profile *iocp; 329 330 iocp = (struct ib_dm_ioc_profile *)mad->data; 331 332 if (!slot || slot > 16) { 333 mad->mad_hdr.status 334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 335 return; 336 } 337 338 if (slot > 2) { 339 mad->mad_hdr.status 340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 341 return; 342 } 343 344 memset(iocp, 0, sizeof *iocp); 345 strcpy(iocp->id_string, SRPT_ID_STRING); 346 iocp->guid = cpu_to_be64(srpt_service_guid); 347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); 349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); 350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); 351 iocp->subsys_device_id = 0x0; 352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); 353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); 354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); 355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); 356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); 357 iocp->rdma_read_depth = 4; 358 iocp->send_size = cpu_to_be32(srp_max_req_size); 359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 360 1U << 24)); 361 iocp->num_svc_entries = 1; 362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | 363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; 364 365 mad->mad_hdr.status = 0; 366} 367 368/** 369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. 370 * 371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture 372 * Specification. See also section B.7, table B.8 in the SRP r16a document. 373 */ 374static void srpt_get_svc_entries(u64 ioc_guid, 375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) 376{ 377 struct ib_dm_svc_entries *svc_entries; 378 379 WARN_ON(!ioc_guid); 380 381 if (!slot || slot > 16) { 382 mad->mad_hdr.status 383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); 384 return; 385 } 386 387 if (slot > 2 || lo > hi || hi > 1) { 388 mad->mad_hdr.status 389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); 390 return; 391 } 392 393 svc_entries = (struct ib_dm_svc_entries *)mad->data; 394 memset(svc_entries, 0, sizeof *svc_entries); 395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); 396 snprintf(svc_entries->service_entries[0].name, 397 sizeof(svc_entries->service_entries[0].name), 398 "%s%016llx", 399 SRP_SERVICE_NAME_PREFIX, 400 ioc_guid); 401 402 mad->mad_hdr.status = 0; 403} 404 405/** 406 * srpt_mgmt_method_get() - Process a received management datagram. 407 * @sp: source port through which the MAD has been received. 408 * @rq_mad: received MAD. 409 * @rsp_mad: response MAD. 410 */ 411static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, 412 struct ib_dm_mad *rsp_mad) 413{ 414 u16 attr_id; 415 u32 slot; 416 u8 hi, lo; 417 418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); 419 switch (attr_id) { 420 case DM_ATTR_CLASS_PORT_INFO: 421 srpt_get_class_port_info(rsp_mad); 422 break; 423 case DM_ATTR_IOU_INFO: 424 srpt_get_iou(rsp_mad); 425 break; 426 case DM_ATTR_IOC_PROFILE: 427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 428 srpt_get_ioc(sp, slot, rsp_mad); 429 break; 430 case DM_ATTR_SVC_ENTRIES: 431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); 432 hi = (u8) ((slot >> 8) & 0xff); 433 lo = (u8) (slot & 0xff); 434 slot = (u16) ((slot >> 16) & 0xffff); 435 srpt_get_svc_entries(srpt_service_guid, 436 slot, hi, lo, rsp_mad); 437 break; 438 default: 439 rsp_mad->mad_hdr.status = 440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 441 break; 442 } 443} 444 445/** 446 * srpt_mad_send_handler() - Post MAD-send callback function. 447 */ 448static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, 449 struct ib_mad_send_wc *mad_wc) 450{ 451 ib_destroy_ah(mad_wc->send_buf->ah); 452 ib_free_send_mad(mad_wc->send_buf); 453} 454 455/** 456 * srpt_mad_recv_handler() - MAD reception callback function. 457 */ 458static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, 459 struct ib_mad_recv_wc *mad_wc) 460{ 461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context; 462 struct ib_ah *ah; 463 struct ib_mad_send_buf *rsp; 464 struct ib_dm_mad *dm_mad; 465 466 if (!mad_wc || !mad_wc->recv_buf.mad) 467 return; 468 469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, 470 mad_wc->recv_buf.grh, mad_agent->port_num); 471 if (IS_ERR(ah)) 472 goto err; 473 474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); 475 476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, 477 mad_wc->wc->pkey_index, 0, 478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, 479 GFP_KERNEL); 480 if (IS_ERR(rsp)) 481 goto err_rsp; 482 483 rsp->ah = ah; 484 485 dm_mad = rsp->mad; 486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); 487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; 488 dm_mad->mad_hdr.status = 0; 489 490 switch (mad_wc->recv_buf.mad->mad_hdr.method) { 491 case IB_MGMT_METHOD_GET: 492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); 493 break; 494 case IB_MGMT_METHOD_SET: 495 dm_mad->mad_hdr.status = 496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); 497 break; 498 default: 499 dm_mad->mad_hdr.status = 500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); 501 break; 502 } 503 504 if (!ib_post_send_mad(rsp, NULL)) { 505 ib_free_recv_mad(mad_wc); 506 /* will destroy_ah & free_send_mad in send completion */ 507 return; 508 } 509 510 ib_free_send_mad(rsp); 511 512err_rsp: 513 ib_destroy_ah(ah); 514err: 515 ib_free_recv_mad(mad_wc); 516} 517 518/** 519 * srpt_refresh_port() - Configure a HCA port. 520 * 521 * Enable InfiniBand management datagram processing, update the cached sm_lid, 522 * lid and gid values, and register a callback function for processing MADs 523 * on the specified port. 524 * 525 * Note: It is safe to call this function more than once for the same port. 526 */ 527static int srpt_refresh_port(struct srpt_port *sport) 528{ 529 struct ib_mad_reg_req reg_req; 530 struct ib_port_modify port_modify; 531 struct ib_port_attr port_attr; 532 int ret; 533 534 memset(&port_modify, 0, sizeof port_modify); 535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 536 port_modify.clr_port_cap_mask = 0; 537 538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 539 if (ret) 540 goto err_mod_port; 541 542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); 543 if (ret) 544 goto err_query_port; 545 546 sport->sm_lid = port_attr.sm_lid; 547 sport->lid = port_attr.lid; 548 549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); 550 if (ret) 551 goto err_query_port; 552 553 if (!sport->mad_agent) { 554 memset(®_req, 0, sizeof reg_req); 555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; 556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; 557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); 558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); 559 560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device, 561 sport->port, 562 IB_QPT_GSI, 563 ®_req, 0, 564 srpt_mad_send_handler, 565 srpt_mad_recv_handler, 566 sport, 0); 567 if (IS_ERR(sport->mad_agent)) { 568 ret = PTR_ERR(sport->mad_agent); 569 sport->mad_agent = NULL; 570 goto err_query_port; 571 } 572 } 573 574 return 0; 575 576err_query_port: 577 578 port_modify.set_port_cap_mask = 0; 579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; 580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); 581 582err_mod_port: 583 584 return ret; 585} 586 587/** 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions. 589 * 590 * Note: It is safe to call this function more than once for the same device. 591 */ 592static void srpt_unregister_mad_agent(struct srpt_device *sdev) 593{ 594 struct ib_port_modify port_modify = { 595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, 596 }; 597 struct srpt_port *sport; 598 int i; 599 600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 601 sport = &sdev->port[i - 1]; 602 WARN_ON(sport->port != i); 603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) 604 pr_err("disabling MAD processing failed.\n"); 605 if (sport->mad_agent) { 606 ib_unregister_mad_agent(sport->mad_agent); 607 sport->mad_agent = NULL; 608 } 609 } 610} 611 612/** 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. 614 */ 615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, 616 int ioctx_size, int dma_size, 617 enum dma_data_direction dir) 618{ 619 struct srpt_ioctx *ioctx; 620 621 ioctx = kmalloc(ioctx_size, GFP_KERNEL); 622 if (!ioctx) 623 goto err; 624 625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL); 626 if (!ioctx->buf) 627 goto err_free_ioctx; 628 629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); 630 if (ib_dma_mapping_error(sdev->device, ioctx->dma)) 631 goto err_free_buf; 632 633 return ioctx; 634 635err_free_buf: 636 kfree(ioctx->buf); 637err_free_ioctx: 638 kfree(ioctx); 639err: 640 return NULL; 641} 642 643/** 644 * srpt_free_ioctx() - Free an SRPT I/O context structure. 645 */ 646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, 647 int dma_size, enum dma_data_direction dir) 648{ 649 if (!ioctx) 650 return; 651 652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); 653 kfree(ioctx->buf); 654 kfree(ioctx); 655} 656 657/** 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. 659 * @sdev: Device to allocate the I/O context ring for. 660 * @ring_size: Number of elements in the I/O context ring. 661 * @ioctx_size: I/O context size. 662 * @dma_size: DMA buffer size. 663 * @dir: DMA data direction. 664 */ 665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, 666 int ring_size, int ioctx_size, 667 int dma_size, enum dma_data_direction dir) 668{ 669 struct srpt_ioctx **ring; 670 int i; 671 672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) 673 && ioctx_size != sizeof(struct srpt_send_ioctx)); 674 675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); 676 if (!ring) 677 goto out; 678 for (i = 0; i < ring_size; ++i) { 679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); 680 if (!ring[i]) 681 goto err; 682 ring[i]->index = i; 683 } 684 goto out; 685 686err: 687 while (--i >= 0) 688 srpt_free_ioctx(sdev, ring[i], dma_size, dir); 689 kfree(ring); 690 ring = NULL; 691out: 692 return ring; 693} 694 695/** 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. 697 */ 698static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, 699 struct srpt_device *sdev, int ring_size, 700 int dma_size, enum dma_data_direction dir) 701{ 702 int i; 703 704 for (i = 0; i < ring_size; ++i) 705 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); 706 kfree(ioctx_ring); 707} 708 709/** 710 * srpt_get_cmd_state() - Get the state of a SCSI command. 711 */ 712static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) 713{ 714 enum srpt_command_state state; 715 unsigned long flags; 716 717 BUG_ON(!ioctx); 718 719 spin_lock_irqsave(&ioctx->spinlock, flags); 720 state = ioctx->state; 721 spin_unlock_irqrestore(&ioctx->spinlock, flags); 722 return state; 723} 724 725/** 726 * srpt_set_cmd_state() - Set the state of a SCSI command. 727 * 728 * Does not modify the state of aborted commands. Returns the previous command 729 * state. 730 */ 731static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, 732 enum srpt_command_state new) 733{ 734 enum srpt_command_state previous; 735 unsigned long flags; 736 737 BUG_ON(!ioctx); 738 739 spin_lock_irqsave(&ioctx->spinlock, flags); 740 previous = ioctx->state; 741 if (previous != SRPT_STATE_DONE) 742 ioctx->state = new; 743 spin_unlock_irqrestore(&ioctx->spinlock, flags); 744 745 return previous; 746} 747 748/** 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command. 750 * 751 * Returns true if and only if the previous command state was equal to 'old'. 752 */ 753static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, 754 enum srpt_command_state old, 755 enum srpt_command_state new) 756{ 757 enum srpt_command_state previous; 758 unsigned long flags; 759 760 WARN_ON(!ioctx); 761 WARN_ON(old == SRPT_STATE_DONE); 762 WARN_ON(new == SRPT_STATE_NEW); 763 764 spin_lock_irqsave(&ioctx->spinlock, flags); 765 previous = ioctx->state; 766 if (previous == old) 767 ioctx->state = new; 768 spin_unlock_irqrestore(&ioctx->spinlock, flags); 769 return previous == old; 770} 771 772/** 773 * srpt_post_recv() - Post an IB receive request. 774 */ 775static int srpt_post_recv(struct srpt_device *sdev, 776 struct srpt_recv_ioctx *ioctx) 777{ 778 struct ib_sge list; 779 struct ib_recv_wr wr, *bad_wr; 780 781 BUG_ON(!sdev); 782 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); 783 784 list.addr = ioctx->ioctx.dma; 785 list.length = srp_max_req_size; 786 list.lkey = sdev->mr->lkey; 787 788 wr.next = NULL; 789 wr.sg_list = &list; 790 wr.num_sge = 1; 791 792 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); 793} 794 795/** 796 * srpt_post_send() - Post an IB send request. 797 * 798 * Returns zero upon success and a non-zero value upon failure. 