1/*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 */
25
26#include <linux/init.h>
27#include <linux/types.h>
28#include <linux/module.h>
29#include <linux/moduleparam.h>
30#include <linux/vmalloc.h>
31#include <linux/math64.h>
32#include <linux/slab.h>
33#include <linux/errno.h>
34#include <linux/string.h>
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/nand.h>
37#include <linux/mtd/nand_bch.h>
38#include <linux/mtd/partitions.h>
39#include <linux/delay.h>
40#include <linux/list.h>
41#include <linux/random.h>
42#include <linux/sched.h>
43#include <linux/fs.h>
44#include <linux/pagemap.h>
45#include <linux/seq_file.h>
46#include <linux/debugfs.h>
47
48/* Default simulator parameters values */
49#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE)  || \
50    !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
51    !defined(CONFIG_NANDSIM_THIRD_ID_BYTE)  || \
52    !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
53#define CONFIG_NANDSIM_FIRST_ID_BYTE  0x98
54#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
55#define CONFIG_NANDSIM_THIRD_ID_BYTE  0xFF /* No byte */
56#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
57#endif
58
59#ifndef CONFIG_NANDSIM_ACCESS_DELAY
60#define CONFIG_NANDSIM_ACCESS_DELAY 25
61#endif
62#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
63#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
64#endif
65#ifndef CONFIG_NANDSIM_ERASE_DELAY
66#define CONFIG_NANDSIM_ERASE_DELAY 2
67#endif
68#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
69#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
70#endif
71#ifndef CONFIG_NANDSIM_INPUT_CYCLE
72#define CONFIG_NANDSIM_INPUT_CYCLE  50
73#endif
74#ifndef CONFIG_NANDSIM_BUS_WIDTH
75#define CONFIG_NANDSIM_BUS_WIDTH  8
76#endif
77#ifndef CONFIG_NANDSIM_DO_DELAYS
78#define CONFIG_NANDSIM_DO_DELAYS  0
79#endif
80#ifndef CONFIG_NANDSIM_LOG
81#define CONFIG_NANDSIM_LOG        0
82#endif
83#ifndef CONFIG_NANDSIM_DBG
84#define CONFIG_NANDSIM_DBG        0
85#endif
86#ifndef CONFIG_NANDSIM_MAX_PARTS
87#define CONFIG_NANDSIM_MAX_PARTS  32
88#endif
89
90static uint access_delay   = CONFIG_NANDSIM_ACCESS_DELAY;
91static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
92static uint erase_delay    = CONFIG_NANDSIM_ERASE_DELAY;
93static uint output_cycle   = CONFIG_NANDSIM_OUTPUT_CYCLE;
94static uint input_cycle    = CONFIG_NANDSIM_INPUT_CYCLE;
95static uint bus_width      = CONFIG_NANDSIM_BUS_WIDTH;
96static uint do_delays      = CONFIG_NANDSIM_DO_DELAYS;
97static uint log            = CONFIG_NANDSIM_LOG;
98static uint dbg            = CONFIG_NANDSIM_DBG;
99static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
100static unsigned int parts_num;
101static char *badblocks = NULL;
102static char *weakblocks = NULL;
103static char *weakpages = NULL;
104static unsigned int bitflips = 0;
105static char *gravepages = NULL;
106static unsigned int overridesize = 0;
107static char *cache_file = NULL;
108static unsigned int bbt;
109static unsigned int bch;
110static u_char id_bytes[8] = {
111	[0] = CONFIG_NANDSIM_FIRST_ID_BYTE,
112	[1] = CONFIG_NANDSIM_SECOND_ID_BYTE,
113	[2] = CONFIG_NANDSIM_THIRD_ID_BYTE,
114	[3] = CONFIG_NANDSIM_FOURTH_ID_BYTE,
115	[4 ... 7] = 0xFF,
116};
117
118module_param_array(id_bytes, byte, NULL, 0400);
119module_param_named(first_id_byte, id_bytes[0], byte, 0400);
120module_param_named(second_id_byte, id_bytes[1], byte, 0400);
121module_param_named(third_id_byte, id_bytes[2], byte, 0400);
122module_param_named(fourth_id_byte, id_bytes[3], byte, 0400);
123module_param(access_delay,   uint, 0400);
124module_param(programm_delay, uint, 0400);
125module_param(erase_delay,    uint, 0400);
126module_param(output_cycle,   uint, 0400);
127module_param(input_cycle,    uint, 0400);
128module_param(bus_width,      uint, 0400);
129module_param(do_delays,      uint, 0400);
130module_param(log,            uint, 0400);
131module_param(dbg,            uint, 0400);
132module_param_array(parts, ulong, &parts_num, 0400);
133module_param(badblocks,      charp, 0400);
134module_param(weakblocks,     charp, 0400);
135module_param(weakpages,      charp, 0400);
136module_param(bitflips,       uint, 0400);
137module_param(gravepages,     charp, 0400);
138module_param(overridesize,   uint, 0400);
139module_param(cache_file,     charp, 0400);
140module_param(bbt,	     uint, 0400);
141module_param(bch,	     uint, 0400);
142
143MODULE_PARM_DESC(id_bytes,       "The ID bytes returned by NAND Flash 'read ID' command");
144MODULE_PARM_DESC(first_id_byte,  "The first byte returned by NAND Flash 'read ID' command (manufacturer ID) (obsolete)");
145MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID) (obsolete)");
146MODULE_PARM_DESC(third_id_byte,  "The third byte returned by NAND Flash 'read ID' command (obsolete)");
147MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command (obsolete)");
148MODULE_PARM_DESC(access_delay,   "Initial page access delay (microseconds)");
149MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
150MODULE_PARM_DESC(erase_delay,    "Sector erase delay (milliseconds)");
151MODULE_PARM_DESC(output_cycle,   "Word output (from flash) time (nanoseconds)");
152MODULE_PARM_DESC(input_cycle,    "Word input (to flash) time (nanoseconds)");
153MODULE_PARM_DESC(bus_width,      "Chip's bus width (8- or 16-bit)");
