1/*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10#include <linux/completion.h>
11#include <linux/err.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/kernel.h>
15#include <linux/bio.h>
16#include <linux/blkdev.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/crypto.h>
20#include <linux/workqueue.h>
21#include <linux/kthread.h>
22#include <linux/backing-dev.h>
23#include <linux/atomic.h>
24#include <linux/scatterlist.h>
25#include <linux/rbtree.h>
26#include <asm/page.h>
27#include <asm/unaligned.h>
28#include <crypto/hash.h>
29#include <crypto/md5.h>
30#include <crypto/algapi.h>
31
32#include <linux/device-mapper.h>
33
34#define DM_MSG_PREFIX "crypt"
35
36/*
37 * context holding the current state of a multi-part conversion
38 */
39struct convert_context {
40	struct completion restart;
41	struct bio *bio_in;
42	struct bio *bio_out;
43	struct bvec_iter iter_in;
44	struct bvec_iter iter_out;
45	sector_t cc_sector;
46	atomic_t cc_pending;
47	struct ablkcipher_request *req;
48};
49
50/*
51 * per bio private data
52 */
53struct dm_crypt_io {
54	struct crypt_config *cc;
55	struct bio *base_bio;
56	struct work_struct work;
57
58	struct convert_context ctx;
59
60	atomic_t io_pending;
61	int error;
62	sector_t sector;
63
64	struct rb_node rb_node;
65} CRYPTO_MINALIGN_ATTR;
66
67struct dm_crypt_request {
68	struct convert_context *ctx;
69	struct scatterlist sg_in;
70	struct scatterlist sg_out;
71	sector_t iv_sector;
72};
73
74struct crypt_config;
75
76struct crypt_iv_operations {
77	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
78		   const char *opts);
79	void (*dtr)(struct crypt_config *cc);
80	int (*init)(struct crypt_config *cc);
81	int (*wipe)(struct crypt_config *cc);
82	int (*generator)(struct crypt_config *cc, u8 *iv,
83			 struct dm_crypt_request *dmreq);
84	int (*post)(struct crypt_config *cc, u8 *iv,
85		    struct dm_crypt_request *dmreq);
86};
87
88struct iv_essiv_private {
89	struct crypto_hash *hash_tfm;
90	u8 *salt;
91};
92
93struct iv_benbi_private {
94	int shift;
95};
96
97#define LMK_SEED_SIZE 64 /* hash + 0 */
98struct iv_lmk_private {
99	struct crypto_shash *hash_tfm;
100	u8 *seed;
101};
102
103#define TCW_WHITENING_SIZE 16
104struct iv_tcw_private {
105	struct crypto_shash *crc32_tfm;
106	u8 *iv_seed;
107	u8 *whitening;
108};
109
110/*
111 * Crypt: maps a linear range of a block device
112 * and encrypts / decrypts at the same time.
113 */
114enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
115	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
116
117/*
118 * The fields in here must be read only after initialization.
119 */
120struct crypt_config {
121	struct dm_dev *dev;
122	sector_t start;
123
124	/*
125	 * pool for per bio private data, crypto requests and
126	 * encryption requeusts/buffer pages
127	 */
128	mempool_t *req_pool;
129	mempool_t *page_pool;
130	struct bio_set *bs;
131	struct mutex bio_alloc_lock;
132
133	struct workqueue_struct *io_queue;
134	struct workqueue_struct *crypt_queue;
135
136	struct task_struct *write_thread;
137	wait_queue_head_t write_thread_wait;
138	struct rb_root write_tree;
139
140	char *cipher;
141	char *cipher_string;
142
143	struct crypt_iv_operations *iv_gen_ops;
144	union {
145		struct iv_essiv_private essiv;
146		struct iv_benbi_private benbi;
147		struct iv_lmk_private lmk;
148		struct iv_tcw_private tcw;
149	} iv_gen_private;
150	sector_t iv_offset;
151	unsigned int iv_size;
152
153	/* ESSIV: struct crypto_cipher *essiv_tfm */
154	void *iv_private;
155	struct crypto_ablkcipher **tfms;
156	unsigned tfms_count;
157
158	/*
159	 * Layout of each crypto request:
160	 *
161	 *   struct ablkcipher_request
162	 *      context
163	 *      padding
164	 *   struct dm_crypt_request
165	 *      padding
166	 *   IV
167	 *
168	 * The padding is added so that dm_crypt_request and the IV are
169	 * correctly aligned.
170	 */
171	unsigned int dmreq_start;
172
173	unsigned int per_bio_data_size;
174
175	unsigned long flags;
176	unsigned int key_size;
177	unsigned int key_parts;      /* independent parts in key buffer */
178	unsigned int key_extra_size; /* additional keys length */
179	u8 key[0];
180};
181
182#define MIN_IOS        16
183
184static void clone_init(struct dm_crypt_io *, struct bio *);
185static void kcryptd_queue_crypt(struct dm_crypt_io *io);
186static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
187
188/*
189 * Use this to access cipher attributes that are the same for each CPU.
190 */
191static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
192{
193	return cc->tfms[0];
194}
195
196/*
197 * Different IV generation algorithms:
198 *
199 * plain: the initial vector is the 32-bit little-endian version of the sector
200 *        number, padded with zeros if necessary.
201 *
202 * plain64: the initial vector is the 64-bit little-endian version of the sector
203 *        number, padded with zeros if necessary.
204 *
205 * essiv: "encrypted sector|salt initial vector", the sector number is
206 *        encrypted with the bulk cipher using a salt as key. The salt
207 *        should be derived from the bulk cipher's key via hashing.
208 *
209 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
210 *        (needed for LRW-32-AES and possible other narrow block modes)
211 *
212 * null: the initial vector is always zero.  Provides compatibility with
213 *       obsolete loop_fish2 devices.  Do not use for new devices.
214 *
215 * lmk:  Compatible implementation of the block chaining mode used
216 *       by the Loop-AES block device encryption system
217 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
218 *       It operates on full 512 byte sectors and uses CBC
219 *       with an IV derived from the sector number, the data and
220 *       optionally extra IV seed.
221 *       This means that after decryption the first block
222 *       of sector must be tweaked according to decrypted data.
223 *       Loop-AES can use three encryption schemes:
224 *         version 1: is plain aes-cbc mode
225 *         version 2: uses 64 multikey scheme with lmk IV generator
226 *         version 3: the same as version 2 with additional IV seed
227 *                   (it uses 65 keys, last key is used as IV seed)
228 *
229 * tcw:  Compatible implementation of the block chaining mode used
230 *       by the TrueCrypt device encryption system (prior to version 4.1).
231 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
232 *       It operates on full 512 byte sectors and uses CBC
233 *       with an IV derived from initial key and the sector number.
234 *       In addition, whitening value is applied on every sector, whitening
235 *       is calculated from initial key, sector number and mixed using CRC32.
236 *       Note that this encryption scheme is vulnerable to watermarking attacks
237 *       and should be used for old compatible containers access only.
