1/*
2 * Copyright (C) 2009-2011 Red Hat, Inc.
3 *
4 * Author: Mikulas Patocka <mpatocka@redhat.com>
5 *
6 * This file is released under the GPL.
7 */
8
9#include "dm-bufio.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/slab.h>
14#include <linux/jiffies.h>
15#include <linux/vmalloc.h>
16#include <linux/shrinker.h>
17#include <linux/module.h>
18#include <linux/rbtree.h>
19
20#define DM_MSG_PREFIX "bufio"
21
22/*
23 * Memory management policy:
24 *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
25 *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
26 *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
27 *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
28 *	dirty buffers.
29 */
30#define DM_BUFIO_MIN_BUFFERS		8
31
32#define DM_BUFIO_MEMORY_PERCENT		2
33#define DM_BUFIO_VMALLOC_PERCENT	25
34#define DM_BUFIO_WRITEBACK_PERCENT	75
35
36/*
37 * Check buffer ages in this interval (seconds)
38 */
39#define DM_BUFIO_WORK_TIMER_SECS	30
40
41/*
42 * Free buffers when they are older than this (seconds)
43 */
44#define DM_BUFIO_DEFAULT_AGE_SECS	300
45
46/*
47 * The nr of bytes of cached data to keep around.
48 */
49#define DM_BUFIO_DEFAULT_RETAIN_BYTES   (256 * 1024)
50
51/*
52 * The number of bvec entries that are embedded directly in the buffer.
53 * If the chunk size is larger, dm-io is used to do the io.
54 */
55#define DM_BUFIO_INLINE_VECS		16
56
57/*
58 * Don't try to use kmem_cache_alloc for blocks larger than this.
59 * For explanation, see alloc_buffer_data below.
60 */
61#define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
62#define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
63
64/*
65 * dm_buffer->list_mode
66 */
67#define LIST_CLEAN	0
68#define LIST_DIRTY	1
69#define LIST_SIZE	2
70
71/*
72 * Linking of buffers:
73 *	All buffers are linked to cache_hash with their hash_list field.
74 *
75 *	Clean buffers that are not being written (B_WRITING not set)
76 *	are linked to lru[LIST_CLEAN] with their lru_list field.
77 *
78 *	Dirty and clean buffers that are being written are linked to
79 *	lru[LIST_DIRTY] with their lru_list field. When the write
80 *	finishes, the buffer cannot be relinked immediately (because we
81 *	are in an interrupt context and relinking requires process
82 *	context), so some clean-not-writing buffers can be held on
83 *	dirty_lru too.  They are later added to lru in the process
84 *	context.
85 */
86struct dm_bufio_client {
87	struct mutex lock;
88
89	struct list_head lru[LIST_SIZE];
90	unsigned long n_buffers[LIST_SIZE];
91
92	struct block_device *bdev;
93	unsigned block_size;
94	unsigned char sectors_per_block_bits;
95	unsigned char pages_per_block_bits;
96	unsigned char blocks_per_page_bits;
97	unsigned aux_size;
98	void (*alloc_callback)(struct dm_buffer *);
99	void (*write_callback)(struct dm_buffer *);
100
101	struct dm_io_client *dm_io;
102
103	struct list_head reserved_buffers;
104	unsigned need_reserved_buffers;
105
106	unsigned minimum_buffers;
107
108	struct rb_root buffer_tree;
109	wait_queue_head_t free_buffer_wait;
110
111	int async_write_error;
112
113	struct list_head client_list;
114	struct shrinker shrinker;
115};
116
117/*
118 * Buffer state bits.
119 */
120#define B_READING	0
121#define B_WRITING	1
122#define B_DIRTY		2
123
124/*
125 * Describes how the block was allocated:
126 * kmem_cache_alloc(), __get_free_pages() or vmalloc().
127 * See the comment at alloc_buffer_data.
128 */
129enum data_mode {
130	DATA_MODE_SLAB = 0,
131	DATA_MODE_GET_FREE_PAGES = 1,
132	DATA_MODE_VMALLOC = 2,
133	DATA_MODE_LIMIT = 3
134};
135
136struct dm_buffer {
137	struct rb_node node;
138	struct list_head lru_list;
139	sector_t block;
140	void *data;
141	enum data_mode data_mode;
142	unsigned char list_mode;		/* LIST_* */
143	unsigned hold_count;
144	int read_error;
145	int write_error;
146	unsigned long state;
147	unsigned long last_accessed;
148	struct dm_bufio_client *c;
149	struct list_head write_list;
150	struct bio bio;
151	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
152};
153
154/*----------------------------------------------------------------*/
155
156static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
157static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
158
159static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
160{
161	unsigned ret = c->blocks_per_page_bits - 1;
162
163	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
164
165	return ret;
166}
167
168#define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
169#define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
170
171#define dm_bufio_in_request()	(!!current->bio_list)
172
173static void dm_bufio_lock(struct dm_bufio_client *c)
174{
175	mutex_lock_nested(&c->lock, dm_bufio_in_request());
176}
177
178static int dm_bufio_trylock(struct dm_bufio_client *c)
179{
180	return mutex_trylock(&c->lock);
181}
182
183static void dm_bufio_unlock(struct dm_bufio_client *c)
184{
185	mutex_unlock(&c->lock);
186}
187
188/*
189 * FIXME Move to sched.h?
190 */
191#ifdef CONFIG_PREEMPT_VOLUNTARY
192#  define dm_bufio_cond_resched()		\
193do {						\
194	if (unlikely(need_resched()))		\
195		_cond_resched();		\
196} while (0)
197#else
198#  define dm_bufio_cond_resched()                do { } while (0)
199#endif
200
201/*----------------------------------------------------------------*/
202
203/*
204 * Default cache size: available memory divided by the ratio.
205 */
206static unsigned long dm_bufio_default_cache_size;
207
208/*
209 * Total cache size set by the user.
210 */
211static unsigned long dm_bufio_cache_size;
212
213/*
214 * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
215 * at any time.  If it disagrees, the user has changed cache size.
216 */
217static unsigned long dm_bufio_cache_size_latch;
218
219static DEFINE_SPINLOCK(param_spinlock);
220
221/*
222 * Buffers are freed after this timeout
223 */
224static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
225static unsigned dm_bufio_retain_bytes = DM_BUFIO_DEFAULT_RETAIN_BYTES;
226
227static unsigned long dm_bufio_peak_allocated;
228static unsigned long dm_bufio_allocated_kmem_cache;
229static unsigned long dm_bufio_allocated_get_free_pages;
230static unsigned long dm_bufio_allocated_vmalloc;
231static unsigned long dm_bufio_current_allocated;
232
233/*----------------------------------------------------------------*/
234
235/*
236 * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
237 */
238static unsigned long dm_bufio_cache_size_per_client;
239
240/*
241 * The current number of clients.
242 */
243static int dm_bufio_client_count;
244
245/*
246 * The list of all clients.
247 */
248static LIST_HEAD(dm_bufio_all_clients);
249
250/*
251 * This mutex protects dm_bufio_cache_size_latch,
252 * dm_bufio_cache_size_per_client and dm_bufio_client_count
253 */
254static DEFINE_MUTEX(dm_bufio_clients_lock);
255
256/*----------------------------------------------------------------
257 * A red/black tree acts as an index for all the buffers.
