1/*P:400 2 * This contains run_guest() which actually calls into the Host<->Guest 3 * Switcher and analyzes the return, such as determining if the Guest wants the 4 * Host to do something. This file also contains useful helper routines. 5:*/ 6#include <linux/module.h> 7#include <linux/stringify.h> 8#include <linux/stddef.h> 9#include <linux/io.h> 10#include <linux/mm.h> 11#include <linux/vmalloc.h> 12#include <linux/cpu.h> 13#include <linux/freezer.h> 14#include <linux/highmem.h> 15#include <linux/slab.h> 16#include <asm/paravirt.h> 17#include <asm/pgtable.h> 18#include <asm/uaccess.h> 19#include <asm/poll.h> 20#include <asm/asm-offsets.h> 21#include "lg.h" 22 23unsigned long switcher_addr; 24struct page **lg_switcher_pages; 25static struct vm_struct *switcher_vma; 26 27/* This One Big lock protects all inter-guest data structures. */ 28DEFINE_MUTEX(lguest_lock); 29 30/*H:010 31 * We need to set up the Switcher at a high virtual address. Remember the 32 * Switcher is a few hundred bytes of assembler code which actually changes the 33 * CPU to run the Guest, and then changes back to the Host when a trap or 34 * interrupt happens. 35 * 36 * The Switcher code must be at the same virtual address in the Guest as the 37 * Host since it will be running as the switchover occurs. 38 * 39 * Trying to map memory at a particular address is an unusual thing to do, so 40 * it's not a simple one-liner. 41 */ 42static __init int map_switcher(void) 43{ 44 int i, err; 45 46 /* 47 * Map the Switcher in to high memory. 48 * 49 * It turns out that if we choose the address 0xFFC00000 (4MB under the 50 * top virtual address), it makes setting up the page tables really 51 * easy. 52 */ 53 54 /* We assume Switcher text fits into a single page. */ 55 if (end_switcher_text - start_switcher_text > PAGE_SIZE) { 56 printk(KERN_ERR "lguest: switcher text too large (%zu)\n", 57 end_switcher_text - start_switcher_text); 58 return -EINVAL; 59 } 60 61 /* 62 * We allocate an array of struct page pointers. map_vm_area() wants 63 * this, rather than just an array of pages. 64 */ 65 lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0]) 66 * TOTAL_SWITCHER_PAGES, 67 GFP_KERNEL); 68 if (!lg_switcher_pages) { 69 err = -ENOMEM; 70 goto out; 71 } 72 73 /* 74 * Now we actually allocate the pages. The Guest will see these pages, 75 * so we make sure they're zeroed. 76 */ 77 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) { 78 lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO); 79 if (!lg_switcher_pages[i]) { 80 err = -ENOMEM; 81 goto free_some_pages; 82 } 83 } 84 85 /* 86 * We place the Switcher underneath the fixmap area, which is the 87 * highest virtual address we can get. This is important, since we 88 * tell the Guest it can't access this memory, so we want its ceiling 89 * as high as possible. 90 */ 91 switcher_addr = FIXADDR_START - (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE; 92 93 /* 94 * Now we reserve the "virtual memory area" we want. We might 95 * not get it in theory, but in practice it's worked so far. 96 * The end address needs +1 because __get_vm_area allocates an 97 * extra guard page, so we need space for that. 98 */ 99 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE, 100 VM_ALLOC, switcher_addr, switcher_addr 101 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE); 102 if (!switcher_vma) { 103 err = -ENOMEM; 104 printk("lguest: could not map switcher pages high\n"); 105 goto free_pages; 106 } 107 108 /* 109 * This code actually sets up the pages we've allocated to appear at 110 * switcher_addr. map_vm_area() takes the vma we allocated above, the 111 * kind of pages we're mapping (kernel pages), and a pointer to our 112 * array of struct pages. 