1/*
2 * bcache setup/teardown code, and some metadata io - read a superblock and
3 * figure out what to do with it.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "extents.h"
13#include "request.h"
14#include "writeback.h"
15
16#include <linux/blkdev.h>
17#include <linux/buffer_head.h>
18#include <linux/debugfs.h>
19#include <linux/genhd.h>
20#include <linux/idr.h>
21#include <linux/kthread.h>
22#include <linux/module.h>
23#include <linux/random.h>
24#include <linux/reboot.h>
25#include <linux/sysfs.h>
26
27MODULE_LICENSE("GPL");
28MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
29
30static const char bcache_magic[] = {
31	0xc6, 0x85, 0x73, 0xf6, 0x4e, 0x1a, 0x45, 0xca,
32	0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81
33};
34
35static const char invalid_uuid[] = {
36	0xa0, 0x3e, 0xf8, 0xed, 0x3e, 0xe1, 0xb8, 0x78,
37	0xc8, 0x50, 0xfc, 0x5e, 0xcb, 0x16, 0xcd, 0x99
38};
39
40/* Default is -1; we skip past it for struct cached_dev's cache mode */
41const char * const bch_cache_modes[] = {
42	"default",
43	"writethrough",
44	"writeback",
45	"writearound",
46	"none",
47	NULL
48};
49
50static struct kobject *bcache_kobj;
51struct mutex bch_register_lock;
52LIST_HEAD(bch_cache_sets);
53static LIST_HEAD(uncached_devices);
54
55static int bcache_major;
56static DEFINE_IDA(bcache_minor);
57static wait_queue_head_t unregister_wait;
58struct workqueue_struct *bcache_wq;
59
60#define BTREE_MAX_PAGES		(256 * 1024 / PAGE_SIZE)
61
62static void bio_split_pool_free(struct bio_split_pool *p)
63{
64	if (p->bio_split_hook)
65		mempool_destroy(p->bio_split_hook);
66
67	if (p->bio_split)
68		bioset_free(p->bio_split);
69}
70
71static int bio_split_pool_init(struct bio_split_pool *p)
72{
73	p->bio_split = bioset_create(4, 0);
74	if (!p->bio_split)
75		return -ENOMEM;
76
77	p->bio_split_hook = mempool_create_kmalloc_pool(4,
78				sizeof(struct bio_split_hook));
79	if (!p->bio_split_hook)
80		return -ENOMEM;
81
82	return 0;
83}
84
85/* Superblock */
86
87static const char *read_super(struct cache_sb *sb, struct block_device *bdev,
88			      struct page **res)
89{
90	const char *err;
91	struct cache_sb *s;
92	struct buffer_head *bh = __bread(bdev, 1, SB_SIZE);
93	unsigned i;
94
95	if (!bh)
96		return "IO error";
97
98	s = (struct cache_sb *) bh->b_data;
99
100	sb->offset		= le64_to_cpu(s->offset);
101	sb->version		= le64_to_cpu(s->version);
102
103	memcpy(sb->magic,	s->magic, 16);
104	memcpy(sb->uuid,	s->uuid, 16);
105	memcpy(sb->set_uuid,	s->set_uuid, 16);
106	memcpy(sb->label,	s->label, SB_LABEL_SIZE);
107
108	sb->flags		= le64_to_cpu(s->flags);
109	sb->seq			= le64_to_cpu(s->seq);
110	sb->last_mount		= le32_to_cpu(s->last_mount);
111	sb->first_bucket	= le16_to_cpu(s->first_bucket);
112	sb->keys		= le16_to_cpu(s->keys);
113
114	for (i = 0; i < SB_JOURNAL_BUCKETS; i++)
115		sb->d[i] = le64_to_cpu(s->d[i]);
116
117	pr_debug("read sb version %llu, flags %llu, seq %llu, journal size %u",
118		 sb->version, sb->flags, sb->seq, sb->keys);
119
120	err = "Not a bcache superblock";
121	if (sb->offset != SB_SECTOR)
122		goto err;
123
124	if (memcmp(sb->magic, bcache_magic, 16))
125		goto err;
126
127	err = "Too many journal buckets";
128	if (sb->keys > SB_JOURNAL_BUCKETS)
129		goto err;
130
131	err = "Bad checksum";
132	if (s->csum != csum_set(s))
133		goto err;
134
135	err = "Bad UUID";
136	if (bch_is_zero(sb->uuid, 16))
137		goto err;
138
139	sb->block_size	= le16_to_cpu(s->block_size);
140
141	err = "Superblock block size smaller than device block size";
142	if (sb->block_size << 9 < bdev_logical_block_size(bdev))
143		goto err;
144
145	switch (sb->version) {
146	case BCACHE_SB_VERSION_BDEV:
147		sb->data_offset	= BDEV_DATA_START_DEFAULT;
148		break;
149	case BCACHE_SB_VERSION_BDEV_WITH_OFFSET:
150		sb->data_offset	= le64_to_cpu(s->data_offset);
151
152		err = "Bad data offset";
153		if (sb->data_offset < BDEV_DATA_START_DEFAULT)
154			goto err;
155
156		break;
157	case BCACHE_SB_VERSION_CDEV:
158	case BCACHE_SB_VERSION_CDEV_WITH_UUID:
159		sb->nbuckets	= le64_to_cpu(s->nbuckets);
160		sb->block_size	= le16_to_cpu(s->block_size);
161		sb->bucket_size	= le16_to_cpu(s->bucket_size);
162
163		sb->nr_in_set	= le16_to_cpu(s->nr_in_set);
164		sb->nr_this_dev	= le16_to_cpu(s->nr_this_dev);
165
166		err = "Too many buckets";
167		if (sb->nbuckets > LONG_MAX)
168			goto err;
169
170		err = "Not enough buckets";
171		if (sb->nbuckets < 1 << 7)
172			goto err;
173
174		err = "Bad block/bucket size";
175		if (!is_power_of_2(sb->block_size) ||
176		    sb->block_size > PAGE_SECTORS ||
177		    !is_power_of_2(sb->bucket_size) ||
178		    sb->bucket_size < PAGE_SECTORS)
179			goto err;
180
181		err = "Invalid superblock: device too small";
182		if (get_capacity(bdev->bd_disk) < sb->bucket_size * sb->nbuckets)
183			goto err;
184
185		err = "Bad UUID";
186		if (bch_is_zero(sb->set_uuid, 16))
187			goto err;
188
189		err = "Bad cache device number in set";
190		if (!sb->nr_in_set ||
191		    sb->nr_in_set <= sb->nr_this_dev ||
192		    sb->nr_in_set > MAX_CACHES_PER_SET)
193			goto err;
194
195		err = "Journal buckets not sequential";
196		for (i = 0; i < sb->keys; i++)
197			if (sb->d[i] != sb->first_bucket + i)
198				goto err;
199
200		err = "Too many journal buckets";
201		if (sb->first_bucket + sb->keys > sb->nbuckets)
202			goto err;
203
204		err = "Invalid superblock: first bucket comes before end of super";
205		if (sb->first_bucket * sb->bucket_size < 16)
206			goto err;
207
208		break;
209	default:
210		err = "Unsupported superblock version";
211		goto err;
212	}
213
214	sb->last_mount = get_seconds();
215	err = NULL;
216
217	get_page(bh->b_page);
218	*res = bh->b_page;
219err:
220	put_bh(bh);
221	return err;
222}
223
224static void write_bdev_super_endio(struct bio *bio, int error)
225{
226	struct cached_dev *dc = bio->bi_private;
227	/* XXX: error checking */
228
229	closure_put(&dc->sb_write);
230}
231
232static void __write_super(struct cache_sb *sb, struct bio *bio)
233{
234	struct cache_sb *out = page_address(bio->bi_io_vec[0].bv_page);
235	unsigned i;
236
237	bio->bi_iter.bi_sector	= SB_SECTOR;
238	bio->bi_rw		= REQ_SYNC|REQ_META;
239	bio->bi_iter.bi_size	= SB_SIZE;
240	bch_bio_map(bio, NULL);
241
242	out->offset		= cpu_to_le64(sb->offset);
243	out->version		= cpu_to_le64(sb->version);
244
245	memcpy(out->uuid,	sb->uuid, 16);
246	memcpy(out->set_uuid,	sb->set_uuid, 16);
247	memcpy(out->label,	sb->label, SB_LABEL_SIZE);
248
249	out->flags		= cpu_to_le64(sb->flags);
250	out->seq		= cpu_to_le64(sb->seq);
251
252	out->last_mount		= cpu_to_le32(sb->last_mount);
253	out->first_bucket	= cpu_to_le16(sb->first_bucket);
254	out->keys		= cpu_to_le16(sb->keys);
255
256	for (i = 0; i < sb->keys; i++)
257		out->d[i] = cpu_to_le64(sb->d[i]);
258
259	out->csum = csum_set(out);
260