258 *--------------------------------------------------------------*/
259static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
260{
261	struct rb_node *n = c->buffer_tree.rb_node;
262	struct dm_buffer *b;
263
264	while (n) {
265		b = container_of(n, struct dm_buffer, node);
266
267		if (b->block == block)
268			return b;
269
270		n = (b->block < block) ? n->rb_left : n->rb_right;
271	}
272
273	return NULL;
274}
275
276static void __insert(struct dm_bufio_client *c, struct dm_buffer *b)
277{
278	struct rb_node **new = &c->buffer_tree.rb_node, *parent = NULL;
279	struct dm_buffer *found;
280
281	while (*new) {
282		found = container_of(*new, struct dm_buffer, node);
283
284		if (found->block == b->block) {
285			BUG_ON(found != b);
286			return;
287		}
288
289		parent = *new;
290		new = (found->block < b->block) ?
291			&((*new)->rb_left) : &((*new)->rb_right);
292	}
293
294	rb_link_node(&b->node, parent, new);
295	rb_insert_color(&b->node, &c->buffer_tree);
296}
297
298static void __remove(struct dm_bufio_client *c, struct dm_buffer *b)
299{
300	rb_erase(&b->node, &c->buffer_tree);
301}
302
303/*----------------------------------------------------------------*/
304
305static void adjust_total_allocated(enum data_mode data_mode, long diff)
306{
307	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
308		&dm_bufio_allocated_kmem_cache,
309		&dm_bufio_allocated_get_free_pages,
310		&dm_bufio_allocated_vmalloc,
311	};
312
313	spin_lock(&param_spinlock);
314
315	*class_ptr[data_mode] += diff;
316
317	dm_bufio_current_allocated += diff;
318
319	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
320		dm_bufio_peak_allocated = dm_bufio_current_allocated;
321
322	spin_unlock(&param_spinlock);
323}
324
325/*
326 * Change the number of clients and recalculate per-client limit.
327 */
328static void __cache_size_refresh(void)
329{
330	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
331	BUG_ON(dm_bufio_client_count < 0);
332
333	dm_bufio_cache_size_latch = ACCESS_ONCE(dm_bufio_cache_size);
334
335	/*
336	 * Use default if set to 0 and report the actual cache size used.
337	 */
338	if (!dm_bufio_cache_size_latch) {
339		(void)cmpxchg(&dm_bufio_cache_size, 0,
340			      dm_bufio_default_cache_size);
341		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
342	}
343
344	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
345					 (dm_bufio_client_count ? : 1);
346}
347
348/*
349 * Allocating buffer data.
350 *
351 * Small buffers are allocated with kmem_cache, to use space optimally.
352 *
353 * For large buffers, we choose between get_free_pages and vmalloc.
354 * Each has advantages and disadvantages.
355 *
356 * __get_free_pages can randomly fail if the memory is fragmented.
357 * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
358 * as low as 128M) so using it for caching is not appropriate.
359 *
360 * If the allocation may fail we use __get_free_pages. Memory fragmentation
361 * won't have a fatal effect here, but it just causes flushes of some other
362 * buffers and more I/O will be performed. Don't use __get_free_pages if it
363 * always fails (i.e. order >= MAX_ORDER).
364 *
365 * If the allocation shouldn't fail we use __vmalloc. This is only for the
366 * initial reserve allocation, so there's no risk of wasting all vmalloc
367 * space.
368 */
369static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
370			       enum data_mode *data_mode)
371{
372	unsigned noio_flag;
373	void *ptr;
374
375	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
376		*data_mode = DATA_MODE_SLAB;
377		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
378	}
379
380	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
381	    gfp_mask & __GFP_NORETRY) {
382		*data_mode = DATA_MODE_GET_FREE_PAGES;
383		return (void *)__get_free_pages(gfp_mask,
384						c->pages_per_block_bits);
385	}
386
387	*data_mode = DATA_MODE_VMALLOC;
388
389	/*
390	 * __vmalloc allocates the data pages and auxiliary structures with
391	 * gfp_flags that were specified, but pagetables are always allocated
392	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
393	 *
394	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
395	 * all allocations done by this process (including pagetables) are done
396	 * as if GFP_NOIO was specified.
397	 */
398
399	if (gfp_mask & __GFP_NORETRY)
400		noio_flag = memalloc_noio_save();
401
402	ptr = __vmalloc(c->block_size, gfp_mask | __GFP_HIGHMEM, PAGE_KERNEL);
403
404	if (gfp_mask & __GFP_NORETRY)
405		memalloc_noio_restore(noio_flag);
406
407	return ptr;
408}
409
410/*
411 * Free buffer's data.
412 */
413static void free_buffer_data(struct dm_bufio_client *c,
414			     void *data, enum data_mode data_mode)
415{
416	switch (data_mode) {
417	case DATA_MODE_SLAB:
418		kmem_cache_free(DM_BUFIO_CACHE(c), data);
419		break;
420
421	case DATA_MODE_GET_FREE_PAGES:
422		free_pages((unsigned long)data, c->pages_per_block_bits);
423		break;
424
425	case DATA_MODE_VMALLOC:
426		vfree(data);
427		break;
428
429	default:
430		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
431		       data_mode);
432		BUG();
433	}
434}
435
436/*
437 * Allocate buffer and its data.
438 */
439static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
440{
441	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
442				      gfp_mask);
443
444	if (!b)
445		return NULL;
446
447	b->c = c;
448
449	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
450	if (!b->data) {
451		kfree(b);
452		return NULL;
453	}
454
455	adjust_total_allocated(b->data_mode, (long)c->block_size);
456
457	return b;
458}
459
460/*
461 * Free buffer and its data.
462 */
463static void free_buffer(struct dm_buffer *b)
464{
465	struct dm_bufio_client *c = b->c;
466
467	adjust_total_allocated(b->data_mode, -(long)c->block_size);
468
469	free_buffer_data(c, b->data, b->data_mode);
470	kfree(b);
471}
472
473/*
474 * Link buffer to the hash list and clean or dirty queue.
475 */
476static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
477{
478	struct dm_bufio_client *c = b->c;
479
480	c->n_buffers[dirty]++;
481	b->block = block;
482	b->list_mode = dirty;
483	list_add(&b->lru_list, &c->lru[dirty]);
484	__insert(b->c, b);
485	b->last_accessed = jiffies;
486}
487
488/*
489 * Unlink buffer from the hash list and dirty or clean queue.
490 */
491static void __unlink_buffer(struct dm_buffer *b)
492{
493	struct dm_bufio_client *c = b->c;
494
495	BUG_ON(!c->n_buffers[b->list_mode]);
496
497	c->n_buffers[b->list_mode]--;
498	__remove(b->c, b);
499	list_del(&b->lru_list);
500}
501
502/*
503 * Place the buffer to the head of dirty or clean LRU queue.