238 *
239 * plumb: unimplemented, see:
240 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
241 */
242
243static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
244			      struct dm_crypt_request *dmreq)
245{
246	memset(iv, 0, cc->iv_size);
247	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
248
249	return 0;
250}
251
252static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
253				struct dm_crypt_request *dmreq)
254{
255	memset(iv, 0, cc->iv_size);
256	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
257
258	return 0;
259}
260
261/* Initialise ESSIV - compute salt but no local memory allocations */
262static int crypt_iv_essiv_init(struct crypt_config *cc)
263{
264	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
265	struct hash_desc desc;
266	struct scatterlist sg;
267	struct crypto_cipher *essiv_tfm;
268	int err;
269
270	sg_init_one(&sg, cc->key, cc->key_size);
271	desc.tfm = essiv->hash_tfm;
272	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
273
274	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
275	if (err)
276		return err;
277
278	essiv_tfm = cc->iv_private;
279
280	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
281			    crypto_hash_digestsize(essiv->hash_tfm));
282	if (err)
283		return err;
284
285	return 0;
286}
287
288/* Wipe salt and reset key derived from volume key */
289static int crypt_iv_essiv_wipe(struct crypt_config *cc)
290{
291	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
292	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
293	struct crypto_cipher *essiv_tfm;
294	int r, err = 0;
295
296	memset(essiv->salt, 0, salt_size);
297
298	essiv_tfm = cc->iv_private;
299	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
300	if (r)
301		err = r;
302
303	return err;
304}
305
306/* Set up per cpu cipher state */
307static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
308					     struct dm_target *ti,
309					     u8 *salt, unsigned saltsize)
310{
311	struct crypto_cipher *essiv_tfm;
312	int err;
313
314	/* Setup the essiv_tfm with the given salt */
315	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
316	if (IS_ERR(essiv_tfm)) {
317		ti->error = "Error allocating crypto tfm for ESSIV";
318		return essiv_tfm;
319	}
320
321	if (crypto_cipher_blocksize(essiv_tfm) !=
322	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
323		ti->error = "Block size of ESSIV cipher does "
324			    "not match IV size of block cipher";
325		crypto_free_cipher(essiv_tfm);
326		return ERR_PTR(-EINVAL);
327	}
328
329	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
330	if (err) {
331		ti->error = "Failed to set key for ESSIV cipher";
332		crypto_free_cipher(essiv_tfm);
333		return ERR_PTR(err);
334	}
335
336	return essiv_tfm;
337}
338
339static void crypt_iv_essiv_dtr(struct crypt_config *cc)
340{
341	struct crypto_cipher *essiv_tfm;
342	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
343
344	crypto_free_hash(essiv->hash_tfm);
345	essiv->hash_tfm = NULL;
346
347	kzfree(essiv->salt);
348	essiv->salt = NULL;
349
350	essiv_tfm = cc->iv_private;
351
352	if (essiv_tfm)
353		crypto_free_cipher(essiv_tfm);
354
355	cc->iv_private = NULL;
356}
357
358static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
359			      const char *opts)
360{
361	struct crypto_cipher *essiv_tfm = NULL;
362	struct crypto_hash *hash_tfm = NULL;
363	u8 *salt = NULL;
364	int err;
365
366	if (!opts) {
367		ti->error = "Digest algorithm missing for ESSIV mode";
368		return -EINVAL;
369	}
370
371	/* Allocate hash algorithm */
372	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
373	if (IS_ERR(hash_tfm)) {
374		ti->error = "Error initializing ESSIV hash";
375		err = PTR_ERR(hash_tfm);
376		goto bad;
377	}
378
379	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
380	if (!salt) {
381		ti->error = "Error kmallocing salt storage in ESSIV";
382		err = -ENOMEM;
383		goto bad;
384	}
385
386	cc->iv_gen_private.essiv.salt = salt;
387	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
388
389	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
390				crypto_hash_digestsize(hash_tfm));
391	if (IS_ERR(essiv_tfm)) {
392		crypt_iv_essiv_dtr(cc);
393		return PTR_ERR(essiv_tfm);
394	}
395	cc->iv_private = essiv_tfm;
396
397	return 0;
398
399bad:
400	if (hash_tfm && !IS_ERR(hash_tfm))
401		crypto_free_hash(hash_tfm);
402	kfree(salt);
403	return err;
404}
405
406static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
407			      struct dm_crypt_request *dmreq)
408{
409	struct crypto_cipher *essiv_tfm = cc->iv_private;
410
411	memset(iv, 0, cc->iv_size);
412	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
413	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
414
415	return 0;
416}
417
418static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
419			      const char *opts)
420{
421	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
422	int log = ilog2(bs);
423
424	/* we need to calculate how far we must shift the sector count
425	 * to get the cipher block count, we use this shift in _gen */
426
427	if (1 << log != bs) {
428		ti->error = "cypher blocksize is not a power of 2";
429		return -EINVAL;
430	}
431
432	if (log > 9) {
433		ti->error = "cypher blocksize is > 512";
434		return -EINVAL;
435	}
436
437	cc->iv_gen_private.benbi.shift = 9 - log;
438
439	return 0;
440}
441
442static void crypt_iv_benbi_dtr(struct crypt_config *cc)
443{
444}
445
446static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
447			      struct dm_crypt_request *dmreq)
448{
449	__be64 val;
450
451	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
452
453	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
454	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
455
456	return 0;
457}
458
459static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
460			     struct dm_crypt_request *dmreq)
461{
462	memset(iv, 0, cc->iv_size);
463
464	return 0;
465}
466
467static void crypt_iv_lmk_dtr(struct crypt_config *cc)
468{
469	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
470
471	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
472		crypto_free_shash(lmk->hash_tfm);
473	lmk->hash_tfm = NULL;
474
475	kzfree(lmk->seed);
476	lmk->seed = NULL;
477}
478
479static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
480			    const char *opts)
481{
482	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
483
484	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
485	if (IS_ERR(lmk->hash_tfm)) {
486		ti->error = "Error initializing LMK hash";
487		return PTR_ERR(lmk->hash_tfm);
488	}
489
490	/* No seed in LMK version 2 */
491	if (cc->key_parts == cc->tfms_count) {
492		lmk->seed = NULL;
493		return 0;
494	}
495
496	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
497	if (!lmk->seed) {
498		crypt_iv_lmk_dtr(cc);
499		ti->error = "Error kmallocing seed storage in LMK";
500		return -ENOMEM;
501	}
502
503	return 0;
504}
505
506static int crypt_iv_lmk_init(struct crypt_config *cc)
507{
508	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
509	int subkey_size = cc->key_size / cc->key_parts;
510
511	/* LMK seed is on the position of LMK_KEYS + 1 key */
512	if (lmk->seed)
513		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
514		       crypto_shash_digestsize(lmk->hash_tfm));
515
516	return 0;
517}
518
519static int crypt_iv_lmk_wipe(struct crypt_config *cc)
520{
521	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
522
523	if (lmk->seed)
524		memset(lmk->seed, 0, LMK_SEED_SIZE);
525
526	return 0;
527}
528
529static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
530			    struct dm_crypt_request *dmreq,