799 */ 800static int srpt_post_send(struct srpt_rdma_ch *ch, 801 struct srpt_send_ioctx *ioctx, int len) 802{ 803 struct ib_sge list; 804 struct ib_send_wr wr, *bad_wr; 805 struct srpt_device *sdev = ch->sport->sdev; 806 int ret; 807 808 atomic_inc(&ch->req_lim); 809 810 ret = -ENOMEM; 811 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { 812 pr_warn("IB send queue full (needed 1)\n"); 813 goto out; 814 } 815 816 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, 817 DMA_TO_DEVICE); 818 819 list.addr = ioctx->ioctx.dma; 820 list.length = len; 821 list.lkey = sdev->mr->lkey; 822 823 wr.next = NULL; 824 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); 825 wr.sg_list = &list; 826 wr.num_sge = 1; 827 wr.opcode = IB_WR_SEND; 828 wr.send_flags = IB_SEND_SIGNALED; 829 830 ret = ib_post_send(ch->qp, &wr, &bad_wr); 831 832out: 833 if (ret < 0) { 834 atomic_inc(&ch->sq_wr_avail); 835 atomic_dec(&ch->req_lim); 836 } 837 return ret; 838} 839 840/** 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. 842 * @ioctx: Pointer to the I/O context associated with the request. 843 * @srp_cmd: Pointer to the SRP_CMD request data. 844 * @dir: Pointer to the variable to which the transfer direction will be 845 * written. 846 * @data_len: Pointer to the variable to which the total data length of all 847 * descriptors in the SRP_CMD request will be written. 848 * 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs. 850 * 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; 852 * -ENOMEM when memory allocation fails and zero upon success. 853 */ 854static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, 855 struct srp_cmd *srp_cmd, 856 enum dma_data_direction *dir, u64 *data_len) 857{ 858 struct srp_indirect_buf *idb; 859 struct srp_direct_buf *db; 860 unsigned add_cdb_offset; 861 int ret; 862 863 /* 864 * The pointer computations below will only be compiled correctly 865 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check 866 * whether srp_cmd::add_data has been declared as a byte pointer. 867 */ 868 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) 869 && !__same_type(srp_cmd->add_data[0], (u8)0)); 870 871 BUG_ON(!dir); 872 BUG_ON(!data_len); 873 874 ret = 0; 875 *data_len = 0; 876 877 /* 878 * The lower four bits of the buffer format field contain the DATA-IN 879 * buffer descriptor format, and the highest four bits contain the 880 * DATA-OUT buffer descriptor format. 881 */ 882 *dir = DMA_NONE; 883 if (srp_cmd->buf_fmt & 0xf) 884 /* DATA-IN: transfer data from target to initiator (read). */ 885 *dir = DMA_FROM_DEVICE; 886 else if (srp_cmd->buf_fmt >> 4) 887 /* DATA-OUT: transfer data from initiator to target (write). */ 888 *dir = DMA_TO_DEVICE; 889 890 /* 891 * According to the SRP spec, the lower two bits of the 'ADDITIONAL 892 * CDB LENGTH' field are reserved and the size in bytes of this field 893 * is four times the value specified in bits 3..7. Hence the "& ~3". 894 */ 895 add_cdb_offset = srp_cmd->add_cdb_len & ~3; 896 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || 897 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { 898 ioctx->n_rbuf = 1; 899 ioctx->rbufs = &ioctx->single_rbuf; 900 901 db = (struct srp_direct_buf *)(srp_cmd->add_data 902 + add_cdb_offset); 903 memcpy(ioctx->rbufs, db, sizeof *db); 904 *data_len = be32_to_cpu(db->len); 905 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || 906 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { 907 idb = (struct srp_indirect_buf *)(srp_cmd->add_data 908 + add_cdb_offset); 909 910 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; 911 912 if (ioctx->n_rbuf > 913 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { 914 pr_err("received unsupported SRP_CMD request" 915 " type (%u out + %u in != %u / %zu)\n", 916 srp_cmd->data_out_desc_cnt, 917 srp_cmd->data_in_desc_cnt, 918 be32_to_cpu(idb->table_desc.len), 919 sizeof(*db)); 920 ioctx->n_rbuf = 0; 921 ret = -EINVAL; 922 goto out; 923 } 924 925 if (ioctx->n_rbuf == 1) 926 ioctx->rbufs = &ioctx->single_rbuf; 927 else { 928 ioctx->rbufs = 929 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); 930 if (!ioctx->rbufs) { 931 ioctx->n_rbuf = 0; 932 ret = -ENOMEM; 933 goto out; 934 } 935 } 936 937 db = idb->desc_list; 938 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); 939 *data_len = be32_to_cpu(idb->len); 940 } 941out: 942 return ret; 943} 944 945/** 946 * srpt_init_ch_qp() - Initialize queue pair attributes. 947 * 948 * Initialized the attributes of queue pair 'qp' by allowing local write, 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. 950 */ 951static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) 952{ 953 struct ib_qp_attr *attr; 954 int ret; 955 956 attr = kzalloc(sizeof *attr, GFP_KERNEL); 957 if (!attr) 958 return -ENOMEM; 959 960 attr->qp_state = IB_QPS_INIT; 961 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | 962 IB_ACCESS_REMOTE_WRITE; 963 attr->port_num = ch->sport->port; 964 attr->pkey_index = 0; 965 966 ret = ib_modify_qp(qp, attr, 967 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | 968 IB_QP_PKEY_INDEX); 969 970 kfree(attr); 971 return ret; 972} 973 974/** 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). 976 * @ch: channel of the queue pair. 977 * @qp: queue pair to change the state of. 978 * 979 * Returns zero upon success and a negative value upon failure. 980 * 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 982 * If this structure ever becomes larger, it might be necessary to allocate 983 * it dynamically instead of on the stack. 984 */ 985static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) 986{ 987 struct ib_qp_attr qp_attr; 988 int attr_mask; 989 int ret; 990 991 qp_attr.qp_state = IB_QPS_RTR; 992 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 993 if (ret) 994 goto out; 995 996 qp_attr.max_dest_rd_atomic = 4; 997 998 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 999 1000out: 1001 return ret; 1002} 1003 1004/** 1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). 1006 * @ch: channel of the queue pair. 1007 * @qp: queue pair to change the state of. 1008 * 1009 * Returns zero upon success and a negative value upon failure. 1010 * 1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. 1012 * If this structure ever becomes larger, it might be necessary to allocate 1013 * it dynamically instead of on the stack. 1014 */ 1015static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) 1016{ 1017 struct ib_qp_attr qp_attr; 1018 int attr_mask; 1019 int ret; 1020 1021 qp_attr.qp_state = IB_QPS_RTS; 1022 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); 1023 if (ret) 1024 goto out; 1025 1026 qp_attr.max_rd_atomic = 4; 1027 1028 ret = ib_modify_qp(qp, &qp_attr, attr_mask); 1029 1030out: 1031 return ret; 1032} 1033 1034/** 1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. 1036 */ 1037static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) 1038{ 1039 struct ib_qp_attr qp_attr; 1040 1041 qp_attr.qp_state = IB_QPS_ERR; 1042 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); 1043} 1044 1045/** 1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. 1047 */ 1048static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1049 struct srpt_send_ioctx *ioctx) 1050{ 1051 struct scatterlist *sg; 1052 enum dma_data_direction dir; 1053 1054 BUG_ON(!ch); 1055 BUG_ON(!ioctx); 1056 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); 1057 1058 while (ioctx->n_rdma) 1059 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); 1060 1061 kfree(ioctx->rdma_ius); 1062 ioctx->rdma_ius = NULL; 1063 1064 if (ioctx->mapped_sg_count) { 1065 sg = ioctx->sg; 1066 WARN_ON(!sg); 1067 dir = ioctx->cmd.data_direction; 1068 BUG_ON(dir == DMA_NONE); 1069 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, 1070 opposite_dma_dir(dir)); 1071 ioctx->mapped_sg_count = 0; 1072 } 1073} 1074 1075/** 1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. 1077 */ 1078static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, 1079 struct srpt_send_ioctx *ioctx) 1080{ 1081 struct ib_device *dev = ch->sport->sdev->device; 1082 struct se_cmd *cmd; 1083 struct scatterlist *sg, *sg_orig; 1084 int sg_cnt; 1085 enum dma_data_direction dir; 1086 struct rdma_iu *riu; 1087 struct srp_direct_buf *db; 1088 dma_addr_t dma_addr; 1089 struct ib_sge *sge; 1090 u64 raddr; 1091 u32 rsize; 1092 u32 tsize; 1093 u32 dma_len; 1094 int count, nrdma; 1095 int i, j, k; 1096 1097 BUG_ON(!ch); 1098 BUG_ON(!ioctx); 1099 cmd = &ioctx->cmd; 1100 dir = cmd->data_direction; 1101 BUG_ON(dir == DMA_NONE); 1102 1103 ioctx->sg = sg = sg_orig = cmd->t_data_sg; 1104 ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; 1105 1106 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, 1107 opposite_dma_dir(dir)); 1108 if (unlikely(!count)) 1109 return -EAGAIN; 1110 1111 ioctx->mapped_sg_count = count; 1112 1113 if (ioctx->rdma_ius && ioctx->n_rdma_ius) 1114 nrdma = ioctx->n_rdma_ius; 1115 else { 1116 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE 1117 + ioctx->n_rbuf; 1118 1119 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); 1120 if (!ioctx->rdma_ius) 1121 goto free_mem; 1122 1123 ioctx->n_rdma_ius = nrdma; 1124 } 1125 1126 db = ioctx->rbufs; 1127 tsize = cmd->data_length; 1128 dma_len = ib_sg_dma_len(dev, &sg[0]); 1129 riu = ioctx->rdma_ius; 1130 1131 /* 1132 * For each remote desc - calculate the #ib_sge. 1133 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then 1134 * each remote desc rdma_iu is required a rdma wr; 1135 * else 1136 * we need to allocate extra rdma_iu to carry extra #ib_sge in 1137 * another rdma wr 1138 */ 1139 for (i = 0, j = 0; 1140 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1141 rsize = be32_to_cpu(db->len); 1142 raddr = be64_to_cpu(db->va); 1143 riu->raddr = raddr; 1144 riu->rkey = be32_to_cpu(db->key); 1145 riu->sge_cnt = 0; 1146 1147 /* calculate how many sge required for this remote_buf */ 1148 while (rsize > 0 && tsize > 0) { 1149 1150 if (rsize >= dma_len) { 1151 tsize -= dma_len; 1152 rsize -= dma_len; 1153 raddr += dma_len; 1154 1155 if (tsize > 0) { 1156 ++j; 1157 if (j < count) { 1158 sg = sg_next(sg); 1159 dma_len = ib_sg_dma_len( 1160 dev, sg); 1161 } 1162 } 1163 } else { 1164 tsize -= rsize; 1165 dma_len -= rsize; 1166 rsize = 0; 1167 } 1168 1169 ++riu->sge_cnt; 1170 1171 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { 1172 ++ioctx->n_rdma; 1173 riu->sge = 1174 kmalloc(riu->sge_cnt * sizeof *riu->sge, 1175 GFP_KERNEL); 1176 if (!riu->sge) 1177 goto free_mem; 1178 1179 ++riu; 1180 riu->sge_cnt = 0; 1181 riu->raddr = raddr; 1182 riu->rkey = be32_to_cpu(db->key); 1183 } 1184 } 1185 1186 ++ioctx->n_rdma; 1187 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, 1188 GFP_KERNEL); 1189 if (!riu->sge) 1190 goto free_mem; 1191 } 1192 1193 db = ioctx->rbufs; 1194 tsize = cmd->data_length; 1195 riu = ioctx->rdma_ius; 1196 sg = sg_orig; 1197 dma_len = ib_sg_dma_len(dev, &sg[0]); 1198 dma_addr = ib_sg_dma_address(dev, &sg[0]); 1199 1200 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ 1201 for (i = 0, j = 0; 1202 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { 1203 rsize = be32_to_cpu(db->len); 1204 sge = riu->sge; 1205 k = 0; 1206 1207 while (rsize > 0 && tsize > 0) { 1208 sge->addr = dma_addr; 1209 sge->lkey = ch->sport->sdev->mr->lkey; 1210 1211 if (rsize >= dma_len) { 1212 sge->length = 1213 (tsize < dma_len) ? tsize : dma_len; 1214 tsize -= dma_len; 1215 rsize -= dma_len; 1216 1217 if (tsize > 0) { 1218 ++j; 1219 if (j < count) { 1220 sg = sg_next(sg); 1221 dma_len = ib_sg_dma_len( 1222 dev, sg); 1223 dma_addr = ib_sg_dma_address( 1224 dev, sg); 1225 } 1226 } 1227 } else { 1228 sge->length = (tsize < rsize) ? tsize : rsize; 1229 tsize -= rsize; 1230 dma_len -= rsize; 1231 dma_addr += rsize; 1232 rsize = 0; 1233 } 1234 1235 ++k; 1236 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { 1237 ++riu; 1238 sge = riu->sge; 1239 k = 0; 1240 } else if (rsize > 0 && tsize > 0) 1241 ++sge; 1242 } 1243 } 1244 1245 return 0; 1246 1247free_mem: 1248 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1249 1250 return -ENOMEM; 1251} 1252 1253/** 1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. 1255 */ 1256static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) 1257{ 1258 struct srpt_send_ioctx *ioctx; 1259 unsigned long flags; 1260 1261 BUG_ON(!ch); 1262 1263 ioctx = NULL; 1264 spin_lock_irqsave(&ch->spinlock, flags); 1265 if (!list_empty(&ch->free_list)) { 1266 ioctx = list_first_entry(&ch->free_list, 1267 struct srpt_send_ioctx, free_list); 1268 list_del(&ioctx->free_list); 1269 } 1270 spin_unlock_irqrestore(&ch->spinlock, flags); 1271 1272 if (!ioctx) 1273 return ioctx; 1274 1275 BUG_ON(ioctx->ch != ch); 1276 spin_lock_init(&ioctx->spinlock); 1277 ioctx->state = SRPT_STATE_NEW; 1278 ioctx->n_rbuf = 0; 1279 ioctx->rbufs = NULL; 1280 ioctx->n_rdma = 0; 1281 ioctx->n_rdma_ius = 0; 1282 ioctx->rdma_ius = NULL; 1283 ioctx->mapped_sg_count = 0; 1284 init_completion(&ioctx->tx_done); 1285 ioctx->queue_status_only = false; 1286 /* 1287 * transport_init_se_cmd() does not initialize all fields, so do it 1288 * here. 1289 */ 1290 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); 1291 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); 1292 1293 return ioctx; 1294} 1295 1296/** 1297 * srpt_abort_cmd() - Abort a SCSI command. 