1/*
2 * IPMMU VMSA
3 *
4 * Copyright (C) 2014 Renesas Electronics Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 */
10
11#include <linux/delay.h>
12#include <linux/dma-mapping.h>
13#include <linux/err.h>
14#include <linux/export.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/iommu.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/platform_device.h>
21#include <linux/sizes.h>
22#include <linux/slab.h>
23
24#include <asm/dma-iommu.h>
25#include <asm/pgalloc.h>
26
27#include "io-pgtable.h"
28
29struct ipmmu_vmsa_device {
30	struct device *dev;
31	void __iomem *base;
32	struct list_head list;
33
34	unsigned int num_utlbs;
35
36	struct dma_iommu_mapping *mapping;
37};
38
39struct ipmmu_vmsa_domain {
40	struct ipmmu_vmsa_device *mmu;
41	struct iommu_domain io_domain;
42
43	struct io_pgtable_cfg cfg;
44	struct io_pgtable_ops *iop;
45
46	unsigned int context_id;
47	spinlock_t lock;			/* Protects mappings */
48};
49
50struct ipmmu_vmsa_archdata {
51	struct ipmmu_vmsa_device *mmu;
52	unsigned int *utlbs;
53	unsigned int num_utlbs;
54};
55
56static DEFINE_SPINLOCK(ipmmu_devices_lock);
57static LIST_HEAD(ipmmu_devices);
58
59static struct ipmmu_vmsa_domain *to_vmsa_domain(struct iommu_domain *dom)
60{
61	return container_of(dom, struct ipmmu_vmsa_domain, io_domain);
62}
63
64#define TLB_LOOP_TIMEOUT		100	/* 100us */
65
66/* -----------------------------------------------------------------------------
67 * Registers Definition
68 */
69
70#define IM_NS_ALIAS_OFFSET		0x800
71
72#define IM_CTX_SIZE			0x40
73
74#define IMCTR				0x0000
75#define IMCTR_TRE			(1 << 17)
76#define IMCTR_AFE			(1 << 16)
77#define IMCTR_RTSEL_MASK		(3 << 4)
78#define IMCTR_RTSEL_SHIFT		4
79#define IMCTR_TREN			(1 << 3)
80#define IMCTR_INTEN			(1 << 2)
81#define IMCTR_FLUSH			(1 << 1)
82#define IMCTR_MMUEN			(1 << 0)
83
84#define IMCAAR				0x0004
85
86#define IMTTBCR				0x0008
87#define IMTTBCR_EAE			(1 << 31)
88#define IMTTBCR_PMB			(1 << 30)
89#define IMTTBCR_SH1_NON_SHAREABLE	(0 << 28)
90#define IMTTBCR_SH1_OUTER_SHAREABLE	(2 << 28)
91#define IMTTBCR_SH1_INNER_SHAREABLE	(3 << 28)
92#define IMTTBCR_SH1_MASK		(3 << 28)
93#define IMTTBCR_ORGN1_NC		(0 << 26)
94#define IMTTBCR_ORGN1_WB_WA		(1 << 26)
95#define IMTTBCR_ORGN1_WT		(2 << 26)
96#define IMTTBCR_ORGN1_WB		(3 << 26)
97#define IMTTBCR_ORGN1_MASK		(3 << 26)
98#define IMTTBCR_IRGN1_NC		(0 << 24)
99#define IMTTBCR_IRGN1_WB_WA		(1 << 24)
100#define IMTTBCR_IRGN1_WT		(2 << 24)
101#define IMTTBCR_IRGN1_WB		(3 << 24)
102#define IMTTBCR_IRGN1_MASK		(3 << 24)
103#define IMTTBCR_TSZ1_MASK		(7 << 16)
104#define IMTTBCR_TSZ1_SHIFT		16
105#define IMTTBCR_SH0_NON_SHAREABLE	(0 << 12)
106#define IMTTBCR_SH0_OUTER_SHAREABLE	(2 << 12)
107#define IMTTBCR_SH0_INNER_SHAREABLE	(3 << 12)
108#define IMTTBCR_SH0_MASK		(3 << 12)
109#define IMTTBCR_ORGN0_NC		(0 << 10)
110#define IMTTBCR_ORGN0_WB_WA		(1 << 10)
111#define IMTTBCR_ORGN0_WT		(2 << 10)
112#define IMTTBCR_ORGN0_WB		(3 << 10)
113#define IMTTBCR_ORGN0_MASK		(3 << 10)
114#define IMTTBCR_IRGN0_NC		(0 << 8)
115#define IMTTBCR_IRGN0_WB_WA		(1 << 8)
116#define IMTTBCR_IRGN0_WT		(2 << 8)
117#define IMTTBCR_IRGN0_WB		(3 << 8)
118#define IMTTBCR_IRGN0_MASK		(3 << 8)
119#define IMTTBCR_SL0_LVL_2		(0 << 4)
120#define IMTTBCR_SL0_LVL_1		(1 << 4)
121#define IMTTBCR_TSZ0_MASK		(7 << 0)
122#define IMTTBCR_TSZ0_SHIFT		O
123
124#define IMBUSCR				0x000c
125#define IMBUSCR_DVM			(1 << 2)