261	pr_debug("ver %llu, flags %llu, seq %llu",
262		 sb->version, sb->flags, sb->seq);
263
264	submit_bio(REQ_WRITE, bio);
265}
266
267static void bch_write_bdev_super_unlock(struct closure *cl)
268{
269	struct cached_dev *dc = container_of(cl, struct cached_dev, sb_write);
270
271	up(&dc->sb_write_mutex);
272}
273
274void bch_write_bdev_super(struct cached_dev *dc, struct closure *parent)
275{
276	struct closure *cl = &dc->sb_write;
277	struct bio *bio = &dc->sb_bio;
278
279	down(&dc->sb_write_mutex);
280	closure_init(cl, parent);
281
282	bio_reset(bio);
283	bio->bi_bdev	= dc->bdev;
284	bio->bi_end_io	= write_bdev_super_endio;
285	bio->bi_private = dc;
286
287	closure_get(cl);
288	__write_super(&dc->sb, bio);
289
290	closure_return_with_destructor(cl, bch_write_bdev_super_unlock);
291}
292
293static void write_super_endio(struct bio *bio, int error)
294{
295	struct cache *ca = bio->bi_private;
296
297	bch_count_io_errors(ca, error, "writing superblock");
298	closure_put(&ca->set->sb_write);
299}
300
301static void bcache_write_super_unlock(struct closure *cl)
302{
303	struct cache_set *c = container_of(cl, struct cache_set, sb_write);
304
305	up(&c->sb_write_mutex);
306}
307
308void bcache_write_super(struct cache_set *c)
309{
310	struct closure *cl = &c->sb_write;
311	struct cache *ca;
312	unsigned i;
313
314	down(&c->sb_write_mutex);
315	closure_init(cl, &c->cl);
316
317	c->sb.seq++;
318
319	for_each_cache(ca, c, i) {
320		struct bio *bio = &ca->sb_bio;
321
322		ca->sb.version		= BCACHE_SB_VERSION_CDEV_WITH_UUID;
323		ca->sb.seq		= c->sb.seq;
324		ca->sb.last_mount	= c->sb.last_mount;
325
326		SET_CACHE_SYNC(&ca->sb, CACHE_SYNC(&c->sb));
327
328		bio_reset(bio);
329		bio->bi_bdev	= ca->bdev;
330		bio->bi_end_io	= write_super_endio;
331		bio->bi_private = ca;
332
333		closure_get(cl);
334		__write_super(&ca->sb, bio);
335	}
336
337	closure_return_with_destructor(cl, bcache_write_super_unlock);
338}
339
340/* UUID io */
341
342static void uuid_endio(struct bio *bio, int error)
343{
344	struct closure *cl = bio->bi_private;
345	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
346
347	cache_set_err_on(error, c, "accessing uuids");
348	bch_bbio_free(bio, c);
349	closure_put(cl);
350}
351
352static void uuid_io_unlock(struct closure *cl)
353{
354	struct cache_set *c = container_of(cl, struct cache_set, uuid_write);
355
356	up(&c->uuid_write_mutex);
357}
358
359static void uuid_io(struct cache_set *c, unsigned long rw,
360		    struct bkey *k, struct closure *parent)
361{
362	struct closure *cl = &c->uuid_write;
363	struct uuid_entry *u;
364	unsigned i;
365	char buf[80];
366
367	BUG_ON(!parent);
368	down(&c->uuid_write_mutex);
369	closure_init(cl, parent);
370
371	for (i = 0; i < KEY_PTRS(k); i++) {
372		struct bio *bio = bch_bbio_alloc(c);
373
374		bio->bi_rw	= REQ_SYNC|REQ_META|rw;
375		bio->bi_iter.bi_size = KEY_SIZE(k) << 9;
376
377		bio->bi_end_io	= uuid_endio;
378		bio->bi_private = cl;
379		bch_bio_map(bio, c->uuids);
380
381		bch_submit_bbio(bio, c, k, i);
382
383		if (!(rw & WRITE))
384			break;
385	}
386
387	bch_extent_to_text(buf, sizeof(buf), k);
388	pr_debug("%s UUIDs at %s", rw & REQ_WRITE ? "wrote" : "read", buf);
389
390	for (u = c->uuids; u < c->uuids + c->nr_uuids; u++)
391		if (!bch_is_zero(u->uuid, 16))
392			pr_debug("Slot %zi: %pU: %s: 1st: %u last: %u inv: %u",
393				 u - c->uuids, u->uuid, u->label,
394				 u->first_reg, u->last_reg, u->invalidated);
395
396	closure_return_with_destructor(cl, uuid_io_unlock);
397}
398
399static char *uuid_read(struct cache_set *c, struct jset *j, struct closure *cl)
400{
401	struct bkey *k = &j->uuid_bucket;
402
403	if (__bch_btree_ptr_invalid(c, k))
404		return "bad uuid pointer";
405
406	bkey_copy(&c->uuid_bucket, k);
407	uuid_io(c, READ_SYNC, k, cl);
408
409	if (j->version < BCACHE_JSET_VERSION_UUIDv1) {
410		struct uuid_entry_v0	*u0 = (void *) c->uuids;
411		struct uuid_entry	*u1 = (void *) c->uuids;
412		int i;
413
414		closure_sync(cl);
415
416		/*
417		 * Since the new uuid entry is bigger than the old, we have to
418		 * convert starting at the highest memory address and work down
419		 * in order to do it in place
420		 */
421
422		for (i = c->nr_uuids - 1;
423		     i >= 0;
424		     --i) {
425			memcpy(u1[i].uuid,	u0[i].uuid, 16);
426			memcpy(u1[i].label,	u0[i].label, 32);
427
428			u1[i].first_reg		= u0[i].first_reg;
429			u1[i].last_reg		= u0[i].last_reg;
430			u1[i].invalidated	= u0[i].invalidated;
431
432			u1[i].flags	= 0;
433			u1[i].sectors	= 0;
434		}
435	}
436
437	return NULL;
438}
439
440static int __uuid_write(struct cache_set *c)
441{
442	BKEY_PADDED(key) k;
443	struct closure cl;
444	closure_init_stack(&cl);
445
446	lockdep_assert_held(&bch_register_lock);
447
448	if (bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, true))
449		return 1;
450
451	SET_KEY_SIZE(&k.key, c->sb.bucket_size);
452	uuid_io(c, REQ_WRITE, &k.key, &cl);
453	closure_sync(&cl);
454
455	bkey_copy(&c->uuid_bucket, &k.key);
456	bkey_put(c, &k.key);
457	return 0;
458}
459
460int bch_uuid_write(struct cache_set *c)
461{
462	int ret = __uuid_write(c);
463
464	if (!ret)
465		bch_journal_meta(c, NULL);
466
467	return ret;
468}
469
470static struct uuid_entry *uuid_find(struct cache_set *c, const char *uuid)
471{
472	struct uuid_entry *u;
473
474	for (u = c->uuids;
475	     u < c->uuids + c->nr_uuids; u++)
476		if (!memcmp(u->uuid, uuid, 16))
477			return u;
478
479	return NULL;
480}
481
482static struct uuid_entry *uuid_find_empty(struct cache_set *c)
483{
484	static const char zero_uuid[16] = "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0";
485	return uuid_find(c, zero_uuid);
486}
487
488/*
489 * Bucket priorities/gens:
490 *
491 * For each bucket, we store on disk its
492   * 8 bit gen
493   * 16 bit priority
494 *
495 * See alloc.c for an explanation of the gen. The priority is used to implement
496 * lru (and in the future other) cache replacement policies; for most purposes
497 * it's just an opaque integer.
498 *
499 * The gens and the priorities don't have a whole lot to do with each other, and
500 * it's actually the gens that must be written out at specific times - it's no
501 * big deal if the priorities don't get written, if we lose them we just reuse
502 * buckets in suboptimal order.
503 *
504 * On disk they're stored in a packed array, and in as many buckets are required
505 * to fit them all. The buckets we use to store them form a list; the journal
506 * header points to the first bucket, the first bucket points to the second
507 * bucket, et cetera.
508 *
509 * This code is used by the allocation code; periodically (whenever it runs out
510 * of buckets to allocate from) the allocation code will invalidate some
511 * buckets, but it can't use those buckets until their new gens are safely on
512 * disk.