154MODULE_PARM_DESC(do_delays,      "Simulate NAND delays using busy-waits if not zero");
155MODULE_PARM_DESC(log,            "Perform logging if not zero");
156MODULE_PARM_DESC(dbg,            "Output debug information if not zero");
157MODULE_PARM_DESC(parts,          "Partition sizes (in erase blocks) separated by commas");
158/* Page and erase block positions for the following parameters are independent of any partitions */
159MODULE_PARM_DESC(badblocks,      "Erase blocks that are initially marked bad, separated by commas");
160MODULE_PARM_DESC(weakblocks,     "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
161				 " separated by commas e.g. 113:2 means eb 113"
162				 " can be erased only twice before failing");
163MODULE_PARM_DESC(weakpages,      "Weak pages [: maximum writes (defaults to 3)]"
164				 " separated by commas e.g. 1401:2 means page 1401"
165				 " can be written only twice before failing");
166MODULE_PARM_DESC(bitflips,       "Maximum number of random bit flips per page (zero by default)");
167MODULE_PARM_DESC(gravepages,     "Pages that lose data [: maximum reads (defaults to 3)]"
168				 " separated by commas e.g. 1401:2 means page 1401"
169				 " can be read only twice before failing");
170MODULE_PARM_DESC(overridesize,   "Specifies the NAND Flash size overriding the ID bytes. "
171				 "The size is specified in erase blocks and as the exponent of a power of two"
172				 " e.g. 5 means a size of 32 erase blocks");
173MODULE_PARM_DESC(cache_file,     "File to use to cache nand pages instead of memory");
174MODULE_PARM_DESC(bbt,		 "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
175MODULE_PARM_DESC(bch,		 "Enable BCH ecc and set how many bits should "
176				 "be correctable in 512-byte blocks");
177
178/* The largest possible page size */
179#define NS_LARGEST_PAGE_SIZE	4096
180
181/* The prefix for simulator output */
182#define NS_OUTPUT_PREFIX "[nandsim]"
183
184/* Simulator's output macros (logging, debugging, warning, error) */
185#define NS_LOG(args...) \
186	do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
187#define NS_DBG(args...) \
188	do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
189#define NS_WARN(args...) \
190	do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
191#define NS_ERR(args...) \
192	do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
193#define NS_INFO(args...) \
194	do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
195
196/* Busy-wait delay macros (microseconds, milliseconds) */
197#define NS_UDELAY(us) \
198        do { if (do_delays) udelay(us); } while(0)
199#define NS_MDELAY(us) \
200        do { if (do_delays) mdelay(us); } while(0)
201
202/* Is the nandsim structure initialized ? */
203#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
204
205/* Good operation completion status */
206#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
207
208/* Operation failed completion status */
209#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
210
211/* Calculate the page offset in flash RAM image by (row, column) address */
212#define NS_RAW_OFFSET(ns) \
213	(((ns)->regs.row * (ns)->geom.pgszoob) + (ns)->regs.column)
214
215/* Calculate the OOB offset in flash RAM image by (row, column) address */
216#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
217
218/* After a command is input, the simulator goes to one of the following states */
219#define STATE_CMD_READ0        0x00000001 /* read data from the beginning of page */
220#define STATE_CMD_READ1        0x00000002 /* read data from the second half of page */
221#define STATE_CMD_READSTART    0x00000003 /* read data second command (large page devices) */
222#define STATE_CMD_PAGEPROG     0x00000004 /* start page program */
223#define STATE_CMD_READOOB      0x00000005 /* read OOB area */
224#define STATE_CMD_ERASE1       0x00000006 /* sector erase first command */
225#define STATE_CMD_STATUS       0x00000007 /* read status */
226#define STATE_CMD_SEQIN        0x00000009 /* sequential data input */
227#define STATE_CMD_READID       0x0000000A /* read ID */
228#define STATE_CMD_ERASE2       0x0000000B /* sector erase second command */
229#define STATE_CMD_RESET        0x0000000C /* reset */
230#define STATE_CMD_RNDOUT       0x0000000D /* random output command */
231#define STATE_CMD_RNDOUTSTART  0x0000000E /* random output start command */
232#define STATE_CMD_MASK         0x0000000F /* command states mask */
233
234/* After an address is input, the simulator goes to one of these states */
235#define STATE_ADDR_PAGE        0x00000010 /* full (row, column) address is accepted */
236#define STATE_ADDR_SEC         0x00000020 /* sector address was accepted */
237#define STATE_ADDR_COLUMN      0x00000030 /* column address was accepted */
238#define STATE_ADDR_ZERO        0x00000040 /* one byte zero address was accepted */
239#define STATE_ADDR_MASK        0x00000070 /* address states mask */
240
241/* During data input/output the simulator is in these states */
242#define STATE_DATAIN           0x00000100 /* waiting for data input */
243#define STATE_DATAIN_MASK      0x00000100 /* data input states mask */
244
245#define STATE_DATAOUT          0x00001000 /* waiting for page data output */
246#define STATE_DATAOUT_ID       0x00002000 /* waiting for ID bytes output */