126#define IMBUSCR_BUSSEL_SYS		(0 << 0)
127#define IMBUSCR_BUSSEL_CCI		(1 << 0)
128#define IMBUSCR_BUSSEL_IMCAAR		(2 << 0)
129#define IMBUSCR_BUSSEL_CCI_IMCAAR	(3 << 0)
130#define IMBUSCR_BUSSEL_MASK		(3 << 0)
131
132#define IMTTLBR0			0x0010
133#define IMTTUBR0			0x0014
134#define IMTTLBR1			0x0018
135#define IMTTUBR1			0x001c
136
137#define IMSTR				0x0020
138#define IMSTR_ERRLVL_MASK		(3 << 12)
139#define IMSTR_ERRLVL_SHIFT		12
140#define IMSTR_ERRCODE_TLB_FORMAT	(1 << 8)
141#define IMSTR_ERRCODE_ACCESS_PERM	(4 << 8)
142#define IMSTR_ERRCODE_SECURE_ACCESS	(5 << 8)
143#define IMSTR_ERRCODE_MASK		(7 << 8)
144#define IMSTR_MHIT			(1 << 4)
145#define IMSTR_ABORT			(1 << 2)
146#define IMSTR_PF			(1 << 1)
147#define IMSTR_TF			(1 << 0)
148
149#define IMMAIR0				0x0028
150#define IMMAIR1				0x002c
151#define IMMAIR_ATTR_MASK		0xff
152#define IMMAIR_ATTR_DEVICE		0x04
153#define IMMAIR_ATTR_NC			0x44
154#define IMMAIR_ATTR_WBRWA		0xff
155#define IMMAIR_ATTR_SHIFT(n)		((n) << 3)
156#define IMMAIR_ATTR_IDX_NC		0
157#define IMMAIR_ATTR_IDX_WBRWA		1
158#define IMMAIR_ATTR_IDX_DEV		2
159
160#define IMEAR				0x0030
161
162#define IMPCTR				0x0200
163#define IMPSTR				0x0208
164#define IMPEAR				0x020c
165#define IMPMBA(n)			(0x0280 + ((n) * 4))
166#define IMPMBD(n)			(0x02c0 + ((n) * 4))
167
168#define IMUCTR(n)			(0x0300 + ((n) * 16))
169#define IMUCTR_FIXADDEN			(1 << 31)
170#define IMUCTR_FIXADD_MASK		(0xff << 16)
171#define IMUCTR_FIXADD_SHIFT		16
172#define IMUCTR_TTSEL_MMU(n)		((n) << 4)
173#define IMUCTR_TTSEL_PMB		(8 << 4)
174#define IMUCTR_TTSEL_MASK		(15 << 4)
175#define IMUCTR_FLUSH			(1 << 1)
176#define IMUCTR_MMUEN			(1 << 0)
177
178#define IMUASID(n)			(0x0308 + ((n) * 16))
179#define IMUASID_ASID8_MASK		(0xff << 8)
180#define IMUASID_ASID8_SHIFT		8
181#define IMUASID_ASID0_MASK		(0xff << 0)
182#define IMUASID_ASID0_SHIFT		0
183
184/* -----------------------------------------------------------------------------
185 * Read/Write Access
186 */
187
188static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset)
189{
190	return ioread32(mmu->base + offset);
191}
192
193static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset,
194			u32 data)
195{
196	iowrite32(data, mmu->base + offset);
197}
198
199static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg)
200{
201	return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg);
202}
203
204static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg,
205			    u32 data)
206{
207	ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data);
208}
209
210/* -----------------------------------------------------------------------------
211 * TLB and microTLB Management
212 */
213
214/* Wait for any pending TLB invalidations to complete */
215static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain)
216{
217	unsigned int count = 0;
218
219	while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) {
220		cpu_relax();
221		if (++count == TLB_LOOP_TIMEOUT) {
222			dev_err_ratelimited(domain->mmu->dev,
223			"TLB sync timed out -- MMU may be deadlocked\n");
224			return;
225		}
226		udelay(1);
227	}
228}
229
230static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain)
231{
232	u32 reg;
233
234	reg = ipmmu_ctx_read(domain, IMCTR);
235	reg |= IMCTR_FLUSH;
236	ipmmu_ctx_write(domain, IMCTR, reg);
237
238	ipmmu_tlb_sync(domain);
239}
240
241/*
242 * Enable MMU translation for the microTLB.