504 */
505static void __relink_lru(struct dm_buffer *b, int dirty)
506{
507	struct dm_bufio_client *c = b->c;
508
509	BUG_ON(!c->n_buffers[b->list_mode]);
510
511	c->n_buffers[b->list_mode]--;
512	c->n_buffers[dirty]++;
513	b->list_mode = dirty;
514	list_move(&b->lru_list, &c->lru[dirty]);
515	b->last_accessed = jiffies;
516}
517
518/*----------------------------------------------------------------
519 * Submit I/O on the buffer.
520 *
521 * Bio interface is faster but it has some problems:
522 *	the vector list is limited (increasing this limit increases
523 *	memory-consumption per buffer, so it is not viable);
524 *
525 *	the memory must be direct-mapped, not vmalloced;
526 *
527 *	the I/O driver can reject requests spuriously if it thinks that
528 *	the requests are too big for the device or if they cross a
529 *	controller-defined memory boundary.
530 *
531 * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
532 * it is not vmalloced, try using the bio interface.
533 *
534 * If the buffer is big, if it is vmalloced or if the underlying device
535 * rejects the bio because it is too large, use dm-io layer to do the I/O.
536 * The dm-io layer splits the I/O into multiple requests, avoiding the above
537 * shortcomings.
538 *--------------------------------------------------------------*/
539
540/*
541 * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
542 * that the request was handled directly with bio interface.
543 */
544static void dmio_complete(unsigned long error, void *context)
545{
546	struct dm_buffer *b = context;
547
548	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
549}
550
551static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
552		     bio_end_io_t *end_io)
553{
554	int r;
555	struct dm_io_request io_req = {
556		.bi_rw = rw,
557		.notify.fn = dmio_complete,
558		.notify.context = b,
559		.client = b->c->dm_io,
560	};
561	struct dm_io_region region = {
562		.bdev = b->c->bdev,
563		.sector = block << b->c->sectors_per_block_bits,
564		.count = b->c->block_size >> SECTOR_SHIFT,
565	};
566
567	if (b->data_mode != DATA_MODE_VMALLOC) {
568		io_req.mem.type = DM_IO_KMEM;
569		io_req.mem.ptr.addr = b->data;
570	} else {
571		io_req.mem.type = DM_IO_VMA;
572		io_req.mem.ptr.vma = b->data;
573	}
574
575	b->bio.bi_end_io = end_io;
576
577	r = dm_io(&io_req, 1, &region, NULL);
578	if (r)
579		end_io(&b->bio, r);
580}
581
582static void inline_endio(struct bio *bio, int error)
583{
584	bio_end_io_t *end_fn = bio->bi_private;
585
586	/*
587	 * Reset the bio to free any attached resources
588	 * (e.g. bio integrity profiles).
589	 */
590	bio_reset(bio);
591
592	end_fn(bio, error);
593}
594
595static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
596			   bio_end_io_t *end_io)
597{
598	char *ptr;
599	int len;
600
601	bio_init(&b->bio);
602	b->bio.bi_io_vec = b->bio_vec;
603	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
604	b->bio.bi_iter.bi_sector = block << b->c->sectors_per_block_bits;
605	b->bio.bi_bdev = b->c->bdev;
606	b->bio.bi_end_io = inline_endio;
607	/*
608	 * Use of .bi_private isn't a problem here because
609	 * the dm_buffer's inline bio is local to bufio.
610	 */
611	b->bio.bi_private = end_io;
612
613	/*
614	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
615	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
616	 */
617	ptr = b->data;
618	len = b->c->block_size;
619
620	if (len >= PAGE_SIZE)
621		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
622	else
623		BUG_ON((unsigned long)ptr & (len - 1));
624
625	do {
626		if (!bio_add_page(&b->bio, virt_to_page(ptr),
627				  len < PAGE_SIZE ? len : PAGE_SIZE,
628				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
629			BUG_ON(b->c->block_size <= PAGE_SIZE);
630			use_dmio(b, rw, block, end_io);
631			return;
632		}
633
634		len -= PAGE_SIZE;
635		ptr += PAGE_SIZE;
636	} while (len > 0);
637
638	submit_bio(rw, &b->bio);
639}
640
641static void submit_io(struct dm_buffer *b, int rw, sector_t block,
642		      bio_end_io_t *end_io)
643{
644	if (rw == WRITE && b->c->write_callback)
645		b->c->write_callback(b);
646
647	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
648	    b->data_mode != DATA_MODE_VMALLOC)
649		use_inline_bio(b, rw, block, end_io);
650	else
651		use_dmio(b, rw, block, end_io);
652}
653
654/*----------------------------------------------------------------
655 * Writing dirty buffers
656 *--------------------------------------------------------------*/
657
658/*
659 * The endio routine for write.
660 *
661 * Set the error, clear B_WRITING bit and wake anyone who was waiting on
662 * it.
663 */
664static void write_endio(struct bio *bio, int error)
665{
666	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
667
668	b->write_error = error;
669	if (unlikely(error)) {
670		struct dm_bufio_client *c = b->c;
671		(void)cmpxchg(&c->async_write_error, 0, error);
672	}
673
674	BUG_ON(!test_bit(B_WRITING, &b->state));
675
676	smp_mb__before_atomic();
677	clear_bit(B_WRITING, &b->state);
678	smp_mb__after_atomic();
679
680	wake_up_bit(&b->state, B_WRITING);
681}
682
683/*
684 * Initiate a write on a dirty buffer, but don't wait for it.
685 *
686 * - If the buffer is not dirty, exit.
687 * - If there some previous write going on, wait for it to finish (we can't
688 *   have two writes on the same buffer simultaneously).
689 * - Submit our write and don't wait on it. We set B_WRITING indicating
690 *   that there is a write in progress.
691 */
692static void __write_dirty_buffer(struct dm_buffer *b,
693				 struct list_head *write_list)
694{
695	if (!test_bit(B_DIRTY, &b->state))
696		return;
697
698	clear_bit(B_DIRTY, &b->state);
699	wait_on_bit_lock_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
700
701	if (!write_list)
702		submit_io(b, WRITE, b->block, write_endio);
703	else
704		list_add_tail(&b->write_list, write_list);
705}
706
707static void __flush_write_list(struct list_head *write_list)
708{
709	struct blk_plug plug;
710	blk_start_plug(&plug);
711	while (!list_empty(write_list)) {
712		struct dm_buffer *b =
713			list_entry(write_list->next, struct dm_buffer, write_list);
714		list_del(&b->write_list);
715		submit_io(b, WRITE, b->block, write_endio);
716		dm_bufio_cond_resched();
717	}
718	blk_finish_plug(&plug);
719}
720
721/*
722 * Wait until any activity on the buffer finishes.  Possibly write the
723 * buffer if it is dirty.  When this function finishes, there is no I/O
724 * running on the buffer and the buffer is not dirty.
725 */
726static void __make_buffer_clean(struct dm_buffer *b)
727{
728	BUG_ON(b->hold_count);
729
730	if (!b->state)	/* fast case */
731		return;
732
733	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
734	__write_dirty_buffer(b, NULL);
735	wait_on_bit_io(&b->state, B_WRITING, TASK_UNINTERRUPTIBLE);
736}
737
738/*
739 * Find some buffer that is not held by anybody, clean it, unlink it and
740 * return it.