531			    u8 *data)
532{
533	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
534	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
535	struct md5_state md5state;
536	__le32 buf[4];
537	int i, r;
538
539	desc->tfm = lmk->hash_tfm;
540	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
541
542	r = crypto_shash_init(desc);
543	if (r)
544		return r;
545
546	if (lmk->seed) {
547		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
548		if (r)
549			return r;
550	}
551
552	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
553	r = crypto_shash_update(desc, data + 16, 16 * 31);
554	if (r)
555		return r;
556
557	/* Sector is cropped to 56 bits here */
558	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
559	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
560	buf[2] = cpu_to_le32(4024);
561	buf[3] = 0;
562	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
563	if (r)
564		return r;
565
566	/* No MD5 padding here */
567	r = crypto_shash_export(desc, &md5state);
568	if (r)
569		return r;
570
571	for (i = 0; i < MD5_HASH_WORDS; i++)
572		__cpu_to_le32s(&md5state.hash[i]);
573	memcpy(iv, &md5state.hash, cc->iv_size);
574
575	return 0;
576}
577
578static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
579			    struct dm_crypt_request *dmreq)
580{
581	u8 *src;
582	int r = 0;
583
584	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
585		src = kmap_atomic(sg_page(&dmreq->sg_in));
586		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
587		kunmap_atomic(src);
588	} else
589		memset(iv, 0, cc->iv_size);
590
591	return r;
592}
593
594static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
595			     struct dm_crypt_request *dmreq)
596{
597	u8 *dst;
598	int r;
599
600	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
601		return 0;
602
603	dst = kmap_atomic(sg_page(&dmreq->sg_out));
604	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
605
606	/* Tweak the first block of plaintext sector */
607	if (!r)
608		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
609
610	kunmap_atomic(dst);
611	return r;
612}
613
614static void crypt_iv_tcw_dtr(struct crypt_config *cc)
615{
616	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
617
618	kzfree(tcw->iv_seed);
619	tcw->iv_seed = NULL;
620	kzfree(tcw->whitening);
621	tcw->whitening = NULL;
622
623	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
624		crypto_free_shash(tcw->crc32_tfm);
625	tcw->crc32_tfm = NULL;
626}
627
628static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
629			    const char *opts)
630{
631	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
632
633	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
634		ti->error = "Wrong key size for TCW";
635		return -EINVAL;
636	}
637
638	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
639	if (IS_ERR(tcw->crc32_tfm)) {
640		ti->error = "Error initializing CRC32 in TCW";
641		return PTR_ERR(tcw->crc32_tfm);
642	}
643
644	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
645	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
646	if (!tcw->iv_seed || !tcw->whitening) {
647		crypt_iv_tcw_dtr(cc);
648		ti->error = "Error allocating seed storage in TCW";
649		return -ENOMEM;
650	}
651
652	return 0;
653}
654
655static int crypt_iv_tcw_init(struct crypt_config *cc)
656{
657	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
658	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
659
660	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
661	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
662	       TCW_WHITENING_SIZE);
663
664	return 0;
665}
666
667static int crypt_iv_tcw_wipe(struct crypt_config *cc)
668{
669	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
670
671	memset(tcw->iv_seed, 0, cc->iv_size);
672	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
673
674	return 0;
675}
676
677static int crypt_iv_tcw_whitening(struct crypt_config *cc,
678				  struct dm_crypt_request *dmreq,
679				  u8 *data)
680{
681	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
682	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
683	u8 buf[TCW_WHITENING_SIZE];
684	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
685	int i, r;
686
687	/* xor whitening with sector number */
688	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
689	crypto_xor(buf, (u8 *)&sector, 8);
690	crypto_xor(&buf[8], (u8 *)&sector, 8);
691
692	/* calculate crc32 for every 32bit part and xor it */
693	desc->tfm = tcw->crc32_tfm;
694	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
695	for (i = 0; i < 4; i++) {
696		r = crypto_shash_init(desc);
697		if (r)
698			goto out;
699		r = crypto_shash_update(desc, &buf[i * 4], 4);
700		if (r)
701			goto out;
702		r = crypto_shash_final(desc, &buf[i * 4]);
703		if (r)
704			goto out;
705	}
706	crypto_xor(&buf[0], &buf[12], 4);
707	crypto_xor(&buf[4], &buf[8], 4);
708
709	/* apply whitening (8 bytes) to whole sector */
710	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
711		crypto_xor(data + i * 8, buf, 8);
712out:
713	memzero_explicit(buf, sizeof(buf));
714	return r;
715}
716
717static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
718			    struct dm_crypt_request *dmreq)
719{
720	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
721	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
722	u8 *src;
723	int r = 0;
724
725	/* Remove whitening from ciphertext */
726	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
727		src = kmap_atomic(sg_page(&dmreq->sg_in));
728		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
729		kunmap_atomic(src);
730	}
731
732	/* Calculate IV */
733	memcpy(iv, tcw->iv_seed, cc->iv_size);
734	crypto_xor(iv, (u8 *)&sector, 8);
735	if (cc->iv_size > 8)
736		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
737
738	return r;
739}
740
741static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
742			     struct dm_crypt_request *dmreq)
743{
744	u8 *dst;
745	int r;
746
747	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
748		return 0;
749
750	/* Apply whitening on ciphertext */
751	dst = kmap_atomic(sg_page(&dmreq->sg_out));
752	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
753	kunmap_atomic(dst);
754
755	return r;
756}
757
758static struct crypt_iv_operations crypt_iv_plain_ops = {
759	.generator = crypt_iv_plain_gen
760};
761
762static struct crypt_iv_operations crypt_iv_plain64_ops = {
763	.generator = crypt_iv_plain64_gen
764};
765
766static struct crypt_iv_operations crypt_iv_essiv_ops = {
767	.ctr       = crypt_iv_essiv_ctr,
768	.dtr       = crypt_iv_essiv_dtr,
769	.init      = crypt_iv_essiv_init,
770	.wipe      = crypt_iv_essiv_wipe,
771	.generator = crypt_iv_essiv_gen
772};
773
774static struct crypt_iv_operations crypt_iv_benbi_ops = {
775	.ctr	   = crypt_iv_benbi_ctr,
776	.dtr	   = crypt_iv_benbi_dtr,
777	.generator = crypt_iv_benbi_gen
778};
779
780static struct crypt_iv_operations crypt_iv_null_ops = {
781	.generator = crypt_iv_null_gen
782};
783
784static struct crypt_iv_operations crypt_iv_lmk_ops = {
785	.ctr	   = crypt_iv_lmk_ctr,
786	.dtr	   = crypt_iv_lmk_dtr,
787	.init	   = crypt_iv_lmk_init,
788	.wipe	   = crypt_iv_lmk_wipe,
789	.generator = crypt_iv_lmk_gen,
790	.post	   = crypt_iv_lmk_post
791};
792
793static struct crypt_iv_operations crypt_iv_tcw_ops = {
794	.ctr	   = crypt_iv_tcw_ctr,
795	.dtr	   = crypt_iv_tcw_dtr,
796	.init	   = crypt_iv_tcw_init,
797	.wipe	   = crypt_iv_tcw_wipe,
798	.generator = crypt_iv_tcw_gen,
799	.post	   = crypt_iv_tcw_post
800};
801
802static void crypt_convert_init(struct crypt_config *cc,
803			       struct convert_context *ctx,