243 */
244static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain,
245			      unsigned int utlb)
246{
247	struct ipmmu_vmsa_device *mmu = domain->mmu;
248
249	/*
250	 * TODO: Reference-count the microTLB as several bus masters can be
251	 * connected to the same microTLB.
252	 */
253
254	/* TODO: What should we set the ASID to ? */
255	ipmmu_write(mmu, IMUASID(utlb), 0);
256	/* TODO: Do we need to flush the microTLB ? */
257	ipmmu_write(mmu, IMUCTR(utlb),
258		    IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH |
259		    IMUCTR_MMUEN);
260}
261
262/*
263 * Disable MMU translation for the microTLB.
264 */
265static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain,
266			       unsigned int utlb)
267{
268	struct ipmmu_vmsa_device *mmu = domain->mmu;
269
270	ipmmu_write(mmu, IMUCTR(utlb), 0);
271}
272
273static void ipmmu_tlb_flush_all(void *cookie)
274{
275	struct ipmmu_vmsa_domain *domain = cookie;
276
277	ipmmu_tlb_invalidate(domain);
278}
279
280static void ipmmu_tlb_add_flush(unsigned long iova, size_t size, bool leaf,
281				void *cookie)
282{
283	/* The hardware doesn't support selective TLB flush. */
284}
285
286static void ipmmu_flush_pgtable(void *ptr, size_t size, void *cookie)
287{
288	unsigned long offset = (unsigned long)ptr & ~PAGE_MASK;
289	struct ipmmu_vmsa_domain *domain = cookie;
290
291	/*
292	 * TODO: Add support for coherent walk through CCI with DVM and remove
293	 * cache handling.
294	 */
295	dma_map_page(domain->mmu->dev, virt_to_page(ptr), offset, size,
296		     DMA_TO_DEVICE);
297}
298
299static struct iommu_gather_ops ipmmu_gather_ops = {
300	.tlb_flush_all = ipmmu_tlb_flush_all,
301	.tlb_add_flush = ipmmu_tlb_add_flush,
302	.tlb_sync = ipmmu_tlb_flush_all,
303	.flush_pgtable = ipmmu_flush_pgtable,
304};
305
306/* -----------------------------------------------------------------------------
307 * Domain/Context Management
308 */
309
310static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain)
311{
312	phys_addr_t ttbr;
313
314	/*
315	 * Allocate the page table operations.
316	 *
317	 * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory
318	 * access, Long-descriptor format" that the NStable bit being set in a
319	 * table descriptor will result in the NStable and NS bits of all child
320	 * entries being ignored and considered as being set. The IPMMU seems
321	 * not to comply with this, as it generates a secure access page fault
322	 * if any of the NStable and NS bits isn't set when running in
323	 * non-secure mode.
324	 */
325	domain->cfg.quirks = IO_PGTABLE_QUIRK_ARM_NS;
326	domain->cfg.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
327	domain->cfg.ias = 32;
328	domain->cfg.oas = 40;
329	domain->cfg.tlb = &ipmmu_gather_ops;
330
331	domain->iop = alloc_io_pgtable_ops(ARM_32_LPAE_S1, &domain->cfg,
332					   domain);
333	if (!domain->iop)
334		return -EINVAL;
335
336	/*
337	 * TODO: When adding support for multiple contexts, find an unused
338	 * context.