247#define STATE_DATAOUT_STATUS   0x00003000 /* waiting for status output */
248#define STATE_DATAOUT_MASK     0x00007000 /* data output states mask */
249
250/* Previous operation is done, ready to accept new requests */
251#define STATE_READY            0x00000000
252
253/* This state is used to mark that the next state isn't known yet */
254#define STATE_UNKNOWN          0x10000000
255
256/* Simulator's actions bit masks */
257#define ACTION_CPY       0x00100000 /* copy page/OOB to the internal buffer */
258#define ACTION_PRGPAGE   0x00200000 /* program the internal buffer to flash */
259#define ACTION_SECERASE  0x00300000 /* erase sector */
260#define ACTION_ZEROOFF   0x00400000 /* don't add any offset to address */
261#define ACTION_HALFOFF   0x00500000 /* add to address half of page */
262#define ACTION_OOBOFF    0x00600000 /* add to address OOB offset */
263#define ACTION_MASK      0x00700000 /* action mask */
264
265#define NS_OPER_NUM      13 /* Number of operations supported by the simulator */
266#define NS_OPER_STATES   6  /* Maximum number of states in operation */
267
268#define OPT_ANY          0xFFFFFFFF /* any chip supports this operation */
269#define OPT_PAGE512      0x00000002 /* 512-byte  page chips */
270#define OPT_PAGE2048     0x00000008 /* 2048-byte page chips */
271#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
272#define OPT_PAGE4096     0x00000080 /* 4096-byte page chips */
273#define OPT_LARGEPAGE    (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
274#define OPT_SMALLPAGE    (OPT_PAGE512) /* 512-byte page chips */
275
276/* Remove action bits from state */
277#define NS_STATE(x) ((x) & ~ACTION_MASK)
278
279/*
280 * Maximum previous states which need to be saved. Currently saving is
281 * only needed for page program operation with preceded read command
282 * (which is only valid for 512-byte pages).
283 */
284#define NS_MAX_PREVSTATES 1
285
286/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
287#define NS_MAX_HELD_PAGES 16
288
289struct nandsim_debug_info {
290	struct dentry *dfs_root;
291	struct dentry *dfs_wear_report;
292};
293
294/*
295 * A union to represent flash memory contents and flash buffer.
296 */
297union ns_mem {
298	u_char *byte;    /* for byte access */
299	uint16_t *word;  /* for 16-bit word access */
300};
301
302/*
303 * The structure which describes all the internal simulator data.
304 */
305struct nandsim {
306	struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
307	unsigned int nbparts;
308
309	uint busw;              /* flash chip bus width (8 or 16) */
310	u_char ids[8];          /* chip's ID bytes */
311	uint32_t options;       /* chip's characteristic bits */
312	uint32_t state;         /* current chip state */
313	uint32_t nxstate;       /* next expected state */
314
315	uint32_t *op;           /* current operation, NULL operations isn't known yet  */
316	uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
317	uint16_t npstates;      /* number of previous states saved */
318	uint16_t stateidx;      /* current state index */
319
320	/* The simulated NAND flash pages array */
321	union ns_mem *pages;
322
323	/* Slab allocator for nand pages */
324	struct kmem_cache *nand_pages_slab;
325
326	/* Internal buffer of page + OOB size bytes */
327	union ns_mem buf;
328
329	/* NAND flash "geometry" */
330	struct {
331		uint64_t totsz;     /* total flash size, bytes */
332		uint32_t secsz;     /* flash sector (erase block) size, bytes */
333		uint pgsz;          /* NAND flash page size, bytes */
334		uint oobsz;         /* page OOB area size, bytes */
335		uint64_t totszoob;  /* total flash size including OOB, bytes */
336		uint pgszoob;       /* page size including OOB , bytes*/
337		uint secszoob;      /* sector size including OOB, bytes */
338		uint pgnum;         /* total number of pages */
339		uint pgsec;         /* number of pages per sector */
340		uint secshift;      /* bits number in sector size */
341		uint pgshift;       /* bits number in page size */
342		uint pgaddrbytes;   /* bytes per page address */
343		uint secaddrbytes;  /* bytes per sector address */
344		uint idbytes;       /* the number ID bytes that this chip outputs */
345	} geom;
346
347	/* NAND flash internal registers */
348	struct {
349		unsigned command; /* the command register */
350		u_char   status;  /* the status register */
351		uint     row;     /* the page number */
352		uint     column;  /* the offset within page */
353		uint     count;   /* internal counter */
354		uint     num;     /* number of bytes which must be processed */
355		uint     off;     /* fixed page offset */
356	} regs;
357
358	/* NAND flash lines state */
359        struct {
360                int ce;  /* chip Enable */
361                int cle; /* command Latch Enable */
362                int ale; /* address Latch Enable */
363                int wp;  /* write Protect */
364        } lines;
365
366	/* Fields needed when using a cache file */
367	struct file *cfile; /* Open file */
368	unsigned long *pages_written; /* Which pages have been written */
369	void *file_buf;
370	struct page *held_pages[NS_MAX_HELD_PAGES];
371	int held_cnt;
372
373	struct nandsim_debug_info dbg;
374};
375
376/*
377 * Operations array. To perform any operation the simulator must pass
378 * through the correspondent states chain.