1298 * @ioctx: I/O context associated with the SCSI command. 1299 * @context: Preferred execution context. 1300 */ 1301static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) 1302{ 1303 enum srpt_command_state state; 1304 unsigned long flags; 1305 1306 BUG_ON(!ioctx); 1307 1308 /* 1309 * If the command is in a state where the target core is waiting for 1310 * the ib_srpt driver, change the state to the next state. Changing 1311 * the state of the command from SRPT_STATE_NEED_DATA to 1312 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this 1313 * function a second time. 1314 */ 1315 1316 spin_lock_irqsave(&ioctx->spinlock, flags); 1317 state = ioctx->state; 1318 switch (state) { 1319 case SRPT_STATE_NEED_DATA: 1320 ioctx->state = SRPT_STATE_DATA_IN; 1321 break; 1322 case SRPT_STATE_DATA_IN: 1323 case SRPT_STATE_CMD_RSP_SENT: 1324 case SRPT_STATE_MGMT_RSP_SENT: 1325 ioctx->state = SRPT_STATE_DONE; 1326 break; 1327 default: 1328 break; 1329 } 1330 spin_unlock_irqrestore(&ioctx->spinlock, flags); 1331 1332 if (state == SRPT_STATE_DONE) { 1333 struct srpt_rdma_ch *ch = ioctx->ch; 1334 1335 BUG_ON(ch->sess == NULL); 1336 1337 target_put_sess_cmd(&ioctx->cmd); 1338 goto out; 1339 } 1340 1341 pr_debug("Aborting cmd with state %d and tag %lld\n", state, 1342 ioctx->tag); 1343 1344 switch (state) { 1345 case SRPT_STATE_NEW: 1346 case SRPT_STATE_DATA_IN: 1347 case SRPT_STATE_MGMT: 1348 /* 1349 * Do nothing - defer abort processing until 1350 * srpt_queue_response() is invoked. 1351 */ 1352 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); 1353 break; 1354 case SRPT_STATE_NEED_DATA: 1355 /* DMA_TO_DEVICE (write) - RDMA read error. */ 1356 1357 /* XXX(hch): this is a horrible layering violation.. */ 1358 spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); 1359 ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; 1360 spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); 1361 break; 1362 case SRPT_STATE_CMD_RSP_SENT: 1363 /* 1364 * SRP_RSP sending failed or the SRP_RSP send completion has 1365 * not been received in time. 1366 */ 1367 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 1368 target_put_sess_cmd(&ioctx->cmd); 1369 break; 1370 case SRPT_STATE_MGMT_RSP_SENT: 1371 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1372 target_put_sess_cmd(&ioctx->cmd); 1373 break; 1374 default: 1375 WARN(1, "Unexpected command state (%d)", state); 1376 break; 1377 } 1378 1379out: 1380 return state; 1381} 1382 1383/** 1384 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. 1385 */ 1386static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) 1387{ 1388 struct srpt_send_ioctx *ioctx; 1389 enum srpt_command_state state; 1390 struct se_cmd *cmd; 1391 u32 index; 1392 1393 atomic_inc(&ch->sq_wr_avail); 1394 1395 index = idx_from_wr_id(wr_id); 1396 ioctx = ch->ioctx_ring[index]; 1397 state = srpt_get_cmd_state(ioctx); 1398 cmd = &ioctx->cmd; 1399 1400 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1401 && state != SRPT_STATE_MGMT_RSP_SENT 1402 && state != SRPT_STATE_NEED_DATA 1403 && state != SRPT_STATE_DONE); 1404 1405 /* If SRP_RSP sending failed, undo the ch->req_lim change. */ 1406 if (state == SRPT_STATE_CMD_RSP_SENT 1407 || state == SRPT_STATE_MGMT_RSP_SENT) 1408 atomic_dec(&ch->req_lim); 1409 1410 srpt_abort_cmd(ioctx); 1411} 1412 1413/** 1414 * srpt_handle_send_comp() - Process an IB send completion notification. 1415 */ 1416static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, 1417 struct srpt_send_ioctx *ioctx) 1418{ 1419 enum srpt_command_state state; 1420 1421 atomic_inc(&ch->sq_wr_avail); 1422 1423 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 1424 1425 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT 1426 && state != SRPT_STATE_MGMT_RSP_SENT 1427 && state != SRPT_STATE_DONE)) 1428 pr_debug("state = %d\n", state); 1429 1430 if (state != SRPT_STATE_DONE) { 1431 srpt_unmap_sg_to_ib_sge(ch, ioctx); 1432 transport_generic_free_cmd(&ioctx->cmd, 0); 1433 } else { 1434 pr_err("IB completion has been received too late for" 1435 " wr_id = %u.\n", ioctx->ioctx.index); 1436 } 1437} 1438 1439/** 1440 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. 1441 * 1442 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping 1443 * the data that has been transferred via IB RDMA had to be postponed until the 1444 * check_stop_free() callback. None of this is necessary anymore and needs to 1445 * be cleaned up. 1446 */ 1447static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, 1448 struct srpt_send_ioctx *ioctx, 1449 enum srpt_opcode opcode) 1450{ 1451 WARN_ON(ioctx->n_rdma <= 0); 1452 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1453 1454 if (opcode == SRPT_RDMA_READ_LAST) { 1455 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, 1456 SRPT_STATE_DATA_IN)) 1457 target_execute_cmd(&ioctx->cmd); 1458 else 1459 pr_err("%s[%d]: wrong state = %d\n", __func__, 1460 __LINE__, srpt_get_cmd_state(ioctx)); 1461 } else if (opcode == SRPT_RDMA_ABORT) { 1462 ioctx->rdma_aborted = true; 1463 } else { 1464 WARN(true, "unexpected opcode %d\n", opcode); 1465 } 1466} 1467 1468/** 1469 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. 1470 */ 1471static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, 1472 struct srpt_send_ioctx *ioctx, 1473 enum srpt_opcode opcode) 1474{ 1475 struct se_cmd *cmd; 1476 enum srpt_command_state state; 1477 1478 cmd = &ioctx->cmd; 1479 state = srpt_get_cmd_state(ioctx); 1480 switch (opcode) { 1481 case SRPT_RDMA_READ_LAST: 1482 if (ioctx->n_rdma <= 0) { 1483 pr_err("Received invalid RDMA read" 1484 " error completion with idx %d\n", 1485 ioctx->ioctx.index); 1486 break; 1487 } 1488 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); 1489 if (state == SRPT_STATE_NEED_DATA) 1490 srpt_abort_cmd(ioctx); 1491 else 1492 pr_err("%s[%d]: wrong state = %d\n", 1493 __func__, __LINE__, state); 1494 break; 1495 case SRPT_RDMA_WRITE_LAST: 1496 break; 1497 default: 1498 pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode); 1499 break; 1500 } 1501} 1502 1503/** 1504 * srpt_build_cmd_rsp() - Build an SRP_RSP response. 1505 * @ch: RDMA channel through which the request has been received. 1506 * @ioctx: I/O context associated with the SRP_CMD request. The response will 1507 * be built in the buffer ioctx->buf points at and hence this function will 1508 * overwrite the request data. 1509 * @tag: tag of the request for which this response is being generated. 1510 * @status: value for the STATUS field of the SRP_RSP information unit. 1511 * 1512 * Returns the size in bytes of the SRP_RSP response. 1513 * 1514 * An SRP_RSP response contains a SCSI status or service response. See also 1515 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1516 * response. See also SPC-2 for more information about sense data. 1517 */ 1518static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, 1519 struct srpt_send_ioctx *ioctx, u64 tag, 1520 int status) 1521{ 1522 struct srp_rsp *srp_rsp; 1523 const u8 *sense_data; 1524 int sense_data_len, max_sense_len; 1525 1526 /* 1527 * The lowest bit of all SAM-3 status codes is zero (see also 1528 * paragraph 5.3 in SAM-3). 1529 */ 1530 WARN_ON(status & 1); 1531 1532 srp_rsp = ioctx->ioctx.buf; 1533 BUG_ON(!srp_rsp); 1534 1535 sense_data = ioctx->sense_data; 1536 sense_data_len = ioctx->cmd.scsi_sense_length; 1537 WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); 1538 1539 memset(srp_rsp, 0, sizeof *srp_rsp); 1540 srp_rsp->opcode = SRP_RSP; 1541 srp_rsp->req_lim_delta = 1542 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); 1543 srp_rsp->tag = tag; 1544 srp_rsp->status = status; 1545 1546 if (sense_data_len) { 1547 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); 1548 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); 1549 if (sense_data_len > max_sense_len) { 1550 pr_warn("truncated sense data from %d to %d" 1551 " bytes\n", sense_data_len, max_sense_len); 1552 sense_data_len = max_sense_len; 1553 } 1554 1555 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; 1556 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); 1557 memcpy(srp_rsp + 1, sense_data, sense_data_len); 1558 } 1559 1560 return sizeof(*srp_rsp) + sense_data_len; 1561} 1562 1563/** 1564 * srpt_build_tskmgmt_rsp() - Build a task management response. 1565 * @ch: RDMA channel through which the request has been received. 1566 * @ioctx: I/O context in which the SRP_RSP response will be built. 1567 * @rsp_code: RSP_CODE that will be stored in the response. 1568 * @tag: Tag of the request for which this response is being generated. 1569 * 1570 * Returns the size in bytes of the SRP_RSP response. 1571 * 1572 * An SRP_RSP response contains a SCSI status or service response. See also 1573 * section 6.9 in the SRP r16a document for the format of an SRP_RSP 1574 * response. 1575 */ 1576static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, 1577 struct srpt_send_ioctx *ioctx, 1578 u8 rsp_code, u64 tag) 1579{ 1580 struct srp_rsp *srp_rsp; 1581 int resp_data_len; 1582 int resp_len; 1583 1584 resp_data_len = 4; 1585 resp_len = sizeof(*srp_rsp) + resp_data_len; 1586 1587 srp_rsp = ioctx->ioctx.buf; 1588 BUG_ON(!srp_rsp); 1589 memset(srp_rsp, 0, sizeof *srp_rsp); 1590 1591 srp_rsp->opcode = SRP_RSP; 1592 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 1593 + atomic_xchg(&ch->req_lim_delta, 0)); 1594 srp_rsp->tag = tag; 1595 1596 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; 1597 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); 1598 srp_rsp->data[3] = rsp_code; 1599 1600 return resp_len; 1601} 1602 1603#define NO_SUCH_LUN ((uint64_t)-1LL) 1604 1605/* 1606 * SCSI LUN addressing method. See also SAM-2 and the section about 1607 * eight byte LUNs. 1608 */ 1609enum scsi_lun_addr_method { 1610 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, 1611 SCSI_LUN_ADDR_METHOD_FLAT = 1, 1612 SCSI_LUN_ADDR_METHOD_LUN = 2, 1613 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, 1614}; 1615 1616/* 1617 * srpt_unpack_lun() - Convert from network LUN to linear LUN. 1618 * 1619 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte 1620 * order (big endian) to a linear LUN. Supports three LUN addressing methods: 1621 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). 1622 */ 1623static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) 1624{ 1625 uint64_t res = NO_SUCH_LUN; 1626 int addressing_method; 1627 1628 if (unlikely(len < 2)) { 1629 pr_err("Illegal LUN length %d, expected 2 bytes or more\n", 1630 len); 1631 goto out; 1632 } 1633 1634 switch (len) { 1635 case 8: 1636 if ((*((__be64 *)lun) & 1637 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) 1638 goto out_err; 1639 break; 1640 case 4: 1641 if (*((__be16 *)&lun[2]) != 0) 1642 goto out_err; 1643 break; 1644 case 6: 1645 if (*((__be32 *)&lun[2]) != 0) 1646 goto out_err; 1647 break; 1648 case 2: 1649 break; 1650 default: 1651 goto out_err; 1652 } 1653 1654 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ 1655 switch (addressing_method) { 1656 case SCSI_LUN_ADDR_METHOD_PERIPHERAL: 1657 case SCSI_LUN_ADDR_METHOD_FLAT: 1658 case SCSI_LUN_ADDR_METHOD_LUN: 1659 res = *(lun + 1) | (((*lun) & 0x3f) << 8); 1660 break; 1661 1662 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: 1663 default: 1664 pr_err("Unimplemented LUN addressing method %u\n", 1665 addressing_method); 1666 break; 1667 } 1668 1669out: 1670 return res; 1671 1672out_err: 1673 pr_err("Support for multi-level LUNs has not yet been implemented\n"); 1674 goto out; 1675} 1676 1677static int srpt_check_stop_free(struct se_cmd *cmd) 1678{ 1679 struct srpt_send_ioctx *ioctx = container_of(cmd, 1680 struct srpt_send_ioctx, cmd); 1681 1682 return target_put_sess_cmd(&ioctx->cmd); 1683} 1684 1685/** 1686 * srpt_handle_cmd() - Process SRP_CMD. 1687 */ 1688static int srpt_handle_cmd(struct srpt_rdma_ch *ch, 1689 struct srpt_recv_ioctx *recv_ioctx, 1690 struct srpt_send_ioctx *send_ioctx) 1691{ 1692 struct se_cmd *cmd; 1693 struct srp_cmd *srp_cmd; 1694 uint64_t unpacked_lun; 1695 u64 data_len; 1696 enum dma_data_direction dir; 1697 sense_reason_t ret; 1698 int rc; 1699 1700 BUG_ON(!send_ioctx); 1701 1702 srp_cmd = recv_ioctx->ioctx.buf; 1703 cmd = &send_ioctx->cmd; 1704 send_ioctx->tag = srp_cmd->tag; 1705 1706 switch (srp_cmd->task_attr) { 1707 case SRP_CMD_SIMPLE_Q: 1708 cmd->sam_task_attr = TCM_SIMPLE_TAG; 1709 break; 1710 case SRP_CMD_ORDERED_Q: 1711 default: 1712 cmd->sam_task_attr = TCM_ORDERED_TAG; 1713 break; 1714 case SRP_CMD_HEAD_OF_Q: 1715 cmd->sam_task_attr = TCM_HEAD_TAG; 1716 break; 1717 case SRP_CMD_ACA: 1718 cmd->sam_task_attr = TCM_ACA_TAG; 1719 break; 1720 } 1721 1722 if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) { 1723 pr_err("0x%llx: parsing SRP descriptor table failed.