339	 */
340	domain->context_id = 0;
341
342	/* TTBR0 */
343	ttbr = domain->cfg.arm_lpae_s1_cfg.ttbr[0];
344	ipmmu_ctx_write(domain, IMTTLBR0, ttbr);
345	ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32);
346
347	/*
348	 * TTBCR
349	 * We use long descriptors with inner-shareable WBWA tables and allocate
350	 * the whole 32-bit VA space to TTBR0.
351	 */
352	ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE |
353			IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA |
354			IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1);
355
356	/* MAIR0 */
357	ipmmu_ctx_write(domain, IMMAIR0, domain->cfg.arm_lpae_s1_cfg.mair[0]);
358
359	/* IMBUSCR */
360	ipmmu_ctx_write(domain, IMBUSCR,
361			ipmmu_ctx_read(domain, IMBUSCR) &
362			~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK));
363
364	/*
365	 * IMSTR
366	 * Clear all interrupt flags.
367	 */
368	ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR));
369
370	/*
371	 * IMCTR
372	 * Enable the MMU and interrupt generation. The long-descriptor
373	 * translation table format doesn't use TEX remapping. Don't enable AF
374	 * software management as we have no use for it. Flush the TLB as
375	 * required when modifying the context registers.
376	 */
377	ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN);
378
379	return 0;
380}
381
382static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain)
383{
384	/*
385	 * Disable the context. Flush the TLB as required when modifying the
386	 * context registers.
387	 *
388	 * TODO: Is TLB flush really needed ?
389	 */
390	ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH);
391	ipmmu_tlb_sync(domain);
392}
393
394/* -----------------------------------------------------------------------------
395 * Fault Handling
396 */
397
398static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain)
399{
400	const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF;
401	struct ipmmu_vmsa_device *mmu = domain->mmu;
402	u32 status;
403	u32 iova;
404
405	status = ipmmu_ctx_read(domain, IMSTR);
406	if (!(status & err_mask))
407		return IRQ_NONE;
408
409	iova = ipmmu_ctx_read(domain, IMEAR);
410
411	/*
412	 * Clear the error status flags. Unlike traditional interrupt flag
413	 * registers that must be cleared by writing 1, this status register
414	 * seems to require 0. The error address register must be read before,
415	 * otherwise its value will be 0.
416	 */
417	ipmmu_ctx_write(domain, IMSTR, 0);
418
419	/* Log fatal errors. */
420	if (status & IMSTR_MHIT)
421		dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n",
422				    iova);
423	if (status & IMSTR_ABORT)
424		dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n",
425				    iova);
426
427	if (!(status & (IMSTR_PF | IMSTR_TF)))
428		return IRQ_NONE;
429
430	/*
431	 * Try to handle page faults and translation faults.
432	 *
433	 * TODO: We need to look up the faulty device based on the I/O VA. Use
434	 * the IOMMU device for now.
435	 */
436	if (!report_iommu_fault(&domain->io_domain, mmu->dev, iova, 0))
437		return IRQ_HANDLED;
438
439	dev_err_ratelimited(mmu->dev,
440			    "Unhandled fault: status 0x%08x iova 0x%08x\n",
441			    status, iova);
442
443	return IRQ_HANDLED;
444}
445
446static irqreturn_t ipmmu_irq(int irq, void *dev)
447{
448	struct ipmmu_vmsa_device *mmu = dev;
449	struct iommu_domain *io_domain;
450	struct ipmmu_vmsa_domain *domain;
451
452	if (!mmu->mapping)
453		return IRQ_NONE;
454
455	io_domain = mmu->mapping->domain;
456	domain = to_vmsa_domain(io_domain);
457
458	return ipmmu_domain_irq(domain);
459}
460
461/* -----------------------------------------------------------------------------
462 * IOMMU Operations
463 */
464
465static struct iommu_domain *ipmmu_domain_alloc(unsigned type)
466{
467	struct ipmmu_vmsa_domain *domain;
468
469	if (type != IOMMU_DOMAIN_UNMANAGED)
470		return NULL;
471
472	domain = kzalloc(sizeof(*domain), GFP_KERNEL);
473	if (!domain)
474		return NULL;
475
476	spin_lock_init(&domain->lock);
477
478	return &domain->io_domain;
479}
480
481static void ipmmu_domain_free(struct iommu_domain *io_domain)
482{
483	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
484
485	/*
486	 * Free the domain resources. We assume that all devices have already
487	 * been detached.