113 */ 114 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, lg_switcher_pages); 115 if (err) { 116 printk("lguest: map_vm_area failed: %i\n", err); 117 goto free_vma; 118 } 119 120 /* 121 * Now the Switcher is mapped at the right address, we can't fail! 122 * Copy in the compiled-in Switcher code (from x86/switcher_32.S). 123 */ 124 memcpy(switcher_vma->addr, start_switcher_text, 125 end_switcher_text - start_switcher_text); 126 127 printk(KERN_INFO "lguest: mapped switcher at %p\n", 128 switcher_vma->addr); 129 /* And we succeeded... */ 130 return 0; 131 132free_vma: 133 vunmap(switcher_vma->addr); 134free_pages: 135 i = TOTAL_SWITCHER_PAGES; 136free_some_pages: 137 for (--i; i >= 0; i--) 138 __free_pages(lg_switcher_pages[i], 0); 139 kfree(lg_switcher_pages); 140out: 141 return err; 142} 143/*:*/ 144 145/* Cleaning up the mapping when the module is unloaded is almost... too easy. */ 146static void unmap_switcher(void) 147{ 148 unsigned int i; 149 150 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */ 151 vunmap(switcher_vma->addr); 152 /* Now we just need to free the pages we copied the switcher into */ 153 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) 154 __free_pages(lg_switcher_pages[i], 0); 155 kfree(lg_switcher_pages); 156} 157 158/*H:032 159 * Dealing With Guest Memory. 160 * 161 * Before we go too much further into the Host, we need to grok the routines 162 * we use to deal with Guest memory. 163 * 164 * When the Guest gives us (what it thinks is) a physical address, we can use 165 * the normal copy_from_user() & copy_to_user() on the corresponding place in 166 * the memory region allocated by the Launcher. 167 * 168 * But we can't trust the Guest: it might be trying to access the Launcher 169 * code. We have to check that the range is below the pfn_limit the Launcher 170 * gave us. We have to make sure that addr + len doesn't give us a false 171 * positive by overflowing, too. 172 */ 173bool lguest_address_ok(const struct lguest *lg, 174 unsigned long addr, unsigned long len) 175{ 176 return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr); 177} 178 179/* 180 * This routine copies memory from the Guest. Here we can see how useful the 181 * kill_lguest() routine we met in the Launcher can be: we return a random 182 * value (all zeroes) instead of needing to return an error. 183 */ 184void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes) 185{ 186 if (!lguest_address_ok(cpu->lg, addr, bytes) 187 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) { 188 /* copy_from_user should do this, but as we rely on it... */ 189 memset(b, 0, bytes); 190 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes); 191 } 192} 193 194/* This is the write (copy into Guest) version. */ 195void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b, 196 unsigned bytes) 197{ 198 if (!lguest_address_ok(cpu->lg, addr, bytes) 199 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0) 200 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes); 201} 202/*:*/ 203 204/*H:030 205 * Let's jump straight to the the main loop which runs the Guest. 206 * Remember, this is called by the Launcher reading /dev/lguest, and we keep 207 * going around and around until something interesting happens. 