1/*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 *  1. DMA
14 *  2. Power management
15 *  3. Handle MMC errors better
16 *
17 */
18
19/*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45#include <linux/bitops.h>
46#include <linux/clk.h>
47#include <linux/completion.h>
48#include <linux/delay.h>
49#include <linux/dma-mapping.h>
50#include <linux/dmaengine.h>
51#include <linux/mmc/card.h>
52#include <linux/mmc/core.h>
53#include <linux/mmc/host.h>
54#include <linux/mmc/mmc.h>
55#include <linux/mmc/sdio.h>
56#include <linux/mmc/sh_mmcif.h>
57#include <linux/mmc/slot-gpio.h>
58#include <linux/mod_devicetable.h>
59#include <linux/mutex.h>
60#include <linux/pagemap.h>
61#include <linux/platform_device.h>
62#include <linux/pm_qos.h>
63#include <linux/pm_runtime.h>
64#include <linux/sh_dma.h>
65#include <linux/spinlock.h>
66#include <linux/module.h>
67
68#define DRIVER_NAME	"sh_mmcif"
69#define DRIVER_VERSION	"2010-04-28"
70
71/* CE_CMD_SET */
72#define CMD_MASK		0x3f000000
73#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
74#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
75#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
76#define CMD_SET_RBSY		(1 << 21) /* R1b */
77#define CMD_SET_CCSEN		(1 << 20)
78#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
79#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
80#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
81#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
82#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
83#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
84#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
85#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
86#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
87#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
88#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
89#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
90#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
91#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
92#define CMD_SET_CCSH		(1 << 5)
93#define CMD_SET_DARS		(1 << 2) /* Dual Data Rate */
94#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
95#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
96#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */
97
98/* CE_CMD_CTRL */
99#define CMD_CTRL_BREAK		(1 << 0)
100
101/* CE_BLOCK_SET */
102#define BLOCK_SIZE_MASK		0x0000ffff
103
104/* CE_INT */
105#define INT_CCSDE		(1 << 29)
106#define INT_CMD12DRE		(1 << 26)
107#define INT_CMD12RBE		(1 << 25)
108#define INT_CMD12CRE		(1 << 24)
109#define INT_DTRANE		(1 << 23)
110#define INT_BUFRE		(1 << 22)
111#define INT_BUFWEN		(1 << 21)
112#define INT_BUFREN		(1 << 20)
113#define INT_CCSRCV		(1 << 19)
114#define INT_RBSYE		(1 << 17)
115#define INT_CRSPE		(1 << 16)
116#define INT_CMDVIO		(1 << 15)
117#define INT_BUFVIO		(1 << 14)
118#define INT_WDATERR		(1 << 11)
119#define INT_RDATERR		(1 << 10)
120#define INT_RIDXERR		(1 << 9)
121#define INT_RSPERR		(1 << 8)
122#define INT_CCSTO		(1 << 5)
123#define INT_CRCSTO		(1 << 4)
124#define INT_WDATTO		(1 << 3)
125#define INT_RDATTO		(1 << 2)
126#define INT_RBSYTO		(1 << 1)
127#define INT_RSPTO		(1 << 0)
128#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
129				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
130				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
131				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
132
133#define INT_ALL			(INT_RBSYE | INT_CRSPE | INT_BUFREN |	 \
134				 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
135				 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
136
137#define INT_CCS			(INT_CCSTO | INT_CCSRCV | INT_CCSDE)
138
139/* CE_INT_MASK */
140#define MASK_ALL		0x00000000
141#define MASK_MCCSDE		(1 << 29)
142#define MASK_MCMD12DRE		(1 << 26)
143#define MASK_MCMD12RBE		(1 << 25)
144#define MASK_MCMD12CRE		(1 << 24)
145#define MASK_MDTRANE		(1 << 23)
146#define MASK_MBUFRE		(1 << 22)
147#define MASK_MBUFWEN		(1 << 21)
148#define MASK_MBUFREN		(1 << 20)
149#define MASK_MCCSRCV		(1 << 19)
150#define MASK_MRBSYE		(1 << 17)
151#define MASK_MCRSPE		(1 << 16)
152#define MASK_MCMDVIO		(1 << 15)
153#define MASK_MBUFVIO		(1 << 14)
154#define MASK_MWDATERR		(1 << 11)
155#define MASK_MRDATERR		(1 << 10)
156#define MASK_MRIDXERR		(1 << 9)
157#define MASK_MRSPERR		(1 << 8)
158#define MASK_MCCSTO		(1 << 5)
159#define MASK_MCRCSTO		(1 << 4)
160#define MASK_MWDATTO		(1 << 3)
161#define MASK_MRDATTO		(1 << 2)
162#define MASK_MRBSYTO		(1 << 1)
163#define MASK_MRSPTO		(1 << 0)
164
165#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
166				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
167				 MASK_MCRCSTO | MASK_MWDATTO | \
168				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
169
170#define MASK_CLEAN		(INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE |	\
171				 MASK_MBUFREN | MASK_MBUFWEN |			\
172				 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE |	\
173				 MASK_MCMD12RBE | MASK_MCMD12CRE)
174
175/* CE_HOST_STS1 */
176#define STS1_CMDSEQ		(1 << 31)
177
178/* CE_HOST_STS2 */
179#define STS2_CRCSTE		(1 << 31)
180#define STS2_CRC16E		(1 << 30)
181#define STS2_AC12CRCE		(1 << 29)
182#define STS2_RSPCRC7E		(1 << 28)
183#define STS2_CRCSTEBE		(1 << 27)
184#define STS2_RDATEBE		(1 << 26)
185#define STS2_AC12REBE		(1 << 25)
186#define STS2_RSPEBE		(1 << 24)
187#define STS2_AC12IDXE		(1 << 23)
188#define STS2_RSPIDXE		(1 << 22)
189#define STS2_CCSTO		(1 << 15)
190#define STS2_RDATTO		(1 << 14)
191#define STS2_DATBSYTO		(1 << 13)
192#define STS2_CRCSTTO		(1 << 12)
193#define STS2_AC12BSYTO		(1 << 11)
194#define STS2_RSPBSYTO		(1 << 10)
195#define STS2_AC12RSPTO		(1 << 9)
196#define STS2_RSPTO		(1 << 8)