\n", 1724 srp_cmd->tag); 1725 ret = TCM_INVALID_CDB_FIELD; 1726 goto send_sense; 1727 } 1728 1729 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, 1730 sizeof(srp_cmd->lun)); 1731 rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb, 1732 &send_ioctx->sense_data[0], unpacked_lun, data_len, 1733 TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF); 1734 if (rc != 0) { 1735 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE; 1736 goto send_sense; 1737 } 1738 return 0; 1739 1740send_sense: 1741 transport_send_check_condition_and_sense(cmd, ret, 0); 1742 return -1; 1743} 1744 1745static int srp_tmr_to_tcm(int fn) 1746{ 1747 switch (fn) { 1748 case SRP_TSK_ABORT_TASK: 1749 return TMR_ABORT_TASK; 1750 case SRP_TSK_ABORT_TASK_SET: 1751 return TMR_ABORT_TASK_SET; 1752 case SRP_TSK_CLEAR_TASK_SET: 1753 return TMR_CLEAR_TASK_SET; 1754 case SRP_TSK_LUN_RESET: 1755 return TMR_LUN_RESET; 1756 case SRP_TSK_CLEAR_ACA: 1757 return TMR_CLEAR_ACA; 1758 default: 1759 return -1; 1760 } 1761} 1762 1763/** 1764 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. 1765 * 1766 * Returns 0 if and only if the request will be processed by the target core. 1767 * 1768 * For more information about SRP_TSK_MGMT information units, see also section 1769 * 6.7 in the SRP r16a document. 1770 */ 1771static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, 1772 struct srpt_recv_ioctx *recv_ioctx, 1773 struct srpt_send_ioctx *send_ioctx) 1774{ 1775 struct srp_tsk_mgmt *srp_tsk; 1776 struct se_cmd *cmd; 1777 struct se_session *sess = ch->sess; 1778 uint64_t unpacked_lun; 1779 int tcm_tmr; 1780 int rc; 1781 1782 BUG_ON(!send_ioctx); 1783 1784 srp_tsk = recv_ioctx->ioctx.buf; 1785 cmd = &send_ioctx->cmd; 1786 1787 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" 1788 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, 1789 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); 1790 1791 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); 1792 send_ioctx->tag = srp_tsk->tag; 1793 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); 1794 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, 1795 sizeof(srp_tsk->lun)); 1796 rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun, 1797 srp_tsk, tcm_tmr, GFP_KERNEL, srp_tsk->task_tag, 1798 TARGET_SCF_ACK_KREF); 1799 if (rc != 0) { 1800 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; 1801 goto fail; 1802 } 1803 return; 1804fail: 1805 transport_send_check_condition_and_sense(cmd, 0, 0); // XXX: 1806} 1807 1808/** 1809 * srpt_handle_new_iu() - Process a newly received information unit. 1810 * @ch: RDMA channel through which the information unit has been received. 1811 * @ioctx: SRPT I/O context associated with the information unit. 1812 */ 1813static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, 1814 struct srpt_recv_ioctx *recv_ioctx, 1815 struct srpt_send_ioctx *send_ioctx) 1816{ 1817 struct srp_cmd *srp_cmd; 1818 enum rdma_ch_state ch_state; 1819 1820 BUG_ON(!ch); 1821 BUG_ON(!recv_ioctx); 1822 1823 ib_dma_sync_single_for_cpu(ch->sport->sdev->device, 1824 recv_ioctx->ioctx.dma, srp_max_req_size, 1825 DMA_FROM_DEVICE); 1826 1827 ch_state = srpt_get_ch_state(ch); 1828 if (unlikely(ch_state == CH_CONNECTING)) { 1829 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); 1830 goto out; 1831 } 1832 1833 if (unlikely(ch_state != CH_LIVE)) 1834 goto out; 1835 1836 srp_cmd = recv_ioctx->ioctx.buf; 1837 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { 1838 if (!send_ioctx) 1839 send_ioctx = srpt_get_send_ioctx(ch); 1840 if (unlikely(!send_ioctx)) { 1841 list_add_tail(&recv_ioctx->wait_list, 1842 &ch->cmd_wait_list); 1843 goto out; 1844 } 1845 } 1846 1847 switch (srp_cmd->opcode) { 1848 case SRP_CMD: 1849 srpt_handle_cmd(ch, recv_ioctx, send_ioctx); 1850 break; 1851 case SRP_TSK_MGMT: 1852 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); 1853 break; 1854 case SRP_I_LOGOUT: 1855 pr_err("Not yet implemented: SRP_I_LOGOUT\n"); 1856 break; 1857 case SRP_CRED_RSP: 1858 pr_debug("received SRP_CRED_RSP\n"); 1859 break; 1860 case SRP_AER_RSP: 1861 pr_debug("received SRP_AER_RSP\n"); 1862 break; 1863 case SRP_RSP: 1864 pr_err("Received SRP_RSP\n"); 1865 break; 1866 default: 1867 pr_err("received IU with unknown opcode 0x%x\n", 1868 srp_cmd->opcode); 1869 break; 1870 } 1871 1872 srpt_post_recv(ch->sport->sdev, recv_ioctx); 1873out: 1874 return; 1875} 1876 1877static void srpt_process_rcv_completion(struct ib_cq *cq, 1878 struct srpt_rdma_ch *ch, 1879 struct ib_wc *wc) 1880{ 1881 struct srpt_device *sdev = ch->sport->sdev; 1882 struct srpt_recv_ioctx *ioctx; 1883 u32 index; 1884 1885 index = idx_from_wr_id(wc->wr_id); 1886 if (wc->status == IB_WC_SUCCESS) { 1887 int req_lim; 1888 1889 req_lim = atomic_dec_return(&ch->req_lim); 1890 if (unlikely(req_lim < 0)) 1891 pr_err("req_lim = %d < 0\n", req_lim); 1892 ioctx = sdev->ioctx_ring[index]; 1893 srpt_handle_new_iu(ch, ioctx, NULL); 1894 } else { 1895 pr_info("receiving failed for idx %u with status %d\n", 1896 index, wc->status); 1897 } 1898} 1899 1900/** 1901 * srpt_process_send_completion() - Process an IB send completion. 1902 * 1903 * Note: Although this has not yet been observed during tests, at least in 1904 * theory it is possible that the srpt_get_send_ioctx() call invoked by 1905 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta 1906 * value in each response is set to one, and it is possible that this response 1907 * makes the initiator send a new request before the send completion for that 1908 * response has been processed. This could e.g. happen if the call to 1909 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or 1910 * if IB retransmission causes generation of the send completion to be 1911 * delayed. Incoming information units for which srpt_get_send_ioctx() fails 1912 * are queued on cmd_wait_list. The code below processes these delayed 1913 * requests one at a time. 1914 */ 1915static void srpt_process_send_completion(struct ib_cq *cq, 1916 struct srpt_rdma_ch *ch, 1917 struct ib_wc *wc) 1918{ 1919 struct srpt_send_ioctx *send_ioctx; 1920 uint32_t index; 1921 enum srpt_opcode opcode; 1922 1923 index = idx_from_wr_id(wc->wr_id); 1924 opcode = opcode_from_wr_id(wc->wr_id); 1925 send_ioctx = ch->ioctx_ring[index]; 1926 if (wc->status == IB_WC_SUCCESS) { 1927 if (opcode == SRPT_SEND) 1928 srpt_handle_send_comp(ch, send_ioctx); 1929 else { 1930 WARN_ON(opcode != SRPT_RDMA_ABORT && 1931 wc->opcode != IB_WC_RDMA_READ); 1932 srpt_handle_rdma_comp(ch, send_ioctx, opcode); 1933 } 1934 } else { 1935 if (opcode == SRPT_SEND) { 1936 pr_info("sending response for idx %u failed" 1937 " with status %d\n", index, wc->status); 1938 srpt_handle_send_err_comp(ch, wc->wr_id); 1939 } else if (opcode != SRPT_RDMA_MID) { 1940 pr_info("RDMA t %d for idx %u failed with" 1941 " status %d\n", opcode, index, wc->status); 1942 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); 1943 } 1944 } 1945 1946 while (unlikely(opcode == SRPT_SEND 1947 && !list_empty(&ch->cmd_wait_list) 1948 && srpt_get_ch_state(ch) == CH_LIVE 1949 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { 1950 struct srpt_recv_ioctx *recv_ioctx; 1951 1952 recv_ioctx = list_first_entry(&ch->cmd_wait_list, 1953 struct srpt_recv_ioctx, 1954 wait_list); 1955 list_del(&recv_ioctx->wait_list); 1956 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); 1957 } 1958} 1959 1960static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) 1961{ 1962 struct ib_wc *const wc = ch->wc; 1963 int i, n; 1964 1965 WARN_ON(cq != ch->cq); 1966 1967 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); 1968 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { 1969 for (i = 0; i < n; i++) { 1970 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) 1971 srpt_process_rcv_completion(cq, ch, &wc[i]); 1972 else 1973 srpt_process_send_completion(cq, ch, &wc[i]); 1974 } 1975 } 1976} 1977 1978/** 1979 * srpt_completion() - IB completion queue callback function. 1980 * 1981 * Notes: 1982 * - It is guaranteed that a completion handler will never be invoked 1983 * concurrently on two different CPUs for the same completion queue. See also 1984 * Documentation/infiniband/core_locking.txt and the implementation of 1985 * handle_edge_irq() in kernel/irq/chip.c. 1986 * - When threaded IRQs are enabled, completion handlers are invoked in thread 1987 * context instead of interrupt context. 1988 */ 1989static void srpt_completion(struct ib_cq *cq, void *ctx) 1990{ 1991 struct srpt_rdma_ch *ch = ctx; 1992 1993 wake_up_interruptible(&ch->wait_queue); 1994} 1995 1996static int srpt_compl_thread(void *arg) 1997{ 1998 struct srpt_rdma_ch *ch; 1999 2000 /* Hibernation / freezing of the SRPT kernel thread is not supported. */ 2001 current->flags |= PF_NOFREEZE; 2002 2003 ch = arg; 2004 BUG_ON(!ch); 2005 pr_info("Session %s: kernel thread %s (PID %d) started\n", 2006 ch->sess_name, ch->thread->comm, current->pid); 2007 while (!kthread_should_stop()) { 2008 wait_event_interruptible(ch->wait_queue, 2009 (srpt_process_completion(ch->cq, ch), 2010 kthread_should_stop())); 2011 } 2012 pr_info("Session %s: kernel thread %s (PID %d) stopped\n", 2013 ch->sess_name, ch->thread->comm, current->pid); 2014 return 0; 2015} 2016 2017/** 2018 * srpt_create_ch_ib() - Create receive and send completion queues. 2019 */ 2020static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) 2021{ 2022 struct ib_qp_init_attr *qp_init; 2023 struct srpt_port *sport = ch->sport; 2024 struct srpt_device *sdev = sport->sdev; 2025 u32 srp_sq_size = sport->port_attrib.srp_sq_size; 2026 int ret; 2027 2028 WARN_ON(ch->rq_size < 1); 2029 2030 ret = -ENOMEM; 2031 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); 2032 if (!qp_init) 2033 goto out; 2034 2035retry: 2036 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, 2037 ch->rq_size + srp_sq_size, 0); 2038 if (IS_ERR(ch->cq)) { 2039 ret = PTR_ERR(ch->cq); 2040 pr_err("failed to create CQ cqe= %d ret= %d\n", 2041 ch->rq_size + srp_sq_size, ret); 2042 goto out; 2043 } 2044 2045 qp_init->qp_context = (void *)ch; 2046 qp_init->event_handler 2047 = (void(*)(struct ib_event *, void*))srpt_qp_event; 2048 qp_init->send_cq = ch->cq; 2049 qp_init->recv_cq = ch->cq; 2050 qp_init->srq = sdev->srq; 2051 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; 2052 qp_init->qp_type = IB_QPT_RC; 2053 qp_init->cap.max_send_wr = srp_sq_size; 2054 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; 2055 2056 ch->qp = ib_create_qp(sdev->pd, qp_init); 2057 if (IS_ERR(ch->qp)) { 2058 ret = PTR_ERR(ch->qp); 2059 if (ret == -ENOMEM) { 2060 srp_sq_size /= 2; 2061 if (srp_sq_size >= MIN_SRPT_SQ_SIZE) { 2062 ib_destroy_cq(ch->cq); 2063 goto retry; 2064 } 2065 } 2066 pr_err("failed to create_qp ret= %d\n", ret); 2067 goto err_destroy_cq; 2068 } 2069 2070 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); 2071 2072 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", 2073 __func__, ch->cq->cqe, qp_init->cap.max_send_sge, 2074 qp_init->cap.max_send_wr, ch->cm_id); 2075 2076 ret = srpt_init_ch_qp(ch, ch->qp); 2077 if (ret) 2078 goto err_destroy_qp; 2079 2080 init_waitqueue_head(&ch->wait_queue); 2081 2082 pr_debug("creating thread for session %s\n", ch->sess_name); 2083 2084 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); 2085 if (IS_ERR(ch->thread)) { 2086 pr_err("failed to create kernel thread %ld\n", 2087 PTR_ERR(ch->thread)); 2088 ch->thread = NULL; 2089 goto err_destroy_qp; 2090 } 2091 2092out: 2093 kfree(qp_init); 2094 return ret; 2095 2096err_destroy_qp: 2097 ib_destroy_qp(ch->qp); 2098err_destroy_cq: 2099 ib_destroy_cq(ch->cq); 2100 goto out; 2101} 2102 2103static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) 2104{ 2105 if (ch->thread) 2106 kthread_stop(ch->thread); 2107 2108 ib_destroy_qp(ch->qp); 2109 ib_destroy_cq(ch->cq); 2110} 2111 2112/** 2113 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. 2114 * 2115 * Reset the QP and make sure all resources associated with the channel will 2116 * be deallocated at an appropriate time. 2117 * 2118 * Note: The caller must hold ch->sport->sdev->spinlock. 2119 */ 2120static void __srpt_close_ch(struct srpt_rdma_ch *ch) 2121{ 2122 struct srpt_device *sdev; 2123 enum rdma_ch_state prev_state; 2124 unsigned long flags; 2125 2126 sdev = ch->sport->sdev; 2127 2128 spin_lock_irqsave(&ch->spinlock, flags); 2129 prev_state = ch->state; 2130 switch (prev_state) { 2131 case CH_CONNECTING: 2132 case CH_LIVE: 2133 ch->state = CH_DISCONNECTING; 2134 break; 2135 default: 2136 break; 2137 } 2138 spin_unlock_irqrestore(&ch->spinlock, flags); 2139 2140 switch (prev_state) { 2141 case CH_CONNECTING: 2142 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, 2143 NULL, 0); 2144 /* fall through */ 2145 case CH_LIVE: 2146 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) 2147 pr_err("sending CM DREQ failed.\n"); 2148 break; 2149 case CH_DISCONNECTING: 2150 break; 2151 case CH_DRAINING: 2152 case CH_RELEASING: 2153 break; 2154 } 2155} 2156 2157/** 2158 * srpt_close_ch() - Close an RDMA channel. 