513 */
514
515static void prio_endio(struct bio *bio, int error)
516{
517	struct cache *ca = bio->bi_private;
518
519	cache_set_err_on(error, ca->set, "accessing priorities");
520	bch_bbio_free(bio, ca->set);
521	closure_put(&ca->prio);
522}
523
524static void prio_io(struct cache *ca, uint64_t bucket, unsigned long rw)
525{
526	struct closure *cl = &ca->prio;
527	struct bio *bio = bch_bbio_alloc(ca->set);
528
529	closure_init_stack(cl);
530
531	bio->bi_iter.bi_sector	= bucket * ca->sb.bucket_size;
532	bio->bi_bdev		= ca->bdev;
533	bio->bi_rw		= REQ_SYNC|REQ_META|rw;
534	bio->bi_iter.bi_size	= bucket_bytes(ca);
535
536	bio->bi_end_io	= prio_endio;
537	bio->bi_private = ca;
538	bch_bio_map(bio, ca->disk_buckets);
539
540	closure_bio_submit(bio, &ca->prio, ca);
541	closure_sync(cl);
542}
543
544void bch_prio_write(struct cache *ca)
545{
546	int i;
547	struct bucket *b;
548	struct closure cl;
549
550	closure_init_stack(&cl);
551
552	lockdep_assert_held(&ca->set->bucket_lock);
553
554	ca->disk_buckets->seq++;
555
556	atomic_long_add(ca->sb.bucket_size * prio_buckets(ca),
557			&ca->meta_sectors_written);
558
559	//pr_debug("free %zu, free_inc %zu, unused %zu", fifo_used(&ca->free),
560	//	 fifo_used(&ca->free_inc), fifo_used(&ca->unused));
561
562	for (i = prio_buckets(ca) - 1; i >= 0; --i) {
563		long bucket;
564		struct prio_set *p = ca->disk_buckets;
565		struct bucket_disk *d = p->data;
566		struct bucket_disk *end = d + prios_per_bucket(ca);
567
568		for (b = ca->buckets + i * prios_per_bucket(ca);
569		     b < ca->buckets + ca->sb.nbuckets && d < end;
570		     b++, d++) {
571			d->prio = cpu_to_le16(b->prio);
572			d->gen = b->gen;
573		}
574
575		p->next_bucket	= ca->prio_buckets[i + 1];
576		p->magic	= pset_magic(&ca->sb);
577		p->csum		= bch_crc64(&p->magic, bucket_bytes(ca) - 8);
578
579		bucket = bch_bucket_alloc(ca, RESERVE_PRIO, true);
580		BUG_ON(bucket == -1);
581
582		mutex_unlock(&ca->set->bucket_lock);
583		prio_io(ca, bucket, REQ_WRITE);
584		mutex_lock(&ca->set->bucket_lock);
585
586		ca->prio_buckets[i] = bucket;
587		atomic_dec_bug(&ca->buckets[bucket].pin);
588	}
589
590	mutex_unlock(&ca->set->bucket_lock);
591
592	bch_journal_meta(ca->set, &cl);
593	closure_sync(&cl);
594
595	mutex_lock(&ca->set->bucket_lock);
596
597	/*
598	 * Don't want the old priorities to get garbage collected until after we
599	 * finish writing the new ones, and they're journalled
600	 */
601	for (i = 0; i < prio_buckets(ca); i++) {
602		if (ca->prio_last_buckets[i])
603			__bch_bucket_free(ca,
604				&ca->buckets[ca->prio_last_buckets[i]]);
605
606		ca->prio_last_buckets[i] = ca->prio_buckets[i];
607	}
608}
609
610static void prio_read(struct cache *ca, uint64_t bucket)
611{
612	struct prio_set *p = ca->disk_buckets;
613	struct bucket_disk *d = p->data + prios_per_bucket(ca), *end = d;
614	struct bucket *b;
615	unsigned bucket_nr = 0;
616
617	for (b = ca->buckets;
618	     b < ca->buckets + ca->sb.nbuckets;
619	     b++, d++) {
620		if (d == end) {
621			ca->prio_buckets[bucket_nr] = bucket;
622			ca->prio_last_buckets[bucket_nr] = bucket;
623			bucket_nr++;
624
625			prio_io(ca, bucket, READ_SYNC);
626
627			if (p->csum != bch_crc64(&p->magic, bucket_bytes(ca) - 8))
628				pr_warn("bad csum reading priorities");
629
630			if (p->magic != pset_magic(&ca->sb))
631				pr_warn("bad magic reading priorities");
632
633			bucket = p->next_bucket;
634			d = p->data;
635		}
636
637		b->prio = le16_to_cpu(d->prio);
638		b->gen = b->last_gc = d->gen;
639	}
640}
641
642/* Bcache device */
643
644static int open_dev(struct block_device *b, fmode_t mode)
645{
646	struct bcache_device *d = b->bd_disk->private_data;
647	if (test_bit(BCACHE_DEV_CLOSING, &d->flags))
648		return -ENXIO;
649
650	closure_get(&d->cl);
651	return 0;
652}
653
654static void release_dev(struct gendisk *b, fmode_t mode)
655{
656	struct bcache_device *d = b->private_data;
657	closure_put(&d->cl);
658}
659
660static int ioctl_dev(struct block_device *b, fmode_t mode,
661		     unsigned int cmd, unsigned long arg)
662{
663	struct bcache_device *d = b->bd_disk->private_data;
664	return d->ioctl(d, mode, cmd, arg);
665}
666
667static const struct block_device_operations bcache_ops = {
668	.open		= open_dev,
669	.release	= release_dev,
670	.ioctl		= ioctl_dev,
671	.owner		= THIS_MODULE,
672};
673
674void bcache_device_stop(struct bcache_device *d)
675{
676	if (!test_and_set_bit(BCACHE_DEV_CLOSING, &d->flags))
677		closure_queue(&d->cl);
678}
679
680static void bcache_device_unlink(struct bcache_device *d)
681{
682	lockdep_assert_held(&bch_register_lock);
683
684	if (d->c && !test_and_set_bit(BCACHE_DEV_UNLINK_DONE, &d->flags)) {
685		unsigned i;
686		struct cache *ca;
687
688		sysfs_remove_link(&d->c->kobj, d->name);
689		sysfs_remove_link(&d->kobj, "cache");
690
691		for_each_cache(ca, d->c, i)
692			bd_unlink_disk_holder(ca->bdev, d->disk);
693	}
694}
695
696static void bcache_device_link(struct bcache_device *d, struct cache_set *c,
697			       const char *name)
698{
699	unsigned i;
700	struct cache *ca;
701
702	for_each_cache(ca, d->c, i)
703		bd_link_disk_holder(ca->bdev, d->disk);
704
705	snprintf(d->name, BCACHEDEVNAME_SIZE,
706		 "%s%u", name, d->id);
707
708	WARN(sysfs_create_link(&d->kobj, &c->kobj, "cache") ||
709	     sysfs_create_link(&c->kobj, &d->kobj, d->name),
710	     "Couldn't create device <-> cache set symlinks");
711
712	clear_bit(BCACHE_DEV_UNLINK_DONE, &d->flags);
713}
714
715static void bcache_device_detach(struct bcache_device *d)
716{
717	lockdep_assert_held(&bch_register_lock);
718
719	if (test_bit(BCACHE_DEV_DETACHING, &d->flags)) {
720		struct uuid_entry *u = d->c->uuids + d->id;
721
722		SET_UUID_FLASH_ONLY(u, 0);
723		memcpy(u->uuid, invalid_uuid, 16);
724		u->invalidated = cpu_to_le32(get_seconds());
725		bch_uuid_write(d->c);
726	}
727
728	bcache_device_unlink(d);
729
730	d->c->devices[d->id] = NULL;
731	closure_put(&d->c->caching);
732	d->c = NULL;
733}
734
735static void bcache_device_attach(struct bcache_device *d, struct cache_set *c,
736				 unsigned id)
737{
738	d->id = id;
739	d->c = c;
740	c->devices[id] = d;
741
742	closure_get(&c->caching);
743}
744
745static void bcache_device_free(struct bcache_device *d)
746{
747	lockdep_assert_held(&bch_register_lock);
748
749	pr_info("%s stopped", d->disk->disk_name);
750
751	if (d->c)
752		bcache_device_detach(d);
753	if (d->disk && d->disk->flags & GENHD_FL_UP)
754		del_gendisk(d->disk);
755	if (d->disk && d->disk->queue)
756		blk_cleanup_queue(d->disk->queue);
757	if (d->disk) {
758		ida_simple_remove(&bcache_minor, d->disk->first_minor);
759		put_disk(d->disk);
760	}
761
762	bio_split_pool_free(&d->bio_split_hook);
763	if (d->bio_split)
764		bioset_free(d->bio_split);
765	if (is_vmalloc_addr(d->full_dirty_stripes))
766		vfree(d->full_dirty_stripes);
767	else
768		kfree(d->full_dirty_stripes);
769	if (is_vmalloc_addr(d->stripe_sectors_dirty))
770		vfree(d->stripe_sectors_dirty);
771	else
772		kfree(d->stripe_sectors_dirty);
773
774	closure_debug_destroy(&d->cl);
775}
776
777static int bcache_device_init(struct bcache_device *d, unsigned block_size,
778			      sector_t sectors)
779{
780	struct request_queue *q;
781	size_t n;
782	int minor;
783
784	if (!d->stripe_size)
785		d->stripe_size = 1 << 31;
786
787	d->nr_stripes = DIV_ROUND_UP_ULL(sectors, d->stripe_size);
788
789	if (!d->nr_stripes ||
790	    d->nr_stripes > INT_MAX ||