197#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
198				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
199#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
200				 STS2_DATBSYTO | STS2_CRCSTTO |		\
201				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
202				 STS2_AC12RSPTO | STS2_RSPTO)
203
204#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
205#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
206#define CLKDEV_INIT		400000   /* 400 KHz */
207
208enum mmcif_state {
209	STATE_IDLE,
210	STATE_REQUEST,
211	STATE_IOS,
212	STATE_TIMEOUT,
213};
214
215enum mmcif_wait_for {
216	MMCIF_WAIT_FOR_REQUEST,
217	MMCIF_WAIT_FOR_CMD,
218	MMCIF_WAIT_FOR_MREAD,
219	MMCIF_WAIT_FOR_MWRITE,
220	MMCIF_WAIT_FOR_READ,
221	MMCIF_WAIT_FOR_WRITE,
222	MMCIF_WAIT_FOR_READ_END,
223	MMCIF_WAIT_FOR_WRITE_END,
224	MMCIF_WAIT_FOR_STOP,
225};
226
227struct sh_mmcif_host {
228	struct mmc_host *mmc;
229	struct mmc_request *mrq;
230	struct platform_device *pd;
231	struct clk *hclk;
232	unsigned int clk;
233	int bus_width;
234	unsigned char timing;
235	bool sd_error;
236	bool dying;
237	long timeout;
238	void __iomem *addr;
239	u32 *pio_ptr;
240	spinlock_t lock;		/* protect sh_mmcif_host::state */
241	enum mmcif_state state;
242	enum mmcif_wait_for wait_for;
243	struct delayed_work timeout_work;
244	size_t blocksize;
245	int sg_idx;
246	int sg_blkidx;
247	bool power;
248	bool card_present;
249	bool ccs_enable;		/* Command Completion Signal support */
250	bool clk_ctrl2_enable;
251	struct mutex thread_lock;
252
253	/* DMA support */
254	struct dma_chan		*chan_rx;
255	struct dma_chan		*chan_tx;
256	struct completion	dma_complete;
257	bool			dma_active;
258};
259
260static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
261					unsigned int reg, u32 val)
262{
263	writel(val | readl(host->addr + reg), host->addr + reg);
264}
265
266static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
267					unsigned int reg, u32 val)
268{
269	writel(~val & readl(host->addr + reg), host->addr + reg);
270}
271
272static void mmcif_dma_complete(void *arg)
273{
274	struct sh_mmcif_host *host = arg;
275	struct mmc_request *mrq = host->mrq;
276
277	dev_dbg(&host->pd->dev, "Command completed\n");
278
279	if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
280		 dev_name(&host->pd->dev)))
281		return;
282
283	complete(&host->dma_complete);
284}
285
286static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
287{
288	struct mmc_data *data = host->mrq->data;
289	struct scatterlist *sg = data->sg;
290	struct dma_async_tx_descriptor *desc = NULL;
291	struct dma_chan *chan = host->chan_rx;
292	dma_cookie_t cookie = -EINVAL;
293	int ret;
294
295	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
296			 DMA_FROM_DEVICE);
297	if (ret > 0) {
298		host->dma_active = true;
299		desc = dmaengine_prep_slave_sg(chan, sg, ret,
300			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
301	}
302
303	if (desc) {
304		desc->callback = mmcif_dma_complete;
305		desc->callback_param = host;
306		cookie = dmaengine_submit(desc);
307		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
308		dma_async_issue_pending(chan);
309	}
310	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
311		__func__, data->sg_len, ret, cookie);
312
313	if (!desc) {
314		/* DMA failed, fall back to PIO */
315		if (ret >= 0)
316			ret = -EIO;
317		host->chan_rx = NULL;
318		host->dma_active = false;
319		dma_release_channel(chan);
320		/* Free the Tx channel too */
321		chan = host->chan_tx;
322		if (chan) {
323			host->chan_tx = NULL;
324			dma_release_channel(chan);
325		}
326		dev_warn(&host->pd->dev,
327			 "DMA failed: %d, falling back to PIO\n", ret);
328		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
329	}
330
331	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
332		desc, cookie, data->sg_len);
333}
334
335static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
336{
337	struct mmc_data *data = host->mrq->data;
338	struct scatterlist *sg = data->sg;
339	struct dma_async_tx_descriptor *desc = NULL;
340	struct dma_chan *chan = host->chan_tx;
341	dma_cookie_t cookie = -EINVAL;
342	int ret;
343
344	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
345			 DMA_TO_DEVICE);
346	if (ret > 0) {
347		host->dma_active = true;
348		desc = dmaengine_prep_slave_sg(chan, sg, ret,
349			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
350	}
351
352	if (desc) {
353		desc->callback = mmcif_dma_complete;
354		desc->callback_param = host;
355		cookie = dmaengine_submit(desc);
356		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
357		dma_async_issue_pending(chan);
358	}
359	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
360		__func__, data->sg_len, ret, cookie);
361
362	if (!desc) {
363		/* DMA failed, fall back to PIO */
364		if (ret >= 0)
365			ret = -EIO;
366		host->chan_tx = NULL;
367		host->dma_active = false;
368		dma_release_channel(chan);
369		/* Free the Rx channel too */
370		chan = host->chan_rx;
371		if (chan) {
372			host->chan_rx = NULL;
373			dma_release_channel(chan);
374		}
375		dev_warn(&host->pd->dev,
376			 "DMA failed: %d, falling back to PIO\n", ret);
377		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
378	}
379
380	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
381		desc, cookie);
382}
383
384static struct dma_chan *
385sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
386			 struct sh_mmcif_plat_data *pdata,
387			 enum dma_transfer_direction direction)
388{
389	struct dma_slave_config cfg = { 0, };
390	struct dma_chan *chan;
391	void *slave_data = NULL;
392	struct resource *res;
393	dma_cap_mask_t mask;
394	int ret;
395
396	dma_cap_zero(mask);
397	dma_cap_set(DMA_SLAVE, mask);
398
399	if (pdata)
400		slave_data = direction == DMA_MEM_TO_DEV ?
