1/* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20#include <linux/moduleparam.h> 21#include <linux/module.h> 22#include <linux/init.h> 23 24#include <linux/kernel.h> 25#include <linux/fs.h> 26#include <linux/slab.h> 27#include <linux/errno.h> 28#include <linux/hdreg.h> 29#include <linux/kdev_t.h> 30#include <linux/blkdev.h> 31#include <linux/mutex.h> 32#include <linux/scatterlist.h> 33#include <linux/string_helpers.h> 34#include <linux/delay.h> 35#include <linux/capability.h> 36#include <linux/compat.h> 37#include <linux/pm_runtime.h> 38 39#include <linux/mmc/ioctl.h> 40#include <linux/mmc/card.h> 41#include <linux/mmc/host.h> 42#include <linux/mmc/mmc.h> 43#include <linux/mmc/sd.h> 44 45#include <asm/uaccess.h> 46 47#include "queue.h" 48 49MODULE_ALIAS("mmc:block"); 50#ifdef MODULE_PARAM_PREFIX 51#undef MODULE_PARAM_PREFIX 52#endif 53#define MODULE_PARAM_PREFIX "mmcblk." 54 55#define INAND_CMD38_ARG_EXT_CSD 113 56#define INAND_CMD38_ARG_ERASE 0x00 57#define INAND_CMD38_ARG_TRIM 0x01 58#define INAND_CMD38_ARG_SECERASE 0x80 59#define INAND_CMD38_ARG_SECTRIM1 0x81 60#define INAND_CMD38_ARG_SECTRIM2 0x88 61#define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 62#define MMC_SANITIZE_REQ_TIMEOUT 240000 63#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 64 65#define mmc_req_rel_wr(req) (((req->cmd_flags & REQ_FUA) || \ 66 (req->cmd_flags & REQ_META)) && \ 67 (rq_data_dir(req) == WRITE)) 68#define PACKED_CMD_VER 0x01 69#define PACKED_CMD_WR 0x02 70 71static DEFINE_MUTEX(block_mutex); 72 73/* 74 * The defaults come from config options but can be overriden by module 75 * or bootarg options. 76 */ 77static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 78 79/* 80 * We've only got one major, so number of mmcblk devices is 81 * limited to (1 << 20) / number of minors per device. It is also 82 * currently limited by the size of the static bitmaps below. 83 */ 84static int max_devices; 85 86#define MAX_DEVICES 256 87 88/* TODO: Replace these with struct ida */ 89static DECLARE_BITMAP(dev_use, MAX_DEVICES); 90static DECLARE_BITMAP(name_use, MAX_DEVICES); 91 92/* 93 * There is one mmc_blk_data per slot. 94 */ 95struct mmc_blk_data { 96 spinlock_t lock; 97 struct gendisk *disk; 98 struct mmc_queue queue; 99 struct list_head part; 100 101 unsigned int flags; 102#define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 103#define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 104#define MMC_BLK_PACKED_CMD (1 << 2) /* MMC packed command support */ 105 106 unsigned int usage; 107 unsigned int read_only; 108 unsigned int part_type; 109 unsigned int name_idx; 110 unsigned int reset_done; 111#define MMC_BLK_READ BIT(0) 112#define MMC_BLK_WRITE BIT(1) 113#define MMC_BLK_DISCARD BIT(2) 114#define MMC_BLK_SECDISCARD BIT(3) 115 116 /* 117 * Only set in main mmc_blk_data associated 118 * with mmc_card with dev_set_drvdata, and keeps 119 * track of the current selected device partition. 120 */ 121 unsigned int part_curr; 122 struct device_attribute force_ro; 123 struct device_attribute power_ro_lock; 124 int area_type; 125}; 126 127static DEFINE_MUTEX(open_lock); 128 129enum { 130 MMC_PACKED_NR_IDX = -1, 131 MMC_PACKED_NR_ZERO, 132 MMC_PACKED_NR_SINGLE, 133}; 134 135module_param(perdev_minors, int, 0444); 136MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 137 138static inline int mmc_blk_part_switch(struct mmc_card *card, 139 struct mmc_blk_data *md); 140static int get_card_status(struct mmc_card *card, u32 *status, int retries); 141 142static inline void mmc_blk_clear_packed(struct mmc_queue_req *mqrq) 143{ 144 struct mmc_packed *packed = mqrq->packed; 145 146 BUG_ON(!packed); 147 148 mqrq->cmd_type = MMC_PACKED_NONE; 149 packed->nr_entries = MMC_PACKED_NR_ZERO; 150 packed->idx_failure = MMC_PACKED_NR_IDX; 151 packed->retries = 0; 152 packed->blocks = 0; 153} 154 155static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 156{ 157 struct mmc_blk_data *md; 158 159 mutex_lock(&open_lock); 160 md = disk->private_data; 161 if (md && md->usage == 0) 162 md = NULL; 163 if (md) 164 md->usage++; 165 mutex_unlock(&open_lock); 166 167 return md; 168} 169 170static inline int mmc_get_devidx(struct gendisk *disk) 171{ 172 int devmaj = MAJOR(disk_devt(disk)); 173 int devidx = MINOR(disk_devt(disk)) / perdev_minors; 174 175 if (!devmaj) 176 devidx = disk->first_minor / perdev_minors; 177 return devidx; 178} 179 180static void mmc_blk_put(struct mmc_blk_data *md) 181{ 182 mutex_lock(&open_lock); 183 md->usage--; 184 if (md->usage == 0) { 185 int devidx = mmc_get_devidx(md->disk); 186 blk_cleanup_queue(md->queue.queue); 187 188 __clear_bit(devidx, dev_use); 189 190 put_disk(md->disk); 191 kfree(md); 192 } 193 mutex_unlock(&open_lock); 194} 195 196static ssize_t power_ro_lock_show(struct device *dev, 197 struct device_attribute *attr, char *buf) 198{ 199 int ret; 200 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 201 struct mmc_card *card = md->queue.card; 202 int locked = 0; 203 204 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 205 locked = 2; 206 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 207 locked = 1; 208 209 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 210 211 mmc_blk_put(md); 212 213 return ret; 214} 215 216static ssize_t power_ro_lock_store(struct device *dev, 217 struct device_attribute *attr, const char *buf, size_t count) 218{ 219 int ret; 220 struct mmc_blk_data *md, *part_md; 221 struct mmc_card *card; 222 unsigned long set; 223 224 if (kstrtoul(buf, 0, &set)) 225 return -EINVAL; 226 227 if (set != 1) 228 return count; 229 230 md = mmc_blk_get(dev_to_disk(dev)); 231 card = md->queue.card; 232 233 mmc_get_card(card); 234 235 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 236 card->ext_csd.boot_ro_lock | 237 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 238 card->ext_csd.part_time); 239 if (ret) 240 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret); 241 else 242 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN; 243 244 mmc_put_card(card); 245 246 if (!ret) { 247 pr_info("%s: Locking boot partition ro until next power on\n", 248 md->disk->disk_name); 249 set_disk_ro(md->disk, 1); 250 251 list_for_each_entry(part_md, &md->part, part) 252 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 253 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 254 set_disk_ro(part_md->disk, 1); 255 } 256 } 257 258 mmc_blk_put(md); 259 return count; 260} 261 262static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 263 char *buf) 264{ 265 int ret; 266 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 267 268 ret = snprintf(buf, PAGE_SIZE, "%d\n", 269 get_disk_ro(dev_to_disk(dev)) ^ 270 md->read_only); 271 mmc_blk_put(md); 272 return ret; 273} 274 275static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 276 const char *buf, size_t count) 277{ 278 int ret; 279 char *end; 280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 281 unsigned long set = simple_strtoul(buf, &end, 0); 282 if (end == buf) { 283 ret = -EINVAL; 284 goto out; 285 } 286 287 set_disk_ro(dev_to_disk(dev), set || md->read_only); 288 ret = count; 289out: 290 mmc_blk_put(md); 291 return ret; 292} 293 294static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 295{ 296 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 297 int ret = -ENXIO; 298 299 mutex_lock(&block_mutex); 300 if (md) { 301 if (md->usage == 2) 302 check_disk_change(bdev); 303 ret = 0; 304 305 if ((mode & FMODE_WRITE) && md->read_only) { 306 mmc_blk_put(md); 307 ret = -EROFS; 308 } 309 } 310 mutex_unlock(&block_mutex); 311 312 return ret; 313} 314 315static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 316{ 317 struct mmc_blk_data *md = disk->private_data; 318 319 mutex_lock(&block_mutex); 320 mmc_blk_put(md); 321 mutex_unlock(&block_mutex); 322} 323 324static int 325mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 326{ 327 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 328 geo->heads = 4; 329 geo->sectors = 16; 330 return 0; 331} 332 333struct mmc_blk_ioc_data { 334 struct mmc_ioc_cmd ic; 335 unsigned char *buf; 336 u64 buf_bytes; 337}; 338 339static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 340 struct mmc_ioc_cmd __user *user) 341{ 342 struct mmc_blk_ioc_data *idata; 343 int err; 344 345 idata = kzalloc(sizeof(*idata), GFP_KERNEL); 346 if (!idata) { 347 err = -ENOMEM; 348 goto out; 349 } 350 351 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 352 err = -EFAULT; 353 goto idata_err; 354 } 355 356 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 357 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 358 err = -EOVERFLOW; 359 goto idata_err; 360 } 361 362 if (!idata->buf_bytes) 363 return idata; 364 365 idata->buf = kzalloc(idata->buf_bytes, GFP_KERNEL); 366 if (!idata->buf) { 367 err = -ENOMEM; 368 goto idata_err; 369 } 370 371 if (copy_from_user(idata->buf, (void __user *)(unsigned long) 372 idata->ic.data_ptr, idata->buf_bytes)) { 373 err = -EFAULT; 374 goto copy_err; 375 } 376 377 return idata; 378 379copy_err: 380 kfree(idata->buf); 381idata_err: 382 kfree(idata); 383out: 384 return ERR_PTR(err); 385} 386 387static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 388 u32 retries_max) 389{ 390 int err; 391 u32 retry_count = 0; 392 393 if (!status || !retries_max) 394 return -EINVAL; 395 396 do { 397 err = get_card_status(card, status, 5); 398 if (err) 399 break; 400 401 if (!R1_STATUS(*status) && 402 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 403 break; /* RPMB programming operation complete */ 404 405 /* 406 * Rechedule to give the MMC device a chance to continue 407 * processing the previous command without being polled too 408 * frequently. 