741 */
742static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
743{
744	struct dm_buffer *b;
745
746	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
747		BUG_ON(test_bit(B_WRITING, &b->state));
748		BUG_ON(test_bit(B_DIRTY, &b->state));
749
750		if (!b->hold_count) {
751			__make_buffer_clean(b);
752			__unlink_buffer(b);
753			return b;
754		}
755		dm_bufio_cond_resched();
756	}
757
758	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
759		BUG_ON(test_bit(B_READING, &b->state));
760
761		if (!b->hold_count) {
762			__make_buffer_clean(b);
763			__unlink_buffer(b);
764			return b;
765		}
766		dm_bufio_cond_resched();
767	}
768
769	return NULL;
770}
771
772/*
773 * Wait until some other threads free some buffer or release hold count on
774 * some buffer.
775 *
776 * This function is entered with c->lock held, drops it and regains it
777 * before exiting.
778 */
779static void __wait_for_free_buffer(struct dm_bufio_client *c)
780{
781	DECLARE_WAITQUEUE(wait, current);
782
783	add_wait_queue(&c->free_buffer_wait, &wait);
784	set_task_state(current, TASK_UNINTERRUPTIBLE);
785	dm_bufio_unlock(c);
786
787	io_schedule();
788
789	remove_wait_queue(&c->free_buffer_wait, &wait);
790
791	dm_bufio_lock(c);
792}
793
794enum new_flag {
795	NF_FRESH = 0,
796	NF_READ = 1,
797	NF_GET = 2,
798	NF_PREFETCH = 3
799};
800
801/*
802 * Allocate a new buffer. If the allocation is not possible, wait until
803 * some other thread frees a buffer.
804 *
805 * May drop the lock and regain it.
806 */
807static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
808{
809	struct dm_buffer *b;
810
811	/*
812	 * dm-bufio is resistant to allocation failures (it just keeps
813	 * one buffer reserved in cases all the allocations fail).
814	 * So set flags to not try too hard:
815	 *	GFP_NOIO: don't recurse into the I/O layer
816	 *	__GFP_NORETRY: don't retry and rather return failure
817	 *	__GFP_NOMEMALLOC: don't use emergency reserves
818	 *	__GFP_NOWARN: don't print a warning in case of failure
819	 *
820	 * For debugging, if we set the cache size to 1, no new buffers will
821	 * be allocated.
822	 */
823	while (1) {
824		if (dm_bufio_cache_size_latch != 1) {
825			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
826			if (b)
827				return b;
828		}
829
830		if (nf == NF_PREFETCH)
831			return NULL;
832
833		if (!list_empty(&c->reserved_buffers)) {
834			b = list_entry(c->reserved_buffers.next,
835				       struct dm_buffer, lru_list);
836			list_del(&b->lru_list);
837			c->need_reserved_buffers++;
838
839			return b;
840		}
841
842		b = __get_unclaimed_buffer(c);
843		if (b)
844			return b;
845
846		__wait_for_free_buffer(c);
847	}
848}
849
850static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
851{
852	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
853
854	if (!b)
855		return NULL;
856
857	if (c->alloc_callback)
858		c->alloc_callback(b);
859
860	return b;
861}
862
863/*
864 * Free a buffer and wake other threads waiting for free buffers.
865 */
866static void __free_buffer_wake(struct dm_buffer *b)
867{
868	struct dm_bufio_client *c = b->c;
869
870	if (!c->need_reserved_buffers)
871		free_buffer(b);
872	else {
873		list_add(&b->lru_list, &c->reserved_buffers);
874		c->need_reserved_buffers--;
875	}
876
877	wake_up(&c->free_buffer_wait);
878}
879
880static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait,
881					struct list_head *write_list)
882{
883	struct dm_buffer *b, *tmp;
884
885	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
886		BUG_ON(test_bit(B_READING, &b->state));
887
888		if (!test_bit(B_DIRTY, &b->state) &&
889		    !test_bit(B_WRITING, &b->state)) {
890			__relink_lru(b, LIST_CLEAN);
891			continue;
892		}
893
894		if (no_wait && test_bit(B_WRITING, &b->state))
895			return;
896
897		__write_dirty_buffer(b, write_list);
898		dm_bufio_cond_resched();
899	}
900}
901
902/*
903 * Get writeback threshold and buffer limit for a given client.
904 */
905static void __get_memory_limit(struct dm_bufio_client *c,
906			       unsigned long *threshold_buffers,
907			       unsigned long *limit_buffers)
908{
909	unsigned long buffers;
910
911	if (ACCESS_ONCE(dm_bufio_cache_size) != dm_bufio_cache_size_latch) {
912		mutex_lock(&dm_bufio_clients_lock);
913		__cache_size_refresh();
914		mutex_unlock(&dm_bufio_clients_lock);
915	}
916
917	buffers = dm_bufio_cache_size_per_client >>
918		  (c->sectors_per_block_bits + SECTOR_SHIFT);
919
920	if (buffers < c->minimum_buffers)
921		buffers = c->minimum_buffers;
922
923	*limit_buffers = buffers;
924	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
925}
926
927/*
928 * Check if we're over watermark.
929 * If we are over threshold_buffers, start freeing buffers.
930 * If we're over "limit_buffers", block until we get under the limit.
931 */
932static void __check_watermark(struct dm_bufio_client *c,
933			      struct list_head *write_list)
934{
935	unsigned long threshold_buffers, limit_buffers;
936
937	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
938
939	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
940	       limit_buffers) {
941
942		struct dm_buffer *b = __get_unclaimed_buffer(c);
943
944		if (!b)
945			return;
946
947		__free_buffer_wake(b);
948		dm_bufio_cond_resched();
949	}
950
951	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
952		__write_dirty_buffers_async(c, 1, write_list);
953}
954
955/*----------------------------------------------------------------
956 * Getting a buffer
957 *--------------------------------------------------------------*/
958
959static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
960				     enum new_flag nf, int *need_submit,
961				     struct list_head *write_list)
962{
963	struct dm_buffer *b, *new_b = NULL;
964
965	*need_submit = 0;
966
967	b = __find(c, block);
968	if (b)
969		goto found_buffer;
970
971	if (nf == NF_GET)
972		return NULL;
973
974	new_b = __alloc_buffer_wait(c, nf);
975	if (!new_b)
976		return NULL;
977
978	/*
979	 * We've had a period where the mutex was unlocked, so need to
980	 * recheck the hash table.
981	 */
982	b = __find(c, block);
983	if (b) {
984		__free_buffer_wake(new_b);
985		goto found_buffer;
986	}
987
988	__check_watermark(c, write_list);
989
990	b = new_b;
991	b->hold_count = 1;
992	b->read_error = 0;
993	b->write_error = 0;
994	__link_buffer(b, block, LIST_CLEAN);
995
996	if (nf == NF_FRESH) {
997		b->state = 0;
998		return b;
999	}
1000
1001	b->state = 1 << B_READING;
1002	*need_submit = 1;
1003
1004	return b;
1005
1006found_buffer:
1007	if (nf == NF_PREFETCH)
1008		return NULL;
1009	/*
1010	 * Note: it is essential that we don't wait for the buffer to be
1011	 * read if dm_bufio_get function is used. Both dm_bufio_get and
1012	 * dm_bufio_prefetch can be used in the driver request routine.