804			       struct bio *bio_out, struct bio *bio_in,
805			       sector_t sector)
806{
807	ctx->bio_in = bio_in;
808	ctx->bio_out = bio_out;
809	if (bio_in)
810		ctx->iter_in = bio_in->bi_iter;
811	if (bio_out)
812		ctx->iter_out = bio_out->bi_iter;
813	ctx->cc_sector = sector + cc->iv_offset;
814	init_completion(&ctx->restart);
815}
816
817static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
818					     struct ablkcipher_request *req)
819{
820	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
821}
822
823static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
824					       struct dm_crypt_request *dmreq)
825{
826	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
827}
828
829static u8 *iv_of_dmreq(struct crypt_config *cc,
830		       struct dm_crypt_request *dmreq)
831{
832	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
833		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
834}
835
836static int crypt_convert_block(struct crypt_config *cc,
837			       struct convert_context *ctx,
838			       struct ablkcipher_request *req)
839{
840	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
841	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
842	struct dm_crypt_request *dmreq;
843	u8 *iv;
844	int r;
845
846	dmreq = dmreq_of_req(cc, req);
847	iv = iv_of_dmreq(cc, dmreq);
848
849	dmreq->iv_sector = ctx->cc_sector;
850	dmreq->ctx = ctx;
851	sg_init_table(&dmreq->sg_in, 1);
852	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
853		    bv_in.bv_offset);
854
855	sg_init_table(&dmreq->sg_out, 1);
856	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
857		    bv_out.bv_offset);
858
859	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
860	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
861
862	if (cc->iv_gen_ops) {
863		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
864		if (r < 0)
865			return r;
866	}
867
868	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
869				     1 << SECTOR_SHIFT, iv);
870
871	if (bio_data_dir(ctx->bio_in) == WRITE)
872		r = crypto_ablkcipher_encrypt(req);
873	else
874		r = crypto_ablkcipher_decrypt(req);
875
876	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
877		r = cc->iv_gen_ops->post(cc, iv, dmreq);
878
879	return r;
880}
881
882static void kcryptd_async_done(struct crypto_async_request *async_req,
883			       int error);
884
885static void crypt_alloc_req(struct crypt_config *cc,
886			    struct convert_context *ctx)
887{
888	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
889
890	if (!ctx->req)
891		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
892
893	ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
894	ablkcipher_request_set_callback(ctx->req,
895	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
896	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
897}
898
899static void crypt_free_req(struct crypt_config *cc,
900			   struct ablkcipher_request *req, struct bio *base_bio)
901{
902	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
903
904	if ((struct ablkcipher_request *)(io + 1) != req)
905		mempool_free(req, cc->req_pool);
906}
907
908/*
909 * Encrypt / decrypt data from one bio to another one (can be the same one)
910 */
911static int crypt_convert(struct crypt_config *cc,
912			 struct convert_context *ctx)
913{
914	int r;
915
916	atomic_set(&ctx->cc_pending, 1);
917
918	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
919
920		crypt_alloc_req(cc, ctx);
921
922		atomic_inc(&ctx->cc_pending);
923
924		r = crypt_convert_block(cc, ctx, ctx->req);
925
926		switch (r) {
927		/* async */
928		case -EBUSY:
929			wait_for_completion(&ctx->restart);
930			reinit_completion(&ctx->restart);
931			/* fall through*/
932		case -EINPROGRESS:
933			ctx->req = NULL;
934			ctx->cc_sector++;
935			continue;
936
937		/* sync */
938		case 0:
939			atomic_dec(&ctx->cc_pending);
940			ctx->cc_sector++;
941			cond_resched();
942			continue;
943
944		/* error */
945		default:
946			atomic_dec(&ctx->cc_pending);
947			return r;
948		}
949	}
950
951	return 0;
952}
953
954static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
955
956/*
957 * Generate a new unfragmented bio with the given size
958 * This should never violate the device limitations (but only because
959 * max_segment_size is being constrained to PAGE_SIZE).
960 *
961 * This function may be called concurrently. If we allocate from the mempool
962 * concurrently, there is a possibility of deadlock. For example, if we have
963 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
964 * the mempool concurrently, it may deadlock in a situation where both processes
965 * have allocated 128 pages and the mempool is exhausted.
966 *
967 * In order to avoid this scenario we allocate the pages under a mutex.
968 *
969 * In order to not degrade performance with excessive locking, we try
970 * non-blocking allocations without a mutex first but on failure we fallback
971 * to blocking allocations with a mutex.
972 */
973static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
974{
975	struct crypt_config *cc = io->cc;
976	struct bio *clone;
977	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
978	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
979	unsigned i, len, remaining_size;
980	struct page *page;
981	struct bio_vec *bvec;
982
983retry:
984	if (unlikely(gfp_mask & __GFP_WAIT))
985		mutex_lock(&cc->bio_alloc_lock);
986
987	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
988	if (!clone)
989		goto return_clone;
990
991	clone_init(io, clone);
992
993	remaining_size = size;
994
995	for (i = 0; i < nr_iovecs; i++) {
996		page = mempool_alloc(cc->page_pool, gfp_mask);
997		if (!page) {
998			crypt_free_buffer_pages(cc, clone);
999			bio_put(clone);
1000			gfp_mask |= __GFP_WAIT;
1001			goto retry;
1002		}
1003
1004		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1005
1006		bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1007		bvec->bv_page = page;
1008		bvec->bv_len = len;
1009		bvec->bv_offset = 0;
1010
1011		clone->bi_iter.bi_size += len;
1012
1013		remaining_size -= len;
1014	}
1015
1016return_clone:
1017	if (unlikely(gfp_mask & __GFP_WAIT))
1018		mutex_unlock(&cc->bio_alloc_lock);
1019
1020	return clone;
1021}
1022
1023static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1024{
1025	unsigned int i;
1026	struct bio_vec *bv;
1027
1028	bio_for_each_segment_all(bv, clone, i) {
1029		BUG_ON(!bv->bv_page);
1030		mempool_free(bv->bv_page, cc->page_pool);
1031		bv->bv_page = NULL;
1032	}
1033}
1034
1035static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1036			  struct bio *bio, sector_t sector)
1037{
1038	io->cc = cc;
1039	io->base_bio = bio;
1040	io->sector = sector;
1041	io->error = 0;
1042	io->ctx.req = NULL;
1043	atomic_set(&io->io_pending, 0);
1044}
1045
1046static void crypt_inc_pending(struct dm_crypt_io *io)
1047{
1048	atomic_inc(&io->io_pending);
1049}
1050
1051/*
1052 * One of the bios was finished. Check for completion of
1053 * the whole request and correctly clean up the buffer.
1054 */
1055static void crypt_dec_pending(struct dm_crypt_io *io)
1056{
1057	struct crypt_config *cc = io->cc;
1058	struct bio *base_bio = io->base_bio;
1059	int error = io->error;
1060
1061	if (!atomic_dec_and_test(&io->io_pending))
1062		return;
1063
1064	if (io->ctx.req)
1065		crypt_free_req(cc, io->ctx.req, base_bio);
1066
1067	bio_endio(base_bio, error);
1068}
1069
1070/*
1071 * kcryptd/kcryptd_io:
1072 *
1073 * Needed because it would be very unwise to do decryption in an
1074 * interrupt context.
1075 *
1076 * kcryptd performs the actual encryption or decryption.