409 */ 410 usleep_range(1000, 5000); 411 } while (++retry_count < retries_max); 412 413 if (retry_count == retries_max) 414 err = -EPERM; 415 416 return err; 417} 418 419static int ioctl_do_sanitize(struct mmc_card *card) 420{ 421 int err; 422 423 if (!mmc_can_sanitize(card)) { 424 pr_warn("%s: %s - SANITIZE is not supported\n", 425 mmc_hostname(card->host), __func__); 426 err = -EOPNOTSUPP; 427 goto out; 428 } 429 430 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 431 mmc_hostname(card->host), __func__); 432 433 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 434 EXT_CSD_SANITIZE_START, 1, 435 MMC_SANITIZE_REQ_TIMEOUT); 436 437 if (err) 438 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 439 mmc_hostname(card->host), __func__, err); 440 441 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 442 __func__); 443out: 444 return err; 445} 446 447static int mmc_blk_ioctl_cmd(struct block_device *bdev, 448 struct mmc_ioc_cmd __user *ic_ptr) 449{ 450 struct mmc_blk_ioc_data *idata; 451 struct mmc_blk_data *md; 452 struct mmc_card *card; 453 struct mmc_command cmd = {0}; 454 struct mmc_data data = {0}; 455 struct mmc_request mrq = {NULL}; 456 struct scatterlist sg; 457 int err; 458 int is_rpmb = false; 459 u32 status = 0; 460 461 /* 462 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 463 * whole block device, not on a partition. This prevents overspray 464 * between sibling partitions. 465 */ 466 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 467 return -EPERM; 468 469 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 470 if (IS_ERR(idata)) 471 return PTR_ERR(idata); 472 473 md = mmc_blk_get(bdev->bd_disk); 474 if (!md) { 475 err = -EINVAL; 476 goto cmd_err; 477 } 478 479 if (md->area_type & MMC_BLK_DATA_AREA_RPMB) 480 is_rpmb = true; 481 482 card = md->queue.card; 483 if (IS_ERR(card)) { 484 err = PTR_ERR(card); 485 goto cmd_done; 486 } 487 488 cmd.opcode = idata->ic.opcode; 489 cmd.arg = idata->ic.arg; 490 cmd.flags = idata->ic.flags; 491 492 if (idata->buf_bytes) { 493 data.sg = &sg; 494 data.sg_len = 1; 495 data.blksz = idata->ic.blksz; 496 data.blocks = idata->ic.blocks; 497 498 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 499 500 if (idata->ic.write_flag) 501 data.flags = MMC_DATA_WRITE; 502 else 503 data.flags = MMC_DATA_READ; 504 505 /* data.flags must already be set before doing this. */ 506 mmc_set_data_timeout(&data, card); 507 508 /* Allow overriding the timeout_ns for empirical tuning. */ 509 if (idata->ic.data_timeout_ns) 510 data.timeout_ns = idata->ic.data_timeout_ns; 511 512 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 513 /* 514 * Pretend this is a data transfer and rely on the 515 * host driver to compute timeout. When all host 516 * drivers support cmd.cmd_timeout for R1B, this 517 * can be changed to: 518 * 519 * mrq.data = NULL; 520 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 521 */ 522 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 523 } 524 525 mrq.data = &data; 526 } 527 528 mrq.cmd = &cmd; 529 530 mmc_get_card(card); 531 532 err = mmc_blk_part_switch(card, md); 533 if (err) 534 goto cmd_rel_host; 535 536 if (idata->ic.is_acmd) { 537 err = mmc_app_cmd(card->host, card); 538 if (err) 539 goto cmd_rel_host; 540 } 541 542 if (is_rpmb) { 543 err = mmc_set_blockcount(card, data.blocks, 544 idata->ic.write_flag & (1 << 31)); 545 if (err) 546 goto cmd_rel_host; 547 } 548 549 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 550 (cmd.opcode == MMC_SWITCH)) { 551 err = ioctl_do_sanitize(card); 552 553 if (err) 554 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 555 __func__, err); 556 557 goto cmd_rel_host; 558 } 559 560 mmc_wait_for_req(card->host, &mrq); 561 562 if (cmd.error) { 563 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 564 __func__, cmd.error); 565 err = cmd.error; 566 goto cmd_rel_host; 567 } 568 if (data.error) { 569 dev_err(mmc_dev(card->host), "%s: data error %d\n", 570 __func__, data.error); 571 err = data.error; 572 goto cmd_rel_host; 573 } 574 575 /* 576 * According to the SD specs, some commands require a delay after 577 * issuing the command. 578 */ 579 if (idata->ic.postsleep_min_us) 580 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 581 582 if (copy_to_user(&(ic_ptr->response), cmd.resp, sizeof(cmd.resp))) { 583 err = -EFAULT; 584 goto cmd_rel_host; 585 } 586 587 if (!idata->ic.write_flag) { 588 if (copy_to_user((void __user *)(unsigned long) idata->ic.data_ptr, 589 idata->buf, idata->buf_bytes)) { 590 err = -EFAULT; 591 goto cmd_rel_host; 592 } 593 } 594 595 if (is_rpmb) { 596 /* 597 * Ensure RPMB command has completed by polling CMD13 598 * "Send Status". 599 */ 600 err = ioctl_rpmb_card_status_poll(card, &status, 5); 601 if (err) 602 dev_err(mmc_dev(card->host), 603 "%s: Card Status=0x%08X, error %d\n", 604 __func__, status, err); 605 } 606 607cmd_rel_host: 608 mmc_put_card(card); 609 610cmd_done: 611 mmc_blk_put(md); 612cmd_err: 613 kfree(idata->buf); 614 kfree(idata); 615 return err; 616} 617 618static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 619 unsigned int cmd, unsigned long arg) 620{ 621 int ret = -EINVAL; 622 if (cmd == MMC_IOC_CMD) 623 ret = mmc_blk_ioctl_cmd(bdev, (struct mmc_ioc_cmd __user *)arg); 624 return ret; 625} 626 627#ifdef CONFIG_COMPAT 628static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 629 unsigned int cmd, unsigned long arg) 630{ 631 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 632} 633#endif 634 635static const struct block_device_operations mmc_bdops = { 636 .open = mmc_blk_open, 637 .release = mmc_blk_release, 638 .getgeo = mmc_blk_getgeo, 639 .owner = THIS_MODULE, 640 .ioctl = mmc_blk_ioctl, 641#ifdef CONFIG_COMPAT 642 .compat_ioctl = mmc_blk_compat_ioctl, 643#endif 644}; 645 646static inline int mmc_blk_part_switch(struct mmc_card *card, 647 struct mmc_blk_data *md) 648{ 649 int ret; 650 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 651 652 if (main_md->part_curr == md->part_type) 653 return 0; 654 655 if (mmc_card_mmc(card)) { 656 u8 part_config = card->ext_csd.part_config; 657 658 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 659 part_config |= md->part_type; 660 661 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 662 EXT_CSD_PART_CONFIG, part_config, 663 card->ext_csd.part_time); 664 if (ret) 665 return ret; 666 667 card->ext_csd.part_config = part_config; 668 } 669 670 main_md->part_curr = md->part_type; 671 return 0; 672} 673 674static u32 mmc_sd_num_wr_blocks(struct mmc_card *card) 675{ 676 int err; 677 u32 result; 678 __be32 *blocks; 679 680 struct mmc_request mrq = {NULL}; 681 struct mmc_command cmd = {0}; 682 struct mmc_data data = {0}; 683 684 struct scatterlist sg; 685 686 cmd.opcode = MMC_APP_CMD; 687 cmd.arg = card->rca << 16; 688 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 689 690 err = mmc_wait_for_cmd(card->host, &cmd, 0); 691 if (err) 692 return (u32)-1; 693 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 694 return (u32)-1; 695 696 memset(&cmd, 0, sizeof(struct mmc_command)); 697 698 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 699 cmd.arg = 0; 700 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 701 702 data.blksz = 4; 703 data.blocks = 1; 704 data.flags = MMC_DATA_READ; 705 data.sg = &sg; 706 data.sg_len = 1; 707 mmc_set_data_timeout(&data, card); 708 709 mrq.cmd = &cmd; 710 mrq.data = &data; 711 712 blocks = kmalloc(4, GFP_KERNEL); 713 if (!blocks) 714 return (u32)-1; 715 716 sg_init_one(&sg, blocks, 4); 717 718 mmc_wait_for_req(card->host, &mrq); 719 720 result = ntohl(*blocks); 721 kfree(blocks); 722 723 if (cmd.error || data.error) 724 result = (u32)-1; 725 726 return result; 727} 728 729static int get_card_status(struct mmc_card *card, u32 *status, int retries) 730{ 731 struct mmc_command cmd = {0}; 732 int err; 733 734 cmd.opcode = MMC_SEND_STATUS; 735 if (!mmc_host_is_spi(card->host)) 736 cmd.arg = card->rca << 16; 737 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 738 err = mmc_wait_for_cmd(card->host, &cmd, retries); 739 if (err == 0) 740 *status = cmd.resp[0]; 741 return err; 742} 743 744static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 745 bool hw_busy_detect, struct request *req, int *gen_err) 746{ 747 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 748 int err = 0; 749 u32 status; 750 751 do { 752 err = get_card_status(card, &status, 5); 753 if (err) { 754 pr_err("%s: error %d requesting status\n", 755 req->rq_disk->disk_name, err); 756 return err; 757 } 758 759 if (status & R1_ERROR) { 760 pr_err("%s: %s: error sending status cmd, status %#x\n", 761 req->rq_disk->disk_name, __func__, status); 762 *gen_err = 1; 763 } 764 765 /* We may rely on the host hw to handle busy detection.