401			(void *)pdata->slave_id_tx :
402			(void *)pdata->slave_id_rx;
403
404	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
405				slave_data, &host->pd->dev,
406				direction == DMA_MEM_TO_DEV ? "tx" : "rx");
407
408	dev_dbg(&host->pd->dev, "%s: %s: got channel %p\n", __func__,
409		direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
410
411	if (!chan)
412		return NULL;
413
414	res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
415
416	cfg.direction = direction;
417
418	if (direction == DMA_DEV_TO_MEM) {
419		cfg.src_addr = res->start + MMCIF_CE_DATA;
420		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
421	} else {
422		cfg.dst_addr = res->start + MMCIF_CE_DATA;
423		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
424	}
425
426	ret = dmaengine_slave_config(chan, &cfg);
427	if (ret < 0) {
428		dma_release_channel(chan);
429		return NULL;
430	}
431
432	return chan;
433}
434
435static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
436				 struct sh_mmcif_plat_data *pdata)
437{
438	host->dma_active = false;
439
440	if (pdata) {
441		if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
442			return;
443	} else if (!host->pd->dev.of_node) {
444		return;
445	}
446
447	/* We can only either use DMA for both Tx and Rx or not use it at all */
448	host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
449	if (!host->chan_tx)
450		return;
451
452	host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
453	if (!host->chan_rx) {
454		dma_release_channel(host->chan_tx);
455		host->chan_tx = NULL;
456	}
457}
458
459static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
460{
461	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
462	/* Descriptors are freed automatically */
463	if (host->chan_tx) {
464		struct dma_chan *chan = host->chan_tx;
465		host->chan_tx = NULL;
466		dma_release_channel(chan);
467	}
468	if (host->chan_rx) {
469		struct dma_chan *chan = host->chan_rx;
470		host->chan_rx = NULL;
471		dma_release_channel(chan);
472	}
473
474	host->dma_active = false;
475}
476
477static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
478{
479	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
480	bool sup_pclk = p ? p->sup_pclk : false;
481
482	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
483	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
484
485	if (!clk)
486		return;
487	if (sup_pclk && clk == host->clk)
488		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
489	else
490		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
491				((fls(DIV_ROUND_UP(host->clk,
492						   clk) - 1) - 1) << 16));
493
494	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
495}
496
497static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
498{
499	u32 tmp;
500
501	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
502
503	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
504	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
505	if (host->ccs_enable)
506		tmp |= SCCSTO_29;
507	if (host->clk_ctrl2_enable)
508		sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
509	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
510		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
511	/* byte swap on */
512	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
513}
514
515static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
516{
517	u32 state1, state2;
518	int ret, timeout;
519
520	host->sd_error = false;
521
522	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
523	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
524	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
525	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);
526
527	if (state1 & STS1_CMDSEQ) {
528		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
529		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
530		for (timeout = 10000000; timeout; timeout--) {
531			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
532			      & STS1_CMDSEQ))
533				break;
534			mdelay(1);
535		}
536		if (!timeout) {
537			dev_err(&host->pd->dev,
538				"Forced end of command sequence timeout err\n");
539			return -EIO;
540		}
541		sh_mmcif_sync_reset(host);
542		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
543		return -EIO;
544	}
545
546	if (state2 & STS2_CRC_ERR) {
547		dev_err(&host->pd->dev, " CRC error: state %u, wait %u\n",
548			host->state, host->wait_for);
549		ret = -EIO;
550	} else if (state2 & STS2_TIMEOUT_ERR) {
551		dev_err(&host->pd->dev, " Timeout: state %u, wait %u\n",
552			host->state, host->wait_for);
553		ret = -ETIMEDOUT;
554	} else {
555		dev_dbg(&host->pd->dev, " End/Index error: state %u, wait %u\n",
556			host->state, host->wait_for);
557		ret = -EIO;
558	}
559	return ret;
560}
561
562static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
563{
564	struct mmc_data *data = host->mrq->data;
565
566	host->sg_blkidx += host->blocksize;
567
568	/* data->sg->length must be a multiple of host->blocksize? */
569	BUG_ON(host->sg_blkidx > data->sg->length);
570
571	if (host->sg_blkidx == data->sg->length) {
572		host->sg_blkidx = 0;
573		if (++host->sg_idx < data->sg_len)
574			host->pio_ptr = sg_virt(++data->sg);
575	} else {
576		host->pio_ptr = p;
577	}
578
579	return host->sg_idx != data->sg_len;
580}
581
582static void sh_mmcif_single_read(struct sh_mmcif_host *host,
583				 struct mmc_request *mrq)
584{
585	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
586			   BLOCK_SIZE_MASK) + 3;
587
588	host->wait_for = MMCIF_WAIT_FOR_READ;
589
590	/* buf read enable */
591	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
592}
593
594static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
595{
596	struct mmc_data *data = host->mrq->data;
597	u32 *p = sg_virt(data->sg);
598	int i;
599
600	if (host->sd_error) {