379 */
380static struct nandsim_operations {
381	uint32_t reqopts;  /* options which are required to perform the operation */
382	uint32_t states[NS_OPER_STATES]; /* operation's states */
383} ops[NS_OPER_NUM] = {
384	/* Read page + OOB from the beginning */
385	{OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
386			STATE_DATAOUT, STATE_READY}},
387	/* Read page + OOB from the second half */
388	{OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
389			STATE_DATAOUT, STATE_READY}},
390	/* Read OOB */
391	{OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
392			STATE_DATAOUT, STATE_READY}},
393	/* Program page starting from the beginning */
394	{OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
395			STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
396	/* Program page starting from the beginning */
397	{OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
398			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
399	/* Program page starting from the second half */
400	{OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
401			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
402	/* Program OOB */
403	{OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
404			      STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
405	/* Erase sector */
406	{OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
407	/* Read status */
408	{OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
409	/* Read ID */
410	{OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
411	/* Large page devices read page */
412	{OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
413			       STATE_DATAOUT, STATE_READY}},
414	/* Large page devices random page read */
415	{OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
416			       STATE_DATAOUT, STATE_READY}},
417};
418
419struct weak_block {
420	struct list_head list;
421	unsigned int erase_block_no;
422	unsigned int max_erases;
423	unsigned int erases_done;
424};
425
426static LIST_HEAD(weak_blocks);
427
428struct weak_page {
429	struct list_head list;
430	unsigned int page_no;
431	unsigned int max_writes;
432	unsigned int writes_done;
433};
434
435static LIST_HEAD(weak_pages);
436
437struct grave_page {
438	struct list_head list;
439	unsigned int page_no;
440	unsigned int max_reads;
441	unsigned int reads_done;
442};
443
444static LIST_HEAD(grave_pages);
445
446static unsigned long *erase_block_wear = NULL;
447static unsigned int wear_eb_count = 0;
448static unsigned long total_wear = 0;
449
450/* MTD structure for NAND controller */
451static struct mtd_info *nsmtd;
452
453static int nandsim_debugfs_show(struct seq_file *m, void *private)
454{
455	unsigned long wmin = -1, wmax = 0, avg;
456	unsigned long deciles[10], decile_max[10], tot = 0;
457	unsigned int i;
458
459	/* Calc wear stats */
460	for (i = 0; i < wear_eb_count; ++i) {
461		unsigned long wear = erase_block_wear[i];
462		if (wear < wmin)
463			wmin = wear;
464		if (wear > wmax)
465			wmax = wear;
466		tot += wear;
467	}
468
469	for (i = 0; i < 9; ++i) {
470		deciles[i] = 0;
471		decile_max[i] = (wmax * (i + 1) + 5) / 10;
472	}
473	deciles[9] = 0;
474	decile_max[9] = wmax;
475	for (i = 0; i < wear_eb_count; ++i) {
476		int d;
477		unsigned long wear = erase_block_wear[i];
478		for (d = 0; d < 10; ++d)
479			if (wear <= decile_max[d]) {
480				deciles[d] += 1;
481				break;
482			}
483	}
484	avg = tot / wear_eb_count;
485
486	/* Output wear report */
487	seq_printf(m, "Total numbers of erases:  %lu\n", tot);
488	seq_printf(m, "Number of erase blocks:   %u\n", wear_eb_count);
489	seq_printf(m, "Average number of erases: %lu\n", avg);
490	seq_printf(m, "Maximum number of erases: %lu\n", wmax);
491	seq_printf(m, "Minimum number of erases: %lu\n", wmin);
492	for (i = 0; i < 10; ++i) {
493		unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
494		if (from > decile_max[i])
495			continue;
496		seq_printf(m, "Number of ebs with erase counts from %lu to %lu : %lu\n",
497			from,
498			decile_max[i],
499			deciles[i]);
500	}
501
502	return 0;
503}
504
505static int nandsim_debugfs_open(struct inode *inode, struct file *file)
506{
507	return single_open(file, nandsim_debugfs_show, inode->i_private);
508}
509
510static const struct file_operations dfs_fops = {
511	.open		= nandsim_debugfs_open,
512	.read		= seq_read,
513	.llseek		= seq_lseek,
514	.release	= single_release,
515};
516
517/**
518 * nandsim_debugfs_create - initialize debugfs
519 * @dev: nandsim device description object
520 *
521 * This function creates all debugfs files for UBI device @ubi. Returns zero in
522 * case of success and a negative error code in case of failure.