791	    d->nr_stripes > SIZE_MAX / sizeof(atomic_t)) {
792		pr_err("nr_stripes too large");
793		return -ENOMEM;
794	}
795
796	n = d->nr_stripes * sizeof(atomic_t);
797	d->stripe_sectors_dirty = n < PAGE_SIZE << 6
798		? kzalloc(n, GFP_KERNEL)
799		: vzalloc(n);
800	if (!d->stripe_sectors_dirty)
801		return -ENOMEM;
802
803	n = BITS_TO_LONGS(d->nr_stripes) * sizeof(unsigned long);
804	d->full_dirty_stripes = n < PAGE_SIZE << 6
805		? kzalloc(n, GFP_KERNEL)
806		: vzalloc(n);
807	if (!d->full_dirty_stripes)
808		return -ENOMEM;
809
810	minor = ida_simple_get(&bcache_minor, 0, MINORMASK + 1, GFP_KERNEL);
811	if (minor < 0)
812		return minor;
813
814	if (!(d->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
815	    bio_split_pool_init(&d->bio_split_hook) ||
816	    !(d->disk = alloc_disk(1))) {
817		ida_simple_remove(&bcache_minor, minor);
818		return -ENOMEM;
819	}
820
821	set_capacity(d->disk, sectors);
822	snprintf(d->disk->disk_name, DISK_NAME_LEN, "bcache%i", minor);
823
824	d->disk->major		= bcache_major;
825	d->disk->first_minor	= minor;
826	d->disk->fops		= &bcache_ops;
827	d->disk->private_data	= d;
828
829	q = blk_alloc_queue(GFP_KERNEL);
830	if (!q)
831		return -ENOMEM;
832
833	blk_queue_make_request(q, NULL);
834	d->disk->queue			= q;
835	q->queuedata			= d;
836	q->backing_dev_info.congested_data = d;
837	q->limits.max_hw_sectors	= UINT_MAX;
838	q->limits.max_sectors		= UINT_MAX;
839	q->limits.max_segment_size	= UINT_MAX;
840	q->limits.max_segments		= BIO_MAX_PAGES;
841	q->limits.max_discard_sectors	= UINT_MAX;
842	q->limits.discard_granularity	= 512;
843	q->limits.io_min		= block_size;
844	q->limits.logical_block_size	= block_size;
845	q->limits.physical_block_size	= block_size;
846	set_bit(QUEUE_FLAG_NONROT,	&d->disk->queue->queue_flags);
847	clear_bit(QUEUE_FLAG_ADD_RANDOM, &d->disk->queue->queue_flags);
848	set_bit(QUEUE_FLAG_DISCARD,	&d->disk->queue->queue_flags);
849
850	blk_queue_flush(q, REQ_FLUSH|REQ_FUA);
851
852	return 0;
853}
854
855/* Cached device */
856
857static void calc_cached_dev_sectors(struct cache_set *c)
858{
859	uint64_t sectors = 0;
860	struct cached_dev *dc;
861
862	list_for_each_entry(dc, &c->cached_devs, list)
863		sectors += bdev_sectors(dc->bdev);
864
865	c->cached_dev_sectors = sectors;
866}
867
868void bch_cached_dev_run(struct cached_dev *dc)
869{
870	struct bcache_device *d = &dc->disk;
871	char buf[SB_LABEL_SIZE + 1];
872	char *env[] = {
873		"DRIVER=bcache",
874		kasprintf(GFP_KERNEL, "CACHED_UUID=%pU", dc->sb.uuid),
875		NULL,
876		NULL,
877	};
878
879	memcpy(buf, dc->sb.label, SB_LABEL_SIZE);
880	buf[SB_LABEL_SIZE] = '\0';
881	env[2] = kasprintf(GFP_KERNEL, "CACHED_LABEL=%s", buf);
882
883	if (atomic_xchg(&dc->running, 1)) {
884		kfree(env[1]);
885		kfree(env[2]);
886		return;
887	}
888
889	if (!d->c &&
890	    BDEV_STATE(&dc->sb) != BDEV_STATE_NONE) {
891		struct closure cl;
892		closure_init_stack(&cl);
893
894		SET_BDEV_STATE(&dc->sb, BDEV_STATE_STALE);
895		bch_write_bdev_super(dc, &cl);
896		closure_sync(&cl);
897	}
898
899	add_disk(d->disk);
900	bd_link_disk_holder(dc->bdev, dc->disk.disk);
901	/* won't show up in the uevent file, use udevadm monitor -e instead
902	 * only class / kset properties are persistent */
903	kobject_uevent_env(&disk_to_dev(d->disk)->kobj, KOBJ_CHANGE, env);
904	kfree(env[1]);
905	kfree(env[2]);
906
907	if (sysfs_create_link(&d->kobj, &disk_to_dev(d->disk)->kobj, "dev") ||
908	    sysfs_create_link(&disk_to_dev(d->disk)->kobj, &d->kobj, "bcache"))
909		pr_debug("error creating sysfs link");
910}
911
912static void cached_dev_detach_finish(struct work_struct *w)
913{
914	struct cached_dev *dc = container_of(w, struct cached_dev, detach);
915	char buf[BDEVNAME_SIZE];
916	struct closure cl;
917	closure_init_stack(&cl);
918
919	BUG_ON(!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags));
920	BUG_ON(atomic_read(&dc->count));
921
922	mutex_lock(&bch_register_lock);
923
924	memset(&dc->sb.set_uuid, 0, 16);
925	SET_BDEV_STATE(&dc->sb, BDEV_STATE_NONE);
926
927	bch_write_bdev_super(dc, &cl);
928	closure_sync(&cl);
929
930	bcache_device_detach(&dc->disk);
931	list_move(&dc->list, &uncached_devices);
932
933	clear_bit(BCACHE_DEV_DETACHING, &dc->disk.flags);
934	clear_bit(BCACHE_DEV_UNLINK_DONE, &dc->disk.flags);
935
936	mutex_unlock(&bch_register_lock);
937
938	pr_info("Caching disabled for %s", bdevname(dc->bdev, buf));
939
940	/* Drop ref we took in cached_dev_detach() */
941	closure_put(&dc->disk.cl);
942}
943
944void bch_cached_dev_detach(struct cached_dev *dc)
945{
946	lockdep_assert_held(&bch_register_lock);
947
948	if (test_bit(BCACHE_DEV_CLOSING, &dc->disk.flags))
949		return;
950
951	if (test_and_set_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
952		return;
953
954	/*
955	 * Block the device from being closed and freed until we're finished
956	 * detaching
957	 */
958	closure_get(&dc->disk.cl);
959
960	bch_writeback_queue(dc);
961	cached_dev_put(dc);
962}
963
964int bch_cached_dev_attach(struct cached_dev *dc, struct cache_set *c)
965{
966	uint32_t rtime = cpu_to_le32(get_seconds());
967	struct uuid_entry *u;
968	char buf[BDEVNAME_SIZE];
969
970	bdevname(dc->bdev, buf);
971
972	if (memcmp(dc->sb.set_uuid, c->sb.set_uuid, 16))
973		return -ENOENT;
974
975	if (dc->disk.c) {
976		pr_err("Can't attach %s: already attached", buf);
977		return -EINVAL;
978	}
979
980	if (test_bit(CACHE_SET_STOPPING, &c->flags)) {
981		pr_err("Can't attach %s: shutting down", buf);
982		return -EINVAL;
983	}
984
985	if (dc->sb.block_size < c->sb.block_size) {
986		/* Will die */
987		pr_err("Couldn't attach %s: block size less than set's block size",
988		       buf);
989		return -EINVAL;
990	}
991
992	u = uuid_find(c, dc->sb.uuid);
993
994	if (u &&
995	    (BDEV_STATE(&dc->sb) == BDEV_STATE_STALE ||
996	     BDEV_STATE(&dc->sb) == BDEV_STATE_NONE)) {
997		memcpy(u->uuid, invalid_uuid, 16);
998		u->invalidated = cpu_to_le32(get_seconds());
999		u = NULL;
1000	}
1001
1002	if (!u) {
1003		if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1004			pr_err("Couldn't find uuid for %s in set", buf);
1005			return -ENOENT;
1006		}
1007
1008		u = uuid_find_empty(c);
1009		if (!u) {
1010			pr_err("Not caching %s, no room for UUID", buf);
1011			return -EINVAL;
1012		}
1013	}
1014
1015	/* Deadlocks since we're called via sysfs...
1016	sysfs_remove_file(&dc->kobj, &sysfs_attach);
1017	 */
1018
1019	if (bch_is_zero(u->uuid, 16)) {
1020		struct closure cl;
1021		closure_init_stack(&cl);
1022
1023		memcpy(u->uuid, dc->sb.uuid, 16);
1024		memcpy(u->label, dc->sb.label, SB_LABEL_SIZE);
1025		u->first_reg = u->last_reg = rtime;
1026		bch_uuid_write(c);
1027
1028		memcpy(dc->sb.set_uuid, c->sb.set_uuid, 16);
1029		SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
1030
1031		bch_write_bdev_super(dc, &cl);
1032		closure_sync(&cl);
1033	} else {
1034		u->last_reg = rtime;
1035		bch_uuid_write(c);
1036	}
1037
1038	bcache_device_attach(&dc->disk, c, u - c->uuids);
1039	list_move(&dc->list, &c->cached_devs);
1040	calc_cached_dev_sectors(c);
1041
1042	smp_wmb();
1043	/*
1044	 * dc->c must be set before dc->count != 0 - paired with the mb in
1045	 * cached_dev_get()
1046	 */
1047	atomic_set(&dc->count, 1);
1048
1049	/* Block writeback thread, but spawn it */
1050	down_write(&dc->writeback_lock);
1051	if (bch_cached_dev_writeback_start(dc)) {
1052		up_write(&dc->writeback_lock);
1053		return -ENOMEM;
1054	}
1055
1056	if (BDEV_STATE(&dc->sb) == BDEV_STATE_DIRTY) {