488	 */
489	ipmmu_domain_destroy_context(domain);
490	free_io_pgtable_ops(domain->iop);
491	kfree(domain);
492}
493
494static int ipmmu_attach_device(struct iommu_domain *io_domain,
495			       struct device *dev)
496{
497	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
498	struct ipmmu_vmsa_device *mmu = archdata->mmu;
499	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
500	unsigned long flags;
501	unsigned int i;
502	int ret = 0;
503
504	if (!mmu) {
505		dev_err(dev, "Cannot attach to IPMMU\n");
506		return -ENXIO;
507	}
508
509	spin_lock_irqsave(&domain->lock, flags);
510
511	if (!domain->mmu) {
512		/* The domain hasn't been used yet, initialize it. */
513		domain->mmu = mmu;
514		ret = ipmmu_domain_init_context(domain);
515	} else if (domain->mmu != mmu) {
516		/*
517		 * Something is wrong, we can't attach two devices using
518		 * different IOMMUs to the same domain.
519		 */
520		dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n",
521			dev_name(mmu->dev), dev_name(domain->mmu->dev));
522		ret = -EINVAL;
523	}
524
525	spin_unlock_irqrestore(&domain->lock, flags);
526
527	if (ret < 0)
528		return ret;
529
530	for (i = 0; i < archdata->num_utlbs; ++i)
531		ipmmu_utlb_enable(domain, archdata->utlbs[i]);
532
533	return 0;
534}
535
536static void ipmmu_detach_device(struct iommu_domain *io_domain,
537				struct device *dev)
538{
539	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
540	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
541	unsigned int i;
542
543	for (i = 0; i < archdata->num_utlbs; ++i)
544		ipmmu_utlb_disable(domain, archdata->utlbs[i]);
545
546	/*
547	 * TODO: Optimize by disabling the context when no device is attached.
548	 */
549}
550
551static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova,
552		     phys_addr_t paddr, size_t size, int prot)
553{
554	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
555
556	if (!domain)
557		return -ENODEV;
558
559	return domain->iop->map(domain->iop, iova, paddr, size, prot);
560}
561
562static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova,
563			  size_t size)
564{
565	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
566
567	return domain->iop->unmap(domain->iop, iova, size);
568}
569
570static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain,
571				      dma_addr_t iova)
572{
573	struct ipmmu_vmsa_domain *domain = to_vmsa_domain(io_domain);
574
575	/* TODO: Is locking needed ? */
576
577	return domain->iop->iova_to_phys(domain->iop, iova);
578}
579
580static int ipmmu_find_utlbs(struct ipmmu_vmsa_device *mmu, struct device *dev,
581			    unsigned int *utlbs, unsigned int num_utlbs)
582{
583	unsigned int i;
584
585	for (i = 0; i < num_utlbs; ++i) {
586		struct of_phandle_args args;
587		int ret;
588
589		ret = of_parse_phandle_with_args(dev->of_node, "iommus",
590						 "#iommu-cells", i, &args);
591		if (ret < 0)
592			return ret;
593
594		of_node_put(args.np);
595
596		if (args.np != mmu->dev->of_node || args.args_count != 1)
597			return -EINVAL;
598
599		utlbs[i] = args.args[0];
600	}
601
602	return 0;
603}
604
605static int ipmmu_add_device(struct device *dev)
606{
607	struct ipmmu_vmsa_archdata *archdata;
608	struct ipmmu_vmsa_device *mmu;
609	struct iommu_group *group = NULL;
610	unsigned int *utlbs;
611	unsigned int i;
612	int num_utlbs;
613	int ret = -ENODEV;
614
615	if (dev->archdata.iommu) {
616		dev_warn(dev, "IOMMU driver already assigned to device %s\n",
617			 dev_name(dev));
618		return -EINVAL;
619	}
620
621	/* Find the master corresponding to the device. */
622
623	num_utlbs = of_count_phandle_with_args(dev->of_node, "iommus",
624					       "#iommu-cells");
625	if (num_utlbs < 0)
626		return -ENODEV;
627
628	utlbs = kcalloc(num_utlbs, sizeof(*utlbs), GFP_KERNEL);
629	if (!utlbs)
630		return -ENOMEM;
631
632	spin_lock(&ipmmu_devices_lock);
633
634	list_for_each_entry(mmu, &ipmmu_devices, list) {
635		ret = ipmmu_find_utlbs(mmu, dev, utlbs, num_utlbs);
636		if (!ret) {
637			/*
638			 * TODO Take a reference to the MMU to protect
639			 * against device removal.