523 */
524static int nandsim_debugfs_create(struct nandsim *dev)
525{
526	struct nandsim_debug_info *dbg = &dev->dbg;
527	struct dentry *dent;
528	int err;
529
530	if (!IS_ENABLED(CONFIG_DEBUG_FS))
531		return 0;
532
533	dent = debugfs_create_dir("nandsim", NULL);
534	if (IS_ERR_OR_NULL(dent)) {
535		int err = dent ? -ENODEV : PTR_ERR(dent);
536
537		NS_ERR("cannot create \"nandsim\" debugfs directory, err %d\n",
538			err);
539		return err;
540	}
541	dbg->dfs_root = dent;
542
543	dent = debugfs_create_file("wear_report", S_IRUSR,
544				   dbg->dfs_root, dev, &dfs_fops);
545	if (IS_ERR_OR_NULL(dent))
546		goto out_remove;
547	dbg->dfs_wear_report = dent;
548
549	return 0;
550
551out_remove:
552	debugfs_remove_recursive(dbg->dfs_root);
553	err = dent ? PTR_ERR(dent) : -ENODEV;
554	return err;
555}
556
557/**
558 * nandsim_debugfs_remove - destroy all debugfs files
559 */
560static void nandsim_debugfs_remove(struct nandsim *ns)
561{
562	if (IS_ENABLED(CONFIG_DEBUG_FS))
563		debugfs_remove_recursive(ns->dbg.dfs_root);
564}
565
566/*
567 * Allocate array of page pointers, create slab allocation for an array
568 * and initialize the array by NULL pointers.
569 *
570 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
571 */
572static int alloc_device(struct nandsim *ns)
573{
574	struct file *cfile;
575	int i, err;
576
577	if (cache_file) {
578		cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
579		if (IS_ERR(cfile))
580			return PTR_ERR(cfile);
581		if (!(cfile->f_mode & FMODE_CAN_READ)) {
582			NS_ERR("alloc_device: cache file not readable\n");
583			err = -EINVAL;
584			goto err_close;
585		}
586		if (!(cfile->f_mode & FMODE_CAN_WRITE)) {
587			NS_ERR("alloc_device: cache file not writeable\n");
588			err = -EINVAL;
589			goto err_close;
590		}
591		ns->pages_written = vzalloc(BITS_TO_LONGS(ns->geom.pgnum) *
592					    sizeof(unsigned long));
593		if (!ns->pages_written) {
594			NS_ERR("alloc_device: unable to allocate pages written array\n");
595			err = -ENOMEM;
596			goto err_close;
597		}
598		ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
599		if (!ns->file_buf) {
600			NS_ERR("alloc_device: unable to allocate file buf\n");
601			err = -ENOMEM;
602			goto err_free;
603		}
604		ns->cfile = cfile;
605		return 0;
606	}
607
608	ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
609	if (!ns->pages) {
610		NS_ERR("alloc_device: unable to allocate page array\n");
611		return -ENOMEM;
612	}
613	for (i = 0; i < ns->geom.pgnum; i++) {
614		ns->pages[i].byte = NULL;
615	}
616	ns->nand_pages_slab = kmem_cache_create("nandsim",
617						ns->geom.pgszoob, 0, 0, NULL);
618	if (!ns->nand_pages_slab) {
619		NS_ERR("cache_create: unable to create kmem_cache\n");
620		return -ENOMEM;
621	}
622
623	return 0;
624
625err_free:
626	vfree(ns->pages_written);
627err_close:
628	filp_close(cfile, NULL);
629	return err;
630}
631
632/*
633 * Free any allocated pages, and free the array of page pointers.
634 */
635static void free_device(struct nandsim *ns)
636{
637	int i;
638
639	if (ns->cfile) {
640		kfree(ns->file_buf);
641		vfree(ns->pages_written);
642		filp_close(ns->cfile, NULL);
643		return;
644	}
645
646	if (ns->pages) {
647		for (i = 0; i < ns->geom.pgnum; i++) {
648			if (ns->pages[i].byte)
649				kmem_cache_free(ns->nand_pages_slab,
650						ns->pages[i].byte);
651		}
652		kmem_cache_destroy(ns->nand_pages_slab);
653		vfree(ns->pages);
654	}
655}
656
657static char *get_partition_name(int i)
658{
659	return kasprintf(GFP_KERNEL, "NAND simulator partition %d", i);
660}
661
662/*
663 * Initialize the nandsim structure.
664 *
665 * RETURNS: 0 if success, -ERRNO if failure.