1057		bch_sectors_dirty_init(dc);
1058		atomic_set(&dc->has_dirty, 1);
1059		atomic_inc(&dc->count);
1060		bch_writeback_queue(dc);
1061	}
1062
1063	bch_cached_dev_run(dc);
1064	bcache_device_link(&dc->disk, c, "bdev");
1065
1066	/* Allow the writeback thread to proceed */
1067	up_write(&dc->writeback_lock);
1068
1069	pr_info("Caching %s as %s on set %pU",
1070		bdevname(dc->bdev, buf), dc->disk.disk->disk_name,
1071		dc->disk.c->sb.set_uuid);
1072	return 0;
1073}
1074
1075void bch_cached_dev_release(struct kobject *kobj)
1076{
1077	struct cached_dev *dc = container_of(kobj, struct cached_dev,
1078					     disk.kobj);
1079	kfree(dc);
1080	module_put(THIS_MODULE);
1081}
1082
1083static void cached_dev_free(struct closure *cl)
1084{
1085	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1086
1087	cancel_delayed_work_sync(&dc->writeback_rate_update);
1088	if (!IS_ERR_OR_NULL(dc->writeback_thread))
1089		kthread_stop(dc->writeback_thread);
1090
1091	mutex_lock(&bch_register_lock);
1092
1093	if (atomic_read(&dc->running))
1094		bd_unlink_disk_holder(dc->bdev, dc->disk.disk);
1095	bcache_device_free(&dc->disk);
1096	list_del(&dc->list);
1097
1098	mutex_unlock(&bch_register_lock);
1099
1100	if (!IS_ERR_OR_NULL(dc->bdev))
1101		blkdev_put(dc->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1102
1103	wake_up(&unregister_wait);
1104
1105	kobject_put(&dc->disk.kobj);
1106}
1107
1108static void cached_dev_flush(struct closure *cl)
1109{
1110	struct cached_dev *dc = container_of(cl, struct cached_dev, disk.cl);
1111	struct bcache_device *d = &dc->disk;
1112
1113	mutex_lock(&bch_register_lock);
1114	bcache_device_unlink(d);
1115	mutex_unlock(&bch_register_lock);
1116
1117	bch_cache_accounting_destroy(&dc->accounting);
1118	kobject_del(&d->kobj);
1119
1120	continue_at(cl, cached_dev_free, system_wq);
1121}
1122
1123static int cached_dev_init(struct cached_dev *dc, unsigned block_size)
1124{
1125	int ret;
1126	struct io *io;
1127	struct request_queue *q = bdev_get_queue(dc->bdev);
1128
1129	__module_get(THIS_MODULE);
1130	INIT_LIST_HEAD(&dc->list);
1131	closure_init(&dc->disk.cl, NULL);
1132	set_closure_fn(&dc->disk.cl, cached_dev_flush, system_wq);
1133	kobject_init(&dc->disk.kobj, &bch_cached_dev_ktype);
1134	INIT_WORK(&dc->detach, cached_dev_detach_finish);
1135	sema_init(&dc->sb_write_mutex, 1);
1136	INIT_LIST_HEAD(&dc->io_lru);
1137	spin_lock_init(&dc->io_lock);
1138	bch_cache_accounting_init(&dc->accounting, &dc->disk.cl);
1139
1140	dc->sequential_cutoff		= 4 << 20;
1141
1142	for (io = dc->io; io < dc->io + RECENT_IO; io++) {
1143		list_add(&io->lru, &dc->io_lru);
1144		hlist_add_head(&io->hash, dc->io_hash + RECENT_IO);
1145	}
1146
1147	dc->disk.stripe_size = q->limits.io_opt >> 9;
1148
1149	if (dc->disk.stripe_size)
1150		dc->partial_stripes_expensive =
1151			q->limits.raid_partial_stripes_expensive;
1152
1153	ret = bcache_device_init(&dc->disk, block_size,
1154			 dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1155	if (ret)
1156		return ret;
1157
1158	set_capacity(dc->disk.disk,
1159		     dc->bdev->bd_part->nr_sects - dc->sb.data_offset);
1160
1161	dc->disk.disk->queue->backing_dev_info.ra_pages =
1162		max(dc->disk.disk->queue->backing_dev_info.ra_pages,
1163		    q->backing_dev_info.ra_pages);
1164
1165	bch_cached_dev_request_init(dc);
1166	bch_cached_dev_writeback_init(dc);
1167	return 0;
1168}
1169
1170/* Cached device - bcache superblock */
1171
1172static void register_bdev(struct cache_sb *sb, struct page *sb_page,
1173				 struct block_device *bdev,
1174				 struct cached_dev *dc)
1175{
1176	char name[BDEVNAME_SIZE];
1177	const char *err = "cannot allocate memory";
1178	struct cache_set *c;
1179
1180	memcpy(&dc->sb, sb, sizeof(struct cache_sb));
1181	dc->bdev = bdev;
1182	dc->bdev->bd_holder = dc;
1183
1184	bio_init(&dc->sb_bio);
1185	dc->sb_bio.bi_max_vecs	= 1;
1186	dc->sb_bio.bi_io_vec	= dc->sb_bio.bi_inline_vecs;
1187	dc->sb_bio.bi_io_vec[0].bv_page = sb_page;
1188	get_page(sb_page);
1189
1190	if (cached_dev_init(dc, sb->block_size << 9))
1191		goto err;
1192
1193	err = "error creating kobject";
1194	if (kobject_add(&dc->disk.kobj, &part_to_dev(bdev->bd_part)->kobj,
1195			"bcache"))
1196		goto err;
1197	if (bch_cache_accounting_add_kobjs(&dc->accounting, &dc->disk.kobj))
1198		goto err;
1199
1200	pr_info("registered backing device %s", bdevname(bdev, name));
1201
1202	list_add(&dc->list, &uncached_devices);
1203	list_for_each_entry(c, &bch_cache_sets, list)
1204		bch_cached_dev_attach(dc, c);
1205
1206	if (BDEV_STATE(&dc->sb) == BDEV_STATE_NONE ||
1207	    BDEV_STATE(&dc->sb) == BDEV_STATE_STALE)
1208		bch_cached_dev_run(dc);
1209
1210	return;
1211err:
1212	pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1213	bcache_device_stop(&dc->disk);
1214}
1215
1216/* Flash only volumes */
1217
1218void bch_flash_dev_release(struct kobject *kobj)
1219{
1220	struct bcache_device *d = container_of(kobj, struct bcache_device,
1221					       kobj);
1222	kfree(d);
1223}
1224
1225static void flash_dev_free(struct closure *cl)
1226{
1227	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1228	mutex_lock(&bch_register_lock);
1229	bcache_device_free(d);
1230	mutex_unlock(&bch_register_lock);
1231	kobject_put(&d->kobj);
1232}
1233
1234static void flash_dev_flush(struct closure *cl)
1235{
1236	struct bcache_device *d = container_of(cl, struct bcache_device, cl);
1237
1238	mutex_lock(&bch_register_lock);
1239	bcache_device_unlink(d);
1240	mutex_unlock(&bch_register_lock);
1241	kobject_del(&d->kobj);
1242	continue_at(cl, flash_dev_free, system_wq);
1243}
1244
1245static int flash_dev_run(struct cache_set *c, struct uuid_entry *u)
1246{
1247	struct bcache_device *d = kzalloc(sizeof(struct bcache_device),
1248					  GFP_KERNEL);
1249	if (!d)
1250		return -ENOMEM;
1251
1252	closure_init(&d->cl, NULL);
1253	set_closure_fn(&d->cl, flash_dev_flush, system_wq);
1254
1255	kobject_init(&d->kobj, &bch_flash_dev_ktype);
1256
1257	if (bcache_device_init(d, block_bytes(c), u->sectors))
1258		goto err;
1259
1260	bcache_device_attach(d, c, u - c->uuids);
1261	bch_flash_dev_request_init(d);
1262	add_disk(d->disk);
1263
1264	if (kobject_add(&d->kobj, &disk_to_dev(d->disk)->kobj, "bcache"))
1265		goto err;
1266
1267	bcache_device_link(d, c, "volume");
1268
1269	return 0;
1270err:
1271	kobject_put(&d->kobj);
1272	return -ENOMEM;
1273}
1274
1275static int flash_devs_run(struct cache_set *c)
1276{
1277	int ret = 0;
1278	struct uuid_entry *u;
1279
1280	for (u = c->uuids;
1281	     u < c->uuids + c->nr_uuids && !ret;
1282	     u++)
1283		if (UUID_FLASH_ONLY(u))
1284			ret = flash_dev_run(c, u);
1285
1286	return ret;
1287}
1288
1289int bch_flash_dev_create(struct cache_set *c, uint64_t size)
1290{
1291	struct uuid_entry *u;
1292
1293	if (test_bit(CACHE_SET_STOPPING, &c->flags))
1294		return -EINTR;
1295
1296	if (!test_bit(CACHE_SET_RUNNING, &c->flags))
1297		return -EPERM;
1298
1299	u = uuid_find_empty(c);
1300	if (!u) {
1301		pr_err("Can't create volume, no room for UUID");
1302		return -EINVAL;
1303	}
1304
1305	get_random_bytes(u->uuid, 16);
1306	memset(u->label, 0, 32);
1307	u->first_reg = u->last_reg = cpu_to_le32(get_seconds());
1308
1309	SET_UUID_FLASH_ONLY(u, 1);
1310	u->sectors = size >> 9;
1311
1312	bch_uuid_write(c);
1313
1314	return flash_dev_run(c, u);
1315}
1316
1317/* Cache set */
1318
1319__printf(2, 3)
1320bool bch_cache_set_error(struct cache_set *c, const char *fmt, ...)