1013	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
1014	 * the same buffer, it would deadlock if we waited.
1015	 */
1016	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
1017		return NULL;
1018
1019	b->hold_count++;
1020	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
1021		     test_bit(B_WRITING, &b->state));
1022	return b;
1023}
1024
1025/*
1026 * The endio routine for reading: set the error, clear the bit and wake up
1027 * anyone waiting on the buffer.
1028 */
1029static void read_endio(struct bio *bio, int error)
1030{
1031	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
1032
1033	b->read_error = error;
1034
1035	BUG_ON(!test_bit(B_READING, &b->state));
1036
1037	smp_mb__before_atomic();
1038	clear_bit(B_READING, &b->state);
1039	smp_mb__after_atomic();
1040
1041	wake_up_bit(&b->state, B_READING);
1042}
1043
1044/*
1045 * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
1046 * functions is similar except that dm_bufio_new doesn't read the
1047 * buffer from the disk (assuming that the caller overwrites all the data
1048 * and uses dm_bufio_mark_buffer_dirty to write new data back).
1049 */
1050static void *new_read(struct dm_bufio_client *c, sector_t block,
1051		      enum new_flag nf, struct dm_buffer **bp)
1052{
1053	int need_submit;
1054	struct dm_buffer *b;
1055
1056	LIST_HEAD(write_list);
1057
1058	dm_bufio_lock(c);
1059	b = __bufio_new(c, block, nf, &need_submit, &write_list);
1060	dm_bufio_unlock(c);
1061
1062	__flush_write_list(&write_list);
1063
1064	if (!b)
1065		return b;
1066
1067	if (need_submit)
1068		submit_io(b, READ, b->block, read_endio);
1069
1070	wait_on_bit_io(&b->state, B_READING, TASK_UNINTERRUPTIBLE);
1071
1072	if (b->read_error) {
1073		int error = b->read_error;
1074
1075		dm_bufio_release(b);
1076
1077		return ERR_PTR(error);
1078	}
1079
1080	*bp = b;
1081
1082	return b->data;
1083}
1084
1085void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
1086		   struct dm_buffer **bp)
1087{
1088	return new_read(c, block, NF_GET, bp);
1089}
1090EXPORT_SYMBOL_GPL(dm_bufio_get);
1091
1092void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
1093		    struct dm_buffer **bp)
1094{
1095	BUG_ON(dm_bufio_in_request());
1096
1097	return new_read(c, block, NF_READ, bp);
1098}
1099EXPORT_SYMBOL_GPL(dm_bufio_read);
1100
1101void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
1102		   struct dm_buffer **bp)
1103{
1104	BUG_ON(dm_bufio_in_request());
1105
1106	return new_read(c, block, NF_FRESH, bp);
1107}
1108EXPORT_SYMBOL_GPL(dm_bufio_new);
1109
1110void dm_bufio_prefetch(struct dm_bufio_client *c,
1111		       sector_t block, unsigned n_blocks)
1112{
1113	struct blk_plug plug;
1114
1115	LIST_HEAD(write_list);
1116
1117	BUG_ON(dm_bufio_in_request());
1118
1119	blk_start_plug(&plug);
1120	dm_bufio_lock(c);
1121
1122	for (; n_blocks--; block++) {
1123		int need_submit;
1124		struct dm_buffer *b;
1125		b = __bufio_new(c, block, NF_PREFETCH, &need_submit,
1126				&write_list);
1127		if (unlikely(!list_empty(&write_list))) {
1128			dm_bufio_unlock(c);
1129			blk_finish_plug(&plug);
1130			__flush_write_list(&write_list);
1131			blk_start_plug(&plug);
1132			dm_bufio_lock(c);
1133		}
1134		if (unlikely(b != NULL)) {
1135			dm_bufio_unlock(c);
1136
1137			if (need_submit)
1138				submit_io(b, READ, b->block, read_endio);
1139			dm_bufio_release(b);
1140
1141			dm_bufio_cond_resched();
1142
1143			if (!n_blocks)
1144				goto flush_plug;
1145			dm_bufio_lock(c);
1146		}
1147	}
1148
1149	dm_bufio_unlock(c);
1150
1151flush_plug:
1152	blk_finish_plug(&plug);
1153}
1154EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
1155
1156void dm_bufio_release(struct dm_buffer *b)
1157{
1158	struct dm_bufio_client *c = b->c;
1159
1160	dm_bufio_lock(c);
1161
1162	BUG_ON(!b->hold_count);
1163
1164	b->hold_count--;
1165	if (!b->hold_count) {
1166		wake_up(&c->free_buffer_wait);
1167
1168		/*
1169		 * If there were errors on the buffer, and the buffer is not
1170		 * to be written, free the buffer. There is no point in caching
1171		 * invalid buffer.
1172		 */
1173		if ((b->read_error || b->write_error) &&
1174		    !test_bit(B_READING, &b->state) &&
1175		    !test_bit(B_WRITING, &b->state) &&
1176		    !test_bit(B_DIRTY, &b->state)) {
1177			__unlink_buffer(b);
1178			__free_buffer_wake(b);
1179		}
1180	}
1181
1182	dm_bufio_unlock(c);
1183}
1184EXPORT_SYMBOL_GPL(dm_bufio_release);
1185
1186void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
1187{
1188	struct dm_bufio_client *c = b->c;
1189
1190	dm_bufio_lock(c);
1191
1192	BUG_ON(test_bit(B_READING, &b->state));
1193
1194	if (!test_and_set_bit(B_DIRTY, &b->state))
1195		__relink_lru(b, LIST_DIRTY);
1196
1197	dm_bufio_unlock(c);
1198}
1199EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
1200
1201void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
1202{
1203	LIST_HEAD(write_list);
1204
1205	BUG_ON(dm_bufio_in_request());
1206
1207	dm_bufio_lock(c);
1208	__write_dirty_buffers_async(c, 0, &write_list);
1209	dm_bufio_unlock(c);
1210	__flush_write_list(&write_list);
1211}
1212EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
1213
1214/*
1215 * For performance, it is essential that the buffers are written asynchronously
1216 * and simultaneously (so that the block layer can merge the writes) and then
1217 * waited upon.
1218 *
1219 * Finally, we flush hardware disk cache.