*/ 766 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && 767 hw_busy_detect) 768 break; 769 770 /* 771 * Timeout if the device never becomes ready for data and never 772 * leaves the program state. 773 */ 774 if (time_after(jiffies, timeout)) { 775 pr_err("%s: Card stuck in programming state! %s %s\n", 776 mmc_hostname(card->host), 777 req->rq_disk->disk_name, __func__); 778 return -ETIMEDOUT; 779 } 780 781 /* 782 * Some cards mishandle the status bits, 783 * so make sure to check both the busy 784 * indication and the card state. 785 */ 786 } while (!(status & R1_READY_FOR_DATA) || 787 (R1_CURRENT_STATE(status) == R1_STATE_PRG)); 788 789 return err; 790} 791 792static int send_stop(struct mmc_card *card, unsigned int timeout_ms, 793 struct request *req, int *gen_err, u32 *stop_status) 794{ 795 struct mmc_host *host = card->host; 796 struct mmc_command cmd = {0}; 797 int err; 798 bool use_r1b_resp = rq_data_dir(req) == WRITE; 799 800 /* 801 * Normally we use R1B responses for WRITE, but in cases where the host 802 * has specified a max_busy_timeout we need to validate it. A failure 803 * means we need to prevent the host from doing hw busy detection, which 804 * is done by converting to a R1 response instead. 805 */ 806 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) 807 use_r1b_resp = false; 808 809 cmd.opcode = MMC_STOP_TRANSMISSION; 810 if (use_r1b_resp) { 811 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 812 cmd.busy_timeout = timeout_ms; 813 } else { 814 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 815 } 816 817 err = mmc_wait_for_cmd(host, &cmd, 5); 818 if (err) 819 return err; 820 821 *stop_status = cmd.resp[0]; 822 823 /* No need to check card status in case of READ. */ 824 if (rq_data_dir(req) == READ) 825 return 0; 826 827 if (!mmc_host_is_spi(host) && 828 (*stop_status & R1_ERROR)) { 829 pr_err("%s: %s: general error sending stop command, resp %#x\n", 830 req->rq_disk->disk_name, __func__, *stop_status); 831 *gen_err = 1; 832 } 833 834 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err); 835} 836 837#define ERR_NOMEDIUM 3 838#define ERR_RETRY 2 839#define ERR_ABORT 1 840#define ERR_CONTINUE 0 841 842static int mmc_blk_cmd_error(struct request *req, const char *name, int error, 843 bool status_valid, u32 status) 844{ 845 switch (error) { 846 case -EILSEQ: 847 /* response crc error, retry the r/w cmd */ 848 pr_err("%s: %s sending %s command, card status %#x\n", 849 req->rq_disk->disk_name, "response CRC error", 850 name, status); 851 return ERR_RETRY; 852 853 case -ETIMEDOUT: 854 pr_err("%s: %s sending %s command, card status %#x\n", 855 req->rq_disk->disk_name, "timed out", name, status); 856 857 /* If the status cmd initially failed, retry the r/w cmd */ 858 if (!status_valid) 859 return ERR_RETRY; 860 861 /* 862 * If it was a r/w cmd crc error, or illegal command 863 * (eg, issued in wrong state) then retry - we should 864 * have corrected the state problem above. 865 */ 866 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) 867 return ERR_RETRY; 868 869 /* Otherwise abort the command */ 870 return ERR_ABORT; 871 872 default: 873 /* We don't understand the error code the driver gave us */ 874 pr_err("%s: unknown error %d sending read/write command, card status %#x\n", 875 req->rq_disk->disk_name, error, status); 876 return ERR_ABORT; 877 } 878} 879 880/* 881 * Initial r/w and stop cmd error recovery. 882 * We don't know whether the card received the r/w cmd or not, so try to 883 * restore things back to a sane state. Essentially, we do this as follows: 884 * - Obtain card status. If the first attempt to obtain card status fails, 885 * the status word will reflect the failed status cmd, not the failed 886 * r/w cmd. If we fail to obtain card status, it suggests we can no 887 * longer communicate with the card. 888 * - Check the card state. If the card received the cmd but there was a 889 * transient problem with the response, it might still be in a data transfer 890 * mode. Try to send it a stop command. If this fails, we can't recover. 891 * - If the r/w cmd failed due to a response CRC error, it was probably 892 * transient, so retry the cmd. 893 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry. 894 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or 895 * illegal cmd, retry. 896 * Otherwise we don't understand what happened, so abort. 897 */ 898static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req, 899 struct mmc_blk_request *brq, int *ecc_err, int *gen_err) 900{ 901 bool prev_cmd_status_valid = true; 902 u32 status, stop_status = 0; 903 int err, retry; 904 905 if (mmc_card_removed(card)) 906 return ERR_NOMEDIUM; 907 908 /* 909 * Try to get card status which indicates both the card state 910 * and why there was no response. If the first attempt fails, 911 * we can't be sure the returned status is for the r/w command. 912 */ 913 for (retry = 2; retry >= 0; retry--) { 914 err = get_card_status(card, &status, 0); 915 if (!err) 916 break; 917 918 prev_cmd_status_valid = false; 919 pr_err("%s: error %d sending status command, %sing\n", 920 req->rq_disk->disk_name, err, retry ? "retry" : "abort"); 921 } 922 923 /* We couldn't get a response from the card. Give up. */ 924 if (err) { 925 /* Check if the card is removed */ 926 if (mmc_detect_card_removed(card->host)) 927 return ERR_NOMEDIUM; 928 return ERR_ABORT; 929 } 930 931 /* Flag ECC errors */ 932 if ((status & R1_CARD_ECC_FAILED) || 933 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) || 934 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED)) 935 *ecc_err = 1; 936 937 /* Flag General errors */ 938 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) 939 if ((status & R1_ERROR) || 940 (brq->stop.resp[0] & R1_ERROR)) { 941 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n", 942 req->rq_disk->disk_name, __func__, 943 brq->stop.resp[0], status); 944 *gen_err = 1; 945 } 946 947 /* 948 * Check the current card state. If it is in some data transfer 949 * mode, tell it to stop (and hopefully transition back to TRAN.) 950 */ 951 if (R1_CURRENT_STATE(status) == R1_STATE_DATA || 952 R1_CURRENT_STATE(status) == R1_STATE_RCV) { 953 err = send_stop(card, 954 DIV_ROUND_UP(brq->data.timeout_ns, 1000000), 955 req, gen_err, &stop_status); 956 if (err) { 957 pr_err("%s: error %d sending stop command\n", 958 req->rq_disk->disk_name, err); 959 /* 960 * If the stop cmd also timed out, the card is probably 961 * not present, so abort. Other errors are bad news too. 962 */ 963 return ERR_ABORT; 964 } 965 966 if (stop_status & R1_CARD_ECC_FAILED) 967 *ecc_err = 1; 968 } 969 970 /* Check for set block count errors */ 971 if (brq->sbc.error) 972 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error, 973 prev_cmd_status_valid, status); 974 975 /* Check for r/w command errors */ 976 if (brq->cmd.error) 977 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error, 978 prev_cmd_status_valid, status); 979 980 /* Data errors */ 981 if (!brq->stop.error) 982 return ERR_CONTINUE; 983 984 /* Now for stop errors. These aren't fatal to the transfer. */ 985 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n", 986 req->rq_disk->disk_name, brq->stop.error, 987 brq->cmd.resp[0], status); 988 989 /* 990 * Subsitute in our own stop status as this will give the error 991 * state which happened during the execution of the r/w command. 992 */ 993 if (stop_status) { 994 brq->stop.resp[0] = stop_status; 995 brq->stop.error = 0; 996 } 997 return ERR_CONTINUE; 998} 999 1000static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1001 int type) 1002{ 1003 int err; 1004 1005 if (md->reset_done & type) 1006 return -EEXIST; 1007 1008 md->reset_done |= type; 1009 err = mmc_hw_reset(host); 1010 /* Ensure we switch back to the correct partition */ 1011 if (err != -EOPNOTSUPP) { 1012 struct mmc_blk_data *main_md = 1013 dev_get_drvdata(&host->card->dev); 1014 int part_err; 1015 1016 main_md->part_curr = main_md->part_type; 1017 part_err = mmc_blk_part_switch(host->card, md); 1018 if (part_err) { 1019 /* 1020 * We have failed to get back into the correct 1021 * partition, so we need to abort the whole request. 