601		data->error = sh_mmcif_error_manage(host);
602		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
603		return false;
604	}
605
606	for (i = 0; i < host->blocksize / 4; i++)
607		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
608
609	/* buffer read end */
610	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
611	host->wait_for = MMCIF_WAIT_FOR_READ_END;
612
613	return true;
614}
615
616static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
617				struct mmc_request *mrq)
618{
619	struct mmc_data *data = mrq->data;
620
621	if (!data->sg_len || !data->sg->length)
622		return;
623
624	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
625		BLOCK_SIZE_MASK;
626
627	host->wait_for = MMCIF_WAIT_FOR_MREAD;
628	host->sg_idx = 0;
629	host->sg_blkidx = 0;
630	host->pio_ptr = sg_virt(data->sg);
631
632	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
633}
634
635static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
636{
637	struct mmc_data *data = host->mrq->data;
638	u32 *p = host->pio_ptr;
639	int i;
640
641	if (host->sd_error) {
642		data->error = sh_mmcif_error_manage(host);
643		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
644		return false;
645	}
646
647	BUG_ON(!data->sg->length);
648
649	for (i = 0; i < host->blocksize / 4; i++)
650		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
651
652	if (!sh_mmcif_next_block(host, p))
653		return false;
654
655	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
656
657	return true;
658}
659
660static void sh_mmcif_single_write(struct sh_mmcif_host *host,
661					struct mmc_request *mrq)
662{
663	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
664			   BLOCK_SIZE_MASK) + 3;
665
666	host->wait_for = MMCIF_WAIT_FOR_WRITE;
667
668	/* buf write enable */
669	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
670}
671
672static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
673{
674	struct mmc_data *data = host->mrq->data;
675	u32 *p = sg_virt(data->sg);
676	int i;
677
678	if (host->sd_error) {
679		data->error = sh_mmcif_error_manage(host);
680		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
681		return false;
682	}
683
684	for (i = 0; i < host->blocksize / 4; i++)
685		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
686
687	/* buffer write end */
688	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
689	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
690
691	return true;
692}
693
694static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
695				struct mmc_request *mrq)
696{
697	struct mmc_data *data = mrq->data;
698
699	if (!data->sg_len || !data->sg->length)
700		return;
701
702	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
703		BLOCK_SIZE_MASK;
704
705	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
706	host->sg_idx = 0;
707	host->sg_blkidx = 0;
708	host->pio_ptr = sg_virt(data->sg);
709
710	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
711}
712
713static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
714{
715	struct mmc_data *data = host->mrq->data;
716	u32 *p = host->pio_ptr;
717	int i;
718
719	if (host->sd_error) {
720		data->error = sh_mmcif_error_manage(host);
721		dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, data->error);
722		return false;
723	}
724
725	BUG_ON(!data->sg->length);
726
727	for (i = 0; i < host->blocksize / 4; i++)
728		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
729
730	if (!sh_mmcif_next_block(host, p))
731		return false;
732
733	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
734
735	return true;
736}
737
738static void sh_mmcif_get_response(struct sh_mmcif_host *host,
739						struct mmc_command *cmd)
740{
741	if (cmd->flags & MMC_RSP_136) {
742		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
743		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
744		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
745		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
746	} else
747		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
748}
749
750static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
751						struct mmc_command *cmd)
752{
753	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
754}
755
756static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
757			    struct mmc_request *mrq)
758{
759	struct mmc_data *data = mrq->data;
760	struct mmc_command *cmd = mrq->cmd;
761	u32 opc = cmd->opcode;
762	u32 tmp = 0;
763
764	/* Response Type check */
765	switch (mmc_resp_type(cmd)) {
766	case MMC_RSP_NONE:
767		tmp |= CMD_SET_RTYP_NO;
768		break;
769	case MMC_RSP_R1:
770	case MMC_RSP_R1B:
771	case MMC_RSP_R3:
772		tmp |= CMD_SET_RTYP_6B;
773		break;
774	case MMC_RSP_R2:
775		tmp |= CMD_SET_RTYP_17B;
776		break;
777	default:
778		dev_err(&host->pd->dev, "Unsupported response type.\n");
779		break;
780	}
781	switch (opc) {
782	/* RBSY */
783	case MMC_SLEEP_AWAKE:
784	case MMC_SWITCH:
785	case MMC_STOP_TRANSMISSION:
786	case MMC_SET_WRITE_PROT:
787	case MMC_CLR_WRITE_PROT:
788	case MMC_ERASE:
789		tmp |= CMD_SET_RBSY;
790		break;
791	}
792	/* WDAT / DATW */
793	if (data) {
794		tmp |= CMD_SET_WDAT;
795		switch (host->bus_width) {
796		case MMC_BUS_WIDTH_1:
797			tmp |= CMD_SET_DATW_1;
798			break;
799		case MMC_BUS_WIDTH_4:
800			tmp |= CMD_SET_DATW_4;
801			break;
802		case MMC_BUS_WIDTH_8:
803			tmp |= CMD_SET_DATW_8;
804			break;
805		default:
806			dev_err(&host->pd->dev, "Unsupported bus width.\n");
807			break;
808		}
809		switch (host->timing) {
810		case MMC_TIMING_MMC_DDR52:
811			/*
812			 * MMC core will only set this timing, if the host
813			 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
814			 * capability. MMCIF implementations with this
815			 * capability, e.g. sh73a0, will have to set it
816			 * in their platform data.