1321{
1322	va_list args;
1323
1324	if (c->on_error != ON_ERROR_PANIC &&
1325	    test_bit(CACHE_SET_STOPPING, &c->flags))
1326		return false;
1327
1328	/* XXX: we can be called from atomic context
1329	acquire_console_sem();
1330	*/
1331
1332	printk(KERN_ERR "bcache: error on %pU: ", c->sb.set_uuid);
1333
1334	va_start(args, fmt);
1335	vprintk(fmt, args);
1336	va_end(args);
1337
1338	printk(", disabling caching\n");
1339
1340	if (c->on_error == ON_ERROR_PANIC)
1341		panic("panic forced after error\n");
1342
1343	bch_cache_set_unregister(c);
1344	return true;
1345}
1346
1347void bch_cache_set_release(struct kobject *kobj)
1348{
1349	struct cache_set *c = container_of(kobj, struct cache_set, kobj);
1350	kfree(c);
1351	module_put(THIS_MODULE);
1352}
1353
1354static void cache_set_free(struct closure *cl)
1355{
1356	struct cache_set *c = container_of(cl, struct cache_set, cl);
1357	struct cache *ca;
1358	unsigned i;
1359
1360	if (!IS_ERR_OR_NULL(c->debug))
1361		debugfs_remove(c->debug);
1362
1363	bch_open_buckets_free(c);
1364	bch_btree_cache_free(c);
1365	bch_journal_free(c);
1366
1367	for_each_cache(ca, c, i)
1368		if (ca) {
1369			ca->set = NULL;
1370			c->cache[ca->sb.nr_this_dev] = NULL;
1371			kobject_put(&ca->kobj);
1372		}
1373
1374	bch_bset_sort_state_free(&c->sort);
1375	free_pages((unsigned long) c->uuids, ilog2(bucket_pages(c)));
1376
1377	if (c->moving_gc_wq)
1378		destroy_workqueue(c->moving_gc_wq);
1379	if (c->bio_split)
1380		bioset_free(c->bio_split);
1381	if (c->fill_iter)
1382		mempool_destroy(c->fill_iter);
1383	if (c->bio_meta)
1384		mempool_destroy(c->bio_meta);
1385	if (c->search)
1386		mempool_destroy(c->search);
1387	kfree(c->devices);
1388
1389	mutex_lock(&bch_register_lock);
1390	list_del(&c->list);
1391	mutex_unlock(&bch_register_lock);
1392
1393	pr_info("Cache set %pU unregistered", c->sb.set_uuid);
1394	wake_up(&unregister_wait);
1395
1396	closure_debug_destroy(&c->cl);
1397	kobject_put(&c->kobj);
1398}
1399
1400static void cache_set_flush(struct closure *cl)
1401{
1402	struct cache_set *c = container_of(cl, struct cache_set, caching);
1403	struct cache *ca;
1404	struct btree *b;
1405	unsigned i;
1406
1407	if (!c)
1408		closure_return(cl);
1409
1410	bch_cache_accounting_destroy(&c->accounting);
1411
1412	kobject_put(&c->internal);
1413	kobject_del(&c->kobj);
1414
1415	if (c->gc_thread)
1416		kthread_stop(c->gc_thread);
1417
1418	if (!IS_ERR_OR_NULL(c->root))
1419		list_add(&c->root->list, &c->btree_cache);
1420
1421	/* Should skip this if we're unregistering because of an error */
1422	list_for_each_entry(b, &c->btree_cache, list) {
1423		mutex_lock(&b->write_lock);
1424		if (btree_node_dirty(b))
1425			__bch_btree_node_write(b, NULL);
1426		mutex_unlock(&b->write_lock);
1427	}
1428
1429	for_each_cache(ca, c, i)
1430		if (ca->alloc_thread)
1431			kthread_stop(ca->alloc_thread);
1432
1433	if (c->journal.cur) {
1434		cancel_delayed_work_sync(&c->journal.work);
1435		/* flush last journal entry if needed */
1436		c->journal.work.work.func(&c->journal.work.work);
1437	}
1438
1439	closure_return(cl);
1440}
1441
1442static void __cache_set_unregister(struct closure *cl)
1443{
1444	struct cache_set *c = container_of(cl, struct cache_set, caching);
1445	struct cached_dev *dc;
1446	size_t i;
1447
1448	mutex_lock(&bch_register_lock);
1449
1450	for (i = 0; i < c->nr_uuids; i++)
1451		if (c->devices[i]) {
1452			if (!UUID_FLASH_ONLY(&c->uuids[i]) &&
1453			    test_bit(CACHE_SET_UNREGISTERING, &c->flags)) {
1454				dc = container_of(c->devices[i],
1455						  struct cached_dev, disk);
1456				bch_cached_dev_detach(dc);
1457			} else {
1458				bcache_device_stop(c->devices[i]);
1459			}
1460		}
1461
1462	mutex_unlock(&bch_register_lock);
1463
1464	continue_at(cl, cache_set_flush, system_wq);
1465}
1466
1467void bch_cache_set_stop(struct cache_set *c)
1468{
1469	if (!test_and_set_bit(CACHE_SET_STOPPING, &c->flags))
1470		closure_queue(&c->caching);
1471}
1472
1473void bch_cache_set_unregister(struct cache_set *c)
1474{
1475	set_bit(CACHE_SET_UNREGISTERING, &c->flags);
1476	bch_cache_set_stop(c);
1477}
1478
1479#define alloc_bucket_pages(gfp, c)			\
1480	((void *) __get_free_pages(__GFP_ZERO|gfp, ilog2(bucket_pages(c))))
1481
1482struct cache_set *bch_cache_set_alloc(struct cache_sb *sb)
1483{
1484	int iter_size;
1485	struct cache_set *c = kzalloc(sizeof(struct cache_set), GFP_KERNEL);
1486	if (!c)
1487		return NULL;
1488
1489	__module_get(THIS_MODULE);
1490	closure_init(&c->cl, NULL);
1491	set_closure_fn(&c->cl, cache_set_free, system_wq);
1492
1493	closure_init(&c->caching, &c->cl);
1494	set_closure_fn(&c->caching, __cache_set_unregister, system_wq);
1495
1496	/* Maybe create continue_at_noreturn() and use it here? */
1497	closure_set_stopped(&c->cl);
1498	closure_put(&c->cl);
1499
1500	kobject_init(&c->kobj, &bch_cache_set_ktype);
1501	kobject_init(&c->internal, &bch_cache_set_internal_ktype);
1502
1503	bch_cache_accounting_init(&c->accounting, &c->cl);
1504
1505	memcpy(c->sb.set_uuid, sb->set_uuid, 16);
1506	c->sb.block_size	= sb->block_size;
1507	c->sb.bucket_size	= sb->bucket_size;
1508	c->sb.nr_in_set		= sb->nr_in_set;
1509	c->sb.last_mount	= sb->last_mount;
1510	c->bucket_bits		= ilog2(sb->bucket_size);
1511	c->block_bits		= ilog2(sb->block_size);
1512	c->nr_uuids		= bucket_bytes(c) / sizeof(struct uuid_entry);
1513
1514	c->btree_pages		= bucket_pages(c);
1515	if (c->btree_pages > BTREE_MAX_PAGES)
1516		c->btree_pages = max_t(int, c->btree_pages / 4,
1517				       BTREE_MAX_PAGES);
1518
1519	sema_init(&c->sb_write_mutex, 1);
1520	mutex_init(&c->bucket_lock);
1521	init_waitqueue_head(&c->btree_cache_wait);
1522	init_waitqueue_head(&c->bucket_wait);
1523	sema_init(&c->uuid_write_mutex, 1);
1524
1525	spin_lock_init(&c->btree_gc_time.lock);
1526	spin_lock_init(&c->btree_split_time.lock);
1527	spin_lock_init(&c->btree_read_time.lock);
1528
1529	bch_moving_init_cache_set(c);
1530
1531	INIT_LIST_HEAD(&c->list);
1532	INIT_LIST_HEAD(&c->cached_devs);
1533	INIT_LIST_HEAD(&c->btree_cache);
1534	INIT_LIST_HEAD(&c->btree_cache_freeable);
1535	INIT_LIST_HEAD(&c->btree_cache_freed);
1536	INIT_LIST_HEAD(&c->data_buckets);
1537
1538	c->search = mempool_create_slab_pool(32, bch_search_cache);
1539	if (!c->search)
1540		goto err;
1541
1542	iter_size = (sb->bucket_size / sb->block_size + 1) *
1543		sizeof(struct btree_iter_set);
1544
1545	if (!(c->devices = kzalloc(c->nr_uuids * sizeof(void *), GFP_KERNEL)) ||
1546	    !(c->bio_meta = mempool_create_kmalloc_pool(2,
1547				sizeof(struct bbio) + sizeof(struct bio_vec) *
1548				bucket_pages(c))) ||
1549	    !(c->fill_iter = mempool_create_kmalloc_pool(1, iter_size)) ||
1550	    !(c->bio_split = bioset_create(4, offsetof(struct bbio, bio))) ||
1551	    !(c->uuids = alloc_bucket_pages(GFP_KERNEL, c)) ||
1552	    !(c->moving_gc_wq = create_workqueue("bcache_gc")) ||
1553	    bch_journal_alloc(c) ||
1554	    bch_btree_cache_alloc(c) ||
1555	    bch_open_buckets_alloc(c) ||
1556	    bch_bset_sort_state_init(&c->sort, ilog2(c->btree_pages)))
1557		goto err;
1558
1559	c->congested_read_threshold_us	= 2000;
1560	c->congested_write_threshold_us	= 20000;
1561	c->error_limit	= 8 << IO_ERROR_SHIFT;
1562
1563	return c;
1564err:
1565	bch_cache_set_unregister(c);
1566	return NULL;
1567}
1568
1569static void run_cache_set(struct cache_set *c)
1570{
1571	const char *err = "cannot allocate memory";
1572	struct cached_dev *dc, *t;
1573	struct cache *ca;
1574	struct closure cl;
1575	unsigned i;
1576
1577	closure_init_stack(&cl);
1578
1579	for_each_cache(ca, c, i)
1580		c->nbuckets += ca->sb.nbuckets;
1581
1582	if (CACHE_SYNC(&c->sb)) {
1583		LIST_HEAD(journal);
1584		struct bkey *k;
1585		struct jset *j;
1586
1587		err = "cannot allocate memory for journal";
1588		if (bch_journal_read(c, &journal))
1589			goto err;
1590
1591		pr_debug("btree_journal_read() done");
1592
1593		err = "no journal entries found";
1594		if (list_empty(&journal))
1595			goto err;
1596
1597		j = &list_entry(journal.prev, struct journal_replay, list)->j;
1598
1599		err = "IO error reading priorities";
1600		for_each_cache(ca, c, i)
1601			prio_read(ca, j->prio_bucket[ca->sb.nr_this_dev]);
1602
1603		/*
1604		 * If prio_read() fails it'll call cache_set_error and we'll
1605		 * tear everything down right away, but if we perhaps checked
1606		 * sooner we could avoid journal replay.