1220 */
1221int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
1222{
1223	int a, f;
1224	unsigned long buffers_processed = 0;
1225	struct dm_buffer *b, *tmp;
1226
1227	LIST_HEAD(write_list);
1228
1229	dm_bufio_lock(c);
1230	__write_dirty_buffers_async(c, 0, &write_list);
1231	dm_bufio_unlock(c);
1232	__flush_write_list(&write_list);
1233	dm_bufio_lock(c);
1234
1235again:
1236	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
1237		int dropped_lock = 0;
1238
1239		if (buffers_processed < c->n_buffers[LIST_DIRTY])
1240			buffers_processed++;
1241
1242		BUG_ON(test_bit(B_READING, &b->state));
1243
1244		if (test_bit(B_WRITING, &b->state)) {
1245			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
1246				dropped_lock = 1;
1247				b->hold_count++;
1248				dm_bufio_unlock(c);
1249				wait_on_bit_io(&b->state, B_WRITING,
1250					       TASK_UNINTERRUPTIBLE);
1251				dm_bufio_lock(c);
1252				b->hold_count--;
1253			} else
1254				wait_on_bit_io(&b->state, B_WRITING,
1255					       TASK_UNINTERRUPTIBLE);
1256		}
1257
1258		if (!test_bit(B_DIRTY, &b->state) &&
1259		    !test_bit(B_WRITING, &b->state))
1260			__relink_lru(b, LIST_CLEAN);
1261
1262		dm_bufio_cond_resched();
1263
1264		/*
1265		 * If we dropped the lock, the list is no longer consistent,
1266		 * so we must restart the search.
1267		 *
1268		 * In the most common case, the buffer just processed is
1269		 * relinked to the clean list, so we won't loop scanning the
1270		 * same buffer again and again.
1271		 *
1272		 * This may livelock if there is another thread simultaneously
1273		 * dirtying buffers, so we count the number of buffers walked
1274		 * and if it exceeds the total number of buffers, it means that
1275		 * someone is doing some writes simultaneously with us.  In
1276		 * this case, stop, dropping the lock.
1277		 */
1278		if (dropped_lock)
1279			goto again;
1280	}
1281	wake_up(&c->free_buffer_wait);
1282	dm_bufio_unlock(c);
1283
1284	a = xchg(&c->async_write_error, 0);
1285	f = dm_bufio_issue_flush(c);
1286	if (a)
1287		return a;
1288
1289	return f;
1290}
1291EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
1292
1293/*
1294 * Use dm-io to send and empty barrier flush the device.
1295 */
1296int dm_bufio_issue_flush(struct dm_bufio_client *c)
1297{
1298	struct dm_io_request io_req = {
1299		.bi_rw = WRITE_FLUSH,
1300		.mem.type = DM_IO_KMEM,
1301		.mem.ptr.addr = NULL,
1302		.client = c->dm_io,
1303	};
1304	struct dm_io_region io_reg = {
1305		.bdev = c->bdev,
1306		.sector = 0,
1307		.count = 0,
1308	};
1309
1310	BUG_ON(dm_bufio_in_request());
1311
1312	return dm_io(&io_req, 1, &io_reg, NULL);
1313}
1314EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
1315
1316/*
1317 * We first delete any other buffer that may be at that new location.
1318 *
1319 * Then, we write the buffer to the original location if it was dirty.
1320 *
1321 * Then, if we are the only one who is holding the buffer, relink the buffer
1322 * in the hash queue for the new location.
1323 *
1324 * If there was someone else holding the buffer, we write it to the new
1325 * location but not relink it, because that other user needs to have the buffer
1326 * at the same place.
1327 */
1328void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
1329{
1330	struct dm_bufio_client *c = b->c;
1331	struct dm_buffer *new;
1332
1333	BUG_ON(dm_bufio_in_request());
1334
1335	dm_bufio_lock(c);
1336
1337retry:
1338	new = __find(c, new_block);
1339	if (new) {
1340		if (new->hold_count) {
1341			__wait_for_free_buffer(c);
1342			goto retry;
1343		}
1344
1345		/*
1346		 * FIXME: Is there any point waiting for a write that's going
1347		 * to be overwritten in a bit?
1348		 */
1349		__make_buffer_clean(new);
1350		__unlink_buffer(new);
1351		__free_buffer_wake(new);
1352	}
1353
1354	BUG_ON(!b->hold_count);
1355	BUG_ON(test_bit(B_READING, &b->state));
1356
1357	__write_dirty_buffer(b, NULL);
1358	if (b->hold_count == 1) {
1359		wait_on_bit_io(&b->state, B_WRITING,
1360			       TASK_UNINTERRUPTIBLE);
1361		set_bit(B_DIRTY, &b->state);
1362		__unlink_buffer(b);
1363		__link_buffer(b, new_block, LIST_DIRTY);
1364	} else {
1365		sector_t old_block;
1366		wait_on_bit_lock_io(&b->state, B_WRITING,
1367				    TASK_UNINTERRUPTIBLE);
1368		/*
1369		 * Relink buffer to "new_block" so that write_callback
1370		 * sees "new_block" as a block number.
1371		 * After the write, link the buffer back to old_block.
1372		 * All this must be done in bufio lock, so that block number
1373		 * change isn't visible to other threads.
1374		 */
1375		old_block = b->block;
1376		__unlink_buffer(b);
1377		__link_buffer(b, new_block, b->list_mode);
1378		submit_io(b, WRITE, new_block, write_endio);
1379		wait_on_bit_io(&b->state, B_WRITING,
1380			       TASK_UNINTERRUPTIBLE);
1381		__unlink_buffer(b);
1382		__link_buffer(b, old_block, b->list_mode);
1383	}
1384
1385	dm_bufio_unlock(c);
1386	dm_bufio_release(b);
1387}
1388EXPORT_SYMBOL_GPL(dm_bufio_release_move);
1389
1390/*
1391 * Free the given buffer.
1392 *
1393 * This is just a hint, if the buffer is in use or dirty, this function
1394 * does nothing.
1395 */
1396void dm_bufio_forget(struct dm_bufio_client *c, sector_t block)
1397{
1398	struct dm_buffer *b;
1399
1400	dm_bufio_lock(c);
1401
1402	b = __find(c, block);
1403	if (b && likely(!b->hold_count) && likely(!b->state)) {
1404		__unlink_buffer(b);
1405		__free_buffer_wake(b);
1406	}
1407
1408	dm_bufio_unlock(c);
1409}
1410EXPORT_SYMBOL(dm_bufio_forget);
1411
1412void dm_bufio_set_minimum_buffers(struct dm_bufio_client *c, unsigned n)
1413{
1414	c->minimum_buffers = n;
1415}
1416EXPORT_SYMBOL(dm_bufio_set_minimum_buffers);
1417
1418unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
1419{
1420	return c->block_size;
1421}
1422EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
1423
1424sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
1425{
1426	return i_size_read(c->bdev->bd_inode) >>
1427			   (SECTOR_SHIFT + c->sectors_per_block_bits);
1428}
1429EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
1430
1431sector_t dm_bufio_get_block_number(struct dm_buffer *b)
1432{
1433	return b->block;
1434}
1435EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
1436
1437void *dm_bufio_get_block_data(struct dm_buffer *b)
1438{
1439	return b->data;
1440}
1441EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
1442
1443void *dm_bufio_get_aux_data(struct dm_buffer *b)
1444{
1445	return b + 1;
1446}
1447EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
1448
1449struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
1450{
1451	return b->c;
1452}
1453EXPORT_SYMBOL_GPL(dm_bufio_get_client);
1454
1455static void drop_buffers(struct dm_bufio_client *c)
1456{
1457	struct dm_buffer *b;
1458	int i;
1459
1460	BUG_ON(dm_bufio_in_request());
1461
1462	/*
1463	 * An optimization so that the buffers are not written one-by-one.