1022 */ 1023 return -ENODEV; 1024 } 1025 } 1026 return err; 1027} 1028 1029static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1030{ 1031 md->reset_done &= ~type; 1032} 1033 1034int mmc_access_rpmb(struct mmc_queue *mq) 1035{ 1036 struct mmc_blk_data *md = mq->data; 1037 /* 1038 * If this is a RPMB partition access, return ture 1039 */ 1040 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) 1041 return true; 1042 1043 return false; 1044} 1045 1046static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1047{ 1048 struct mmc_blk_data *md = mq->data; 1049 struct mmc_card *card = md->queue.card; 1050 unsigned int from, nr, arg; 1051 int err = 0, type = MMC_BLK_DISCARD; 1052 1053 if (!mmc_can_erase(card)) { 1054 err = -EOPNOTSUPP; 1055 goto out; 1056 } 1057 1058 from = blk_rq_pos(req); 1059 nr = blk_rq_sectors(req); 1060 1061 if (mmc_can_discard(card)) 1062 arg = MMC_DISCARD_ARG; 1063 else if (mmc_can_trim(card)) 1064 arg = MMC_TRIM_ARG; 1065 else 1066 arg = MMC_ERASE_ARG; 1067retry: 1068 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1069 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1070 INAND_CMD38_ARG_EXT_CSD, 1071 arg == MMC_TRIM_ARG ? 1072 INAND_CMD38_ARG_TRIM : 1073 INAND_CMD38_ARG_ERASE, 1074 0); 1075 if (err) 1076 goto out; 1077 } 1078 err = mmc_erase(card, from, nr, arg); 1079out: 1080 if (err == -EIO && !mmc_blk_reset(md, card->host, type)) 1081 goto retry; 1082 if (!err) 1083 mmc_blk_reset_success(md, type); 1084 blk_end_request(req, err, blk_rq_bytes(req)); 1085 1086 return err ? 0 : 1; 1087} 1088 1089static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1090 struct request *req) 1091{ 1092 struct mmc_blk_data *md = mq->data; 1093 struct mmc_card *card = md->queue.card; 1094 unsigned int from, nr, arg; 1095 int err = 0, type = MMC_BLK_SECDISCARD; 1096 1097 if (!(mmc_can_secure_erase_trim(card))) { 1098 err = -EOPNOTSUPP; 1099 goto out; 1100 } 1101 1102 from = blk_rq_pos(req); 1103 nr = blk_rq_sectors(req); 1104 1105 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1106 arg = MMC_SECURE_TRIM1_ARG; 1107 else 1108 arg = MMC_SECURE_ERASE_ARG; 1109 1110retry: 1111 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1112 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1113 INAND_CMD38_ARG_EXT_CSD, 1114 arg == MMC_SECURE_TRIM1_ARG ? 1115 INAND_CMD38_ARG_SECTRIM1 : 1116 INAND_CMD38_ARG_SECERASE, 1117 0); 1118 if (err) 1119 goto out_retry; 1120 } 1121 1122 err = mmc_erase(card, from, nr, arg); 1123 if (err == -EIO) 1124 goto out_retry; 1125 if (err) 1126 goto out; 1127 1128 if (arg == MMC_SECURE_TRIM1_ARG) { 1129 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1130 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1131 INAND_CMD38_ARG_EXT_CSD, 1132 INAND_CMD38_ARG_SECTRIM2, 1133 0); 1134 if (err) 1135 goto out_retry; 1136 } 1137 1138 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1139 if (err == -EIO) 1140 goto out_retry; 1141 if (err) 1142 goto out; 1143 } 1144 1145out_retry: 1146 if (err && !mmc_blk_reset(md, card->host, type)) 1147 goto retry; 1148 if (!err) 1149 mmc_blk_reset_success(md, type); 1150out: 1151 blk_end_request(req, err, blk_rq_bytes(req)); 1152 1153 return err ? 0 : 1; 1154} 1155 1156static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1157{ 1158 struct mmc_blk_data *md = mq->data; 1159 struct mmc_card *card = md->queue.card; 1160 int ret = 0; 1161 1162 ret = mmc_flush_cache(card); 1163 if (ret) 1164 ret = -EIO; 1165 1166 blk_end_request_all(req, ret); 1167 1168 return ret ? 0 : 1; 1169} 1170 1171/* 1172 * Reformat current write as a reliable write, supporting 1173 * both legacy and the enhanced reliable write MMC cards. 1174 * In each transfer we'll handle only as much as a single 1175 * reliable write can handle, thus finish the request in 1176 * partial completions. 1177 */ 1178static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1179 struct mmc_card *card, 1180 struct request *req) 1181{ 1182 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1183 /* Legacy mode imposes restrictions on transfers. */ 1184 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors)) 1185 brq->data.blocks = 1; 1186 1187 if (brq->data.blocks > card->ext_csd.rel_sectors) 1188 brq->data.blocks = card->ext_csd.rel_sectors; 1189 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1190 brq->data.blocks = 1; 1191 } 1192} 1193 1194#define CMD_ERRORS \ 1195 (R1_OUT_OF_RANGE | /* Command argument out of range */ \ 1196 R1_ADDRESS_ERROR | /* Misaligned address */ \ 1197 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1198 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1199 R1_CC_ERROR | /* Card controller error */ \ 1200 R1_ERROR) /* General/unknown error */ 1201 1202static int mmc_blk_err_check(struct mmc_card *card, 1203 struct mmc_async_req *areq) 1204{ 1205 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req, 1206 mmc_active); 1207 struct mmc_blk_request *brq = &mq_mrq->brq; 1208 struct request *req = mq_mrq->req; 1209 int ecc_err = 0, gen_err = 0; 1210 1211 /* 1212 * sbc.error indicates a problem with the set block count 1213 * command. No data will have been transferred. 1214 * 1215 * cmd.error indicates a problem with the r/w command. No 1216 * data will have been transferred. 1217 * 1218 * stop.error indicates a problem with the stop command. Data 1219 * may have been transferred, or may still be transferring. 1220 */ 1221 if (brq->sbc.error || brq->cmd.error || brq->stop.error || 1222 brq->data.error) { 1223 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) { 1224 case ERR_RETRY: 1225 return MMC_BLK_RETRY; 1226 case ERR_ABORT: 1227 return MMC_BLK_ABORT; 1228 case ERR_NOMEDIUM: 1229 return MMC_BLK_NOMEDIUM; 1230 case ERR_CONTINUE: 1231 break; 1232 } 1233 } 1234 1235 /* 1236 * Check for errors relating to the execution of the 1237 * initial command - such as address errors. No data 1238 * has been transferred. 1239 */ 1240 if (brq->cmd.resp[0] & CMD_ERRORS) { 1241 pr_err("%s: r/w command failed, status = %#x\n", 1242 req->rq_disk->disk_name, brq->cmd.resp[0]); 1243 return MMC_BLK_ABORT; 1244 } 1245 1246 /* 1247 * Everything else is either success, or a data error of some 1248 * kind. If it was a write, we may have transitioned to 1249 * program mode, which we have to wait for it to complete. 1250 */ 1251 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) { 1252 int err; 1253 1254 /* Check stop command response */ 1255 if (brq->stop.resp[0] & R1_ERROR) { 1256 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n", 1257 req->rq_disk->disk_name, __func__, 1258 brq->stop.resp[0]); 1259 gen_err = 1; 1260 } 1261 1262 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req, 1263 &gen_err); 1264 if (err) 1265 return MMC_BLK_CMD_ERR; 1266 } 1267 1268 /* if general error occurs, retry the write operation. */ 1269 if (gen_err) { 1270 pr_warn("%s: retrying write for general error\n", 1271 req->rq_disk->disk_name); 1272 return MMC_BLK_RETRY; 1273 } 1274 1275 if (brq->data.error) { 1276 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n", 1277 req->rq_disk->disk_name, brq->data.error, 1278 (unsigned)blk_rq_pos(req), 1279 (unsigned)blk_rq_sectors(req), 1280 brq->cmd.resp[0], brq->stop.resp[0]); 1281 1282 if (rq_data_dir(req) == READ) { 1283 if (ecc_err) 1284 return MMC_BLK_ECC_ERR; 1285 return MMC_BLK_DATA_ERR; 1286 } else { 1287 return MMC_BLK_CMD_ERR; 1288 } 1289 } 1290 1291 if (!brq->data.bytes_xfered) 1292 return MMC_BLK_RETRY; 1293 1294 if (mmc_packed_cmd(mq_mrq->cmd_type)) { 1295 if (unlikely(brq->data.blocks << 9 != brq->data.bytes_xfered)) 1296 return MMC_BLK_PARTIAL; 1297 else 1298 return MMC_BLK_SUCCESS; 1299 } 1300 1301 if (blk_rq_bytes(req) != brq->data.bytes_xfered) 1302 return MMC_BLK_PARTIAL; 1303 1304 return MMC_BLK_SUCCESS; 1305} 1306 1307static int mmc_blk_packed_err_check(struct mmc_card *card, 1308 struct mmc_async_req *areq) 1309{ 1310 struct mmc_queue_req *mq_rq = container_of(areq, struct mmc_queue_req, 1311 mmc_active); 1312 struct request *req = mq_rq->req; 1313 struct mmc_packed *packed = mq_rq->packed; 1314 int err, check, status; 1315 u8 *ext_csd; 1316 1317 BUG_ON(!packed); 1318 1319 packed->retries--; 1320 check = mmc_blk_err_check(card, areq); 1321 err = get_card_status(card, &status, 0); 1322 if (err) { 1323 pr_err("%s: error %d sending status command\n", 1324 req->rq_disk->disk_name, err); 1325 return MMC_BLK_ABORT; 1326 } 1327 1328 if (status & R1_EXCEPTION_EVENT) { 1329 err = mmc_get_ext_csd(card, &ext_csd); 1330 if (err) { 1331 pr_err("%s: error %d sending ext_csd\n", 1332 req->rq_disk->disk_name, err); 1333 return MMC_BLK_ABORT; 1334 } 1335 1336 if ((ext_csd[EXT_CSD_EXP_EVENTS_STATUS] & 1337 EXT_CSD_PACKED_FAILURE) && 1338 (ext_csd[EXT_CSD_PACKED_CMD_STATUS] & 1339 EXT_CSD_PACKED_GENERIC_ERROR)) { 1340 if (ext_csd[EXT_CSD_PACKED_CMD_STATUS] & 1341 EXT_CSD_PACKED_INDEXED_ERROR) { 1342 packed->idx_failure = 1343 ext_csd[EXT_CSD_PACKED_FAILURE_INDEX] - 1; 1344 check = MMC_BLK_PARTIAL; 1345 } 1346 pr_err("%s: packed cmd failed, nr %u, sectors %u, " 1347 "failure index: %d\n", 1348 req->rq_disk->disk_name, packed->nr_entries, 1349 packed->blocks, packed->idx_failure); 1350 } 1351 kfree(ext_csd); 1352 } 1353 1354 return check; 1355} 1356 1357static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1358 struct mmc_card *card, 1359 int disable_multi, 1360 struct mmc_queue *mq) 1361{ 1362 u32 readcmd, writecmd; 1363 struct mmc_blk_request *brq = &mqrq->brq; 1364 struct request *req = mqrq->req; 1365 struct mmc_blk_data *md = mq->data; 1366 bool do_data_tag; 1367 1368 /* 1369 * Reliable writes are used to implement Forced Unit Access and 1370 * REQ_META accesses, and are supported only on MMCs. 1371 * 1372 * XXX: this really needs a good explanation of why REQ_META 1373 * is treated special. 