1607		 */
1608
1609		k = &j->btree_root;
1610
1611		err = "bad btree root";
1612		if (__bch_btree_ptr_invalid(c, k))
1613			goto err;
1614
1615		err = "error reading btree root";
1616		c->root = bch_btree_node_get(c, NULL, k, j->btree_level, true, NULL);
1617		if (IS_ERR_OR_NULL(c->root))
1618			goto err;
1619
1620		list_del_init(&c->root->list);
1621		rw_unlock(true, c->root);
1622
1623		err = uuid_read(c, j, &cl);
1624		if (err)
1625			goto err;
1626
1627		err = "error in recovery";
1628		if (bch_btree_check(c))
1629			goto err;
1630
1631		bch_journal_mark(c, &journal);
1632		bch_initial_gc_finish(c);
1633		pr_debug("btree_check() done");
1634
1635		/*
1636		 * bcache_journal_next() can't happen sooner, or
1637		 * btree_gc_finish() will give spurious errors about last_gc >
1638		 * gc_gen - this is a hack but oh well.
1639		 */
1640		bch_journal_next(&c->journal);
1641
1642		err = "error starting allocator thread";
1643		for_each_cache(ca, c, i)
1644			if (bch_cache_allocator_start(ca))
1645				goto err;
1646
1647		/*
1648		 * First place it's safe to allocate: btree_check() and
1649		 * btree_gc_finish() have to run before we have buckets to
1650		 * allocate, and bch_bucket_alloc_set() might cause a journal
1651		 * entry to be written so bcache_journal_next() has to be called
1652		 * first.
1653		 *
1654		 * If the uuids were in the old format we have to rewrite them
1655		 * before the next journal entry is written:
1656		 */
1657		if (j->version < BCACHE_JSET_VERSION_UUID)
1658			__uuid_write(c);
1659
1660		bch_journal_replay(c, &journal);
1661	} else {
1662		pr_notice("invalidating existing data");
1663
1664		for_each_cache(ca, c, i) {
1665			unsigned j;
1666
1667			ca->sb.keys = clamp_t(int, ca->sb.nbuckets >> 7,
1668					      2, SB_JOURNAL_BUCKETS);
1669
1670			for (j = 0; j < ca->sb.keys; j++)
1671				ca->sb.d[j] = ca->sb.first_bucket + j;
1672		}
1673
1674		bch_initial_gc_finish(c);
1675
1676		err = "error starting allocator thread";
1677		for_each_cache(ca, c, i)
1678			if (bch_cache_allocator_start(ca))
1679				goto err;
1680
1681		mutex_lock(&c->bucket_lock);
1682		for_each_cache(ca, c, i)
1683			bch_prio_write(ca);
1684		mutex_unlock(&c->bucket_lock);
1685
1686		err = "cannot allocate new UUID bucket";
1687		if (__uuid_write(c))
1688			goto err;
1689
1690		err = "cannot allocate new btree root";
1691		c->root = __bch_btree_node_alloc(c, NULL, 0, true, NULL);
1692		if (IS_ERR_OR_NULL(c->root))
1693			goto err;
1694
1695		mutex_lock(&c->root->write_lock);
1696		bkey_copy_key(&c->root->key, &MAX_KEY);
1697		bch_btree_node_write(c->root, &cl);
1698		mutex_unlock(&c->root->write_lock);
1699
1700		bch_btree_set_root(c->root);
1701		rw_unlock(true, c->root);
1702
1703		/*
1704		 * We don't want to write the first journal entry until
1705		 * everything is set up - fortunately journal entries won't be
1706		 * written until the SET_CACHE_SYNC() here:
1707		 */
1708		SET_CACHE_SYNC(&c->sb, true);
1709
1710		bch_journal_next(&c->journal);
1711		bch_journal_meta(c, &cl);
1712	}
1713
1714	err = "error starting gc thread";
1715	if (bch_gc_thread_start(c))
1716		goto err;
1717
1718	closure_sync(&cl);
1719	c->sb.last_mount = get_seconds();
1720	bcache_write_super(c);
1721
1722	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1723		bch_cached_dev_attach(dc, c);
1724
1725	flash_devs_run(c);
1726
1727	set_bit(CACHE_SET_RUNNING, &c->flags);
1728	return;
1729err:
1730	closure_sync(&cl);
1731	/* XXX: test this, it's broken */
1732	bch_cache_set_error(c, "%s", err);
1733}
1734
1735static bool can_attach_cache(struct cache *ca, struct cache_set *c)
1736{
1737	return ca->sb.block_size	== c->sb.block_size &&
1738		ca->sb.bucket_size	== c->sb.bucket_size &&
1739		ca->sb.nr_in_set	== c->sb.nr_in_set;
1740}
1741
1742static const char *register_cache_set(struct cache *ca)
1743{
1744	char buf[12];
1745	const char *err = "cannot allocate memory";
1746	struct cache_set *c;
1747
1748	list_for_each_entry(c, &bch_cache_sets, list)
1749		if (!memcmp(c->sb.set_uuid, ca->sb.set_uuid, 16)) {
1750			if (c->cache[ca->sb.nr_this_dev])
1751				return "duplicate cache set member";
1752
1753			if (!can_attach_cache(ca, c))
1754				return "cache sb does not match set";
1755
1756			if (!CACHE_SYNC(&ca->sb))
1757				SET_CACHE_SYNC(&c->sb, false);
1758
1759			goto found;
1760		}
1761
1762	c = bch_cache_set_alloc(&ca->sb);
1763	if (!c)
1764		return err;
1765
1766	err = "error creating kobject";
1767	if (kobject_add(&c->kobj, bcache_kobj, "%pU", c->sb.set_uuid) ||
1768	    kobject_add(&c->internal, &c->kobj, "internal"))
1769		goto err;
1770
1771	if (bch_cache_accounting_add_kobjs(&c->accounting, &c->kobj))
1772		goto err;
1773
1774	bch_debug_init_cache_set(c);
1775
1776	list_add(&c->list, &bch_cache_sets);
1777found:
1778	sprintf(buf, "cache%i", ca->sb.nr_this_dev);
1779	if (sysfs_create_link(&ca->kobj, &c->kobj, "set") ||
1780	    sysfs_create_link(&c->kobj, &ca->kobj, buf))
1781		goto err;
1782
1783	if (ca->sb.seq > c->sb.seq) {
1784		c->sb.version		= ca->sb.version;
1785		memcpy(c->sb.set_uuid, ca->sb.set_uuid, 16);
1786		c->sb.flags             = ca->sb.flags;
1787		c->sb.seq		= ca->sb.seq;
1788		pr_debug("set version = %llu", c->sb.version);
1789	}
1790
1791	kobject_get(&ca->kobj);
1792	ca->set = c;
1793	ca->set->cache[ca->sb.nr_this_dev] = ca;
1794	c->cache_by_alloc[c->caches_loaded++] = ca;
1795
1796	if (c->caches_loaded == c->sb.nr_in_set)
1797		run_cache_set(c);
1798
1799	return NULL;
1800err:
1801	bch_cache_set_unregister(c);
1802	return err;
1803}
1804
1805/* Cache device */
1806
1807void bch_cache_release(struct kobject *kobj)
1808{
1809	struct cache *ca = container_of(kobj, struct cache, kobj);
1810	unsigned i;
1811
1812	if (ca->set) {
1813		BUG_ON(ca->set->cache[ca->sb.nr_this_dev] != ca);
1814		ca->set->cache[ca->sb.nr_this_dev] = NULL;
1815	}
1816
1817	bio_split_pool_free(&ca->bio_split_hook);
1818
1819	free_pages((unsigned long) ca->disk_buckets, ilog2(bucket_pages(ca)));
1820	kfree(ca->prio_buckets);
1821	vfree(ca->buckets);
1822
1823	free_heap(&ca->heap);
1824	free_fifo(&ca->free_inc);
1825
1826	for (i = 0; i < RESERVE_NR; i++)
1827		free_fifo(&ca->free[i]);
1828
1829	if (ca->sb_bio.bi_inline_vecs[0].bv_page)
1830		put_page(ca->sb_bio.bi_io_vec[0].bv_page);
1831
1832	if (!IS_ERR_OR_NULL(ca->bdev))
1833		blkdev_put(ca->bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1834
1835	kfree(ca);
1836	module_put(THIS_MODULE);
1837}
1838
1839static int cache_alloc(struct cache_sb *sb, struct cache *ca)
1840{
1841	size_t free;
1842	struct bucket *b;
1843
1844	__module_get(THIS_MODULE);
1845	kobject_init(&ca->kobj, &bch_cache_ktype);
1846
1847	bio_init(&ca->journal.bio);
1848	ca->journal.bio.bi_max_vecs = 8;
1849	ca->journal.bio.bi_io_vec = ca->journal.bio.bi_inline_vecs;
1850
1851	free = roundup_pow_of_two(ca->sb.nbuckets) >> 10;
1852
1853	if (!init_fifo(&ca->free[RESERVE_BTREE], 8, GFP_KERNEL) ||
1854	    !init_fifo(&ca->free[RESERVE_PRIO], prio_buckets(ca), GFP_KERNEL) ||
1855	    !init_fifo(&ca->free[RESERVE_MOVINGGC], free, GFP_KERNEL) ||
1856	    !init_fifo(&ca->free[RESERVE_NONE], free, GFP_KERNEL) ||
1857	    !init_fifo(&ca->free_inc,	free << 2, GFP_KERNEL) ||
1858	    !init_heap(&ca->heap,	free << 3, GFP_KERNEL) ||
1859	    !(ca->buckets	= vzalloc(sizeof(struct bucket) *
1860					  ca->sb.nbuckets)) ||
1861	    !(ca->prio_buckets	= kzalloc(sizeof(uint64_t) * prio_buckets(ca) *
1862					  2, GFP_KERNEL)) ||
1863	    !(ca->disk_buckets	= alloc_bucket_pages(GFP_KERNEL, ca)) ||
1864	    bio_split_pool_init(&ca->bio_split_hook))
1865		return -ENOMEM;