1464	 */
1465	dm_bufio_write_dirty_buffers_async(c);
1466
1467	dm_bufio_lock(c);
1468
1469	while ((b = __get_unclaimed_buffer(c)))
1470		__free_buffer_wake(b);
1471
1472	for (i = 0; i < LIST_SIZE; i++)
1473		list_for_each_entry(b, &c->lru[i], lru_list)
1474			DMERR("leaked buffer %llx, hold count %u, list %d",
1475			      (unsigned long long)b->block, b->hold_count, i);
1476
1477	for (i = 0; i < LIST_SIZE; i++)
1478		BUG_ON(!list_empty(&c->lru[i]));
1479
1480	dm_bufio_unlock(c);
1481}
1482
1483/*
1484 * We may not be able to evict this buffer if IO pending or the client
1485 * is still using it.  Caller is expected to know buffer is too old.
1486 *
1487 * And if GFP_NOFS is used, we must not do any I/O because we hold
1488 * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
1489 * rerouted to different bufio client.
1490 */
1491static bool __try_evict_buffer(struct dm_buffer *b, gfp_t gfp)
1492{
1493	if (!(gfp & __GFP_FS)) {
1494		if (test_bit(B_READING, &b->state) ||
1495		    test_bit(B_WRITING, &b->state) ||
1496		    test_bit(B_DIRTY, &b->state))
1497			return false;
1498	}
1499
1500	if (b->hold_count)
1501		return false;
1502
1503	__make_buffer_clean(b);
1504	__unlink_buffer(b);
1505	__free_buffer_wake(b);
1506
1507	return true;
1508}
1509
1510static unsigned get_retain_buffers(struct dm_bufio_client *c)
1511{
1512        unsigned retain_bytes = ACCESS_ONCE(dm_bufio_retain_bytes);
1513        return retain_bytes / c->block_size;
1514}
1515
1516static unsigned long __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
1517			    gfp_t gfp_mask)
1518{
1519	int l;
1520	struct dm_buffer *b, *tmp;
1521	unsigned long freed = 0;
1522	unsigned long count = nr_to_scan;
1523	unsigned retain_target = get_retain_buffers(c);
1524
1525	for (l = 0; l < LIST_SIZE; l++) {
1526		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list) {
1527			if (__try_evict_buffer(b, gfp_mask))
1528				freed++;
1529			if (!--nr_to_scan || ((count - freed) <= retain_target))
1530				return freed;
1531			dm_bufio_cond_resched();
1532		}
1533	}
1534	return freed;
1535}
1536
1537static unsigned long
1538dm_bufio_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1539{
1540	struct dm_bufio_client *c;
1541	unsigned long freed;
1542
1543	c = container_of(shrink, struct dm_bufio_client, shrinker);
1544	if (sc->gfp_mask & __GFP_FS)
1545		dm_bufio_lock(c);
1546	else if (!dm_bufio_trylock(c))
1547		return SHRINK_STOP;
1548
1549	freed  = __scan(c, sc->nr_to_scan, sc->gfp_mask);
1550	dm_bufio_unlock(c);
1551	return freed;
1552}
1553
1554static unsigned long
1555dm_bufio_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1556{
1557	struct dm_bufio_client *c;
1558	unsigned long count;
1559
1560	c = container_of(shrink, struct dm_bufio_client, shrinker);
1561	if (sc->gfp_mask & __GFP_FS)
1562		dm_bufio_lock(c);
1563	else if (!dm_bufio_trylock(c))
1564		return 0;
1565
1566	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1567	dm_bufio_unlock(c);
1568	return count;
1569}
1570
1571/*
1572 * Create the buffering interface
1573 */
1574struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
1575					       unsigned reserved_buffers, unsigned aux_size,
1576					       void (*alloc_callback)(struct dm_buffer *),
1577					       void (*write_callback)(struct dm_buffer *))
1578{
1579	int r;
1580	struct dm_bufio_client *c;
1581	unsigned i;
1582
1583	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
1584	       (block_size & (block_size - 1)));
1585
1586	c = kzalloc(sizeof(*c), GFP_KERNEL);
1587	if (!c) {
1588		r = -ENOMEM;
1589		goto bad_client;
1590	}
1591	c->buffer_tree = RB_ROOT;
1592
1593	c->bdev = bdev;
1594	c->block_size = block_size;
1595	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
1596	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
1597				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
1598	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
1599				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
1600
1601	c->aux_size = aux_size;
1602	c->alloc_callback = alloc_callback;
1603	c->write_callback = write_callback;
1604
1605	for (i = 0; i < LIST_SIZE; i++) {
1606		INIT_LIST_HEAD(&c->lru[i]);
1607		c->n_buffers[i] = 0;
1608	}
1609
1610	mutex_init(&c->lock);
1611	INIT_LIST_HEAD(&c->reserved_buffers);
1612	c->need_reserved_buffers = reserved_buffers;
1613
1614	c->minimum_buffers = DM_BUFIO_MIN_BUFFERS;
1615
1616	init_waitqueue_head(&c->free_buffer_wait);
1617	c->async_write_error = 0;
1618
1619	c->dm_io = dm_io_client_create();
1620	if (IS_ERR(c->dm_io)) {
1621		r = PTR_ERR(c->dm_io);
1622		goto bad_dm_io;
1623	}
1624
1625	mutex_lock(&dm_bufio_clients_lock);
1626	if (c->blocks_per_page_bits) {
1627		if (!DM_BUFIO_CACHE_NAME(c)) {
1628			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
1629			if (!DM_BUFIO_CACHE_NAME(c)) {
1630				r = -ENOMEM;
1631				mutex_unlock(&dm_bufio_clients_lock);
1632				goto bad_cache;
1633			}
1634		}
1635
1636		if (!DM_BUFIO_CACHE(c)) {
1637			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
1638							      c->block_size,
1639							      c->block_size, 0, NULL);
1640			if (!DM_BUFIO_CACHE(c)) {
1641				r = -ENOMEM;
1642				mutex_unlock(&dm_bufio_clients_lock);
1643				goto bad_cache;
1644			}
1645		}
1646	}
1647	mutex_unlock(&dm_bufio_clients_lock);
1648
1649	while (c->need_reserved_buffers) {
1650		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
1651
1652		if (!b) {
1653			r = -ENOMEM;
1654			goto bad_buffer;
1655		}
1656		__free_buffer_wake(b);
1657	}
1658
1659	mutex_lock(&dm_bufio_clients_lock);
1660	dm_bufio_client_count++;
1661	list_add(&c->client_list, &dm_bufio_all_clients);
1662	__cache_size_refresh();
1663	mutex_unlock(&dm_bufio_clients_lock);
1664
1665	c->shrinker.count_objects = dm_bufio_shrink_count;
1666	c->shrinker.scan_objects = dm_bufio_shrink_scan;
1667	c->shrinker.seeks = 1;
1668	c->shrinker.batch = 0;
1669	register_shrinker(&c->shrinker);
1670
1671	return c;
1672
1673bad_buffer:
1674bad_cache:
1675	while (!list_empty(&c->reserved_buffers)) {
1676		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1677						 struct dm_buffer, lru_list);
1678		list_del(&b->lru_list);
1679		free_buffer(b);
1680	}
1681	dm_io_client_destroy(c->dm_io);
1682bad_dm_io:
1683	kfree(c);
1684bad_client:
1685	return ERR_PTR(r);
1686}
1687EXPORT_SYMBOL_GPL(dm_bufio_client_create);
1688
1689/*
1690 * Free the buffering interface.