1077 *
1078 * kcryptd_io performs the IO submission.
1079 *
1080 * They must be separated as otherwise the final stages could be
1081 * starved by new requests which can block in the first stages due
1082 * to memory allocation.
1083 *
1084 * The work is done per CPU global for all dm-crypt instances.
1085 * They should not depend on each other and do not block.
1086 */
1087static void crypt_endio(struct bio *clone, int error)
1088{
1089	struct dm_crypt_io *io = clone->bi_private;
1090	struct crypt_config *cc = io->cc;
1091	unsigned rw = bio_data_dir(clone);
1092
1093	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1094		error = -EIO;
1095
1096	/*
1097	 * free the processed pages
1098	 */
1099	if (rw == WRITE)
1100		crypt_free_buffer_pages(cc, clone);
1101
1102	bio_put(clone);
1103
1104	if (rw == READ && !error) {
1105		kcryptd_queue_crypt(io);
1106		return;
1107	}
1108
1109	if (unlikely(error))
1110		io->error = error;
1111
1112	crypt_dec_pending(io);
1113}
1114
1115static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1116{
1117	struct crypt_config *cc = io->cc;
1118
1119	clone->bi_private = io;
1120	clone->bi_end_io  = crypt_endio;
1121	clone->bi_bdev    = cc->dev->bdev;
1122	clone->bi_rw      = io->base_bio->bi_rw;
1123}
1124
1125static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1126{
1127	struct crypt_config *cc = io->cc;
1128	struct bio *clone;
1129
1130	/*
1131	 * We need the original biovec array in order to decrypt
1132	 * the whole bio data *afterwards* -- thanks to immutable
1133	 * biovecs we don't need to worry about the block layer
1134	 * modifying the biovec array; so leverage bio_clone_fast().
1135	 */
1136	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1137	if (!clone)
1138		return 1;
1139
1140	crypt_inc_pending(io);
1141
1142	clone_init(io, clone);
1143	clone->bi_iter.bi_sector = cc->start + io->sector;
1144
1145	generic_make_request(clone);
1146	return 0;
1147}
1148
1149static void kcryptd_io_read_work(struct work_struct *work)
1150{
1151	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1152
1153	crypt_inc_pending(io);
1154	if (kcryptd_io_read(io, GFP_NOIO))
1155		io->error = -ENOMEM;
1156	crypt_dec_pending(io);
1157}
1158
1159static void kcryptd_queue_read(struct dm_crypt_io *io)
1160{
1161	struct crypt_config *cc = io->cc;
1162
1163	INIT_WORK(&io->work, kcryptd_io_read_work);
1164	queue_work(cc->io_queue, &io->work);
1165}
1166
1167static void kcryptd_io_write(struct dm_crypt_io *io)
1168{
1169	struct bio *clone = io->ctx.bio_out;
1170
1171	generic_make_request(clone);
1172}
1173
1174#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1175
1176static int dmcrypt_write(void *data)
1177{
1178	struct crypt_config *cc = data;
1179	struct dm_crypt_io *io;
1180
1181	while (1) {
1182		struct rb_root write_tree;
1183		struct blk_plug plug;
1184
1185		DECLARE_WAITQUEUE(wait, current);
1186
1187		spin_lock_irq(&cc->write_thread_wait.lock);
1188continue_locked:
1189
1190		if (!RB_EMPTY_ROOT(&cc->write_tree))
1191			goto pop_from_list;
1192
1193		__set_current_state(TASK_INTERRUPTIBLE);
1194		__add_wait_queue(&cc->write_thread_wait, &wait);
1195
1196		spin_unlock_irq(&cc->write_thread_wait.lock);
1197
1198		if (unlikely(kthread_should_stop())) {
1199			set_task_state(current, TASK_RUNNING);
1200			remove_wait_queue(&cc->write_thread_wait, &wait);
1201			break;
1202		}
1203
1204		schedule();
1205
1206		set_task_state(current, TASK_RUNNING);
1207		spin_lock_irq(&cc->write_thread_wait.lock);
1208		__remove_wait_queue(&cc->write_thread_wait, &wait);
1209		goto continue_locked;
1210
1211pop_from_list:
1212		write_tree = cc->write_tree;
1213		cc->write_tree = RB_ROOT;
1214		spin_unlock_irq(&cc->write_thread_wait.lock);
1215
1216		BUG_ON(rb_parent(write_tree.rb_node));
1217
1218		/*
1219		 * Note: we cannot walk the tree here with rb_next because
1220		 * the structures may be freed when kcryptd_io_write is called.
1221		 */
1222		blk_start_plug(&plug);
1223		do {
1224			io = crypt_io_from_node(rb_first(&write_tree));
1225			rb_erase(&io->rb_node, &write_tree);
1226			kcryptd_io_write(io);
1227		} while (!RB_EMPTY_ROOT(&write_tree));
1228		blk_finish_plug(&plug);
1229	}
1230	return 0;
1231}
1232
1233static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1234{
1235	struct bio *clone = io->ctx.bio_out;
1236	struct crypt_config *cc = io->cc;
1237	unsigned long flags;
1238	sector_t sector;
1239	struct rb_node **rbp, *parent;
1240
1241	if (unlikely(io->error < 0)) {
1242		crypt_free_buffer_pages(cc, clone);
1243		bio_put(clone);
1244		crypt_dec_pending(io);
1245		return;
1246	}
1247
1248	/* crypt_convert should have filled the clone bio */
1249	BUG_ON(io->ctx.iter_out.bi_size);
1250
1251	clone->bi_iter.bi_sector = cc->start + io->sector;
1252
1253	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1254		generic_make_request(clone);
1255		return;
1256	}
1257
1258	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1259	rbp = &cc->write_tree.rb_node;
1260	parent = NULL;
1261	sector = io->sector;
1262	while (*rbp) {
1263		parent = *rbp;
1264		if (sector < crypt_io_from_node(parent)->sector)
1265			rbp = &(*rbp)->rb_left;
1266		else
1267			rbp = &(*rbp)->rb_right;
1268	}
1269	rb_link_node(&io->rb_node, parent, rbp);
1270	rb_insert_color(&io->rb_node, &cc->write_tree);
1271
1272	wake_up_locked(&cc->write_thread_wait);
1273	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1274}
1275
1276static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1277{
1278	struct crypt_config *cc = io->cc;
1279	struct bio *clone;
1280	int crypt_finished;
1281	sector_t sector = io->sector;
1282	int r;
1283
1284	/*
1285	 * Prevent io from disappearing until this function completes.