666 */
667static int init_nandsim(struct mtd_info *mtd)
668{
669	struct nand_chip *chip = mtd->priv;
670	struct nandsim   *ns   = chip->priv;
671	int i, ret = 0;
672	uint64_t remains;
673	uint64_t next_offset;
674
675	if (NS_IS_INITIALIZED(ns)) {
676		NS_ERR("init_nandsim: nandsim is already initialized\n");
677		return -EIO;
678	}
679
680	/* Force mtd to not do delays */
681	chip->chip_delay = 0;
682
683	/* Initialize the NAND flash parameters */
684	ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
685	ns->geom.totsz    = mtd->size;
686	ns->geom.pgsz     = mtd->writesize;
687	ns->geom.oobsz    = mtd->oobsize;
688	ns->geom.secsz    = mtd->erasesize;
689	ns->geom.pgszoob  = ns->geom.pgsz + ns->geom.oobsz;
690	ns->geom.pgnum    = div_u64(ns->geom.totsz, ns->geom.pgsz);
691	ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
692	ns->geom.secshift = ffs(ns->geom.secsz) - 1;
693	ns->geom.pgshift  = chip->page_shift;
694	ns->geom.pgsec    = ns->geom.secsz / ns->geom.pgsz;
695	ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
696	ns->options = 0;
697
698	if (ns->geom.pgsz == 512) {
699		ns->options |= OPT_PAGE512;
700		if (ns->busw == 8)
701			ns->options |= OPT_PAGE512_8BIT;
702	} else if (ns->geom.pgsz == 2048) {
703		ns->options |= OPT_PAGE2048;
704	} else if (ns->geom.pgsz == 4096) {
705		ns->options |= OPT_PAGE4096;
706	} else {
707		NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
708		return -EIO;
709	}
710
711	if (ns->options & OPT_SMALLPAGE) {
712		if (ns->geom.totsz <= (32 << 20)) {
713			ns->geom.pgaddrbytes  = 3;
714			ns->geom.secaddrbytes = 2;
715		} else {
716			ns->geom.pgaddrbytes  = 4;
717			ns->geom.secaddrbytes = 3;
718		}
719	} else {
720		if (ns->geom.totsz <= (128 << 20)) {
721			ns->geom.pgaddrbytes  = 4;
722			ns->geom.secaddrbytes = 2;
723		} else {
724			ns->geom.pgaddrbytes  = 5;
725			ns->geom.secaddrbytes = 3;
726		}
727	}
728
729	/* Fill the partition_info structure */
730	if (parts_num > ARRAY_SIZE(ns->partitions)) {
731		NS_ERR("too many partitions.\n");
732		ret = -EINVAL;
733		goto error;
734	}
735	remains = ns->geom.totsz;
736	next_offset = 0;
737	for (i = 0; i < parts_num; ++i) {
738		uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
739
740		if (!part_sz || part_sz > remains) {
741			NS_ERR("bad partition size.\n");
742			ret = -EINVAL;
743			goto error;
744		}
745		ns->partitions[i].name   = get_partition_name(i);
746		ns->partitions[i].offset = next_offset;
747		ns->partitions[i].size   = part_sz;
748		next_offset += ns->partitions[i].size;
749		remains -= ns->partitions[i].size;
750	}
751	ns->nbparts = parts_num;
752	if (remains) {
753		if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
754			NS_ERR("too many partitions.\n");
755			ret = -EINVAL;
756			goto error;
757		}
758		ns->partitions[i].name   = get_partition_name(i);
759		ns->partitions[i].offset = next_offset;
760		ns->partitions[i].size   = remains;
761		ns->nbparts += 1;
762	}
763
764	if (ns->busw == 16)
765		NS_WARN("16-bit flashes support wasn't tested\n");
766
767	printk("flash size: %llu MiB\n",
768			(unsigned long long)ns->geom.totsz >> 20);
769	printk("page size: %u bytes\n",         ns->geom.pgsz);
770	printk("OOB area size: %u bytes\n",     ns->geom.oobsz);
771	printk("sector size: %u KiB\n",         ns->geom.secsz >> 10);
772	printk("pages number: %u\n",            ns->geom.pgnum);
773	printk("pages per sector: %u\n",        ns->geom.pgsec);
774	printk("bus width: %u\n",               ns->busw);
775	printk("bits in sector size: %u\n",     ns->geom.secshift);
776	printk("bits in page size: %u\n",       ns->geom.pgshift);
777	printk("bits in OOB size: %u\n",	ffs(ns->geom.oobsz) - 1);
778	printk("flash size with OOB: %llu KiB\n",
779			(unsigned long long)ns->geom.totszoob >> 10);
780	printk("page address bytes: %u\n",      ns->geom.pgaddrbytes);
781	printk("sector address bytes: %u\n",    ns->geom.secaddrbytes);
782	printk("options: %#x\n",                ns->options);
783
784	if ((ret = alloc_device(ns)) != 0)
785		goto error;
786
787	/* Allocate / initialize the internal buffer */
788	ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
789	if (!ns->buf.byte) {
790		NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
791			ns->geom.pgszoob);
792		ret = -ENOMEM;
793		goto error;
794	}
795	memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
796
797	return 0;
798
799error:
800	free_device(ns);
801
802	return ret;
803}
804
805/*
806 * Free the nandsim structure.