1866
1867	ca->prio_last_buckets = ca->prio_buckets + prio_buckets(ca);
1868
1869	for_each_bucket(b, ca)
1870		atomic_set(&b->pin, 0);
1871
1872	return 0;
1873}
1874
1875static int register_cache(struct cache_sb *sb, struct page *sb_page,
1876				struct block_device *bdev, struct cache *ca)
1877{
1878	char name[BDEVNAME_SIZE];
1879	const char *err = NULL;
1880	int ret = 0;
1881
1882	memcpy(&ca->sb, sb, sizeof(struct cache_sb));
1883	ca->bdev = bdev;
1884	ca->bdev->bd_holder = ca;
1885
1886	bio_init(&ca->sb_bio);
1887	ca->sb_bio.bi_max_vecs	= 1;
1888	ca->sb_bio.bi_io_vec	= ca->sb_bio.bi_inline_vecs;
1889	ca->sb_bio.bi_io_vec[0].bv_page = sb_page;
1890	get_page(sb_page);
1891
1892	if (blk_queue_discard(bdev_get_queue(ca->bdev)))
1893		ca->discard = CACHE_DISCARD(&ca->sb);
1894
1895	ret = cache_alloc(sb, ca);
1896	if (ret != 0)
1897		goto err;
1898
1899	if (kobject_add(&ca->kobj, &part_to_dev(bdev->bd_part)->kobj, "bcache")) {
1900		err = "error calling kobject_add";
1901		ret = -ENOMEM;
1902		goto out;
1903	}
1904
1905	mutex_lock(&bch_register_lock);
1906	err = register_cache_set(ca);
1907	mutex_unlock(&bch_register_lock);
1908
1909	if (err) {
1910		ret = -ENODEV;
1911		goto out;
1912	}
1913
1914	pr_info("registered cache device %s", bdevname(bdev, name));
1915
1916out:
1917	kobject_put(&ca->kobj);
1918
1919err:
1920	if (err)
1921		pr_notice("error opening %s: %s", bdevname(bdev, name), err);
1922
1923	return ret;
1924}
1925
1926/* Global interfaces/init */
1927
1928static ssize_t register_bcache(struct kobject *, struct kobj_attribute *,
1929			       const char *, size_t);
1930
1931kobj_attribute_write(register,		register_bcache);
1932kobj_attribute_write(register_quiet,	register_bcache);
1933
1934static bool bch_is_open_backing(struct block_device *bdev) {
1935	struct cache_set *c, *tc;
1936	struct cached_dev *dc, *t;
1937
1938	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1939		list_for_each_entry_safe(dc, t, &c->cached_devs, list)
1940			if (dc->bdev == bdev)
1941				return true;
1942	list_for_each_entry_safe(dc, t, &uncached_devices, list)
1943		if (dc->bdev == bdev)
1944			return true;
1945	return false;
1946}
1947
1948static bool bch_is_open_cache(struct block_device *bdev) {
1949	struct cache_set *c, *tc;
1950	struct cache *ca;
1951	unsigned i;
1952
1953	list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
1954		for_each_cache(ca, c, i)
1955			if (ca->bdev == bdev)
1956				return true;
1957	return false;
1958}
1959
1960static bool bch_is_open(struct block_device *bdev) {
1961	return bch_is_open_cache(bdev) || bch_is_open_backing(bdev);
1962}
1963
1964static ssize_t register_bcache(struct kobject *k, struct kobj_attribute *attr,
1965			       const char *buffer, size_t size)
1966{
1967	ssize_t ret = size;
1968	const char *err = "cannot allocate memory";
1969	char *path = NULL;
1970	struct cache_sb *sb = NULL;
1971	struct block_device *bdev = NULL;
1972	struct page *sb_page = NULL;
1973
1974	if (!try_module_get(THIS_MODULE))
1975		return -EBUSY;
1976
1977	if (!(path = kstrndup(buffer, size, GFP_KERNEL)) ||
1978	    !(sb = kmalloc(sizeof(struct cache_sb), GFP_KERNEL)))
1979		goto err;
1980
1981	err = "failed to open device";
1982	bdev = blkdev_get_by_path(strim(path),
1983				  FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1984				  sb);
1985	if (IS_ERR(bdev)) {
1986		if (bdev == ERR_PTR(-EBUSY)) {
1987			bdev = lookup_bdev(strim(path));
1988			mutex_lock(&bch_register_lock);
1989			if (!IS_ERR(bdev) && bch_is_open(bdev))
1990				err = "device already registered";
1991			else
1992				err = "device busy";
1993			mutex_unlock(&bch_register_lock);
1994			if (attr == &ksysfs_register_quiet)
1995				goto out;
1996		}
1997		goto err;
1998	}
1999
2000	err = "failed to set blocksize";
2001	if (set_blocksize(bdev, 4096))
2002		goto err_close;
2003
2004	err = read_super(sb, bdev, &sb_page);
2005	if (err)
2006		goto err_close;
2007
2008	if (SB_IS_BDEV(sb)) {
2009		struct cached_dev *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
2010		if (!dc)
2011			goto err_close;
2012
2013		mutex_lock(&bch_register_lock);
2014		register_bdev(sb, sb_page, bdev, dc);
2015		mutex_unlock(&bch_register_lock);
2016	} else {
2017		struct cache *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2018		if (!ca)
2019			goto err_close;
2020
2021		if (register_cache(sb, sb_page, bdev, ca) != 0)
2022			goto err_close;
2023	}
2024out:
2025	if (sb_page)
2026		put_page(sb_page);
2027	kfree(sb);
2028	kfree(path);
2029	module_put(THIS_MODULE);
2030	return ret;
2031
2032err_close:
2033	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2034err:
2035	pr_info("error opening %s: %s", path, err);
2036	ret = -EINVAL;
2037	goto out;
2038}
2039
2040static int bcache_reboot(struct notifier_block *n, unsigned long code, void *x)
2041{
2042	if (code == SYS_DOWN ||
2043	    code == SYS_HALT ||
2044	    code == SYS_POWER_OFF) {
2045		DEFINE_WAIT(wait);
2046		unsigned long start = jiffies;
2047		bool stopped = false;
2048
2049		struct cache_set *c, *tc;
2050		struct cached_dev *dc, *tdc;
2051
2052		mutex_lock(&bch_register_lock);
2053
2054		if (list_empty(&bch_cache_sets) &&
2055		    list_empty(&uncached_devices))
2056			goto out;
2057
2058		pr_info("Stopping all devices:");
2059
2060		list_for_each_entry_safe(c, tc, &bch_cache_sets, list)
2061			bch_cache_set_stop(c);
2062
2063		list_for_each_entry_safe(dc, tdc, &uncached_devices, list)
2064			bcache_device_stop(&dc->disk);
2065
2066		/* What's a condition variable? */
2067		while (1) {
2068			long timeout = start + 2 * HZ - jiffies;
2069
2070			stopped = list_empty(&bch_cache_sets) &&
2071				list_empty(&uncached_devices);
2072
2073			if (timeout < 0 || stopped)
2074				break;
2075
2076			prepare_to_wait(&unregister_wait, &wait,
2077					TASK_UNINTERRUPTIBLE);
2078
2079			mutex_unlock(&bch_register_lock);
2080			schedule_timeout(timeout);
2081			mutex_lock(&bch_register_lock);
2082		}
2083
2084		finish_wait(&unregister_wait, &wait);
2085
2086		if (stopped)
2087			pr_info("All devices stopped");
2088		else
2089			pr_notice("Timeout waiting for devices to be closed");
2090out:
2091		mutex_unlock(&bch_register_lock);
2092	}
2093
2094	return NOTIFY_DONE;
2095}
2096
2097static struct notifier_block reboot = {
2098	.notifier_call	= bcache_reboot,
2099	.priority	= INT_MAX, /* before any real devices */
2100};
2101
2102static void bcache_exit(void)
2103{
2104	bch_debug_exit();
2105	bch_request_exit();
2106	if (bcache_kobj)
2107		kobject_put(bcache_kobj);
2108	if (bcache_wq)
2109		destroy_workqueue(bcache_wq);
2110	if (bcache_major)
2111		unregister_blkdev(bcache_major, "bcache");
2112	unregister_reboot_notifier(&reboot);
2113}
2114
2115static int __init bcache_init(void)
2116{
2117	static const struct attribute *files[] = {
2118		&ksysfs_register.attr,
2119		&ksysfs_register_quiet.attr,
2120		NULL
2121	};
2122
2123	mutex_init(&bch_register_lock);
2124	init_waitqueue_head(&unregister_wait);
2125	register_reboot_notifier(&reboot);
2126	closure_debug_init();
2127
2128	bcache_major = register_blkdev(0, "bcache");
2129	if (bcache_major < 0) {
2130		unregister_reboot_notifier(&reboot);
2131		return bcache_major;
2132	}
2133
2134	if (!(bcache_wq = create_workqueue("bcache")) ||
2135	    !(bcache_kobj = kobject_create_and_add("bcache", fs_kobj)) ||
2136	    sysfs_create_files(bcache_kobj, files) ||
2137	    bch_request_init() ||
2138	    bch_debug_init(bcache_kobj))
2139		goto err;
2140
2141	return 0;
2142err:
2143	bcache_exit();
2144	return -ENOMEM;
2145}
2146
2147module_exit(bcache_exit);
2148module_init(bcache_init);
2149