640			 */
641			break;
642		}
643	}
644
645	spin_unlock(&ipmmu_devices_lock);
646
647	if (ret < 0)
648		return -ENODEV;
649
650	for (i = 0; i < num_utlbs; ++i) {
651		if (utlbs[i] >= mmu->num_utlbs) {
652			ret = -EINVAL;
653			goto error;
654		}
655	}
656
657	/* Create a device group and add the device to it. */
658	group = iommu_group_alloc();
659	if (IS_ERR(group)) {
660		dev_err(dev, "Failed to allocate IOMMU group\n");
661		ret = PTR_ERR(group);
662		goto error;
663	}
664
665	ret = iommu_group_add_device(group, dev);
666	iommu_group_put(group);
667
668	if (ret < 0) {
669		dev_err(dev, "Failed to add device to IPMMU group\n");
670		group = NULL;
671		goto error;
672	}
673
674	archdata = kzalloc(sizeof(*archdata), GFP_KERNEL);
675	if (!archdata) {
676		ret = -ENOMEM;
677		goto error;
678	}
679
680	archdata->mmu = mmu;
681	archdata->utlbs = utlbs;
682	archdata->num_utlbs = num_utlbs;
683	dev->archdata.iommu = archdata;
684
685	/*
686	 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
687	 * VAs. This will allocate a corresponding IOMMU domain.
688	 *
689	 * TODO:
690	 * - Create one mapping per context (TLB).
691	 * - Make the mapping size configurable ? We currently use a 2GB mapping
692	 *   at a 1GB offset to ensure that NULL VAs will fault.
693	 */
694	if (!mmu->mapping) {
695		struct dma_iommu_mapping *mapping;
696
697		mapping = arm_iommu_create_mapping(&platform_bus_type,
698						   SZ_1G, SZ_2G);
699		if (IS_ERR(mapping)) {
700			dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n");
701			ret = PTR_ERR(mapping);
702			goto error;
703		}
704
705		mmu->mapping = mapping;
706	}
707
708	/* Attach the ARM VA mapping to the device. */
709	ret = arm_iommu_attach_device(dev, mmu->mapping);
710	if (ret < 0) {
711		dev_err(dev, "Failed to attach device to VA mapping\n");
712		goto error;
713	}
714
715	return 0;
716
717error:
718	arm_iommu_release_mapping(mmu->mapping);
719
720	kfree(dev->archdata.iommu);
721	kfree(utlbs);
722
723	dev->archdata.iommu = NULL;
724
725	if (!IS_ERR_OR_NULL(group))
726		iommu_group_remove_device(dev);
727
728	return ret;
729}
730
731static void ipmmu_remove_device(struct device *dev)
732{
733	struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu;
734
735	arm_iommu_detach_device(dev);
736	iommu_group_remove_device(dev);
737
738	kfree(archdata->utlbs);
739	kfree(archdata);
740
741	dev->archdata.iommu = NULL;
742}
743
744static const struct iommu_ops ipmmu_ops = {
745	.domain_alloc = ipmmu_domain_alloc,
746	.domain_free = ipmmu_domain_free,
747	.attach_dev = ipmmu_attach_device,
748	.detach_dev = ipmmu_detach_device,
749	.map = ipmmu_map,
750	.unmap = ipmmu_unmap,
751	.map_sg = default_iommu_map_sg,
752	.iova_to_phys = ipmmu_iova_to_phys,
753	.add_device = ipmmu_add_device,
754	.remove_device = ipmmu_remove_device,
755	.pgsize_bitmap = SZ_1G | SZ_2M | SZ_4K,
756};
757
758/* -----------------------------------------------------------------------------
759 * Probe/remove and init
760 */
761
762static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu)
763{
764	unsigned int i;
765
766	/* Disable all contexts. */
767	for (i = 0; i < 4; ++i)
768		ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0);
769}
770
771static int ipmmu_probe(struct platform_device *pdev)
772{
773	struct ipmmu_vmsa_device *mmu;
774	struct resource *res;
775	int irq;
776	int ret;
777
778	if (!IS_ENABLED(CONFIG_OF) && !pdev->dev.platform_data) {
779		dev_err(&pdev->dev, "missing platform data\n");
780		return -EINVAL;
781	}
782
783	mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL);
784	if (!mmu) {
785		dev_err(&pdev->dev, "cannot allocate device data\n");
786		return -ENOMEM;
787	}
788
789	mmu->dev = &pdev->dev;
790	mmu->num_utlbs = 32;
791
792	/* Map I/O memory and request IRQ. */
793	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
794	mmu->base = devm_ioremap_resource(&pdev->dev, res);
795	if (IS_ERR(mmu->base))
796		return PTR_ERR(mmu->base);
797
798	/*
799	 * The IPMMU has two register banks, for secure and non-secure modes.