817			 */
818			tmp |= CMD_SET_DARS;
819			break;
820		}
821	}
822	/* DWEN */
823	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
824		tmp |= CMD_SET_DWEN;
825	/* CMLTE/CMD12EN */
826	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
827		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
828		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
829				data->blocks << 16);
830	}
831	/* RIDXC[1:0] check bits */
832	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
833	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
834		tmp |= CMD_SET_RIDXC_BITS;
835	/* RCRC7C[1:0] check bits */
836	if (opc == MMC_SEND_OP_COND)
837		tmp |= CMD_SET_CRC7C_BITS;
838	/* RCRC7C[1:0] internal CRC7 */
839	if (opc == MMC_ALL_SEND_CID ||
840		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
841		tmp |= CMD_SET_CRC7C_INTERNAL;
842
843	return (opc << 24) | tmp;
844}
845
846static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
847			       struct mmc_request *mrq, u32 opc)
848{
849	switch (opc) {
850	case MMC_READ_MULTIPLE_BLOCK:
851		sh_mmcif_multi_read(host, mrq);
852		return 0;
853	case MMC_WRITE_MULTIPLE_BLOCK:
854		sh_mmcif_multi_write(host, mrq);
855		return 0;
856	case MMC_WRITE_BLOCK:
857		sh_mmcif_single_write(host, mrq);
858		return 0;
859	case MMC_READ_SINGLE_BLOCK:
860	case MMC_SEND_EXT_CSD:
861		sh_mmcif_single_read(host, mrq);
862		return 0;
863	default:
864		dev_err(&host->pd->dev, "Unsupported CMD%d\n", opc);
865		return -EINVAL;
866	}
867}
868
869static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
870			       struct mmc_request *mrq)
871{
872	struct mmc_command *cmd = mrq->cmd;
873	u32 opc = cmd->opcode;
874	u32 mask;
875	unsigned long flags;
876
877	switch (opc) {
878	/* response busy check */
879	case MMC_SLEEP_AWAKE:
880	case MMC_SWITCH:
881	case MMC_STOP_TRANSMISSION:
882	case MMC_SET_WRITE_PROT:
883	case MMC_CLR_WRITE_PROT:
884	case MMC_ERASE:
885		mask = MASK_START_CMD | MASK_MRBSYE;
886		break;
887	default:
888		mask = MASK_START_CMD | MASK_MCRSPE;
889		break;
890	}
891
892	if (host->ccs_enable)
893		mask |= MASK_MCCSTO;
894
895	if (mrq->data) {
896		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
897		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
898				mrq->data->blksz);
899	}
900	opc = sh_mmcif_set_cmd(host, mrq);
901
902	if (host->ccs_enable)
903		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
904	else
905		sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
906	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
907	/* set arg */
908	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
909	/* set cmd */
910	spin_lock_irqsave(&host->lock, flags);
911	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
912
913	host->wait_for = MMCIF_WAIT_FOR_CMD;
914	schedule_delayed_work(&host->timeout_work, host->timeout);
915	spin_unlock_irqrestore(&host->lock, flags);
916}
917
918static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
919			      struct mmc_request *mrq)
920{
921	switch (mrq->cmd->opcode) {
922	case MMC_READ_MULTIPLE_BLOCK:
923		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
924		break;
925	case MMC_WRITE_MULTIPLE_BLOCK:
926		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
927		break;
928	default:
929		dev_err(&host->pd->dev, "unsupported stop cmd\n");
930		mrq->stop->error = sh_mmcif_error_manage(host);
931		return;
932	}
933
934	host->wait_for = MMCIF_WAIT_FOR_STOP;
935}
936
937static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
938{
939	struct sh_mmcif_host *host = mmc_priv(mmc);
940	unsigned long flags;
941
942	spin_lock_irqsave(&host->lock, flags);
943	if (host->state != STATE_IDLE) {
944		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
945		spin_unlock_irqrestore(&host->lock, flags);
946		mrq->cmd->error = -EAGAIN;
947		mmc_request_done(mmc, mrq);
948		return;
949	}
950
951	host->state = STATE_REQUEST;
952	spin_unlock_irqrestore(&host->lock, flags);
953
954	switch (mrq->cmd->opcode) {
955	/* MMCIF does not support SD/SDIO command */
956	case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
957	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
958		if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
959			break;
960	case MMC_APP_CMD:
961	case SD_IO_RW_DIRECT:
962		host->state = STATE_IDLE;
963		mrq->cmd->error = -ETIMEDOUT;
964		mmc_request_done(mmc, mrq);
965		return;
966	default:
967		break;
968	}
969
970	host->mrq = mrq;
971
972	sh_mmcif_start_cmd(host, mrq);
973}
974
975static int sh_mmcif_clk_update(struct sh_mmcif_host *host)
976{
977	int ret = clk_prepare_enable(host->hclk);
978
979	if (!ret) {
980		host->clk = clk_get_rate(host->hclk);
981		host->mmc->f_max = host->clk / 2;
982		host->mmc->f_min = host->clk / 512;
983	}
984
985	return ret;
986}
987
988static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
989{
990	struct mmc_host *mmc = host->mmc;
991
992	if (!IS_ERR(mmc->supply.vmmc))
993		/* Errors ignored... */
994		mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
995				      ios->power_mode ? ios->vdd : 0);
996}
997
998static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
999{
1000	struct sh_mmcif_host *host = mmc_priv(mmc);
1001	unsigned long flags;
1002
1003	spin_lock_irqsave(&host->lock, flags);
1004	if (host->state != STATE_IDLE) {
1005		dev_dbg(&host->pd->dev, "%s() rejected, state %u\n", __func__, host->state);