2159 */ 2160static void srpt_close_ch(struct srpt_rdma_ch *ch) 2161{ 2162 struct srpt_device *sdev; 2163 2164 sdev = ch->sport->sdev; 2165 spin_lock_irq(&sdev->spinlock); 2166 __srpt_close_ch(ch); 2167 spin_unlock_irq(&sdev->spinlock); 2168} 2169 2170/** 2171 * srpt_shutdown_session() - Whether or not a session may be shut down. 2172 */ 2173static int srpt_shutdown_session(struct se_session *se_sess) 2174{ 2175 struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr; 2176 unsigned long flags; 2177 2178 spin_lock_irqsave(&ch->spinlock, flags); 2179 if (ch->in_shutdown) { 2180 spin_unlock_irqrestore(&ch->spinlock, flags); 2181 return true; 2182 } 2183 2184 ch->in_shutdown = true; 2185 target_sess_cmd_list_set_waiting(se_sess); 2186 spin_unlock_irqrestore(&ch->spinlock, flags); 2187 2188 return true; 2189} 2190 2191/** 2192 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. 2193 * @cm_id: Pointer to the CM ID of the channel to be drained. 2194 * 2195 * Note: Must be called from inside srpt_cm_handler to avoid a race between 2196 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() 2197 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() 2198 * waits until all target sessions for the associated IB device have been 2199 * unregistered and target session registration involves a call to 2200 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until 2201 * this function has finished). 2202 */ 2203static void srpt_drain_channel(struct ib_cm_id *cm_id) 2204{ 2205 struct srpt_device *sdev; 2206 struct srpt_rdma_ch *ch; 2207 int ret; 2208 bool do_reset = false; 2209 2210 WARN_ON_ONCE(irqs_disabled()); 2211 2212 sdev = cm_id->context; 2213 BUG_ON(!sdev); 2214 spin_lock_irq(&sdev->spinlock); 2215 list_for_each_entry(ch, &sdev->rch_list, list) { 2216 if (ch->cm_id == cm_id) { 2217 do_reset = srpt_test_and_set_ch_state(ch, 2218 CH_CONNECTING, CH_DRAINING) || 2219 srpt_test_and_set_ch_state(ch, 2220 CH_LIVE, CH_DRAINING) || 2221 srpt_test_and_set_ch_state(ch, 2222 CH_DISCONNECTING, CH_DRAINING); 2223 break; 2224 } 2225 } 2226 spin_unlock_irq(&sdev->spinlock); 2227 2228 if (do_reset) { 2229 if (ch->sess) 2230 srpt_shutdown_session(ch->sess); 2231 2232 ret = srpt_ch_qp_err(ch); 2233 if (ret < 0) 2234 pr_err("Setting queue pair in error state" 2235 " failed: %d\n", ret); 2236 } 2237} 2238 2239/** 2240 * srpt_find_channel() - Look up an RDMA channel. 2241 * @cm_id: Pointer to the CM ID of the channel to be looked up. 2242 * 2243 * Return NULL if no matching RDMA channel has been found. 2244 */ 2245static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, 2246 struct ib_cm_id *cm_id) 2247{ 2248 struct srpt_rdma_ch *ch; 2249 bool found; 2250 2251 WARN_ON_ONCE(irqs_disabled()); 2252 BUG_ON(!sdev); 2253 2254 found = false; 2255 spin_lock_irq(&sdev->spinlock); 2256 list_for_each_entry(ch, &sdev->rch_list, list) { 2257 if (ch->cm_id == cm_id) { 2258 found = true; 2259 break; 2260 } 2261 } 2262 spin_unlock_irq(&sdev->spinlock); 2263 2264 return found ? ch : NULL; 2265} 2266 2267/** 2268 * srpt_release_channel() - Release channel resources. 2269 * 2270 * Schedules the actual release because: 2271 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would 2272 * trigger a deadlock. 2273 * - It is not safe to call TCM transport_* functions from interrupt context. 2274 */ 2275static void srpt_release_channel(struct srpt_rdma_ch *ch) 2276{ 2277 schedule_work(&ch->release_work); 2278} 2279 2280static void srpt_release_channel_work(struct work_struct *w) 2281{ 2282 struct srpt_rdma_ch *ch; 2283 struct srpt_device *sdev; 2284 struct se_session *se_sess; 2285 2286 ch = container_of(w, struct srpt_rdma_ch, release_work); 2287 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, 2288 ch->release_done); 2289 2290 sdev = ch->sport->sdev; 2291 BUG_ON(!sdev); 2292 2293 se_sess = ch->sess; 2294 BUG_ON(!se_sess); 2295 2296 target_wait_for_sess_cmds(se_sess); 2297 2298 transport_deregister_session_configfs(se_sess); 2299 transport_deregister_session(se_sess); 2300 ch->sess = NULL; 2301 2302 ib_destroy_cm_id(ch->cm_id); 2303 2304 srpt_destroy_ch_ib(ch); 2305 2306 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2307 ch->sport->sdev, ch->rq_size, 2308 ch->rsp_size, DMA_TO_DEVICE); 2309 2310 spin_lock_irq(&sdev->spinlock); 2311 list_del(&ch->list); 2312 spin_unlock_irq(&sdev->spinlock); 2313 2314 if (ch->release_done) 2315 complete(ch->release_done); 2316 2317 wake_up(&sdev->ch_releaseQ); 2318 2319 kfree(ch); 2320} 2321 2322static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, 2323 u8 i_port_id[16]) 2324{ 2325 struct srpt_node_acl *nacl; 2326 2327 list_for_each_entry(nacl, &sport->port_acl_list, list) 2328 if (memcmp(nacl->i_port_id, i_port_id, 2329 sizeof(nacl->i_port_id)) == 0) 2330 return nacl; 2331 2332 return NULL; 2333} 2334 2335static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, 2336 u8 i_port_id[16]) 2337{ 2338 struct srpt_node_acl *nacl; 2339 2340 spin_lock_irq(&sport->port_acl_lock); 2341 nacl = __srpt_lookup_acl(sport, i_port_id); 2342 spin_unlock_irq(&sport->port_acl_lock); 2343 2344 return nacl; 2345} 2346 2347/** 2348 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. 2349 * 2350 * Ownership of the cm_id is transferred to the target session if this 2351 * functions returns zero. Otherwise the caller remains the owner of cm_id. 2352 */ 2353static int srpt_cm_req_recv(struct ib_cm_id *cm_id, 2354 struct ib_cm_req_event_param *param, 2355 void *private_data) 2356{ 2357 struct srpt_device *sdev = cm_id->context; 2358 struct srpt_port *sport = &sdev->port[param->port - 1]; 2359 struct srp_login_req *req; 2360 struct srp_login_rsp *rsp; 2361 struct srp_login_rej *rej; 2362 struct ib_cm_rep_param *rep_param; 2363 struct srpt_rdma_ch *ch, *tmp_ch; 2364 struct srpt_node_acl *nacl; 2365 u32 it_iu_len; 2366 int i; 2367 int ret = 0; 2368 2369 WARN_ON_ONCE(irqs_disabled()); 2370 2371 if (WARN_ON(!sdev || !private_data)) 2372 return -EINVAL; 2373 2374 req = (struct srp_login_req *)private_data; 2375 2376 it_iu_len = be32_to_cpu(req->req_it_iu_len); 2377 2378 pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," 2379 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" 2380 " (guid=0x%llx:0x%llx)\n", 2381 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), 2382 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), 2383 be64_to_cpu(*(__be64 *)&req->target_port_id[0]), 2384 be64_to_cpu(*(__be64 *)&req->target_port_id[8]), 2385 it_iu_len, 2386 param->port, 2387 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), 2388 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); 2389 2390 rsp = kzalloc(sizeof *rsp, GFP_KERNEL); 2391 rej = kzalloc(sizeof *rej, GFP_KERNEL); 2392 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); 2393 2394 if (!rsp || !rej || !rep_param) { 2395 ret = -ENOMEM; 2396 goto out; 2397 } 2398 2399 if (it_iu_len > srp_max_req_size || it_iu_len < 64) { 2400 rej->reason = __constant_cpu_to_be32( 2401 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); 2402 ret = -EINVAL; 2403 pr_err("rejected SRP_LOGIN_REQ because its" 2404 " length (%d bytes) is out of range (%d .. %d)\n", 2405 it_iu_len, 64, srp_max_req_size); 2406 goto reject; 2407 } 2408 2409 if (!sport->enabled) { 2410 rej->reason = __constant_cpu_to_be32( 2411 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2412 ret = -EINVAL; 2413 pr_err("rejected SRP_LOGIN_REQ because the target port" 2414 " has not yet been enabled\n"); 2415 goto reject; 2416 } 2417 2418 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { 2419 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; 2420 2421 spin_lock_irq(&sdev->spinlock); 2422 2423 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { 2424 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) 2425 && !memcmp(ch->t_port_id, req->target_port_id, 16) 2426 && param->port == ch->sport->port 2427 && param->listen_id == ch->sport->sdev->cm_id 2428 && ch->cm_id) { 2429 enum rdma_ch_state ch_state; 2430 2431 ch_state = srpt_get_ch_state(ch); 2432 if (ch_state != CH_CONNECTING 2433 && ch_state != CH_LIVE) 2434 continue; 2435 2436 /* found an existing channel */ 2437 pr_debug("Found existing channel %s" 2438 " cm_id= %p state= %d\n", 2439 ch->sess_name, ch->cm_id, ch_state); 2440 2441 __srpt_close_ch(ch); 2442 2443 rsp->rsp_flags = 2444 SRP_LOGIN_RSP_MULTICHAN_TERMINATED; 2445 } 2446 } 2447 2448 spin_unlock_irq(&sdev->spinlock); 2449 2450 } else 2451 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; 2452 2453 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) 2454 || *(__be64 *)(req->target_port_id + 8) != 2455 cpu_to_be64(srpt_service_guid)) { 2456 rej->reason = __constant_cpu_to_be32( 2457 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); 2458 ret = -ENOMEM; 2459 pr_err("rejected SRP_LOGIN_REQ because it" 2460 " has an invalid target port identifier.\n"); 2461 goto reject; 2462 } 2463 2464 ch = kzalloc(sizeof *ch, GFP_KERNEL); 2465 if (!ch) { 2466 rej->reason = __constant_cpu_to_be32( 2467 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2468 pr_err("rejected SRP_LOGIN_REQ because no memory.\n"); 2469 ret = -ENOMEM; 2470 goto reject; 2471 } 2472 2473 INIT_WORK(&ch->release_work, srpt_release_channel_work); 2474 memcpy(ch->i_port_id, req->initiator_port_id, 16); 2475 memcpy(ch->t_port_id, req->target_port_id, 16); 2476 ch->sport = &sdev->port[param->port - 1]; 2477 ch->cm_id = cm_id; 2478 /* 2479 * Avoid QUEUE_FULL conditions by limiting the number of buffers used 2480 * for the SRP protocol to the command queue size. 2481 */ 2482 ch->rq_size = SRPT_RQ_SIZE; 2483 spin_lock_init(&ch->spinlock); 2484 ch->state = CH_CONNECTING; 2485 INIT_LIST_HEAD(&ch->cmd_wait_list); 2486 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; 2487 2488 ch->ioctx_ring = (struct srpt_send_ioctx **) 2489 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, 2490 sizeof(*ch->ioctx_ring[0]), 2491 ch->rsp_size, DMA_TO_DEVICE); 2492 if (!ch->ioctx_ring) 2493 goto free_ch; 2494 2495 INIT_LIST_HEAD(&ch->free_list); 2496 for (i = 0; i < ch->rq_size; i++) { 2497 ch->ioctx_ring[i]->ch = ch; 2498 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); 2499 } 2500 2501 ret = srpt_create_ch_ib(ch); 2502 if (ret) { 2503 rej->reason = __constant_cpu_to_be32( 2504 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2505 pr_err("rejected SRP_LOGIN_REQ because creating" 2506 " a new RDMA channel failed.\n"); 2507 goto free_ring; 2508 } 2509 2510 ret = srpt_ch_qp_rtr(ch, ch->qp); 2511 if (ret) { 2512 rej->reason = __constant_cpu_to_be32( 2513 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2514 pr_err("rejected SRP_LOGIN_REQ because enabling" 2515 " RTR failed (error code = %d)\n", ret); 2516 goto destroy_ib; 2517 } 2518 /* 2519 * Use the initator port identifier as the session name. 2520 */ 2521 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", 2522 be64_to_cpu(*(__be64 *)ch->i_port_id), 2523 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); 2524 2525 pr_debug("registering session %s\n", ch->sess_name); 2526 2527 nacl = srpt_lookup_acl(sport, ch->i_port_id); 2528 if (!nacl) { 2529 pr_info("Rejected login because no ACL has been" 2530 " configured yet for initiator %s.\n", ch->sess_name); 2531 rej->reason = __constant_cpu_to_be32( 2532 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); 2533 goto destroy_ib; 2534 } 2535 2536 ch->sess = transport_init_session(TARGET_PROT_NORMAL); 2537 if (IS_ERR(ch->sess)) { 2538 rej->reason = __constant_cpu_to_be32( 2539 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); 2540 pr_debug("Failed to create session\n"); 2541 goto deregister_session; 2542 } 2543 ch->sess->se_node_acl = &nacl->nacl; 2544 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); 2545 2546 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, 2547 ch->sess_name, ch->cm_id); 2548 2549 /* create srp_login_response */ 2550 rsp->opcode = SRP_LOGIN_RSP; 2551 rsp->tag = req->tag; 2552 rsp->max_it_iu_len = req->req_it_iu_len; 2553 rsp->max_ti_iu_len = req->req_it_iu_len; 2554 ch->max_ti_iu_len = it_iu_len; 2555 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2556 | SRP_BUF_FORMAT_INDIRECT); 2557 rsp->req_lim_delta = cpu_to_be32(ch->rq_size); 2558 atomic_set(&ch->req_lim, ch->rq_size); 2559 atomic_set(&ch->req_lim_delta, 0); 2560 2561 /* create cm reply */ 2562 rep_param->qp_num = ch->qp->qp_num; 2563 rep_param->private_data = (void *)rsp; 2564 rep_param->private_data_len = sizeof *rsp; 2565 rep_param->rnr_retry_count = 7; 2566 rep_param->flow_control = 1; 2567 rep_param->failover_accepted = 0; 2568 rep_param->srq = 1; 2569 rep_param->responder_resources = 4; 2570 rep_param->initiator_depth = 4; 2571 2572 ret = ib_send_cm_rep(cm_id, rep_param); 2573 if (ret) { 2574 pr_err("sending SRP_LOGIN_REQ response failed" 2575 " (error code = %d)\n", ret); 2576 goto release_channel; 2577 } 2578 2579 spin_lock_irq(&sdev->spinlock); 2580 list_add_tail(&ch->list, &sdev->rch_list); 2581 spin_unlock_irq(&sdev->spinlock); 2582 2583 goto out; 2584 2585release_channel: 2586 srpt_set_ch_state(ch, CH_RELEASING); 2587 transport_deregister_session_configfs(ch->sess); 2588 2589deregister_session: 2590 transport_deregister_session(ch->sess); 2591 ch->sess = NULL; 2592 2593destroy_ib: 2594 srpt_destroy_ch_ib(ch); 2595 2596free_ring: 2597 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, 2598 ch->sport->sdev, ch->rq_size, 2599 ch->rsp_size, DMA_TO_DEVICE); 2600free_ch: 2601 kfree(ch); 2602 2603reject: 2604 rej->opcode = SRP_LOGIN_REJ; 2605 rej->tag = req->tag; 2606 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT 2607 | SRP_BUF_FORMAT_INDIRECT); 2608 2609 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, 2610 (void *)rej, sizeof *rej); 2611 2612out: 2613 kfree(rep_param); 2614 kfree(rsp); 2615 kfree(rej); 2616 2617 return ret; 2618} 2619 2620static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) 2621{ 2622 pr_info("Received IB REJ for cm_id %p.