1286	 */
1287	crypt_inc_pending(io);
1288	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1289
1290	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1291	if (unlikely(!clone)) {
1292		io->error = -EIO;
1293		goto dec;
1294	}
1295
1296	io->ctx.bio_out = clone;
1297	io->ctx.iter_out = clone->bi_iter;
1298
1299	sector += bio_sectors(clone);
1300
1301	crypt_inc_pending(io);
1302	r = crypt_convert(cc, &io->ctx);
1303	if (r)
1304		io->error = -EIO;
1305	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1306
1307	/* Encryption was already finished, submit io now */
1308	if (crypt_finished) {
1309		kcryptd_crypt_write_io_submit(io, 0);
1310		io->sector = sector;
1311	}
1312
1313dec:
1314	crypt_dec_pending(io);
1315}
1316
1317static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1318{
1319	crypt_dec_pending(io);
1320}
1321
1322static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1323{
1324	struct crypt_config *cc = io->cc;
1325	int r = 0;
1326
1327	crypt_inc_pending(io);
1328
1329	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1330			   io->sector);
1331
1332	r = crypt_convert(cc, &io->ctx);
1333	if (r < 0)
1334		io->error = -EIO;
1335
1336	if (atomic_dec_and_test(&io->ctx.cc_pending))
1337		kcryptd_crypt_read_done(io);
1338
1339	crypt_dec_pending(io);
1340}
1341
1342static void kcryptd_async_done(struct crypto_async_request *async_req,
1343			       int error)
1344{
1345	struct dm_crypt_request *dmreq = async_req->data;
1346	struct convert_context *ctx = dmreq->ctx;
1347	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1348	struct crypt_config *cc = io->cc;
1349
1350	if (error == -EINPROGRESS) {
1351		complete(&ctx->restart);
1352		return;
1353	}
1354
1355	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1356		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1357
1358	if (error < 0)
1359		io->error = -EIO;
1360
1361	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1362
1363	if (!atomic_dec_and_test(&ctx->cc_pending))
1364		return;
1365
1366	if (bio_data_dir(io->base_bio) == READ)
1367		kcryptd_crypt_read_done(io);
1368	else
1369		kcryptd_crypt_write_io_submit(io, 1);
1370}
1371
1372static void kcryptd_crypt(struct work_struct *work)
1373{
1374	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1375
1376	if (bio_data_dir(io->base_bio) == READ)
1377		kcryptd_crypt_read_convert(io);
1378	else
1379		kcryptd_crypt_write_convert(io);
1380}
1381
1382static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1383{
1384	struct crypt_config *cc = io->cc;
1385
1386	INIT_WORK(&io->work, kcryptd_crypt);
1387	queue_work(cc->crypt_queue, &io->work);
1388}
1389
1390/*
1391 * Decode key from its hex representation
1392 */
1393static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1394{
1395	char buffer[3];
1396	unsigned int i;
1397
1398	buffer[2] = '\0';
1399
1400	for (i = 0; i < size; i++) {
1401		buffer[0] = *hex++;
1402		buffer[1] = *hex++;
1403
1404		if (kstrtou8(buffer, 16, &key[i]))
1405			return -EINVAL;
1406	}
1407
1408	if (*hex != '\0')
1409		return -EINVAL;
1410
1411	return 0;
1412}
1413
1414static void crypt_free_tfms(struct crypt_config *cc)
1415{
1416	unsigned i;
1417
1418	if (!cc->tfms)
1419		return;
1420
1421	for (i = 0; i < cc->tfms_count; i++)
1422		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1423			crypto_free_ablkcipher(cc->tfms[i]);
1424			cc->tfms[i] = NULL;
1425		}
1426
1427	kfree(cc->tfms);
1428	cc->tfms = NULL;
1429}
1430
1431static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1432{
1433	unsigned i;
1434	int err;
1435
1436	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1437			   GFP_KERNEL);
1438	if (!cc->tfms)
1439		return -ENOMEM;
1440
1441	for (i = 0; i < cc->tfms_count; i++) {
1442		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1443		if (IS_ERR(cc->tfms[i])) {
1444			err = PTR_ERR(cc->tfms[i]);
1445			crypt_free_tfms(cc);
1446			return err;
1447		}
1448	}
1449
1450	return 0;
1451}
1452
1453static int crypt_setkey_allcpus(struct crypt_config *cc)
1454{
1455	unsigned subkey_size;
1456	int err = 0, i, r;
1457
1458	/* Ignore extra keys (which are used for IV etc) */
1459	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1460
1461	for (i = 0; i < cc->tfms_count; i++) {
1462		r = crypto_ablkcipher_setkey(cc->tfms[i],
1463					     cc->key + (i * subkey_size),
1464					     subkey_size);
1465		if (r)
1466			err = r;
1467	}
1468
1469	return err;
1470}
1471
1472static int crypt_set_key(struct crypt_config *cc, char *key)
1473{
1474	int r = -EINVAL;
1475	int key_string_len = strlen(key);
1476
1477	/* The key size may not be changed. */
1478	if (cc->key_size != (key_string_len >> 1))
1479		goto out;
1480
1481	/* Hyphen (which gives a key_size of zero) means there is no key. */
1482	if (!cc->key_size && strcmp(key, "-"))
1483		goto out;
1484
1485	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1486		goto out;
1487
1488	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1489
1490	r = crypt_setkey_allcpus(cc);
1491
1492out:
1493	/* Hex key string not needed after here, so wipe it. */
1494	memset(key, '0', key_string_len);
1495
1496	return r;
1497}
1498
1499static int crypt_wipe_key(struct crypt_config *cc)
1500{
1501	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1502	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1503
1504	return crypt_setkey_allcpus(cc);
1505}
1506
1507static void crypt_dtr(struct dm_target *ti)
1508{
1509	struct crypt_config *cc = ti->private;
1510
1511	ti->private = NULL;
1512
1513	if (!cc)
1514		return;
1515
1516	if (cc->write_thread)
1517		kthread_stop(cc->write_thread);
1518
1519	if (cc->io_queue)
1520		destroy_workqueue(cc->io_queue);
1521	if (cc->crypt_queue)
1522		destroy_workqueue(cc->crypt_queue);
1523
1524	crypt_free_tfms(cc);
1525
1526	if (cc->bs)
1527		bioset_free(cc->bs);
1528
1529	if (cc->page_pool)
1530		mempool_destroy(cc->page_pool);
1531	if (cc->req_pool)
1532		mempool_destroy(cc->req_pool);
1533
1534	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1535		cc->iv_gen_ops->dtr(cc);
1536
1537	if (cc->dev)
1538		dm_put_device(ti, cc->dev);
1539
1540	kzfree(cc->cipher);
1541	kzfree(cc->cipher_string);
1542
1543	/* Must zero key material before freeing */
1544	kzfree(cc);
1545}
1546
1547static int crypt_ctr_cipher(struct dm_target *ti,
1548			    char *cipher_in, char *key)
1549{
1550	struct crypt_config *cc = ti->private;
1551	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1552	char *cipher_api = NULL;
1553	int ret = -EINVAL;
1554	char dummy;
1555
1556	/* Convert to crypto api definition? */
1557	if (strchr(cipher_in, '(')) {
1558		ti->error = "Bad cipher specification";
1559		return -EINVAL;
1560	}
1561
1562	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1563	if (!cc->cipher_string)
1564		goto bad_mem;
1565
1566	/*
1567	 * Legacy dm-crypt cipher specification
1568	 * cipher[:keycount]-mode-iv:ivopts
1569	 */
1570	tmp = cipher_in;
1571	keycount = strsep(&tmp, "-");
1572	cipher = strsep(&keycount, ":");
1573
1574	if (!keycount)
1575		cc->tfms_count = 1;
1576	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1577		 !is_power_of_2(cc->tfms_count)) {
1578		ti->error = "Bad cipher key count specification";
1579		return -EINVAL;
1580	}
1581	cc->key_parts = cc->tfms_count;
1582	cc->key_extra_size = 0;
1583
1584	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1585	if (!cc->cipher)
1586		goto bad_mem;
1587
1588	chainmode = strsep(&tmp, "-");
1589	ivopts = strsep(&tmp, "-");
1590	ivmode = strsep(&ivopts, ":");
1591
1592	if (tmp)
1593		DMWARN("Ignoring unexpected additional cipher options");
1594
1595	/*
1596	 * For compatibility with the original dm-crypt mapping format, if
1597	 * only the cipher name is supplied, use cbc-plain.