1006		spin_unlock_irqrestore(&host->lock, flags);
1007		return;
1008	}
1009
1010	host->state = STATE_IOS;
1011	spin_unlock_irqrestore(&host->lock, flags);
1012
1013	if (ios->power_mode == MMC_POWER_UP) {
1014		if (!host->card_present) {
1015			/* See if we also get DMA */
1016			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
1017			host->card_present = true;
1018		}
1019		sh_mmcif_set_power(host, ios);
1020	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1021		/* clock stop */
1022		sh_mmcif_clock_control(host, 0);
1023		if (ios->power_mode == MMC_POWER_OFF) {
1024			if (host->card_present) {
1025				sh_mmcif_release_dma(host);
1026				host->card_present = false;
1027			}
1028		}
1029		if (host->power) {
1030			pm_runtime_put_sync(&host->pd->dev);
1031			clk_disable_unprepare(host->hclk);
1032			host->power = false;
1033			if (ios->power_mode == MMC_POWER_OFF)
1034				sh_mmcif_set_power(host, ios);
1035		}
1036		host->state = STATE_IDLE;
1037		return;
1038	}
1039
1040	if (ios->clock) {
1041		if (!host->power) {
1042			sh_mmcif_clk_update(host);
1043			pm_runtime_get_sync(&host->pd->dev);
1044			host->power = true;
1045			sh_mmcif_sync_reset(host);
1046		}
1047		sh_mmcif_clock_control(host, ios->clock);
1048	}
1049
1050	host->timing = ios->timing;
1051	host->bus_width = ios->bus_width;
1052	host->state = STATE_IDLE;
1053}
1054
1055static int sh_mmcif_get_cd(struct mmc_host *mmc)
1056{
1057	struct sh_mmcif_host *host = mmc_priv(mmc);
1058	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
1059	int ret = mmc_gpio_get_cd(mmc);
1060
1061	if (ret >= 0)
1062		return ret;
1063
1064	if (!p || !p->get_cd)
1065		return -ENOSYS;
1066	else
1067		return p->get_cd(host->pd);
1068}
1069
1070static struct mmc_host_ops sh_mmcif_ops = {
1071	.request	= sh_mmcif_request,
1072	.set_ios	= sh_mmcif_set_ios,
1073	.get_cd		= sh_mmcif_get_cd,
1074};
1075
1076static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1077{
1078	struct mmc_command *cmd = host->mrq->cmd;
1079	struct mmc_data *data = host->mrq->data;
1080	long time;
1081
1082	if (host->sd_error) {
1083		switch (cmd->opcode) {
1084		case MMC_ALL_SEND_CID:
1085		case MMC_SELECT_CARD:
1086		case MMC_APP_CMD:
1087			cmd->error = -ETIMEDOUT;
1088			break;
1089		default:
1090			cmd->error = sh_mmcif_error_manage(host);
1091			break;
1092		}
1093		dev_dbg(&host->pd->dev, "CMD%d error %d\n",
1094			cmd->opcode, cmd->error);
1095		host->sd_error = false;
1096		return false;
1097	}
1098	if (!(cmd->flags & MMC_RSP_PRESENT)) {
1099		cmd->error = 0;
1100		return false;
1101	}
1102
1103	sh_mmcif_get_response(host, cmd);
1104
1105	if (!data)
1106		return false;
1107
1108	/*
1109	 * Completion can be signalled from DMA callback and error, so, have to
1110	 * reset here, before setting .dma_active
1111	 */
1112	init_completion(&host->dma_complete);
1113
1114	if (data->flags & MMC_DATA_READ) {
1115		if (host->chan_rx)
1116			sh_mmcif_start_dma_rx(host);
1117	} else {
1118		if (host->chan_tx)
1119			sh_mmcif_start_dma_tx(host);
1120	}
1121
1122	if (!host->dma_active) {
1123		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1124		return !data->error;
1125	}
1126
1127	/* Running in the IRQ thread, can sleep */
1128	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1129							 host->timeout);
1130
1131	if (data->flags & MMC_DATA_READ)
1132		dma_unmap_sg(host->chan_rx->device->dev,
1133			     data->sg, data->sg_len,
1134			     DMA_FROM_DEVICE);
1135	else
1136		dma_unmap_sg(host->chan_tx->device->dev,
1137			     data->sg, data->sg_len,
1138			     DMA_TO_DEVICE);
1139
1140	if (host->sd_error) {
1141		dev_err(host->mmc->parent,
1142			"Error IRQ while waiting for DMA completion!\n");
1143		/* Woken up by an error IRQ: abort DMA */
1144		data->error = sh_mmcif_error_manage(host);
1145	} else if (!time) {
1146		dev_err(host->mmc->parent, "DMA timeout!\n");
1147		data->error = -ETIMEDOUT;
1148	} else if (time < 0) {
1149		dev_err(host->mmc->parent,
1150			"wait_for_completion_...() error %ld!\n", time);
1151		data->error = time;
1152	}
1153	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1154			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1155	host->dma_active = false;
1156
1157	if (data->error) {
1158		data->bytes_xfered = 0;
1159		/* Abort DMA */
1160		if (data->flags & MMC_DATA_READ)
1161			dmaengine_terminate_all(host->chan_rx);
1162		else
1163			dmaengine_terminate_all(host->chan_tx);
1164	}
1165
1166	return false;
1167}
1168
1169static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1170{
1171	struct sh_mmcif_host *host = dev_id;
1172	struct mmc_request *mrq;
1173	bool wait = false;
1174	unsigned long flags;
1175	int wait_work;
1176
1177	spin_lock_irqsave(&host->lock, flags);
1178	wait_work = host->wait_for;
1179	spin_unlock_irqrestore(&host->lock, flags);
1180
1181	cancel_delayed_work_sync(&host->timeout_work);
1182
1183	mutex_lock(&host->thread_lock);
1184
1185	mrq = host->mrq;
1186	if (!mrq) {
1187		dev_dbg(&host->pd->dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1188			host->state, host->wait_for);
1189		mutex_unlock(&host->thread_lock);
1190		return IRQ_HANDLED;
1191	}
1192
1193	/*
1194	 * All handlers return true, if processing continues, and false, if the
1195	 * request has to be completed - successfully or not
1196	 */
1197	switch (wait_work) {
1198	case MMCIF_WAIT_FOR_REQUEST:
1199		/* We're too late, the timeout has already kicked in */
1200		mutex_unlock(&host->thread_lock);
1201		return IRQ_HANDLED;
1202	case MMCIF_WAIT_FOR_CMD:
1203		/* Wait for data? */
1204		wait = sh_mmcif_end_cmd(host);
1205		break;
1206	case MMCIF_WAIT_FOR_MREAD:
1207		/* Wait for more data? */
1208		wait = sh_mmcif_mread_block(host);
1209		break;
1210	case MMCIF_WAIT_FOR_READ:
1211		/* Wait for data end? */
1212		wait = sh_mmcif_read_block(host);
1213		break;
1214	case MMCIF_WAIT_FOR_MWRITE:
1215		/* Wait data to write? */
1216		wait = sh_mmcif_mwrite_block(host);
1217		break;
1218	case MMCIF_WAIT_FOR_WRITE:
1219		/* Wait for data end? */
1220		wait = sh_mmcif_write_block(host);
1221		break;
1222	case MMCIF_WAIT_FOR_STOP:
1223		if (host->sd_error) {
1224			mrq->stop->error = sh_mmcif_error_manage(host);
1225			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->stop->error);
1226			break;
1227		}
1228		sh_mmcif_get_cmd12response(host, mrq->stop);
1229		mrq->stop->error = 0;
1230		break;
1231	case MMCIF_WAIT_FOR_READ_END:
1232	case MMCIF_WAIT_FOR_WRITE_END:
1233		if (host->sd_error) {
1234			mrq->data->error = sh_mmcif_error_manage(host);
1235			dev_dbg(&host->pd->dev, "%s(): %d\n", __func__, mrq->data->error);
1236		}
1237		break;
1238	default:
1239		BUG();
1240	}
1241
1242	if (wait) {
1243		schedule_delayed_work(&host->timeout_work, host->timeout);
1244		/* Wait for more data */
1245		mutex_unlock(&host->thread_lock);
1246		return IRQ_HANDLED;
1247	}
1248
1249	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1250		struct mmc_data *data = mrq->data;
1251		if (!mrq->cmd->error && data && !data->error)
1252			data->bytes_xfered =
1253				data->blocks * data->blksz;
1254
1255		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1256			sh_mmcif_stop_cmd(host, mrq);
1257			if (!mrq->stop->error) {
1258				schedule_delayed_work(&host->timeout_work, host->timeout);
1259				mutex_unlock(&host->thread_lock);
1260				return IRQ_HANDLED;
1261			}
1262		}
1263	}
1264
1265	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1266	host->state = STATE_IDLE;
1267	host->mrq = NULL;
1268	mmc_request_done(host->mmc, mrq);
1269
1270	mutex_unlock(&host->thread_lock);
1271
1272	return IRQ_HANDLED;
1273}
1274
1275static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1276{
1277	struct sh_mmcif_host *host = dev_id;
1278	u32 state, mask;
1279
1280	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1281	mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1282	if (host->ccs_enable)
1283		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1284	else
1285		sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1286	sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1287
1288	if (state & ~MASK_CLEAN)
1289		dev_dbg(&host->pd->dev, "IRQ state = 0x%08x incompletely cleared\n",
1290			state);
1291
1292	if (state & INT_ERR_STS || state & ~INT_ALL) {
1293		host->sd_error = true;
1294		dev_dbg(&host->pd->dev, "int err state = 0x%08x\n", state);
1295	}
1296	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1297		if (!host->mrq)
1298			dev_dbg(&host->pd->dev, "NULL IRQ state = 0x%08x\n", state);
1299		if (!host->dma_active)
1300			return IRQ_WAKE_THREAD;
1301		else if (host->sd_error)
1302			mmcif_dma_complete(host);
1303	} else {
1304		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
1305	}
1306
1307	return IRQ_HANDLED;
1308}
1309
1310static void mmcif_timeout_work(struct work_struct *work)
1311{
1312	struct delayed_work *d = container_of(work, struct delayed_work, work);
1313	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1314	struct mmc_request *mrq = host->mrq;
1315	unsigned long flags;
1316
1317	if (host->dying)
1318		/* Don't run after mmc_remove_host() */
1319		return;
1320
1321	spin_lock_irqsave(&host->lock, flags);
1322	if (host->state == STATE_IDLE) {
1323		spin_unlock_irqrestore(&host->lock, flags);
1324		return;
1325	}
1326
1327	dev_err(&host->pd->dev, "Timeout waiting for %u on CMD%u\n",
1328		host->wait_for, mrq->cmd->opcode);
1329
1330	host->state = STATE_TIMEOUT;
1331	spin_unlock_irqrestore(&host->lock, flags);
1332
1333	/*
1334	 * Handle races with cancel_delayed_work(), unless
1335	 * cancel_delayed_work_sync() is used
1336	 */
1337	switch (host->wait_for) {
1338	case MMCIF_WAIT_FOR_CMD:
1339		mrq->cmd->error = sh_mmcif_error_manage(host);
1340		break;
1341	case MMCIF_WAIT_FOR_STOP:
1342		mrq->stop->error = sh_mmcif_error_manage(host);
1343		break;
1344	case MMCIF_WAIT_FOR_MREAD:
1345	case MMCIF_WAIT_FOR_MWRITE:
1346	case MMCIF_WAIT_FOR_READ:
1347	case MMCIF_WAIT_FOR_WRITE:
1348	case MMCIF_WAIT_FOR_READ_END:
1349	case MMCIF_WAIT_FOR_WRITE_END:
1350		mrq->data->error = sh_mmcif_error_manage(host);
1351		break;
1352	default:
1353		BUG();
1354	}
1355
1356	host->state = STATE_IDLE;
1357	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1358	host->mrq = NULL;
1359	mmc_request_done(host->mmc, mrq);
1360}
1361
1362static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1363{
1364	struct sh_mmcif_plat_data *pd = host->pd->dev.platform_data;
1365	struct mmc_host *mmc = host->mmc;
1366
1367	mmc_regulator_get_supply(mmc);
1368
1369	if (!pd)
1370		return;
1371
1372	if (!mmc->ocr_avail)
1373		mmc->ocr_avail = pd->ocr;
1374	else if (pd->ocr)
1375		dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1376}
1377
1378static int sh_mmcif_probe(struct platform_device *pdev)