800	 * The bank mapped at the beginning of the IPMMU address space
801	 * corresponds to the running mode of the CPU. When running in secure
802	 * mode the non-secure register bank is also available at an offset.
803	 *
804	 * Secure mode operation isn't clearly documented and is thus currently
805	 * not implemented in the driver. Furthermore, preliminary tests of
806	 * non-secure operation with the main register bank were not successful.
807	 * Offset the registers base unconditionally to point to the non-secure
808	 * alias space for now.
809	 */
810	mmu->base += IM_NS_ALIAS_OFFSET;
811
812	irq = platform_get_irq(pdev, 0);
813	if (irq < 0) {
814		dev_err(&pdev->dev, "no IRQ found\n");
815		return irq;
816	}
817
818	ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0,
819			       dev_name(&pdev->dev), mmu);
820	if (ret < 0) {
821		dev_err(&pdev->dev, "failed to request IRQ %d\n", irq);
822		return ret;
823	}
824
825	ipmmu_device_reset(mmu);
826
827	/*
828	 * We can't create the ARM mapping here as it requires the bus to have
829	 * an IOMMU, which only happens when bus_set_iommu() is called in
830	 * ipmmu_init() after the probe function returns.
831	 */
832
833	spin_lock(&ipmmu_devices_lock);
834	list_add(&mmu->list, &ipmmu_devices);
835	spin_unlock(&ipmmu_devices_lock);
836
837	platform_set_drvdata(pdev, mmu);
838
839	return 0;
840}
841
842static int ipmmu_remove(struct platform_device *pdev)
843{
844	struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev);
845
846	spin_lock(&ipmmu_devices_lock);
847	list_del(&mmu->list);
848	spin_unlock(&ipmmu_devices_lock);
849
850	arm_iommu_release_mapping(mmu->mapping);
851
852	ipmmu_device_reset(mmu);
853
854	return 0;
855}
856
857static const struct of_device_id ipmmu_of_ids[] = {
858	{ .compatible = "renesas,ipmmu-vmsa", },
859	{ }
860};
861
862static struct platform_driver ipmmu_driver = {
863	.driver = {
864		.name = "ipmmu-vmsa",
865		.of_match_table = of_match_ptr(ipmmu_of_ids),
866	},
867	.probe = ipmmu_probe,
868	.remove	= ipmmu_remove,
869};
870
871static int __init ipmmu_init(void)
872{
873	int ret;
874
875	ret = platform_driver_register(&ipmmu_driver);
876	if (ret < 0)
877		return ret;
878
879	if (!iommu_present(&platform_bus_type))
880		bus_set_iommu(&platform_bus_type, &ipmmu_ops);
881
882	return 0;
883}
884
885static void __exit ipmmu_exit(void)
886{
887	return platform_driver_unregister(&ipmmu_driver);
888}
889
890subsys_initcall(ipmmu_init);
891module_exit(ipmmu_exit);
892
893MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU");
894MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
895MODULE_LICENSE("GPL v2");
896