1691 * It is required that there are no references on any buffers.
1692 */
1693void dm_bufio_client_destroy(struct dm_bufio_client *c)
1694{
1695	unsigned i;
1696
1697	drop_buffers(c);
1698
1699	unregister_shrinker(&c->shrinker);
1700
1701	mutex_lock(&dm_bufio_clients_lock);
1702
1703	list_del(&c->client_list);
1704	dm_bufio_client_count--;
1705	__cache_size_refresh();
1706
1707	mutex_unlock(&dm_bufio_clients_lock);
1708
1709	BUG_ON(!RB_EMPTY_ROOT(&c->buffer_tree));
1710	BUG_ON(c->need_reserved_buffers);
1711
1712	while (!list_empty(&c->reserved_buffers)) {
1713		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
1714						 struct dm_buffer, lru_list);
1715		list_del(&b->lru_list);
1716		free_buffer(b);
1717	}
1718
1719	for (i = 0; i < LIST_SIZE; i++)
1720		if (c->n_buffers[i])
1721			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
1722
1723	for (i = 0; i < LIST_SIZE; i++)
1724		BUG_ON(c->n_buffers[i]);
1725
1726	dm_io_client_destroy(c->dm_io);
1727	kfree(c);
1728}
1729EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
1730
1731static unsigned get_max_age_hz(void)
1732{
1733	unsigned max_age = ACCESS_ONCE(dm_bufio_max_age);
1734
1735	if (max_age > UINT_MAX / HZ)
1736		max_age = UINT_MAX / HZ;
1737
1738	return max_age * HZ;
1739}
1740
1741static bool older_than(struct dm_buffer *b, unsigned long age_hz)
1742{
1743	return time_after_eq(jiffies, b->last_accessed + age_hz);
1744}
1745
1746static void __evict_old_buffers(struct dm_bufio_client *c, unsigned long age_hz)
1747{
1748	struct dm_buffer *b, *tmp;
1749	unsigned retain_target = get_retain_buffers(c);
1750	unsigned count;
1751
1752	dm_bufio_lock(c);
1753
1754	count = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
1755	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_CLEAN], lru_list) {
1756		if (count <= retain_target)
1757			break;
1758
1759		if (!older_than(b, age_hz))
1760			break;
1761
1762		if (__try_evict_buffer(b, 0))
1763			count--;
1764
1765		dm_bufio_cond_resched();
1766	}
1767
1768	dm_bufio_unlock(c);
1769}
1770
1771static void cleanup_old_buffers(void)
1772{
1773	unsigned long max_age_hz = get_max_age_hz();
1774	struct dm_bufio_client *c;
1775
1776	mutex_lock(&dm_bufio_clients_lock);
1777
1778	list_for_each_entry(c, &dm_bufio_all_clients, client_list)
1779		__evict_old_buffers(c, max_age_hz);
1780
1781	mutex_unlock(&dm_bufio_clients_lock);
1782}
1783
1784static struct workqueue_struct *dm_bufio_wq;
1785static struct delayed_work dm_bufio_work;
1786
1787static void work_fn(struct work_struct *w)
1788{
1789	cleanup_old_buffers();
1790
1791	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1792			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1793}
1794
1795/*----------------------------------------------------------------
1796 * Module setup
1797 *--------------------------------------------------------------*/
1798
1799/*
1800 * This is called only once for the whole dm_bufio module.
1801 * It initializes memory limit.
1802 */
1803static int __init dm_bufio_init(void)
1804{
1805	__u64 mem;
1806
1807	dm_bufio_allocated_kmem_cache = 0;
1808	dm_bufio_allocated_get_free_pages = 0;
1809	dm_bufio_allocated_vmalloc = 0;
1810	dm_bufio_current_allocated = 0;
1811
1812	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
1813	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
1814
1815	mem = (__u64)((totalram_pages - totalhigh_pages) *
1816		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
1817
1818	if (mem > ULONG_MAX)
1819		mem = ULONG_MAX;
1820
1821#ifdef CONFIG_MMU
1822	/*
1823	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
1824	 * in fs/proc/internal.h
1825	 */
1826	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
1827		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
1828#endif
1829
1830	dm_bufio_default_cache_size = mem;
1831
1832	mutex_lock(&dm_bufio_clients_lock);
1833	__cache_size_refresh();
1834	mutex_unlock(&dm_bufio_clients_lock);
1835
1836	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
1837	if (!dm_bufio_wq)
1838		return -ENOMEM;
1839
1840	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
1841	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
1842			   DM_BUFIO_WORK_TIMER_SECS * HZ);
1843
1844	return 0;
1845}
1846
1847/*
1848 * This is called once when unloading the dm_bufio module.
1849 */
1850static void __exit dm_bufio_exit(void)
1851{
1852	int bug = 0;
1853	int i;
1854
1855	cancel_delayed_work_sync(&dm_bufio_work);
1856	destroy_workqueue(dm_bufio_wq);
1857
1858	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
1859		struct kmem_cache *kc = dm_bufio_caches[i];
1860
1861		if (kc)
1862			kmem_cache_destroy(kc);
1863	}
1864
1865	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
1866		kfree(dm_bufio_cache_names[i]);
1867
1868	if (dm_bufio_client_count) {
1869		DMCRIT("%s: dm_bufio_client_count leaked: %d",
1870			__func__, dm_bufio_client_count);
1871		bug = 1;
1872	}
1873
1874	if (dm_bufio_current_allocated) {
1875		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
1876			__func__, dm_bufio_current_allocated);
1877		bug = 1;
1878	}
1879
1880	if (dm_bufio_allocated_get_free_pages) {
1881		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
1882		       __func__, dm_bufio_allocated_get_free_pages);
1883		bug = 1;
1884	}
1885
1886	if (dm_bufio_allocated_vmalloc) {
1887		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
1888		       __func__, dm_bufio_allocated_vmalloc);
1889		bug = 1;
1890	}
1891
1892	if (bug)
1893		BUG();
1894}
1895
1896module_init(dm_bufio_init)
1897module_exit(dm_bufio_exit)
1898
1899module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
1900MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
1901
1902module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
1903MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
1904
1905module_param_named(retain_bytes, dm_bufio_retain_bytes, uint, S_IRUGO | S_IWUSR);
1906MODULE_PARM_DESC(retain_bytes, "Try to keep at least this many bytes cached in memory");
1907
1908module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
1909MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
1910
1911module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
1912MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
1913
1914module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
1915MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
1916
1917module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
1918MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
1919
1920module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
1921MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
1922
1923MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
1924MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
1925MODULE_LICENSE("GPL");
1926