\n", cm_id); 2623 srpt_drain_channel(cm_id); 2624} 2625 2626/** 2627 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. 2628 * 2629 * An IB_CM_RTU_RECEIVED message indicates that the connection is established 2630 * and that the recipient may begin transmitting (RTU = ready to use). 2631 */ 2632static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) 2633{ 2634 struct srpt_rdma_ch *ch; 2635 int ret; 2636 2637 ch = srpt_find_channel(cm_id->context, cm_id); 2638 BUG_ON(!ch); 2639 2640 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { 2641 struct srpt_recv_ioctx *ioctx, *ioctx_tmp; 2642 2643 ret = srpt_ch_qp_rts(ch, ch->qp); 2644 2645 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, 2646 wait_list) { 2647 list_del(&ioctx->wait_list); 2648 srpt_handle_new_iu(ch, ioctx, NULL); 2649 } 2650 if (ret) 2651 srpt_close_ch(ch); 2652 } 2653} 2654 2655static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) 2656{ 2657 pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id); 2658 srpt_drain_channel(cm_id); 2659} 2660 2661static void srpt_cm_rep_error(struct ib_cm_id *cm_id) 2662{ 2663 pr_info("Received IB REP error for cm_id %p.\n", cm_id); 2664 srpt_drain_channel(cm_id); 2665} 2666 2667/** 2668 * srpt_cm_dreq_recv() - Process reception of a DREQ message. 2669 */ 2670static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) 2671{ 2672 struct srpt_rdma_ch *ch; 2673 unsigned long flags; 2674 bool send_drep = false; 2675 2676 ch = srpt_find_channel(cm_id->context, cm_id); 2677 BUG_ON(!ch); 2678 2679 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); 2680 2681 spin_lock_irqsave(&ch->spinlock, flags); 2682 switch (ch->state) { 2683 case CH_CONNECTING: 2684 case CH_LIVE: 2685 send_drep = true; 2686 ch->state = CH_DISCONNECTING; 2687 break; 2688 case CH_DISCONNECTING: 2689 case CH_DRAINING: 2690 case CH_RELEASING: 2691 WARN(true, "unexpected channel state %d\n", ch->state); 2692 break; 2693 } 2694 spin_unlock_irqrestore(&ch->spinlock, flags); 2695 2696 if (send_drep) { 2697 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) 2698 pr_err("Sending IB DREP failed.\n"); 2699 pr_info("Received DREQ and sent DREP for session %s.\n", 2700 ch->sess_name); 2701 } 2702} 2703 2704/** 2705 * srpt_cm_drep_recv() - Process reception of a DREP message. 2706 */ 2707static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) 2708{ 2709 pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id); 2710 srpt_drain_channel(cm_id); 2711} 2712 2713/** 2714 * srpt_cm_handler() - IB connection manager callback function. 2715 * 2716 * A non-zero return value will cause the caller destroy the CM ID. 2717 * 2718 * Note: srpt_cm_handler() must only return a non-zero value when transferring 2719 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning 2720 * a non-zero value in any other case will trigger a race with the 2721 * ib_destroy_cm_id() call in srpt_release_channel(). 2722 */ 2723static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) 2724{ 2725 int ret; 2726 2727 ret = 0; 2728 switch (event->event) { 2729 case IB_CM_REQ_RECEIVED: 2730 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, 2731 event->private_data); 2732 break; 2733 case IB_CM_REJ_RECEIVED: 2734 srpt_cm_rej_recv(cm_id); 2735 break; 2736 case IB_CM_RTU_RECEIVED: 2737 case IB_CM_USER_ESTABLISHED: 2738 srpt_cm_rtu_recv(cm_id); 2739 break; 2740 case IB_CM_DREQ_RECEIVED: 2741 srpt_cm_dreq_recv(cm_id); 2742 break; 2743 case IB_CM_DREP_RECEIVED: 2744 srpt_cm_drep_recv(cm_id); 2745 break; 2746 case IB_CM_TIMEWAIT_EXIT: 2747 srpt_cm_timewait_exit(cm_id); 2748 break; 2749 case IB_CM_REP_ERROR: 2750 srpt_cm_rep_error(cm_id); 2751 break; 2752 case IB_CM_DREQ_ERROR: 2753 pr_info("Received IB DREQ ERROR event.\n"); 2754 break; 2755 case IB_CM_MRA_RECEIVED: 2756 pr_info("Received IB MRA event\n"); 2757 break; 2758 default: 2759 pr_err("received unrecognized IB CM event %d\n", event->event); 2760 break; 2761 } 2762 2763 return ret; 2764} 2765 2766/** 2767 * srpt_perform_rdmas() - Perform IB RDMA. 2768 * 2769 * Returns zero upon success or a negative number upon failure. 2770 */ 2771static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, 2772 struct srpt_send_ioctx *ioctx) 2773{ 2774 struct ib_send_wr wr; 2775 struct ib_send_wr *bad_wr; 2776 struct rdma_iu *riu; 2777 int i; 2778 int ret; 2779 int sq_wr_avail; 2780 enum dma_data_direction dir; 2781 const int n_rdma = ioctx->n_rdma; 2782 2783 dir = ioctx->cmd.data_direction; 2784 if (dir == DMA_TO_DEVICE) { 2785 /* write */ 2786 ret = -ENOMEM; 2787 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); 2788 if (sq_wr_avail < 0) { 2789 pr_warn("IB send queue full (needed %d)\n", 2790 n_rdma); 2791 goto out; 2792 } 2793 } 2794 2795 ioctx->rdma_aborted = false; 2796 ret = 0; 2797 riu = ioctx->rdma_ius; 2798 memset(&wr, 0, sizeof wr); 2799 2800 for (i = 0; i < n_rdma; ++i, ++riu) { 2801 if (dir == DMA_FROM_DEVICE) { 2802 wr.opcode = IB_WR_RDMA_WRITE; 2803 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2804 SRPT_RDMA_WRITE_LAST : 2805 SRPT_RDMA_MID, 2806 ioctx->ioctx.index); 2807 } else { 2808 wr.opcode = IB_WR_RDMA_READ; 2809 wr.wr_id = encode_wr_id(i == n_rdma - 1 ? 2810 SRPT_RDMA_READ_LAST : 2811 SRPT_RDMA_MID, 2812 ioctx->ioctx.index); 2813 } 2814 wr.next = NULL; 2815 wr.wr.rdma.remote_addr = riu->raddr; 2816 wr.wr.rdma.rkey = riu->rkey; 2817 wr.num_sge = riu->sge_cnt; 2818 wr.sg_list = riu->sge; 2819 2820 /* only get completion event for the last rdma write */ 2821 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) 2822 wr.send_flags = IB_SEND_SIGNALED; 2823 2824 ret = ib_post_send(ch->qp, &wr, &bad_wr); 2825 if (ret) 2826 break; 2827 } 2828 2829 if (ret) 2830 pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n", 2831 __func__, __LINE__, ret, i, n_rdma); 2832 if (ret && i > 0) { 2833 wr.num_sge = 0; 2834 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); 2835 wr.send_flags = IB_SEND_SIGNALED; 2836 while (ch->state == CH_LIVE && 2837 ib_post_send(ch->qp, &wr, &bad_wr) != 0) { 2838 pr_info("Trying to abort failed RDMA transfer [%d]\n", 2839 ioctx->ioctx.index); 2840 msleep(1000); 2841 } 2842 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { 2843 pr_info("Waiting until RDMA abort finished [%d]\n", 2844 ioctx->ioctx.index); 2845 msleep(1000); 2846 } 2847 } 2848out: 2849 if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) 2850 atomic_add(n_rdma, &ch->sq_wr_avail); 2851 return ret; 2852} 2853 2854/** 2855 * srpt_xfer_data() - Start data transfer from initiator to target. 2856 */ 2857static int srpt_xfer_data(struct srpt_rdma_ch *ch, 2858 struct srpt_send_ioctx *ioctx) 2859{ 2860 int ret; 2861 2862 ret = srpt_map_sg_to_ib_sge(ch, ioctx); 2863 if (ret) { 2864 pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret); 2865 goto out; 2866 } 2867 2868 ret = srpt_perform_rdmas(ch, ioctx); 2869 if (ret) { 2870 if (ret == -EAGAIN || ret == -ENOMEM) 2871 pr_info("%s[%d] queue full -- ret=%d\n", 2872 __func__, __LINE__, ret); 2873 else 2874 pr_err("%s[%d] fatal error -- ret=%d\n", 2875 __func__, __LINE__, ret); 2876 goto out_unmap; 2877 } 2878 2879out: 2880 return ret; 2881out_unmap: 2882 srpt_unmap_sg_to_ib_sge(ch, ioctx); 2883 goto out; 2884} 2885 2886static int srpt_write_pending_status(struct se_cmd *se_cmd) 2887{ 2888 struct srpt_send_ioctx *ioctx; 2889 2890 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2891 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; 2892} 2893 2894/* 2895 * srpt_write_pending() - Start data transfer from initiator to target (write). 2896 */ 2897static int srpt_write_pending(struct se_cmd *se_cmd) 2898{ 2899 struct srpt_rdma_ch *ch; 2900 struct srpt_send_ioctx *ioctx; 2901 enum srpt_command_state new_state; 2902 enum rdma_ch_state ch_state; 2903 int ret; 2904 2905 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 2906 2907 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); 2908 WARN_ON(new_state == SRPT_STATE_DONE); 2909 2910 ch = ioctx->ch; 2911 BUG_ON(!ch); 2912 2913 ch_state = srpt_get_ch_state(ch); 2914 switch (ch_state) { 2915 case CH_CONNECTING: 2916 WARN(true, "unexpected channel state %d\n", ch_state); 2917 ret = -EINVAL; 2918 goto out; 2919 case CH_LIVE: 2920 break; 2921 case CH_DISCONNECTING: 2922 case CH_DRAINING: 2923 case CH_RELEASING: 2924 pr_debug("cmd with tag %lld: channel disconnecting\n", 2925 ioctx->tag); 2926 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); 2927 ret = -EINVAL; 2928 goto out; 2929 } 2930 ret = srpt_xfer_data(ch, ioctx); 2931 2932out: 2933 return ret; 2934} 2935 2936static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) 2937{ 2938 switch (tcm_mgmt_status) { 2939 case TMR_FUNCTION_COMPLETE: 2940 return SRP_TSK_MGMT_SUCCESS; 2941 case TMR_FUNCTION_REJECTED: 2942 return SRP_TSK_MGMT_FUNC_NOT_SUPP; 2943 } 2944 return SRP_TSK_MGMT_FAILED; 2945} 2946 2947/** 2948 * srpt_queue_response() - Transmits the response to a SCSI command. 2949 * 2950 * Callback function called by the TCM core. Must not block since it can be 2951 * invoked on the context of the IB completion handler. 2952 */ 2953static void srpt_queue_response(struct se_cmd *cmd) 2954{ 2955 struct srpt_rdma_ch *ch; 2956 struct srpt_send_ioctx *ioctx; 2957 enum srpt_command_state state; 2958 unsigned long flags; 2959 int ret; 2960 enum dma_data_direction dir; 2961 int resp_len; 2962 u8 srp_tm_status; 2963 2964 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 2965 ch = ioctx->ch; 2966 BUG_ON(!ch); 2967 2968 spin_lock_irqsave(&ioctx->spinlock, flags); 2969 state = ioctx->state; 2970 switch (state) { 2971 case SRPT_STATE_NEW: 2972 case SRPT_STATE_DATA_IN: 2973 ioctx->state = SRPT_STATE_CMD_RSP_SENT; 2974 break; 2975 case SRPT_STATE_MGMT: 2976 ioctx->state = SRPT_STATE_MGMT_RSP_SENT; 2977 break; 2978 default: 2979 WARN(true, "ch %p; cmd %d: unexpected command state %d\n", 2980 ch, ioctx->ioctx.index, ioctx->state); 2981 break; 2982 } 2983 spin_unlock_irqrestore(&ioctx->spinlock, flags); 2984 2985 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) 2986 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { 2987 atomic_inc(&ch->req_lim_delta); 2988 srpt_abort_cmd(ioctx); 2989 return; 2990 } 2991 2992 dir = ioctx->cmd.data_direction; 2993 2994 /* For read commands, transfer the data to the initiator. */ 2995 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && 2996 !ioctx->queue_status_only) { 2997 ret = srpt_xfer_data(ch, ioctx); 2998 if (ret) { 2999 pr_err("xfer_data failed for tag %llu\n", 3000 ioctx->tag); 3001 return; 3002 } 3003 } 3004 3005 if (state != SRPT_STATE_MGMT) 3006 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, 3007 cmd->scsi_status); 3008 else { 3009 srp_tm_status 3010 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); 3011 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, 3012 ioctx->tag); 3013 } 3014 ret = srpt_post_send(ch, ioctx, resp_len); 3015 if (ret) { 3016 pr_err("sending cmd response failed for tag %llu\n", 3017 ioctx->tag); 3018 srpt_unmap_sg_to_ib_sge(ch, ioctx); 3019 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); 3020 target_put_sess_cmd(&ioctx->cmd); 3021 } 3022} 3023 3024static int srpt_queue_data_in(struct se_cmd *cmd) 3025{ 3026 srpt_queue_response(cmd); 3027 return 0; 3028} 3029 3030static void srpt_queue_tm_rsp(struct se_cmd *cmd) 3031{ 3032 srpt_queue_response(cmd); 3033} 3034 3035static void srpt_aborted_task(struct se_cmd *cmd) 3036{ 3037 struct srpt_send_ioctx *ioctx = container_of(cmd, 3038 struct srpt_send_ioctx, cmd); 3039 3040 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); 3041} 3042 3043static int srpt_queue_status(struct se_cmd *cmd) 3044{ 3045 struct srpt_send_ioctx *ioctx; 3046 3047 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); 3048 BUG_ON(ioctx->sense_data != cmd->sense_buffer); 3049 if (cmd->se_cmd_flags & 3050 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) 3051 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); 3052 ioctx->queue_status_only = true; 3053 srpt_queue_response(cmd); 3054 return 0; 3055} 3056 3057static void srpt_refresh_port_work(struct work_struct *work) 3058{ 3059 struct srpt_port *sport = container_of(work, struct srpt_port, work); 3060 3061 srpt_refresh_port(sport); 3062} 3063 3064static int srpt_ch_list_empty(struct srpt_device *sdev) 3065{ 3066 int res; 3067 3068 spin_lock_irq(&sdev->spinlock); 3069 res = list_empty(&sdev->rch_list); 3070 spin_unlock_irq(&sdev->spinlock); 3071 3072 return res; 3073} 3074 3075/** 3076 * srpt_release_sdev() - Free the channel resources associated with a target. 