1598	 */
1599	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1600		chainmode = "cbc";
1601		ivmode = "plain";
1602	}
1603
1604	if (strcmp(chainmode, "ecb") && !ivmode) {
1605		ti->error = "IV mechanism required";
1606		return -EINVAL;
1607	}
1608
1609	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1610	if (!cipher_api)
1611		goto bad_mem;
1612
1613	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1614		       "%s(%s)", chainmode, cipher);
1615	if (ret < 0) {
1616		kfree(cipher_api);
1617		goto bad_mem;
1618	}
1619
1620	/* Allocate cipher */
1621	ret = crypt_alloc_tfms(cc, cipher_api);
1622	if (ret < 0) {
1623		ti->error = "Error allocating crypto tfm";
1624		goto bad;
1625	}
1626
1627	/* Initialize IV */
1628	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1629	if (cc->iv_size)
1630		/* at least a 64 bit sector number should fit in our buffer */
1631		cc->iv_size = max(cc->iv_size,
1632				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1633	else if (ivmode) {
1634		DMWARN("Selected cipher does not support IVs");
1635		ivmode = NULL;
1636	}
1637
1638	/* Choose ivmode, see comments at iv code. */
1639	if (ivmode == NULL)
1640		cc->iv_gen_ops = NULL;
1641	else if (strcmp(ivmode, "plain") == 0)
1642		cc->iv_gen_ops = &crypt_iv_plain_ops;
1643	else if (strcmp(ivmode, "plain64") == 0)
1644		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1645	else if (strcmp(ivmode, "essiv") == 0)
1646		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1647	else if (strcmp(ivmode, "benbi") == 0)
1648		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1649	else if (strcmp(ivmode, "null") == 0)
1650		cc->iv_gen_ops = &crypt_iv_null_ops;
1651	else if (strcmp(ivmode, "lmk") == 0) {
1652		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1653		/*
1654		 * Version 2 and 3 is recognised according
1655		 * to length of provided multi-key string.
1656		 * If present (version 3), last key is used as IV seed.
1657		 * All keys (including IV seed) are always the same size.
1658		 */
1659		if (cc->key_size % cc->key_parts) {
1660			cc->key_parts++;
1661			cc->key_extra_size = cc->key_size / cc->key_parts;
1662		}
1663	} else if (strcmp(ivmode, "tcw") == 0) {
1664		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1665		cc->key_parts += 2; /* IV + whitening */
1666		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1667	} else {
1668		ret = -EINVAL;
1669		ti->error = "Invalid IV mode";
1670		goto bad;
1671	}
1672
1673	/* Initialize and set key */
1674	ret = crypt_set_key(cc, key);
1675	if (ret < 0) {
1676		ti->error = "Error decoding and setting key";
1677		goto bad;
1678	}
1679
1680	/* Allocate IV */
1681	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1682		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1683		if (ret < 0) {
1684			ti->error = "Error creating IV";
1685			goto bad;
1686		}
1687	}
1688
1689	/* Initialize IV (set keys for ESSIV etc) */
1690	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1691		ret = cc->iv_gen_ops->init(cc);
1692		if (ret < 0) {
1693			ti->error = "Error initialising IV";
1694			goto bad;
1695		}
1696	}
1697
1698	ret = 0;
1699bad:
1700	kfree(cipher_api);
1701	return ret;
1702
1703bad_mem:
1704	ti->error = "Cannot allocate cipher strings";
1705	return -ENOMEM;
1706}
1707
1708/*
1709 * Construct an encryption mapping:
1710 * <cipher> <key> <iv_offset> <dev_path> <start>
1711 */
1712static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1713{
1714	struct crypt_config *cc;
1715	unsigned int key_size, opt_params;
1716	unsigned long long tmpll;
1717	int ret;
1718	size_t iv_size_padding;
1719	struct dm_arg_set as;
1720	const char *opt_string;
1721	char dummy;
1722
1723	static struct dm_arg _args[] = {
1724		{0, 3, "Invalid number of feature args"},
1725	};
1726
1727	if (argc < 5) {
1728		ti->error = "Not enough arguments";
1729		return -EINVAL;
1730	}
1731
1732	key_size = strlen(argv[1]) >> 1;
1733
1734	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1735	if (!cc) {
1736		ti->error = "Cannot allocate encryption context";
1737		return -ENOMEM;
1738	}
1739	cc->key_size = key_size;
1740
1741	ti->private = cc;
1742	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1743	if (ret < 0)
1744		goto bad;
1745
1746	cc->dmreq_start = sizeof(struct ablkcipher_request);
1747	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1748	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1749
1750	if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1751		/* Allocate the padding exactly */
1752		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1753				& crypto_ablkcipher_alignmask(any_tfm(cc));
1754	} else {
1755		/*
1756		 * If the cipher requires greater alignment than kmalloc
1757		 * alignment, we don't know the exact position of the
1758		 * initialization vector. We must assume worst case.