1374 */ 1375 bool do_rel_wr = ((req->cmd_flags & REQ_FUA) || 1376 (req->cmd_flags & REQ_META)) && 1377 (rq_data_dir(req) == WRITE) && 1378 (md->flags & MMC_BLK_REL_WR); 1379 1380 memset(brq, 0, sizeof(struct mmc_blk_request)); 1381 brq->mrq.cmd = &brq->cmd; 1382 brq->mrq.data = &brq->data; 1383 1384 brq->cmd.arg = blk_rq_pos(req); 1385 if (!mmc_card_blockaddr(card)) 1386 brq->cmd.arg <<= 9; 1387 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1388 brq->data.blksz = 512; 1389 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1390 brq->stop.arg = 0; 1391 brq->data.blocks = blk_rq_sectors(req); 1392 1393 /* 1394 * The block layer doesn't support all sector count 1395 * restrictions, so we need to be prepared for too big 1396 * requests. 1397 */ 1398 if (brq->data.blocks > card->host->max_blk_count) 1399 brq->data.blocks = card->host->max_blk_count; 1400 1401 if (brq->data.blocks > 1) { 1402 /* 1403 * After a read error, we redo the request one sector 1404 * at a time in order to accurately determine which 1405 * sectors can be read successfully. 1406 */ 1407 if (disable_multi) 1408 brq->data.blocks = 1; 1409 1410 /* 1411 * Some controllers have HW issues while operating 1412 * in multiple I/O mode 1413 */ 1414 if (card->host->ops->multi_io_quirk) 1415 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1416 (rq_data_dir(req) == READ) ? 1417 MMC_DATA_READ : MMC_DATA_WRITE, 1418 brq->data.blocks); 1419 } 1420 1421 if (brq->data.blocks > 1 || do_rel_wr) { 1422 /* SPI multiblock writes terminate using a special 1423 * token, not a STOP_TRANSMISSION request. 1424 */ 1425 if (!mmc_host_is_spi(card->host) || 1426 rq_data_dir(req) == READ) 1427 brq->mrq.stop = &brq->stop; 1428 readcmd = MMC_READ_MULTIPLE_BLOCK; 1429 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1430 } else { 1431 brq->mrq.stop = NULL; 1432 readcmd = MMC_READ_SINGLE_BLOCK; 1433 writecmd = MMC_WRITE_BLOCK; 1434 } 1435 if (rq_data_dir(req) == READ) { 1436 brq->cmd.opcode = readcmd; 1437 brq->data.flags |= MMC_DATA_READ; 1438 if (brq->mrq.stop) 1439 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | 1440 MMC_CMD_AC; 1441 } else { 1442 brq->cmd.opcode = writecmd; 1443 brq->data.flags |= MMC_DATA_WRITE; 1444 if (brq->mrq.stop) 1445 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | 1446 MMC_CMD_AC; 1447 } 1448 1449 if (do_rel_wr) 1450 mmc_apply_rel_rw(brq, card, req); 1451 1452 /* 1453 * Data tag is used only during writing meta data to speed 1454 * up write and any subsequent read of this meta data 1455 */ 1456 do_data_tag = (card->ext_csd.data_tag_unit_size) && 1457 (req->cmd_flags & REQ_META) && 1458 (rq_data_dir(req) == WRITE) && 1459 ((brq->data.blocks * brq->data.blksz) >= 1460 card->ext_csd.data_tag_unit_size); 1461 1462 /* 1463 * Pre-defined multi-block transfers are preferable to 1464 * open ended-ones (and necessary for reliable writes). 1465 * However, it is not sufficient to just send CMD23, 1466 * and avoid the final CMD12, as on an error condition 1467 * CMD12 (stop) needs to be sent anyway. This, coupled 1468 * with Auto-CMD23 enhancements provided by some 1469 * hosts, means that the complexity of dealing 1470 * with this is best left to the host. If CMD23 is 1471 * supported by card and host, we'll fill sbc in and let 1472 * the host deal with handling it correctly. This means 1473 * that for hosts that don't expose MMC_CAP_CMD23, no 1474 * change of behavior will be observed. 1475 * 1476 * N.B: Some MMC cards experience perf degradation. 1477 * We'll avoid using CMD23-bounded multiblock writes for 1478 * these, while retaining features like reliable writes. 1479 */ 1480 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1481 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1482 do_data_tag)) { 1483 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1484 brq->sbc.arg = brq->data.blocks | 1485 (do_rel_wr ? (1 << 31) : 0) | 1486 (do_data_tag ? (1 << 29) : 0); 1487 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1488 brq->mrq.sbc = &brq->sbc; 1489 } 1490 1491 mmc_set_data_timeout(&brq->data, card); 1492 1493 brq->data.sg = mqrq->sg; 1494 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1495 1496 /* 1497 * Adjust the sg list so it is the same size as the 1498 * request. 1499 */ 1500 if (brq->data.blocks != blk_rq_sectors(req)) { 1501 int i, data_size = brq->data.blocks << 9; 1502 struct scatterlist *sg; 1503 1504 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1505 data_size -= sg->length; 1506 if (data_size <= 0) { 1507 sg->length += data_size; 1508 i++; 1509 break; 1510 } 1511 } 1512 brq->data.sg_len = i; 1513 } 1514 1515 mqrq->mmc_active.mrq = &brq->mrq; 1516 mqrq->mmc_active.err_check = mmc_blk_err_check; 1517 1518 mmc_queue_bounce_pre(mqrq); 1519} 1520 1521static inline u8 mmc_calc_packed_hdr_segs(struct request_queue *q, 1522 struct mmc_card *card) 1523{ 1524 unsigned int hdr_sz = mmc_large_sector(card) ? 4096 : 512; 1525 unsigned int max_seg_sz = queue_max_segment_size(q); 1526 unsigned int len, nr_segs = 0; 1527 1528 do { 1529 len = min(hdr_sz, max_seg_sz); 1530 hdr_sz -= len; 1531 nr_segs++; 1532 } while (hdr_sz); 1533 1534 return nr_segs; 1535} 1536 1537static u8 mmc_blk_prep_packed_list(struct mmc_queue *mq, struct request *req) 1538{ 1539 struct request_queue *q = mq->queue; 1540 struct mmc_card *card = mq->card; 1541 struct request *cur = req, *next = NULL; 1542 struct mmc_blk_data *md = mq->data; 1543 struct mmc_queue_req *mqrq = mq->mqrq_cur; 1544 bool en_rel_wr = card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN; 1545 unsigned int req_sectors = 0, phys_segments = 0; 1546 unsigned int max_blk_count, max_phys_segs; 1547 bool put_back = true; 1548 u8 max_packed_rw = 0; 1549 u8 reqs = 0; 1550 1551 if (!(md->flags & MMC_BLK_PACKED_CMD)) 1552 goto no_packed; 1553 1554 if ((rq_data_dir(cur) == WRITE) && 1555 mmc_host_packed_wr(card->host)) 1556 max_packed_rw = card->ext_csd.max_packed_writes; 1557 1558 if (max_packed_rw == 0) 1559 goto no_packed; 1560 1561 if (mmc_req_rel_wr(cur) && 1562 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr) 1563 goto no_packed; 1564 1565 if (mmc_large_sector(card) && 1566 !IS_ALIGNED(blk_rq_sectors(cur), 8)) 1567 goto no_packed; 1568 1569 mmc_blk_clear_packed(mqrq); 1570 1571 max_blk_count = min(card->host->max_blk_count, 1572 card->host->max_req_size >> 9); 1573 if (unlikely(max_blk_count > 0xffff)) 1574 max_blk_count = 0xffff; 1575 1576 max_phys_segs = queue_max_segments(q); 1577 req_sectors += blk_rq_sectors(cur); 1578 phys_segments += cur->nr_phys_segments; 1579 1580 if (rq_data_dir(cur) == WRITE) { 1581 req_sectors += mmc_large_sector(card) ? 8 : 1; 1582 phys_segments += mmc_calc_packed_hdr_segs(q, card); 1583 } 1584 1585 do { 1586 if (reqs >= max_packed_rw - 1) { 1587 put_back = false; 1588 break; 1589 } 1590 1591 spin_lock_irq(q->queue_lock); 1592 next = blk_fetch_request(q); 1593 spin_unlock_irq(q->queue_lock); 1594 if (!next) { 1595 put_back = false; 1596 break; 1597 } 1598 1599 if (mmc_large_sector(card) && 1600 !IS_ALIGNED(blk_rq_sectors(next), 8)) 1601 break; 1602 1603 if (next->cmd_flags & REQ_DISCARD || 1604 next->cmd_flags & REQ_FLUSH) 1605 break; 1606 1607 if (rq_data_dir(cur) != rq_data_dir(next)) 1608 break; 1609 1610 if (mmc_req_rel_wr(next) && 1611 (md->flags & MMC_BLK_REL_WR) && !en_rel_wr) 1612 break; 1613 1614 req_sectors += blk_rq_sectors(next); 1615 if (req_sectors > max_blk_count) 1616 break; 1617 1618 phys_segments += next->nr_phys_segments; 1619 if (phys_segments > max_phys_segs) 1620 break; 1621 1622 list_add_tail(&next->queuelist, &mqrq->packed->list); 1623 cur = next; 1624 reqs++; 1625 } while (1); 1626 1627 if (put_back) { 1628 spin_lock_irq(q->queue_lock); 1629 blk_requeue_request(q, next); 1630 spin_unlock_irq(q->queue_lock); 1631 } 1632 1633 if (reqs > 0) { 1634 list_add(&req->queuelist, &mqrq->packed->list); 1635 mqrq->packed->nr_entries = ++reqs; 1636 mqrq->packed->retries = reqs; 1637 return reqs; 1638 } 1639 1640no_packed: 1641 mqrq->cmd_type = MMC_PACKED_NONE; 1642 return 0; 1643} 1644 1645static void mmc_blk_packed_hdr_wrq_prep(struct mmc_queue_req *mqrq, 1646 struct mmc_card *card, 1647 struct mmc_queue *mq) 1648{ 1649 struct mmc_blk_request *brq = &mqrq->brq; 1650 struct request *req = mqrq->req; 1651 struct request *prq; 1652 struct mmc_blk_data *md = mq->data; 1653 struct mmc_packed *packed = mqrq->packed; 1654 bool do_rel_wr, do_data_tag; 1655 u32 *packed_cmd_hdr; 1656 u8 hdr_blocks; 1657 u8 i = 1; 1658 1659 BUG_ON(!packed); 1660 1661 mqrq->cmd_type = MMC_PACKED_WRITE; 1662 packed->blocks = 0; 1663 packed->idx_failure = MMC_PACKED_NR_IDX; 1664 1665 packed_cmd_hdr = packed->cmd_hdr; 1666 memset(packed_cmd_hdr, 0, sizeof(packed->cmd_hdr)); 1667 packed_cmd_hdr[0] = (packed->nr_entries << 16) | 1668 (PACKED_CMD_WR << 8) | PACKED_CMD_VER; 1669 hdr_blocks = mmc_large_sector(card) ? 