807 */
808static void free_nandsim(struct nandsim *ns)
809{
810	kfree(ns->buf.byte);
811	free_device(ns);
812
813	return;
814}
815
816static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
817{
818	char *w;
819	int zero_ok;
820	unsigned int erase_block_no;
821	loff_t offset;
822
823	if (!badblocks)
824		return 0;
825	w = badblocks;
826	do {
827		zero_ok = (*w == '0' ? 1 : 0);
828		erase_block_no = simple_strtoul(w, &w, 0);
829		if (!zero_ok && !erase_block_no) {
830			NS_ERR("invalid badblocks.\n");
831			return -EINVAL;
832		}
833		offset = (loff_t)erase_block_no * ns->geom.secsz;
834		if (mtd_block_markbad(mtd, offset)) {
835			NS_ERR("invalid badblocks.\n");
836			return -EINVAL;
837		}
838		if (*w == ',')
839			w += 1;
840	} while (*w);
841	return 0;
842}
843
844static int parse_weakblocks(void)
845{
846	char *w;
847	int zero_ok;
848	unsigned int erase_block_no;
849	unsigned int max_erases;
850	struct weak_block *wb;
851
852	if (!weakblocks)
853		return 0;
854	w = weakblocks;
855	do {
856		zero_ok = (*w == '0' ? 1 : 0);
857		erase_block_no = simple_strtoul(w, &w, 0);
858		if (!zero_ok && !erase_block_no) {
859			NS_ERR("invalid weakblocks.\n");
860			return -EINVAL;
861		}
862		max_erases = 3;
863		if (*w == ':') {
864			w += 1;
865			max_erases = simple_strtoul(w, &w, 0);
866		}
867		if (*w == ',')
868			w += 1;
869		wb = kzalloc(sizeof(*wb), GFP_KERNEL);
870		if (!wb) {
871			NS_ERR("unable to allocate memory.\n");
872			return -ENOMEM;
873		}
874		wb->erase_block_no = erase_block_no;
875		wb->max_erases = max_erases;
876		list_add(&wb->list, &weak_blocks);
877	} while (*w);
878	return 0;
879}
880
881static int erase_error(unsigned int erase_block_no)
882{
883	struct weak_block *wb;
884
885	list_for_each_entry(wb, &weak_blocks, list)
886		if (wb->erase_block_no == erase_block_no) {
887			if (wb->erases_done >= wb->max_erases)
888				return 1;
889			wb->erases_done += 1;
890			return 0;
891		}
892	return 0;
893}
894
895static int parse_weakpages(void)
896{
897	char *w;
898	int zero_ok;
899	unsigned int page_no;
900	unsigned int max_writes;
901	struct weak_page *wp;
902
903	if (!weakpages)
904		return 0;
905	w = weakpages;
906	do {
907		zero_ok = (*w == '0' ? 1 : 0);
908		page_no = simple_strtoul(w, &w, 0);
909		if (!zero_ok && !page_no) {
910			NS_ERR("invalid weakpagess.\n");
911			return -EINVAL;
912		}
913		max_writes = 3;
914		if (*w == ':') {
915			w += 1;
916			max_writes = simple_strtoul(w, &w, 0);
917		}
918		if (*w == ',')
919			w += 1;
920		wp = kzalloc(sizeof(*wp), GFP_KERNEL);
921		if (!wp) {
922			NS_ERR("unable to allocate memory.\n");
923			return -ENOMEM;
924		}
925		wp->page_no = page_no;
926		wp->max_writes = max_writes;
927		list_add(&wp->list, &weak_pages);
928	} while (*w);
929	return 0;
930}
931
932static int write_error(unsigned int page_no)
933{
934	struct weak_page *wp;
935
936	list_for_each_entry(wp, &weak_pages, list)
937		if (wp->page_no == page_no) {
938			if (wp->writes_done >= wp->max_writes)
939				return 1;
940			wp->writes_done += 1;
941			return 0;
942		}
943	return 0;
944}
945
946static int parse_gravepages(void)
947{
948	char *g;
949	int zero_ok;
950	unsigned int page_no;
951	unsigned int max_reads;
952	struct grave_page *gp;
953
954	if (!gravepages)
955		return 0;
956	g = gravepages;
957	do {
958		zero_ok = (*g == '0' ? 1 : 0);
959		page_no = simple_strtoul(g, &g, 0);
960		if (!zero_ok && !page_no) {
961			NS_ERR("invalid gravepagess.\n");
962			return -EINVAL;
963		}
964		max_reads = 3;
965		if (*g == ':') {
966			g += 1;
967			max_reads = simple_strtoul(g, &g, 0);
968		}
969		if (*g == ',')
970			g += 1;
971		gp = kzalloc(sizeof(*gp), GFP_KERNEL);
972		if (!gp) {
973			NS_ERR("unable to allocate memory.\n");
974			return -ENOMEM;
975		}
976		gp->page_no = page_no;
977		gp->max_reads = max_reads;
978		list_add(&gp->list, &grave_pages);
979	} while (*g);
980	return 0;
981}
982
983static int read_error(unsigned int page_no)
984{
985	struct grave_page *gp;
986
987	list_for_each_entry(gp, &grave_pages, list)
988		if (gp->page_no == page_no) {
989			if (gp->reads_done >= gp->max_reads)
990				return 1;
991			gp->reads_done += 1;
992			return 0;
993		}
994	return 0;
995}
996
997static void free_lists(void)
998{
999	struct list_head *pos, *n;
1000	list_for_each_safe(pos, n, &weak_blocks) {
1001		list_del(pos);
1002		kfree(list_entry(pos, struct weak_block, list));
1003	}
1004	list_for_each_safe(pos, n, &weak_pages) {
1005		list_del(pos);
1006		kfree(list_entry(pos, struct weak_page, list));
1007	}
1008	list_for_each_safe(pos, n, &grave_pages) {
1009		list_del(pos);
1010		kfree(list_entry(pos, struct grave_page, list));
1011	}
1012	kfree(erase_block_wear);
1013}
1014
1015static int setup_wear_reporting(struct mtd_info *mtd)
1016{
1017	size_t mem;
1018
1019	wear_eb_count = div_u64(mtd->size, mtd->erasesize);
1020	mem = wear_eb_count * sizeof(unsigned long);
1021	if (mem / sizeof(unsigned long) != wear_eb_count) {
1022		NS_ERR("Too many erase blocks for wear reporting\n");
1023		return -ENOMEM;
1024	}
1025	erase_block_wear = kzalloc(mem, GFP_KERNEL);
1026	if (!erase_block_wear) {
1027		NS_ERR("Too many erase blocks for wear reporting\n");
1028		return -ENOMEM;
1029	}
1030	return 0;
1031}
1032
1033static void update_wear(unsigned int erase_block_no)
1034{
1035	if (!erase_block_wear)
1036		return;
1037	total_wear += 1;
1038	/*
1039	 * TODO: Notify this through a debugfs entry,
1040	 * instead of showing an error message.