1379{
1380	int ret = 0, irq[2];
1381	struct mmc_host *mmc;
1382	struct sh_mmcif_host *host;
1383	struct sh_mmcif_plat_data *pd = pdev->dev.platform_data;
1384	struct resource *res;
1385	void __iomem *reg;
1386	const char *name;
1387
1388	irq[0] = platform_get_irq(pdev, 0);
1389	irq[1] = platform_get_irq(pdev, 1);
1390	if (irq[0] < 0) {
1391		dev_err(&pdev->dev, "Get irq error\n");
1392		return -ENXIO;
1393	}
1394
1395	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1396	reg = devm_ioremap_resource(&pdev->dev, res);
1397	if (IS_ERR(reg))
1398		return PTR_ERR(reg);
1399
1400	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
1401	if (!mmc)
1402		return -ENOMEM;
1403
1404	ret = mmc_of_parse(mmc);
1405	if (ret < 0)
1406		goto err_host;
1407
1408	host		= mmc_priv(mmc);
1409	host->mmc	= mmc;
1410	host->addr	= reg;
1411	host->timeout	= msecs_to_jiffies(10000);
1412	host->ccs_enable = !pd || !pd->ccs_unsupported;
1413	host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1414
1415	host->pd = pdev;
1416
1417	spin_lock_init(&host->lock);
1418
1419	mmc->ops = &sh_mmcif_ops;
1420	sh_mmcif_init_ocr(host);
1421
1422	mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1423	if (pd && pd->caps)
1424		mmc->caps |= pd->caps;
1425	mmc->max_segs = 32;
1426	mmc->max_blk_size = 512;
1427	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1428	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1429	mmc->max_seg_size = mmc->max_req_size;
1430
1431	platform_set_drvdata(pdev, host);
1432
1433	pm_runtime_enable(&pdev->dev);
1434	host->power = false;
1435
1436	host->hclk = devm_clk_get(&pdev->dev, NULL);
1437	if (IS_ERR(host->hclk)) {
1438		ret = PTR_ERR(host->hclk);
1439		dev_err(&pdev->dev, "cannot get clock: %d\n", ret);
1440		goto err_pm;
1441	}
1442	ret = sh_mmcif_clk_update(host);
1443	if (ret < 0)
1444		goto err_pm;
1445
1446	ret = pm_runtime_resume(&pdev->dev);
1447	if (ret < 0)
1448		goto err_clk;
1449
1450	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);
1451
1452	sh_mmcif_sync_reset(host);
1453	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1454
1455	name = irq[1] < 0 ? dev_name(&pdev->dev) : "sh_mmc:error";
1456	ret = devm_request_threaded_irq(&pdev->dev, irq[0], sh_mmcif_intr,
1457					sh_mmcif_irqt, 0, name, host);
1458	if (ret) {
1459		dev_err(&pdev->dev, "request_irq error (%s)\n", name);
1460		goto err_clk;
1461	}
1462	if (irq[1] >= 0) {
1463		ret = devm_request_threaded_irq(&pdev->dev, irq[1],
1464						sh_mmcif_intr, sh_mmcif_irqt,
1465						0, "sh_mmc:int", host);
1466		if (ret) {
1467			dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
1468			goto err_clk;
1469		}
1470	}
1471
1472	if (pd && pd->use_cd_gpio) {
1473		ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1474		if (ret < 0)
1475			goto err_clk;
1476	}
1477
1478	mutex_init(&host->thread_lock);
1479
1480	ret = mmc_add_host(mmc);
1481	if (ret < 0)
1482		goto err_clk;
1483
1484	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);
1485
1486	dev_info(&pdev->dev, "Chip version 0x%04x, clock rate %luMHz\n",
1487		 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1488		 clk_get_rate(host->hclk) / 1000000UL);
1489
1490	clk_disable_unprepare(host->hclk);
1491	return ret;
1492
1493err_clk:
1494	clk_disable_unprepare(host->hclk);
1495err_pm:
1496	pm_runtime_disable(&pdev->dev);
1497err_host:
1498	mmc_free_host(mmc);
1499	return ret;
1500}
1501
1502static int sh_mmcif_remove(struct platform_device *pdev)
1503{
1504	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1505
1506	host->dying = true;
1507	clk_prepare_enable(host->hclk);
1508	pm_runtime_get_sync(&pdev->dev);
1509
1510	dev_pm_qos_hide_latency_limit(&pdev->dev);
1511
1512	mmc_remove_host(host->mmc);
1513	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1514
1515	/*
1516	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1517	 * mmc_remove_host() call above. But swapping order doesn't help either
1518	 * (a query on the linux-mmc mailing list didn't bring any replies).
1519	 */
1520	cancel_delayed_work_sync(&host->timeout_work);
1521
1522	clk_disable_unprepare(host->hclk);
1523	mmc_free_host(host->mmc);
1524	pm_runtime_put_sync(&pdev->dev);
1525	pm_runtime_disable(&pdev->dev);
1526
1527	return 0;
1528}
1529
1530#ifdef CONFIG_PM_SLEEP
1531static int sh_mmcif_suspend(struct device *dev)
1532{
1533	struct sh_mmcif_host *host = dev_get_drvdata(dev);
1534
1535	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1536
1537	return 0;
1538}
1539
1540static int sh_mmcif_resume(struct device *dev)
1541{
1542	return 0;
1543}
1544#endif
1545
1546static const struct of_device_id mmcif_of_match[] = {
1547	{ .compatible = "renesas,sh-mmcif" },
1548	{ }
1549};
1550MODULE_DEVICE_TABLE(of, mmcif_of_match);
1551
1552static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1553	SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1554};
1555
1556static struct platform_driver sh_mmcif_driver = {
1557	.probe		= sh_mmcif_probe,
1558	.remove		= sh_mmcif_remove,
1559	.driver		= {
1560		.name	= DRIVER_NAME,
1561		.pm	= &sh_mmcif_dev_pm_ops,
1562		.of_match_table = mmcif_of_match,
1563	},
1564};
1565
1566module_platform_driver(sh_mmcif_driver);
1567
1568MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1569MODULE_LICENSE("GPL");
1570MODULE_ALIAS("platform:" DRIVER_NAME);
1571MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
1572