8 : 1; 1670 1671 /* 1672 * Argument for each entry of packed group 1673 */ 1674 list_for_each_entry(prq, &packed->list, queuelist) { 1675 do_rel_wr = mmc_req_rel_wr(prq) && (md->flags & MMC_BLK_REL_WR); 1676 do_data_tag = (card->ext_csd.data_tag_unit_size) && 1677 (prq->cmd_flags & REQ_META) && 1678 (rq_data_dir(prq) == WRITE) && 1679 ((brq->data.blocks * brq->data.blksz) >= 1680 card->ext_csd.data_tag_unit_size); 1681 /* Argument of CMD23 */ 1682 packed_cmd_hdr[(i * 2)] = 1683 (do_rel_wr ? MMC_CMD23_ARG_REL_WR : 0) | 1684 (do_data_tag ? MMC_CMD23_ARG_TAG_REQ : 0) | 1685 blk_rq_sectors(prq); 1686 /* Argument of CMD18 or CMD25 */ 1687 packed_cmd_hdr[((i * 2)) + 1] = 1688 mmc_card_blockaddr(card) ? 1689 blk_rq_pos(prq) : blk_rq_pos(prq) << 9; 1690 packed->blocks += blk_rq_sectors(prq); 1691 i++; 1692 } 1693 1694 memset(brq, 0, sizeof(struct mmc_blk_request)); 1695 brq->mrq.cmd = &brq->cmd; 1696 brq->mrq.data = &brq->data; 1697 brq->mrq.sbc = &brq->sbc; 1698 brq->mrq.stop = &brq->stop; 1699 1700 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1701 brq->sbc.arg = MMC_CMD23_ARG_PACKED | (packed->blocks + hdr_blocks); 1702 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1703 1704 brq->cmd.opcode = MMC_WRITE_MULTIPLE_BLOCK; 1705 brq->cmd.arg = blk_rq_pos(req); 1706 if (!mmc_card_blockaddr(card)) 1707 brq->cmd.arg <<= 9; 1708 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1709 1710 brq->data.blksz = 512; 1711 brq->data.blocks = packed->blocks + hdr_blocks; 1712 brq->data.flags |= MMC_DATA_WRITE; 1713 1714 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1715 brq->stop.arg = 0; 1716 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1717 1718 mmc_set_data_timeout(&brq->data, card); 1719 1720 brq->data.sg = mqrq->sg; 1721 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1722 1723 mqrq->mmc_active.mrq = &brq->mrq; 1724 mqrq->mmc_active.err_check = mmc_blk_packed_err_check; 1725 1726 mmc_queue_bounce_pre(mqrq); 1727} 1728 1729static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card, 1730 struct mmc_blk_request *brq, struct request *req, 1731 int ret) 1732{ 1733 struct mmc_queue_req *mq_rq; 1734 mq_rq = container_of(brq, struct mmc_queue_req, brq); 1735 1736 /* 1737 * If this is an SD card and we're writing, we can first 1738 * mark the known good sectors as ok. 1739 * 1740 * If the card is not SD, we can still ok written sectors 1741 * as reported by the controller (which might be less than 1742 * the real number of written sectors, but never more). 1743 */ 1744 if (mmc_card_sd(card)) { 1745 u32 blocks; 1746 1747 blocks = mmc_sd_num_wr_blocks(card); 1748 if (blocks != (u32)-1) { 1749 ret = blk_end_request(req, 0, blocks << 9); 1750 } 1751 } else { 1752 if (!mmc_packed_cmd(mq_rq->cmd_type)) 1753 ret = blk_end_request(req, 0, brq->data.bytes_xfered); 1754 } 1755 return ret; 1756} 1757 1758static int mmc_blk_end_packed_req(struct mmc_queue_req *mq_rq) 1759{ 1760 struct request *prq; 1761 struct mmc_packed *packed = mq_rq->packed; 1762 int idx = packed->idx_failure, i = 0; 1763 int ret = 0; 1764 1765 BUG_ON(!packed); 1766 1767 while (!list_empty(&packed->list)) { 1768 prq = list_entry_rq(packed->list.next); 1769 if (idx == i) { 1770 /* retry from error index */ 1771 packed->nr_entries -= idx; 1772 mq_rq->req = prq; 1773 ret = 1; 1774 1775 if (packed->nr_entries == MMC_PACKED_NR_SINGLE) { 1776 list_del_init(&prq->queuelist); 1777 mmc_blk_clear_packed(mq_rq); 1778 } 1779 return ret; 1780 } 1781 list_del_init(&prq->queuelist); 1782 blk_end_request(prq, 0, blk_rq_bytes(prq)); 1783 i++; 1784 } 1785 1786 mmc_blk_clear_packed(mq_rq); 1787 return ret; 1788} 1789 1790static void mmc_blk_abort_packed_req(struct mmc_queue_req *mq_rq) 1791{ 1792 struct request *prq; 1793 struct mmc_packed *packed = mq_rq->packed; 1794 1795 BUG_ON(!packed); 1796 1797 while (!list_empty(&packed->list)) { 1798 prq = list_entry_rq(packed->list.next); 1799 list_del_init(&prq->queuelist); 1800 blk_end_request(prq, -EIO, blk_rq_bytes(prq)); 1801 } 1802 1803 mmc_blk_clear_packed(mq_rq); 1804} 1805 1806static void mmc_blk_revert_packed_req(struct mmc_queue *mq, 1807 struct mmc_queue_req *mq_rq) 1808{ 1809 struct request *prq; 1810 struct request_queue *q = mq->queue; 1811 struct mmc_packed *packed = mq_rq->packed; 1812 1813 BUG_ON(!packed); 1814 1815 while (!list_empty(&packed->list)) { 1816 prq = list_entry_rq(packed->list.prev); 1817 if (prq->queuelist.prev != &packed->list) { 1818 list_del_init(&prq->queuelist); 1819 spin_lock_irq(q->queue_lock); 1820 blk_requeue_request(mq->queue, prq); 1821 spin_unlock_irq(q->queue_lock); 1822 } else { 1823 list_del_init(&prq->queuelist); 1824 } 1825 } 1826 1827 mmc_blk_clear_packed(mq_rq); 1828} 1829 1830static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc) 1831{ 1832 struct mmc_blk_data *md = mq->data; 1833 struct mmc_card *card = md->queue.card; 1834 struct mmc_blk_request *brq = &mq->mqrq_cur->brq; 1835 int ret = 1, disable_multi = 0, retry = 0, type; 1836 enum mmc_blk_status status; 1837 struct mmc_queue_req *mq_rq; 1838 struct request *req = rqc; 1839 struct mmc_async_req *areq; 1840 const u8 packed_nr = 2; 1841 u8 reqs = 0; 1842 1843 if (!rqc && !mq->mqrq_prev->req) 1844 return 0; 1845 1846 if (rqc) 1847 reqs = mmc_blk_prep_packed_list(mq, rqc); 1848 1849 do { 1850 if (rqc) { 1851 /* 1852 * When 4KB native sector is enabled, only 8 blocks 1853 * multiple read or write is allowed 1854 */ 1855 if ((brq->data.blocks & 0x07) && 1856 (card->ext_csd.data_sector_size == 4096)) { 1857 pr_err("%s: Transfer size is not 4KB sector size aligned\n", 1858 req->rq_disk->disk_name); 1859 mq_rq = mq->mqrq_cur; 1860 goto cmd_abort; 1861 } 1862 1863 if (reqs >= packed_nr) 1864 mmc_blk_packed_hdr_wrq_prep(mq->mqrq_cur, 1865 card, mq); 1866 else 1867 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); 1868 areq = &mq->mqrq_cur->mmc_active; 1869 } else 1870 areq = NULL; 1871 areq = mmc_start_req(card->host, areq, (int *) &status); 1872 if (!areq) { 1873 if (status == MMC_BLK_NEW_REQUEST) 1874 mq->flags |= MMC_QUEUE_NEW_REQUEST; 1875 return 0; 1876 } 1877 1878 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active); 1879 brq = &mq_rq->brq; 1880 req = mq_rq->req; 1881 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1882 mmc_queue_bounce_post(mq_rq); 1883 1884 switch (status) { 1885 case MMC_BLK_SUCCESS: 1886 case MMC_BLK_PARTIAL: 1887 /* 1888 * A block was successfully transferred. 1889 */ 1890 mmc_blk_reset_success(md, type); 1891 1892 if (mmc_packed_cmd(mq_rq->cmd_type)) { 1893 ret = mmc_blk_end_packed_req(mq_rq); 1894 break; 1895 } else { 1896 ret = blk_end_request(req, 0, 1897 brq->data.bytes_xfered); 1898 } 1899 1900 /* 1901 * If the blk_end_request function returns non-zero even 1902 * though all data has been transferred and no errors 1903 * were returned by the host controller, it's a bug. 1904 */ 1905 if (status == MMC_BLK_SUCCESS && ret) { 1906 pr_err("%s BUG rq_tot %d d_xfer %d\n", 1907 __func__, blk_rq_bytes(req), 1908 brq->data.bytes_xfered); 1909 rqc = NULL; 1910 goto cmd_abort; 1911 } 1912 break; 1913 case MMC_BLK_CMD_ERR: 1914 ret = mmc_blk_cmd_err(md, card, brq, req, ret); 1915 if (mmc_blk_reset(md, card->host, type)) 1916 goto cmd_abort; 1917 if (!ret) 1918 goto start_new_req; 1919 break; 1920 case MMC_BLK_RETRY: 1921 if (retry++ < 5) 1922 break; 1923 /* Fall through */ 1924 case MMC_BLK_ABORT: 1925 if (!mmc_blk_reset(md, card->host, type)) 1926 break; 1927 goto cmd_abort; 1928 case MMC_BLK_DATA_ERR: { 1929 int err; 1930 1931 err = mmc_blk_reset(md, card->host, type); 1932 if (!err) 1933 break; 1934 if (err == -ENODEV || 1935 mmc_packed_cmd(mq_rq->cmd_type)) 1936 goto cmd_abort; 1937 /* Fall through */ 1938 } 1939 case MMC_BLK_ECC_ERR: 1940 if (brq->data.blocks > 1) { 1941 /* Redo read one sector at a time */ 1942 pr_warn("%s: retrying using single block read\n", 1943 req->rq_disk->disk_name); 1944 disable_multi = 1; 1945 break; 1946 } 1947 /* 1948 * After an error, we redo I/O one sector at a 1949 * time, so we only reach here after trying to 1950 * read a single sector. 1951 */ 1952 ret = blk_end_request(req, -EIO, 1953 brq->data.blksz); 1954 if (!ret) 1955 goto start_new_req; 1956 break; 1957 case MMC_BLK_NOMEDIUM: 1958 goto cmd_abort; 1959 default: 1960 pr_err("%s: Unhandled return value (%d)", 1961 req->rq_disk->disk_name, status); 1962 goto cmd_abort; 1963 } 1964 1965 if (ret) { 1966 if (mmc_packed_cmd(mq_rq->cmd_type)) { 1967 if (!mq_rq->packed->retries) 1968 goto cmd_abort; 1969 mmc_blk_packed_hdr_wrq_prep(mq_rq, card, mq); 1970 mmc_start_req(card->host, 1971 &mq_rq->mmc_active, NULL); 1972 } else { 1973 1974 /* 1975 * In case of a incomplete request 1976 * prepare it again and resend. 