3077 */ 3078static int srpt_release_sdev(struct srpt_device *sdev) 3079{ 3080 struct srpt_rdma_ch *ch, *tmp_ch; 3081 int res; 3082 3083 WARN_ON_ONCE(irqs_disabled()); 3084 3085 BUG_ON(!sdev); 3086 3087 spin_lock_irq(&sdev->spinlock); 3088 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) 3089 __srpt_close_ch(ch); 3090 spin_unlock_irq(&sdev->spinlock); 3091 3092 res = wait_event_interruptible(sdev->ch_releaseQ, 3093 srpt_ch_list_empty(sdev)); 3094 if (res) 3095 pr_err("%s: interrupted.\n", __func__); 3096 3097 return 0; 3098} 3099 3100static struct srpt_port *__srpt_lookup_port(const char *name) 3101{ 3102 struct ib_device *dev; 3103 struct srpt_device *sdev; 3104 struct srpt_port *sport; 3105 int i; 3106 3107 list_for_each_entry(sdev, &srpt_dev_list, list) { 3108 dev = sdev->device; 3109 if (!dev) 3110 continue; 3111 3112 for (i = 0; i < dev->phys_port_cnt; i++) { 3113 sport = &sdev->port[i]; 3114 3115 if (!strcmp(sport->port_guid, name)) 3116 return sport; 3117 } 3118 } 3119 3120 return NULL; 3121} 3122 3123static struct srpt_port *srpt_lookup_port(const char *name) 3124{ 3125 struct srpt_port *sport; 3126 3127 spin_lock(&srpt_dev_lock); 3128 sport = __srpt_lookup_port(name); 3129 spin_unlock(&srpt_dev_lock); 3130 3131 return sport; 3132} 3133 3134/** 3135 * srpt_add_one() - Infiniband device addition callback function. 3136 */ 3137static void srpt_add_one(struct ib_device *device) 3138{ 3139 struct srpt_device *sdev; 3140 struct srpt_port *sport; 3141 struct ib_srq_init_attr srq_attr; 3142 int i; 3143 3144 pr_debug("device = %p, device->dma_ops = %p\n", device, 3145 device->dma_ops); 3146 3147 sdev = kzalloc(sizeof *sdev, GFP_KERNEL); 3148 if (!sdev) 3149 goto err; 3150 3151 sdev->device = device; 3152 INIT_LIST_HEAD(&sdev->rch_list); 3153 init_waitqueue_head(&sdev->ch_releaseQ); 3154 spin_lock_init(&sdev->spinlock); 3155 3156 if (ib_query_device(device, &sdev->dev_attr)) 3157 goto free_dev; 3158 3159 sdev->pd = ib_alloc_pd(device); 3160 if (IS_ERR(sdev->pd)) 3161 goto free_dev; 3162 3163 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); 3164 if (IS_ERR(sdev->mr)) 3165 goto err_pd; 3166 3167 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); 3168 3169 srq_attr.event_handler = srpt_srq_event; 3170 srq_attr.srq_context = (void *)sdev; 3171 srq_attr.attr.max_wr = sdev->srq_size; 3172 srq_attr.attr.max_sge = 1; 3173 srq_attr.attr.srq_limit = 0; 3174 srq_attr.srq_type = IB_SRQT_BASIC; 3175 3176 sdev->srq = ib_create_srq(sdev->pd, &srq_attr); 3177 if (IS_ERR(sdev->srq)) 3178 goto err_mr; 3179 3180 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", 3181 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, 3182 device->name); 3183 3184 if (!srpt_service_guid) 3185 srpt_service_guid = be64_to_cpu(device->node_guid); 3186 3187 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); 3188 if (IS_ERR(sdev->cm_id)) 3189 goto err_srq; 3190 3191 /* print out target login information */ 3192 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," 3193 "pkey=ffff,service_id=%016llx\n", srpt_service_guid, 3194 srpt_service_guid, srpt_service_guid); 3195 3196 /* 3197 * We do not have a consistent service_id (ie. also id_ext of target_id) 3198 * to identify this target. We currently use the guid of the first HCA 3199 * in the system as service_id; therefore, the target_id will change 3200 * if this HCA is gone bad and replaced by different HCA 3201 */ 3202 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) 3203 goto err_cm; 3204 3205 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, 3206 srpt_event_handler); 3207 if (ib_register_event_handler(&sdev->event_handler)) 3208 goto err_cm; 3209 3210 sdev->ioctx_ring = (struct srpt_recv_ioctx **) 3211 srpt_alloc_ioctx_ring(sdev, sdev->srq_size, 3212 sizeof(*sdev->ioctx_ring[0]), 3213 srp_max_req_size, DMA_FROM_DEVICE); 3214 if (!sdev->ioctx_ring) 3215 goto err_event; 3216 3217 for (i = 0; i < sdev->srq_size; ++i) 3218 srpt_post_recv(sdev, sdev->ioctx_ring[i]); 3219 3220 WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); 3221 3222 for (i = 1; i <= sdev->device->phys_port_cnt; i++) { 3223 sport = &sdev->port[i - 1]; 3224 sport->sdev = sdev; 3225 sport->port = i; 3226 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; 3227 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; 3228 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; 3229 INIT_WORK(&sport->work, srpt_refresh_port_work); 3230 INIT_LIST_HEAD(&sport->port_acl_list); 3231 spin_lock_init(&sport->port_acl_lock); 3232 3233 if (srpt_refresh_port(sport)) { 3234 pr_err("MAD registration failed for %s-%d.\n", 3235 srpt_sdev_name(sdev), i); 3236 goto err_ring; 3237 } 3238 snprintf(sport->port_guid, sizeof(sport->port_guid), 3239 "0x%016llx%016llx", 3240 be64_to_cpu(sport->gid.global.subnet_prefix), 3241 be64_to_cpu(sport->gid.global.interface_id)); 3242 } 3243 3244 spin_lock(&srpt_dev_lock); 3245 list_add_tail(&sdev->list, &srpt_dev_list); 3246 spin_unlock(&srpt_dev_lock); 3247 3248out: 3249 ib_set_client_data(device, &srpt_client, sdev); 3250 pr_debug("added %s.\n", device->name); 3251 return; 3252 3253err_ring: 3254 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3255 sdev->srq_size, srp_max_req_size, 3256 DMA_FROM_DEVICE); 3257err_event: 3258 ib_unregister_event_handler(&sdev->event_handler); 3259err_cm: 3260 ib_destroy_cm_id(sdev->cm_id); 3261err_srq: 3262 ib_destroy_srq(sdev->srq); 3263err_mr: 3264 ib_dereg_mr(sdev->mr); 3265err_pd: 3266 ib_dealloc_pd(sdev->pd); 3267free_dev: 3268 kfree(sdev); 3269err: 3270 sdev = NULL; 3271 pr_info("%s(%s) failed.\n", __func__, device->name); 3272 goto out; 3273} 3274 3275/** 3276 * srpt_remove_one() - InfiniBand device removal callback function. 3277 */ 3278static void srpt_remove_one(struct ib_device *device) 3279{ 3280 struct srpt_device *sdev; 3281 int i; 3282 3283 sdev = ib_get_client_data(device, &srpt_client); 3284 if (!sdev) { 3285 pr_info("%s(%s): nothing to do.\n", __func__, device->name); 3286 return; 3287 } 3288 3289 srpt_unregister_mad_agent(sdev); 3290 3291 ib_unregister_event_handler(&sdev->event_handler); 3292 3293 /* Cancel any work queued by the just unregistered IB event handler. */ 3294 for (i = 0; i < sdev->device->phys_port_cnt; i++) 3295 cancel_work_sync(&sdev->port[i].work); 3296 3297 ib_destroy_cm_id(sdev->cm_id); 3298 3299 /* 3300 * Unregistering a target must happen after destroying sdev->cm_id 3301 * such that no new SRP_LOGIN_REQ information units can arrive while 3302 * destroying the target. 3303 */ 3304 spin_lock(&srpt_dev_lock); 3305 list_del(&sdev->list); 3306 spin_unlock(&srpt_dev_lock); 3307 srpt_release_sdev(sdev); 3308 3309 ib_destroy_srq(sdev->srq); 3310 ib_dereg_mr(sdev->mr); 3311 ib_dealloc_pd(sdev->pd); 3312 3313 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, 3314 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); 3315 sdev->ioctx_ring = NULL; 3316 kfree(sdev); 3317} 3318 3319static struct ib_client srpt_client = { 3320 .name = DRV_NAME, 3321 .add = srpt_add_one, 3322 .remove = srpt_remove_one 3323}; 3324 3325static int srpt_check_true(struct se_portal_group *se_tpg) 3326{ 3327 return 1; 3328} 3329 3330static int srpt_check_false(struct se_portal_group *se_tpg) 3331{ 3332 return 0; 3333} 3334 3335static char *srpt_get_fabric_name(void) 3336{ 3337 return "srpt"; 3338} 3339 3340static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) 3341{ 3342 return SCSI_TRANSPORTID_PROTOCOLID_SRP; 3343} 3344 3345static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) 3346{ 3347 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3348 3349 return sport->port_guid; 3350} 3351 3352static u16 srpt_get_tag(struct se_portal_group *tpg) 3353{ 3354 return 1; 3355} 3356 3357static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) 3358{ 3359 return 1; 3360} 3361 3362static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, 3363 struct se_node_acl *se_nacl, 3364 struct t10_pr_registration *pr_reg, 3365 int *format_code, unsigned char *buf) 3366{ 3367 struct srpt_node_acl *nacl; 3368 struct spc_rdma_transport_id *tr_id; 3369 3370 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3371 tr_id = (void *)buf; 3372 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; 3373 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); 3374 return sizeof(*tr_id); 3375} 3376 3377static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, 3378 struct se_node_acl *se_nacl, 3379 struct t10_pr_registration *pr_reg, 3380 int *format_code) 3381{ 3382 *format_code = 0; 3383 return sizeof(struct spc_rdma_transport_id); 3384} 3385 3386static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, 3387 const char *buf, u32 *out_tid_len, 3388 char **port_nexus_ptr) 3389{ 3390 struct spc_rdma_transport_id *tr_id; 3391 3392 *port_nexus_ptr = NULL; 3393 *out_tid_len = sizeof(struct spc_rdma_transport_id); 3394 tr_id = (void *)buf; 3395 return (char *)tr_id->i_port_id; 3396} 3397 3398static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) 3399{ 3400 struct srpt_node_acl *nacl; 3401 3402 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); 3403 if (!nacl) { 3404 pr_err("Unable to allocate struct srpt_node_acl\n"); 3405 return NULL; 3406 } 3407 3408 return &nacl->nacl; 3409} 3410 3411static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, 3412 struct se_node_acl *se_nacl) 3413{ 3414 struct srpt_node_acl *nacl; 3415 3416 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3417 kfree(nacl); 3418} 3419 3420static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) 3421{ 3422 return 1; 3423} 3424 3425static void srpt_release_cmd(struct se_cmd *se_cmd) 3426{ 3427 struct srpt_send_ioctx *ioctx = container_of(se_cmd, 3428 struct srpt_send_ioctx, cmd); 3429 struct srpt_rdma_ch *ch = ioctx->ch; 3430 unsigned long flags; 3431 3432 WARN_ON(ioctx->state != SRPT_STATE_DONE); 3433 WARN_ON(ioctx->mapped_sg_count != 0); 3434 3435 if (ioctx->n_rbuf > 1) { 3436 kfree(ioctx->rbufs); 3437 ioctx->rbufs = NULL; 3438 ioctx->n_rbuf = 0; 3439 } 3440 3441 spin_lock_irqsave(&ch->spinlock, flags); 3442 list_add(&ioctx->free_list, &ch->free_list); 3443 spin_unlock_irqrestore(&ch->spinlock, flags); 3444} 3445 3446/** 3447 * srpt_close_session() - Forcibly close a session. 3448 * 3449 * Callback function invoked by the TCM core to clean up sessions associated 3450 * with a node ACL when the user invokes 3451 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3452 */ 3453static void srpt_close_session(struct se_session *se_sess) 3454{ 3455 DECLARE_COMPLETION_ONSTACK(release_done); 3456 struct srpt_rdma_ch *ch; 3457 struct srpt_device *sdev; 3458 unsigned long res; 3459 3460 ch = se_sess->fabric_sess_ptr; 3461 WARN_ON(ch->sess != se_sess); 3462 3463 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); 3464 3465 sdev = ch->sport->sdev; 3466 spin_lock_irq(&sdev->spinlock); 3467 BUG_ON(ch->release_done); 3468 ch->release_done = &release_done; 3469 __srpt_close_ch(ch); 3470 spin_unlock_irq(&sdev->spinlock); 3471 3472 res = wait_for_completion_timeout(&release_done, 60 * HZ); 3473 WARN_ON(res == 0); 3474} 3475 3476/** 3477 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). 3478 * 3479 * A quote from RFC 4455 (SCSI-MIB) about this MIB object: 3480 * This object represents an arbitrary integer used to uniquely identify a 3481 * particular attached remote initiator port to a particular SCSI target port 3482 * within a particular SCSI target device within a particular SCSI instance. 