208 */ 209int run_guest(struct lg_cpu *cpu, unsigned long __user *user) 210{ 211 /* If the launcher asked for a register with LHREQ_GETREG */ 212 if (cpu->reg_read) { 213 if (put_user(*cpu->reg_read, user)) 214 return -EFAULT; 215 cpu->reg_read = NULL; 216 return sizeof(*cpu->reg_read); 217 } 218 219 /* We stop running once the Guest is dead. */ 220 while (!cpu->lg->dead) { 221 unsigned int irq; 222 bool more; 223 224 /* First we run any hypercalls the Guest wants done. */ 225 if (cpu->hcall) 226 do_hypercalls(cpu); 227 228 /* Do we have to tell the Launcher about a trap? */ 229 if (cpu->pending.trap) { 230 if (copy_to_user(user, &cpu->pending, 231 sizeof(cpu->pending))) 232 return -EFAULT; 233 return sizeof(cpu->pending); 234 } 235 236 /* 237 * All long-lived kernel loops need to check with this horrible 238 * thing called the freezer. If the Host is trying to suspend, 239 * it stops us. 240 */ 241 try_to_freeze(); 242 243 /* Check for signals */ 244 if (signal_pending(current)) 245 return -ERESTARTSYS; 246 247 /* 248 * Check if there are any interrupts which can be delivered now: 249 * if so, this sets up the hander to be executed when we next 250 * run the Guest. 251 */ 252 irq = interrupt_pending(cpu, &more); 253 if (irq < LGUEST_IRQS) 254 try_deliver_interrupt(cpu, irq, more); 255 256 /* 257 * Just make absolutely sure the Guest is still alive. One of 258 * those hypercalls could have been fatal, for example. 259 */ 260 if (cpu->lg->dead) 261 break; 262 263 /* 264 * If the Guest asked to be stopped, we sleep. The Guest's 265 * clock timer will wake us. 266 */ 267 if (cpu->halted) { 268 set_current_state(TASK_INTERRUPTIBLE); 269 /* 270 * Just before we sleep, make sure no interrupt snuck in 271 * which we should be doing. 272 */ 273 if (interrupt_pending(cpu, &more) < LGUEST_IRQS) 274 set_current_state(TASK_RUNNING); 275 else 276 schedule(); 277 continue; 278 } 279 280 /* 281 * OK, now we're ready to jump into the Guest. First we put up 282 * the "Do Not Disturb" sign: 283 */ 284 local_irq_disable(); 285 286 /* Actually run the Guest until something happens. */ 287 lguest_arch_run_guest(cpu); 288 289 /* Now we're ready to be interrupted or moved to other CPUs */ 290 local_irq_enable(); 291 292 /* Now we deal with whatever happened to the Guest. */ 293 lguest_arch_handle_trap(cpu); 294 } 295 296 /* Special case: Guest is 'dead' but wants a reboot. */ 297 if (cpu->lg->dead == ERR_PTR(-ERESTART)) 298 return -ERESTART; 299 300 /* The Guest is dead => "No such file or directory" */ 301 return -ENOENT; 302} 303 304/*H:000 305 * Welcome to the Host! 306 * 307 * By this point your brain has been tickled by the Guest code and numbed by 308 * the Launcher code; prepare for it to be stretched by the Host code. This is 309 * the heart. Let's begin at the initialization routine for the Host's lg 310 * module. 311 */ 312static int __init init(void) 313{ 314 int err; 315 316 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */ 317 if (get_kernel_rpl() != 0) { 318 printk("lguest is afraid of being a guest\n"); 319 return -EPERM; 320 } 321 322 /* First we put the Switcher up in very high virtual memory. */ 323 err = map_switcher(); 324 if (err) 325 goto out; 326 327 /* We might need to reserve an interrupt vector. */ 328 err = init_interrupts(); 329 if (err) 330 goto unmap; 331 332 /* /dev/lguest needs to be registered. */ 333 err = lguest_device_init(); 334 if (err) 335 goto free_interrupts; 336 337 /* Finally we do some architecture-specific setup. */ 338 lguest_arch_host_init(); 339 340 /* All good! */ 341 return 0; 342 343free_interrupts: 344 free_interrupts(); 345unmap: 346 unmap_switcher(); 347out: 348 return err; 349} 350 351/* Cleaning up is just the same code, backwards. With a little French. */ 352static void __exit fini(void) 353{ 354 lguest_device_remove(); 355 free_interrupts(); 356 unmap_switcher(); 357 358 lguest_arch_host_fini(); 359} 360/*:*/ 361 362/* 363 * The Host side of lguest can be a module. This is a nice way for people to 364 * play with it. 365 */ 366module_init(init); 367module_exit(fini); 368MODULE_LICENSE("GPL"); 369MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>"); 370