1977 */ 1978 mmc_blk_rw_rq_prep(mq_rq, card, 1979 disable_multi, mq); 1980 mmc_start_req(card->host, 1981 &mq_rq->mmc_active, NULL); 1982 } 1983 } 1984 } while (ret); 1985 1986 return 1; 1987 1988 cmd_abort: 1989 if (mmc_packed_cmd(mq_rq->cmd_type)) { 1990 mmc_blk_abort_packed_req(mq_rq); 1991 } else { 1992 if (mmc_card_removed(card)) 1993 req->cmd_flags |= REQ_QUIET; 1994 while (ret) 1995 ret = blk_end_request(req, -EIO, 1996 blk_rq_cur_bytes(req)); 1997 } 1998 1999 start_new_req: 2000 if (rqc) { 2001 if (mmc_card_removed(card)) { 2002 rqc->cmd_flags |= REQ_QUIET; 2003 blk_end_request_all(rqc, -EIO); 2004 } else { 2005 /* 2006 * If current request is packed, it needs to put back. 2007 */ 2008 if (mmc_packed_cmd(mq->mqrq_cur->cmd_type)) 2009 mmc_blk_revert_packed_req(mq, mq->mqrq_cur); 2010 2011 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); 2012 mmc_start_req(card->host, 2013 &mq->mqrq_cur->mmc_active, NULL); 2014 } 2015 } 2016 2017 return 0; 2018} 2019 2020static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) 2021{ 2022 int ret; 2023 struct mmc_blk_data *md = mq->data; 2024 struct mmc_card *card = md->queue.card; 2025 struct mmc_host *host = card->host; 2026 unsigned long flags; 2027 unsigned int cmd_flags = req ? req->cmd_flags : 0; 2028 2029 if (req && !mq->mqrq_prev->req) 2030 /* claim host only for the first request */ 2031 mmc_get_card(card); 2032 2033 ret = mmc_blk_part_switch(card, md); 2034 if (ret) { 2035 if (req) { 2036 blk_end_request_all(req, -EIO); 2037 } 2038 ret = 0; 2039 goto out; 2040 } 2041 2042 mq->flags &= ~MMC_QUEUE_NEW_REQUEST; 2043 if (cmd_flags & REQ_DISCARD) { 2044 /* complete ongoing async transfer before issuing discard */ 2045 if (card->host->areq) 2046 mmc_blk_issue_rw_rq(mq, NULL); 2047 if (req->cmd_flags & REQ_SECURE) 2048 ret = mmc_blk_issue_secdiscard_rq(mq, req); 2049 else 2050 ret = mmc_blk_issue_discard_rq(mq, req); 2051 } else if (cmd_flags & REQ_FLUSH) { 2052 /* complete ongoing async transfer before issuing flush */ 2053 if (card->host->areq) 2054 mmc_blk_issue_rw_rq(mq, NULL); 2055 ret = mmc_blk_issue_flush(mq, req); 2056 } else { 2057 if (!req && host->areq) { 2058 spin_lock_irqsave(&host->context_info.lock, flags); 2059 host->context_info.is_waiting_last_req = true; 2060 spin_unlock_irqrestore(&host->context_info.lock, flags); 2061 } 2062 ret = mmc_blk_issue_rw_rq(mq, req); 2063 } 2064 2065out: 2066 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) || 2067 (cmd_flags & MMC_REQ_SPECIAL_MASK)) 2068 /* 2069 * Release host when there are no more requests 2070 * and after special request(discard, flush) is done. 2071 * In case sepecial request, there is no reentry to 2072 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'. 2073 */ 2074 mmc_put_card(card); 2075 return ret; 2076} 2077 2078static inline int mmc_blk_readonly(struct mmc_card *card) 2079{ 2080 return mmc_card_readonly(card) || 2081 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2082} 2083 2084static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2085 struct device *parent, 2086 sector_t size, 2087 bool default_ro, 2088 const char *subname, 2089 int area_type) 2090{ 2091 struct mmc_blk_data *md; 2092 int devidx, ret; 2093 2094 devidx = find_first_zero_bit(dev_use, max_devices); 2095 if (devidx >= max_devices) 2096 return ERR_PTR(-ENOSPC); 2097 __set_bit(devidx, dev_use); 2098 2099 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2100 if (!md) { 2101 ret = -ENOMEM; 2102 goto out; 2103 } 2104 2105 /* 2106 * !subname implies we are creating main mmc_blk_data that will be 2107 * associated with mmc_card with dev_set_drvdata. Due to device 2108 * partitions, devidx will not coincide with a per-physical card 2109 * index anymore so we keep track of a name index. 2110 */ 2111 if (!subname) { 2112 md->name_idx = find_first_zero_bit(name_use, max_devices); 2113 __set_bit(md->name_idx, name_use); 2114 } else 2115 md->name_idx = ((struct mmc_blk_data *) 2116 dev_to_disk(parent)->private_data)->name_idx; 2117 2118 md->area_type = area_type; 2119 2120 /* 2121 * Set the read-only status based on the supported commands 2122 * and the write protect switch. 2123 */ 2124 md->read_only = mmc_blk_readonly(card); 2125 2126 md->disk = alloc_disk(perdev_minors); 2127 if (md->disk == NULL) { 2128 ret = -ENOMEM; 2129 goto err_kfree; 2130 } 2131 2132 spin_lock_init(&md->lock); 2133 INIT_LIST_HEAD(&md->part); 2134 md->usage = 1; 2135 2136 ret = mmc_init_queue(&md->queue, card, &md->lock, subname); 2137 if (ret) 2138 goto err_putdisk; 2139 2140 md->queue.issue_fn = mmc_blk_issue_rq; 2141 md->queue.data = md; 2142 2143 md->disk->major = MMC_BLOCK_MAJOR; 2144 md->disk->first_minor = devidx * perdev_minors; 2145 md->disk->fops = &mmc_bdops; 2146 md->disk->private_data = md; 2147 md->disk->queue = md->queue.queue; 2148 md->disk->driverfs_dev = parent; 2149 set_disk_ro(md->disk, md->read_only || default_ro); 2150 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2151 md->disk->flags |= GENHD_FL_NO_PART_SCAN; 2152 2153 /* 2154 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2155 * 2156 * - be set for removable media with permanent block devices 2157 * - be unset for removable block devices with permanent media 2158 * 2159 * Since MMC block devices clearly fall under the second 2160 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2161 * should use the block device creation/destruction hotplug 2162 * messages to tell when the card is present. 2163 */ 2164 2165 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2166 "mmcblk%u%s", md->name_idx, subname ? subname : ""); 2167 2168 if (mmc_card_mmc(card)) 2169 blk_queue_logical_block_size(md->queue.queue, 2170 card->ext_csd.data_sector_size); 2171 else 2172 blk_queue_logical_block_size(md->queue.queue, 512); 2173 2174 set_capacity(md->disk, size); 2175 2176 if (mmc_host_cmd23(card->host)) { 2177 if (mmc_card_mmc(card) || 2178 (mmc_card_sd(card) && 2179 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2180 md->flags |= MMC_BLK_CMD23; 2181 } 2182 2183 if (mmc_card_mmc(card) && 2184 md->flags & MMC_BLK_CMD23 && 2185 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2186 card->ext_csd.rel_sectors)) { 2187 md->flags |= MMC_BLK_REL_WR; 2188 blk_queue_flush(md->queue.queue, REQ_FLUSH | REQ_FUA); 2189 } 2190 2191 if (mmc_card_mmc(card) && 2192 (area_type == MMC_BLK_DATA_AREA_MAIN) && 2193 (md->flags & MMC_BLK_CMD23) && 2194 card->ext_csd.packed_event_en) { 2195 if (!mmc_packed_init(&md->queue, card)) 2196 md->flags |= MMC_BLK_PACKED_CMD; 2197 } 2198 2199 return md; 2200 2201 err_putdisk: 2202 put_disk(md->disk); 2203 err_kfree: 2204 kfree(md); 2205 out: 2206 return ERR_PTR(ret); 2207} 2208 2209static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2210{ 2211 sector_t size; 2212 2213 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2214 /* 2215 * The EXT_CSD sector count is in number or 512 byte 2216 * sectors. 2217 */ 2218 size = card->ext_csd.sectors; 2219 } else { 2220 /* 2221 * The CSD capacity field is in units of read_blkbits. 2222 * set_capacity takes units of 512 bytes. 2223 */ 2224 size = card->csd.capacity << (card->csd.read_blkbits - 9); 2225 } 2226 2227 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2228 MMC_BLK_DATA_AREA_MAIN); 2229} 2230 2231static int mmc_blk_alloc_part(struct mmc_card *card, 2232 struct mmc_blk_data *md, 2233 unsigned int part_type, 2234 sector_t size, 2235 bool default_ro, 2236 const char *subname, 2237 int area_type) 2238{ 2239 char cap_str[10]; 2240 struct mmc_blk_data *part_md; 2241 2242 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2243 subname, area_type); 2244 if (IS_ERR(part_md)) 2245 return PTR_ERR(part_md); 2246 part_md->part_type = part_type; 2247 list_add(&part_md->part, &md->part); 2248 2249 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2250 cap_str, sizeof(cap_str)); 2251 pr_info("%s: %s %s partition %u %s\n", 2252 part_md->disk->disk_name, mmc_card_id(card), 2253 mmc_card_name(card), part_md->part_type, cap_str); 2254 return 0; 2255} 2256 2257/* MMC Physical partitions consist of two boot partitions and 2258 * up to four general purpose partitions. 2259 * For each partition enabled in EXT_CSD a block device will be allocatedi 2260 * to provide access to the partition. 2261 */ 2262 2263static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2264{ 2265 int idx, ret = 0; 2266 2267 if (!mmc_card_mmc(card)) 2268 return 0; 2269 2270 for (idx = 0; idx < card->nr_parts; idx++) { 2271 if (card->part[idx].size) { 2272 ret = mmc_blk_alloc_part(card, md, 2273 card->part[idx].part_cfg, 2274 card->part[idx].size >> 9, 2275 card->part[idx].force_ro, 2276 card->part[idx].name, 2277 card->part[idx].area_type); 2278 if (ret) 2279 return ret; 2280 } 2281 } 2282 2283 return ret; 2284} 2285 2286static void mmc_blk_remove_req(struct mmc_blk_data *md) 2287{ 2288 struct mmc_card *card; 2289 2290 if (md) { 2291 /* 2292 * Flush remaining requests and free queues. It 2293 * is freeing the queue that stops new requests 2294 * from being accepted. 