3483 */ 3484static u32 srpt_sess_get_index(struct se_session *se_sess) 3485{ 3486 return 0; 3487} 3488 3489static void srpt_set_default_node_attrs(struct se_node_acl *nacl) 3490{ 3491} 3492 3493static u32 srpt_get_task_tag(struct se_cmd *se_cmd) 3494{ 3495 struct srpt_send_ioctx *ioctx; 3496 3497 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3498 return ioctx->tag; 3499} 3500 3501/* Note: only used from inside debug printk's by the TCM core. */ 3502static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) 3503{ 3504 struct srpt_send_ioctx *ioctx; 3505 3506 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); 3507 return srpt_get_cmd_state(ioctx); 3508} 3509 3510/** 3511 * srpt_parse_i_port_id() - Parse an initiator port ID. 3512 * @name: ASCII representation of a 128-bit initiator port ID. 3513 * @i_port_id: Binary 128-bit port ID. 3514 */ 3515static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) 3516{ 3517 const char *p; 3518 unsigned len, count, leading_zero_bytes; 3519 int ret, rc; 3520 3521 p = name; 3522 if (strncasecmp(p, "0x", 2) == 0) 3523 p += 2; 3524 ret = -EINVAL; 3525 len = strlen(p); 3526 if (len % 2) 3527 goto out; 3528 count = min(len / 2, 16U); 3529 leading_zero_bytes = 16 - count; 3530 memset(i_port_id, 0, leading_zero_bytes); 3531 rc = hex2bin(i_port_id + leading_zero_bytes, p, count); 3532 if (rc < 0) 3533 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); 3534 ret = 0; 3535out: 3536 return ret; 3537} 3538 3539/* 3540 * configfs callback function invoked for 3541 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3542 */ 3543static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, 3544 struct config_group *group, 3545 const char *name) 3546{ 3547 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); 3548 struct se_node_acl *se_nacl, *se_nacl_new; 3549 struct srpt_node_acl *nacl; 3550 int ret = 0; 3551 u32 nexus_depth = 1; 3552 u8 i_port_id[16]; 3553 3554 if (srpt_parse_i_port_id(i_port_id, name) < 0) { 3555 pr_err("invalid initiator port ID %s\n", name); 3556 ret = -EINVAL; 3557 goto err; 3558 } 3559 3560 se_nacl_new = srpt_alloc_fabric_acl(tpg); 3561 if (!se_nacl_new) { 3562 ret = -ENOMEM; 3563 goto err; 3564 } 3565 /* 3566 * nacl_new may be released by core_tpg_add_initiator_node_acl() 3567 * when converting a node ACL from demo mode to explict 3568 */ 3569 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, 3570 nexus_depth); 3571 if (IS_ERR(se_nacl)) { 3572 ret = PTR_ERR(se_nacl); 3573 goto err; 3574 } 3575 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ 3576 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3577 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); 3578 nacl->sport = sport; 3579 3580 spin_lock_irq(&sport->port_acl_lock); 3581 list_add_tail(&nacl->list, &sport->port_acl_list); 3582 spin_unlock_irq(&sport->port_acl_lock); 3583 3584 return se_nacl; 3585err: 3586 return ERR_PTR(ret); 3587} 3588 3589/* 3590 * configfs callback function invoked for 3591 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id 3592 */ 3593static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) 3594{ 3595 struct srpt_node_acl *nacl; 3596 struct srpt_device *sdev; 3597 struct srpt_port *sport; 3598 3599 nacl = container_of(se_nacl, struct srpt_node_acl, nacl); 3600 sport = nacl->sport; 3601 sdev = sport->sdev; 3602 spin_lock_irq(&sport->port_acl_lock); 3603 list_del(&nacl->list); 3604 spin_unlock_irq(&sport->port_acl_lock); 3605 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); 3606 srpt_release_fabric_acl(NULL, se_nacl); 3607} 3608 3609static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( 3610 struct se_portal_group *se_tpg, 3611 char *page) 3612{ 3613 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3614 3615 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); 3616} 3617 3618static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( 3619 struct se_portal_group *se_tpg, 3620 const char *page, 3621 size_t count) 3622{ 3623 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3624 unsigned long val; 3625 int ret; 3626 3627 ret = kstrtoul(page, 0, &val); 3628 if (ret < 0) { 3629 pr_err("kstrtoul() failed with ret: %d\n", ret); 3630 return -EINVAL; 3631 } 3632 if (val > MAX_SRPT_RDMA_SIZE) { 3633 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, 3634 MAX_SRPT_RDMA_SIZE); 3635 return -EINVAL; 3636 } 3637 if (val < DEFAULT_MAX_RDMA_SIZE) { 3638 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", 3639 val, DEFAULT_MAX_RDMA_SIZE); 3640 return -EINVAL; 3641 } 3642 sport->port_attrib.srp_max_rdma_size = val; 3643 3644 return count; 3645} 3646 3647TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); 3648 3649static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( 3650 struct se_portal_group *se_tpg, 3651 char *page) 3652{ 3653 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3654 3655 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); 3656} 3657 3658static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( 3659 struct se_portal_group *se_tpg, 3660 const char *page, 3661 size_t count) 3662{ 3663 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3664 unsigned long val; 3665 int ret; 3666 3667 ret = kstrtoul(page, 0, &val); 3668 if (ret < 0) { 3669 pr_err("kstrtoul() failed with ret: %d\n", ret); 3670 return -EINVAL; 3671 } 3672 if (val > MAX_SRPT_RSP_SIZE) { 3673 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, 3674 MAX_SRPT_RSP_SIZE); 3675 return -EINVAL; 3676 } 3677 if (val < MIN_MAX_RSP_SIZE) { 3678 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, 3679 MIN_MAX_RSP_SIZE); 3680 return -EINVAL; 3681 } 3682 sport->port_attrib.srp_max_rsp_size = val; 3683 3684 return count; 3685} 3686 3687TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); 3688 3689static ssize_t srpt_tpg_attrib_show_srp_sq_size( 3690 struct se_portal_group *se_tpg, 3691 char *page) 3692{ 3693 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3694 3695 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); 3696} 3697 3698static ssize_t srpt_tpg_attrib_store_srp_sq_size( 3699 struct se_portal_group *se_tpg, 3700 const char *page, 3701 size_t count) 3702{ 3703 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3704 unsigned long val; 3705 int ret; 3706 3707 ret = kstrtoul(page, 0, &val); 3708 if (ret < 0) { 3709 pr_err("kstrtoul() failed with ret: %d\n", ret); 3710 return -EINVAL; 3711 } 3712 if (val > MAX_SRPT_SRQ_SIZE) { 3713 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, 3714 MAX_SRPT_SRQ_SIZE); 3715 return -EINVAL; 3716 } 3717 if (val < MIN_SRPT_SRQ_SIZE) { 3718 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, 3719 MIN_SRPT_SRQ_SIZE); 3720 return -EINVAL; 3721 } 3722 sport->port_attrib.srp_sq_size = val; 3723 3724 return count; 3725} 3726 3727TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); 3728 3729static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { 3730 &srpt_tpg_attrib_srp_max_rdma_size.attr, 3731 &srpt_tpg_attrib_srp_max_rsp_size.attr, 3732 &srpt_tpg_attrib_srp_sq_size.attr, 3733 NULL, 3734}; 3735 3736static ssize_t srpt_tpg_show_enable( 3737 struct se_portal_group *se_tpg, 3738 char *page) 3739{ 3740 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3741 3742 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); 3743} 3744 3745static ssize_t srpt_tpg_store_enable( 3746 struct se_portal_group *se_tpg, 3747 const char *page, 3748 size_t count) 3749{ 3750 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); 3751 unsigned long tmp; 3752 int ret; 3753 3754 ret = kstrtoul(page, 0, &tmp); 3755 if (ret < 0) { 3756 pr_err("Unable to extract srpt_tpg_store_enable\n"); 3757 return -EINVAL; 3758 } 3759 3760 if ((tmp != 0) && (tmp != 1)) { 3761 pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp); 3762 return -EINVAL; 3763 } 3764 if (tmp == 1) 3765 sport->enabled = true; 3766 else 3767 sport->enabled = false; 3768 3769 return count; 3770} 3771 3772TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); 3773 3774static struct configfs_attribute *srpt_tpg_attrs[] = { 3775 &srpt_tpg_enable.attr, 3776 NULL, 3777}; 3778 3779/** 3780 * configfs callback invoked for 3781 * mkdir /sys/kernel/config/target/$driver/$port/$tpg 3782 */ 3783static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, 3784 struct config_group *group, 3785 const char *name) 3786{ 3787 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3788 int res; 3789 3790 /* Initialize sport->port_wwn and sport->port_tpg_1 */ 3791 res = core_tpg_register(&srpt_template, &sport->port_wwn, 3792 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); 3793 if (res) 3794 return ERR_PTR(res); 3795 3796 return &sport->port_tpg_1; 3797} 3798 3799/** 3800 * configfs callback invoked for 3801 * rmdir /sys/kernel/config/target/$driver/$port/$tpg 3802 */ 3803static void srpt_drop_tpg(struct se_portal_group *tpg) 3804{ 3805 struct srpt_port *sport = container_of(tpg, 3806 struct srpt_port, port_tpg_1); 3807 3808 sport->enabled = false; 3809 core_tpg_deregister(&sport->port_tpg_1); 3810} 3811 3812/** 3813 * configfs callback invoked for 3814 * mkdir /sys/kernel/config/target/$driver/$port 3815 */ 3816static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, 3817 struct config_group *group, 3818 const char *name) 3819{ 3820 struct srpt_port *sport; 3821 int ret; 3822 3823 sport = srpt_lookup_port(name); 3824 pr_debug("make_tport(%s)\n", name); 3825 ret = -EINVAL; 3826 if (!sport) 3827 goto err; 3828 3829 return &sport->port_wwn; 3830 3831err: 3832 return ERR_PTR(ret); 3833} 3834 3835/** 3836 * configfs callback invoked for 3837 * rmdir /sys/kernel/config/target/$driver/$port 3838 */ 3839static void srpt_drop_tport(struct se_wwn *wwn) 3840{ 3841 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); 3842 3843 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); 3844} 3845 3846static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, 3847 char *buf) 3848{ 3849 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); 3850} 3851 3852TF_WWN_ATTR_RO(srpt, version); 3853 3854static struct configfs_attribute *srpt_wwn_attrs[] = { 3855 &srpt_wwn_version.attr, 3856 NULL, 3857}; 3858 3859static const struct target_core_fabric_ops srpt_template = { 3860 .module = THIS_MODULE, 3861 .name = "srpt", 3862 .get_fabric_name = srpt_get_fabric_name, 3863 .get_fabric_proto_ident = srpt_get_fabric_proto_ident, 3864 .tpg_get_wwn = srpt_get_fabric_wwn, 3865 .tpg_get_tag = srpt_get_tag, 3866 .tpg_get_default_depth = srpt_get_default_depth, 3867 .tpg_get_pr_transport_id = srpt_get_pr_transport_id, 3868 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, 3869 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, 3870 .tpg_check_demo_mode = srpt_check_false, 3871 .tpg_check_demo_mode_cache = srpt_check_true, 3872 .tpg_check_demo_mode_write_protect = srpt_check_true, 3873 .tpg_check_prod_mode_write_protect = srpt_check_false, 3874 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, 3875 .tpg_release_fabric_acl = srpt_release_fabric_acl, 3876 .tpg_get_inst_index = srpt_tpg_get_inst_index, 3877 .release_cmd = srpt_release_cmd, 3878 .check_stop_free = srpt_check_stop_free, 3879 .shutdown_session = srpt_shutdown_session, 3880 .close_session = srpt_close_session, 3881 .sess_get_index = srpt_sess_get_index, 3882 .sess_get_initiator_sid = NULL, 3883 .write_pending = srpt_write_pending, 3884 .write_pending_status = srpt_write_pending_status, 3885 .set_default_node_attributes = srpt_set_default_node_attrs, 3886 .get_task_tag = srpt_get_task_tag, 3887 .get_cmd_state = srpt_get_tcm_cmd_state, 3888 .queue_data_in = srpt_queue_data_in, 3889 .queue_status = srpt_queue_status, 3890 .queue_tm_rsp = srpt_queue_tm_rsp, 3891 .aborted_task = srpt_aborted_task, 3892 /* 3893 * Setup function pointers for generic logic in 3894 * target_core_fabric_configfs.c 3895 */ 3896 .fabric_make_wwn = srpt_make_tport, 3897 .fabric_drop_wwn = srpt_drop_tport, 3898 .fabric_make_tpg = srpt_make_tpg, 3899 .fabric_drop_tpg = srpt_drop_tpg, 3900 .fabric_post_link = NULL, 3901 .fabric_pre_unlink = NULL, 3902 .fabric_make_np = NULL, 3903 .fabric_drop_np = NULL, 3904 .fabric_make_nodeacl = srpt_make_nodeacl, 3905 .fabric_drop_nodeacl = srpt_drop_nodeacl, 3906 3907 .tfc_wwn_attrs = srpt_wwn_attrs, 3908 .tfc_tpg_base_attrs = srpt_tpg_attrs, 3909 .tfc_tpg_attrib_attrs = srpt_tpg_attrib_attrs, 3910}; 3911 3912/** 3913 * srpt_init_module() - Kernel module initialization. 3914 * 3915 * Note: Since ib_register_client() registers callback functions, and since at 3916 * least one of these callback functions (srpt_add_one()) calls target core 3917 * functions, this driver must be registered with the target core before 3918 * ib_register_client() is called. 3919 */ 3920static int __init srpt_init_module(void) 3921{ 3922 int ret; 3923 3924 ret = -EINVAL; 3925 if (srp_max_req_size < MIN_MAX_REQ_SIZE) { 3926 pr_err("invalid value %d for kernel module parameter" 3927 " srp_max_req_size -- must be at least %d.\n", 3928 srp_max_req_size, MIN_MAX_REQ_SIZE); 3929 goto out; 3930 } 3931 3932 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE 3933 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { 3934 pr_err("invalid value %d for kernel module parameter" 3935 " srpt_srq_size -- must be in the range [%d..%d].\n", 3936 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); 3937 goto out; 3938 } 3939 3940 ret = target_register_template(&srpt_template); 3941 if (ret) 3942 goto out; 3943 3944 ret = ib_register_client(&srpt_client); 3945 if (ret) { 3946 pr_err("couldn't register IB client\n"); 3947 goto out_unregister_target; 3948 } 3949 3950 return 0; 3951 3952out_unregister_target: 3953 target_unregister_template(&srpt_template); 3954out: 3955 return ret; 3956} 3957 3958static void __exit srpt_cleanup_module(void) 3959{ 3960 ib_unregister_client(&srpt_client); 3961 target_unregister_template(&srpt_template); 3962} 3963 3964module_init(srpt_init_module); 3965module_exit(srpt_cleanup_module); 3966