1759		 */
1760		iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1761	}
1762
1763	ret = -ENOMEM;
1764	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1765			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1766	if (!cc->req_pool) {
1767		ti->error = "Cannot allocate crypt request mempool";
1768		goto bad;
1769	}
1770
1771	cc->per_bio_data_size = ti->per_bio_data_size =
1772		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1773		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1774		      ARCH_KMALLOC_MINALIGN);
1775
1776	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1777	if (!cc->page_pool) {
1778		ti->error = "Cannot allocate page mempool";
1779		goto bad;
1780	}
1781
1782	cc->bs = bioset_create(MIN_IOS, 0);
1783	if (!cc->bs) {
1784		ti->error = "Cannot allocate crypt bioset";
1785		goto bad;
1786	}
1787
1788	mutex_init(&cc->bio_alloc_lock);
1789
1790	ret = -EINVAL;
1791	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1792		ti->error = "Invalid iv_offset sector";
1793		goto bad;
1794	}
1795	cc->iv_offset = tmpll;
1796
1797	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1798		ti->error = "Device lookup failed";
1799		goto bad;
1800	}
1801
1802	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1803		ti->error = "Invalid device sector";
1804		goto bad;
1805	}
1806	cc->start = tmpll;
1807
1808	argv += 5;
1809	argc -= 5;
1810
1811	/* Optional parameters */
1812	if (argc) {
1813		as.argc = argc;
1814		as.argv = argv;
1815
1816		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1817		if (ret)
1818			goto bad;
1819
1820		ret = -EINVAL;
1821		while (opt_params--) {
1822			opt_string = dm_shift_arg(&as);
1823			if (!opt_string) {
1824				ti->error = "Not enough feature arguments";
1825				goto bad;
1826			}
1827
1828			if (!strcasecmp(opt_string, "allow_discards"))
1829				ti->num_discard_bios = 1;
1830
1831			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1832				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1833
1834			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1835				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1836
1837			else {
1838				ti->error = "Invalid feature arguments";
1839				goto bad;
1840			}
1841		}
1842	}
1843
1844	ret = -ENOMEM;
1845	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1846	if (!cc->io_queue) {
1847		ti->error = "Couldn't create kcryptd io queue";
1848		goto bad;
1849	}
1850
1851	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1852		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1853	else
1854		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1855						  num_online_cpus());
1856	if (!cc->crypt_queue) {
1857		ti->error = "Couldn't create kcryptd queue";
1858		goto bad;
1859	}
1860
1861	init_waitqueue_head(&cc->write_thread_wait);
1862	cc->write_tree = RB_ROOT;
1863
1864	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1865	if (IS_ERR(cc->write_thread)) {
1866		ret = PTR_ERR(cc->write_thread);
1867		cc->write_thread = NULL;
1868		ti->error = "Couldn't spawn write thread";
1869		goto bad;
1870	}
1871	wake_up_process(cc->write_thread);
1872
1873	ti->num_flush_bios = 1;
1874	ti->discard_zeroes_data_unsupported = true;
1875
1876	return 0;
1877
1878bad:
1879	crypt_dtr(ti);
1880	return ret;
1881}
1882
1883static int crypt_map(struct dm_target *ti, struct bio *bio)
1884{
1885	struct dm_crypt_io *io;
1886	struct crypt_config *cc = ti->private;
1887
1888	/*
1889	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1890	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1891	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1892	 */
1893	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1894		bio->bi_bdev = cc->dev->bdev;
1895		if (bio_sectors(bio))
1896			bio->bi_iter.bi_sector = cc->start +
1897				dm_target_offset(ti, bio->bi_iter.bi_sector);
1898		return DM_MAPIO_REMAPPED;
1899	}
1900
1901	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1902	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1903	io->ctx.req = (struct ablkcipher_request *)(io + 1);
1904
1905	if (bio_data_dir(io->base_bio) == READ) {
1906		if (kcryptd_io_read(io, GFP_NOWAIT))
1907			kcryptd_queue_read(io);
1908	} else
1909		kcryptd_queue_crypt(io);
1910
1911	return DM_MAPIO_SUBMITTED;
1912}
1913
1914static void crypt_status(struct dm_target *ti, status_type_t type,
1915			 unsigned status_flags, char *result, unsigned maxlen)
1916{
1917	struct crypt_config *cc = ti->private;
1918	unsigned i, sz = 0;
1919	int num_feature_args = 0;
1920
1921	switch (type) {
1922	case STATUSTYPE_INFO:
1923		result[0] = '\0';
1924		break;
1925
1926	case STATUSTYPE_TABLE:
1927		DMEMIT("%s ", cc->cipher_string);
1928
1929		if (cc->key_size > 0)
1930			for (i = 0; i < cc->key_size; i++)
1931				DMEMIT("%02x", cc->key[i]);
1932		else
1933			DMEMIT("-");
1934
1935		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1936				cc->dev->name, (unsigned long long)cc->start);
1937
1938		num_feature_args += !!ti->num_discard_bios;
1939		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1940		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1941		if (num_feature_args) {
1942			DMEMIT(" %d", num_feature_args);
1943			if (ti->num_discard_bios)
1944				DMEMIT(" allow_discards");
1945			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1946				DMEMIT(" same_cpu_crypt");
1947			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1948				DMEMIT(" submit_from_crypt_cpus");
1949		}
1950
1951		break;
1952	}
1953}
1954
1955static void crypt_postsuspend(struct dm_target *ti)
1956{
1957	struct crypt_config *cc = ti->private;
1958
1959	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1960}
1961
1962static int crypt_preresume(struct dm_target *ti)
1963{
1964	struct crypt_config *cc = ti->private;
1965
1966	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1967		DMERR("aborting resume - crypt key is not set.");
1968		return -EAGAIN;
1969	}
1970
1971	return 0;
1972}
1973
1974static void crypt_resume(struct dm_target *ti)
1975{
1976	struct crypt_config *cc = ti->private;
1977
1978	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1979}
1980
1981/* Message interface
1982 *	key set <key>
1983 *	key wipe
1984 */
1985static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1986{
1987	struct crypt_config *cc = ti->private;
1988	int ret = -EINVAL;
1989
1990	if (argc < 2)
1991		goto error;
1992
1993	if (!strcasecmp(argv[0], "key")) {
1994		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1995			DMWARN("not suspended during key manipulation.");
1996			return -EINVAL;
1997		}
1998		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1999			ret = crypt_set_key(cc, argv[2]);
2000			if (ret)
2001				return ret;
2002			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2003				ret = cc->iv_gen_ops->init(cc);
2004			return ret;
2005		}
2006		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2007			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2008				ret = cc->iv_gen_ops->wipe(cc);
2009				if (ret)
2010					return ret;
2011			}
2012			return crypt_wipe_key(cc);
2013		}
2014	}
2015
2016error:
2017	DMWARN("unrecognised message received.");
2018	return -EINVAL;
2019}
2020
2021static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2022		       struct bio_vec *biovec, int max_size)
2023{
2024	struct crypt_config *cc = ti->private;
2025	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
2026
2027	if (!q->merge_bvec_fn)
2028		return max_size;
2029
2030	bvm->bi_bdev = cc->dev->bdev;
2031	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
2032
2033	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2034}
2035
2036static int crypt_iterate_devices(struct dm_target *ti,
2037				 iterate_devices_callout_fn fn, void *data)
2038{
2039	struct crypt_config *cc = ti->private;
2040
2041	return fn(ti, cc->dev, cc->start, ti->len, data);
2042}
2043
2044static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2045{
2046	/*
2047	 * Unfortunate constraint that is required to avoid the potential
2048	 * for exceeding underlying device's max_segments limits -- due to
2049	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2050	 * bio that are not as physically contiguous as the original bio.
2051	 */
2052	limits->max_segment_size = PAGE_SIZE;
2053}
2054
2055static struct target_type crypt_target = {
2056	.name   = "crypt",
2057	.version = {1, 14, 1},
2058	.module = THIS_MODULE,
2059	.ctr    = crypt_ctr,
2060	.dtr    = crypt_dtr,
2061	.map    = crypt_map,
2062	.status = crypt_status,
2063	.postsuspend = crypt_postsuspend,
2064	.preresume = crypt_preresume,
2065	.resume = crypt_resume,
2066	.message = crypt_message,
2067	.merge  = crypt_merge,
2068	.iterate_devices = crypt_iterate_devices,
2069	.io_hints = crypt_io_hints,
2070};
2071
2072static int __init dm_crypt_init(void)
2073{
2074	int r;
2075
2076	r = dm_register_target(&crypt_target);
2077	if (r < 0)
2078		DMERR("register failed %d", r);
2079
2080	return r;
2081}
2082
2083static void __exit dm_crypt_exit(void)
2084{
2085	dm_unregister_target(&crypt_target);
2086}
2087
2088module_init(dm_crypt_init);
2089module_exit(dm_crypt_exit);
2090
2091MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2092MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2093MODULE_LICENSE("GPL");
2094