2295 */ 2296 card = md->queue.card; 2297 mmc_cleanup_queue(&md->queue); 2298 if (md->flags & MMC_BLK_PACKED_CMD) 2299 mmc_packed_clean(&md->queue); 2300 if (md->disk->flags & GENHD_FL_UP) { 2301 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2302 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2303 card->ext_csd.boot_ro_lockable) 2304 device_remove_file(disk_to_dev(md->disk), 2305 &md->power_ro_lock); 2306 2307 del_gendisk(md->disk); 2308 } 2309 mmc_blk_put(md); 2310 } 2311} 2312 2313static void mmc_blk_remove_parts(struct mmc_card *card, 2314 struct mmc_blk_data *md) 2315{ 2316 struct list_head *pos, *q; 2317 struct mmc_blk_data *part_md; 2318 2319 __clear_bit(md->name_idx, name_use); 2320 list_for_each_safe(pos, q, &md->part) { 2321 part_md = list_entry(pos, struct mmc_blk_data, part); 2322 list_del(pos); 2323 mmc_blk_remove_req(part_md); 2324 } 2325} 2326 2327static int mmc_add_disk(struct mmc_blk_data *md) 2328{ 2329 int ret; 2330 struct mmc_card *card = md->queue.card; 2331 2332 add_disk(md->disk); 2333 md->force_ro.show = force_ro_show; 2334 md->force_ro.store = force_ro_store; 2335 sysfs_attr_init(&md->force_ro.attr); 2336 md->force_ro.attr.name = "force_ro"; 2337 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2338 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2339 if (ret) 2340 goto force_ro_fail; 2341 2342 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2343 card->ext_csd.boot_ro_lockable) { 2344 umode_t mode; 2345 2346 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2347 mode = S_IRUGO; 2348 else 2349 mode = S_IRUGO | S_IWUSR; 2350 2351 md->power_ro_lock.show = power_ro_lock_show; 2352 md->power_ro_lock.store = power_ro_lock_store; 2353 sysfs_attr_init(&md->power_ro_lock.attr); 2354 md->power_ro_lock.attr.mode = mode; 2355 md->power_ro_lock.attr.name = 2356 "ro_lock_until_next_power_on"; 2357 ret = device_create_file(disk_to_dev(md->disk), 2358 &md->power_ro_lock); 2359 if (ret) 2360 goto power_ro_lock_fail; 2361 } 2362 return ret; 2363 2364power_ro_lock_fail: 2365 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2366force_ro_fail: 2367 del_gendisk(md->disk); 2368 2369 return ret; 2370} 2371 2372#define CID_MANFID_SANDISK 0x2 2373#define CID_MANFID_TOSHIBA 0x11 2374#define CID_MANFID_MICRON 0x13 2375#define CID_MANFID_SAMSUNG 0x15 2376 2377static const struct mmc_fixup blk_fixups[] = 2378{ 2379 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk, 2380 MMC_QUIRK_INAND_CMD38), 2381 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk, 2382 MMC_QUIRK_INAND_CMD38), 2383 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk, 2384 MMC_QUIRK_INAND_CMD38), 2385 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk, 2386 MMC_QUIRK_INAND_CMD38), 2387 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk, 2388 MMC_QUIRK_INAND_CMD38), 2389 2390 /* 2391 * Some MMC cards experience performance degradation with CMD23 2392 * instead of CMD12-bounded multiblock transfers. For now we'll 2393 * black list what's bad... 2394 * - Certain Toshiba cards. 2395 * 2396 * N.B. This doesn't affect SD cards. 2397 */ 2398 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, 2399 MMC_QUIRK_BLK_NO_CMD23), 2400 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, 2401 MMC_QUIRK_BLK_NO_CMD23), 2402 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, 2403 MMC_QUIRK_BLK_NO_CMD23), 2404 2405 /* 2406 * Some MMC cards need longer data read timeout than indicated in CSD. 2407 */ 2408 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc, 2409 MMC_QUIRK_LONG_READ_TIME), 2410 MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, 2411 MMC_QUIRK_LONG_READ_TIME), 2412 2413 /* 2414 * On these Samsung MoviNAND parts, performing secure erase or 2415 * secure trim can result in unrecoverable corruption due to a 2416 * firmware bug. 2417 */ 2418 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2419 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2420 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2421 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2422 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2423 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2424 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2425 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2426 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2427 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2428 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2429 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2430 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2431 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2432 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2433 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2434 2435 END_FIXUP 2436}; 2437 2438static int mmc_blk_probe(struct mmc_card *card) 2439{ 2440 struct mmc_blk_data *md, *part_md; 2441 char cap_str[10]; 2442 2443 /* 2444 * Check that the card supports the command class(es) we need. 2445 */ 2446 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2447 return -ENODEV; 2448 2449 mmc_fixup_device(card, blk_fixups); 2450 2451 md = mmc_blk_alloc(card); 2452 if (IS_ERR(md)) 2453 return PTR_ERR(md); 2454 2455 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2456 cap_str, sizeof(cap_str)); 2457 pr_info("%s: %s %s %s %s\n", 2458 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2459 cap_str, md->read_only ? "(ro)" : ""); 2460 2461 if (mmc_blk_alloc_parts(card, md)) 2462 goto out; 2463 2464 dev_set_drvdata(&card->dev, md); 2465 2466 if (mmc_add_disk(md)) 2467 goto out; 2468 2469 list_for_each_entry(part_md, &md->part, part) { 2470 if (mmc_add_disk(part_md)) 2471 goto out; 2472 } 2473 2474 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2475 pm_runtime_use_autosuspend(&card->dev); 2476 2477 /* 2478 * Don't enable runtime PM for SD-combo cards here. Leave that 2479 * decision to be taken during the SDIO init sequence instead. 2480 */ 2481 if (card->type != MMC_TYPE_SD_COMBO) { 2482 pm_runtime_set_active(&card->dev); 2483 pm_runtime_enable(&card->dev); 2484 } 2485 2486 return 0; 2487 2488 out: 2489 mmc_blk_remove_parts(card, md); 2490 mmc_blk_remove_req(md); 2491 return 0; 2492} 2493 2494static void mmc_blk_remove(struct mmc_card *card) 2495{ 2496 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2497 2498 mmc_blk_remove_parts(card, md); 2499 pm_runtime_get_sync(&card->dev); 2500 mmc_claim_host(card->host); 2501 mmc_blk_part_switch(card, md); 2502 mmc_release_host(card->host); 2503 if (card->type != MMC_TYPE_SD_COMBO) 2504 pm_runtime_disable(&card->dev); 2505 pm_runtime_put_noidle(&card->dev); 2506 mmc_blk_remove_req(md); 2507 dev_set_drvdata(&card->dev, NULL); 2508} 2509 2510static int _mmc_blk_suspend(struct mmc_card *card) 2511{ 2512 struct mmc_blk_data *part_md; 2513 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2514 2515 if (md) { 2516 mmc_queue_suspend(&md->queue); 2517 list_for_each_entry(part_md, &md->part, part) { 2518 mmc_queue_suspend(&part_md->queue); 2519 } 2520 } 2521 return 0; 2522} 2523 2524static void mmc_blk_shutdown(struct mmc_card *card) 2525{ 2526 _mmc_blk_suspend(card); 2527} 2528 2529#ifdef CONFIG_PM_SLEEP 2530static int mmc_blk_suspend(struct device *dev) 2531{ 2532 struct mmc_card *card = mmc_dev_to_card(dev); 2533 2534 return _mmc_blk_suspend(card); 2535} 2536 2537static int mmc_blk_resume(struct device *dev) 2538{ 2539 struct mmc_blk_data *part_md; 2540 struct mmc_blk_data *md = dev_get_drvdata(dev); 2541 2542 if (md) { 2543 /* 2544 * Resume involves the card going into idle state, 2545 * so current partition is always the main one. 2546 */ 2547 md->part_curr = md->part_type; 2548 mmc_queue_resume(&md->queue); 2549 list_for_each_entry(part_md, &md->part, part) { 2550 mmc_queue_resume(&part_md->queue); 2551 } 2552 } 2553 return 0; 2554} 2555#endif 2556 2557static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 2558 2559static struct mmc_driver mmc_driver = { 2560 .drv = { 2561 .name = "mmcblk", 2562 .pm = &mmc_blk_pm_ops, 2563 }, 2564 .probe = mmc_blk_probe, 2565 .remove = mmc_blk_remove, 2566 .shutdown = mmc_blk_shutdown, 2567}; 2568 2569static int __init mmc_blk_init(void) 2570{ 2571 int res; 2572 2573 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 2574 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 2575 2576 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 2577 2578 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2579 if (res) 2580 goto out; 2581 2582 res = mmc_register_driver(&mmc_driver); 2583 if (res) 2584 goto out2; 2585 2586 return 0; 2587 out2: 2588 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2589 out: 2590 return res; 2591} 2592 2593static void __exit mmc_blk_exit(void) 2594{ 2595 mmc_unregister_driver(&mmc_driver); 2596 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2597} 2598 2599module_init(mmc_blk_init); 2600module_exit(mmc_blk_exit); 2601 2602MODULE_LICENSE("GPL"); 2603MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 2604 2605