1041	 */
1042	if (total_wear == 0)
1043		NS_ERR("Erase counter total overflow\n");
1044	erase_block_wear[erase_block_no] += 1;
1045	if (erase_block_wear[erase_block_no] == 0)
1046		NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
1047}
1048
1049/*
1050 * Returns the string representation of 'state' state.
1051 */
1052static char *get_state_name(uint32_t state)
1053{
1054	switch (NS_STATE(state)) {
1055		case STATE_CMD_READ0:
1056			return "STATE_CMD_READ0";
1057		case STATE_CMD_READ1:
1058			return "STATE_CMD_READ1";
1059		case STATE_CMD_PAGEPROG:
1060			return "STATE_CMD_PAGEPROG";
1061		case STATE_CMD_READOOB:
1062			return "STATE_CMD_READOOB";
1063		case STATE_CMD_READSTART:
1064			return "STATE_CMD_READSTART";
1065		case STATE_CMD_ERASE1:
1066			return "STATE_CMD_ERASE1";
1067		case STATE_CMD_STATUS:
1068			return "STATE_CMD_STATUS";
1069		case STATE_CMD_SEQIN:
1070			return "STATE_CMD_SEQIN";
1071		case STATE_CMD_READID:
1072			return "STATE_CMD_READID";
1073		case STATE_CMD_ERASE2:
1074			return "STATE_CMD_ERASE2";
1075		case STATE_CMD_RESET:
1076			return "STATE_CMD_RESET";
1077		case STATE_CMD_RNDOUT:
1078			return "STATE_CMD_RNDOUT";
1079		case STATE_CMD_RNDOUTSTART:
1080			return "STATE_CMD_RNDOUTSTART";
1081		case STATE_ADDR_PAGE:
1082			return "STATE_ADDR_PAGE";
1083		case STATE_ADDR_SEC:
1084			return "STATE_ADDR_SEC";
1085		case STATE_ADDR_ZERO:
1086			return "STATE_ADDR_ZERO";
1087		case STATE_ADDR_COLUMN:
1088			return "STATE_ADDR_COLUMN";
1089		case STATE_DATAIN:
1090			return "STATE_DATAIN";
1091		case STATE_DATAOUT:
1092			return "STATE_DATAOUT";
1093		case STATE_DATAOUT_ID:
1094			return "STATE_DATAOUT_ID";
1095		case STATE_DATAOUT_STATUS:
1096			return "STATE_DATAOUT_STATUS";
1097		case STATE_READY:
1098			return "STATE_READY";
1099		case STATE_UNKNOWN:
1100			return "STATE_UNKNOWN";
1101	}
1102
1103	NS_ERR("get_state_name: unknown state, BUG\n");
1104	return NULL;
1105}
1106
1107/*
1108 * Check if command is valid.
1109 *
1110 * RETURNS: 1 if wrong command, 0 if right.
1111 */
1112static int check_command(int cmd)
1113{
1114	switch (cmd) {
1115
1116	case NAND_CMD_READ0:
1117	case NAND_CMD_READ1:
1118	case NAND_CMD_READSTART:
1119	case NAND_CMD_PAGEPROG:
1120	case NAND_CMD_READOOB:
1121	case NAND_CMD_ERASE1:
1122	case NAND_CMD_STATUS:
1123	case NAND_CMD_SEQIN:
1124	case NAND_CMD_READID:
1125	case NAND_CMD_ERASE2:
1126	case NAND_CMD_RESET:
1127	case NAND_CMD_RNDOUT:
1128	case NAND_CMD_RNDOUTSTART:
1129		return 0;
1130
1131	default:
1132		return 1;
1133	}
1134}
1135
1136/*
1137 * Returns state after command is accepted by command number.
1138 */
1139static uint32_t get_state_by_command(unsigned command)
1140{
1141	switch (command) {
1142		case NAND_CMD_READ0:
1143			return STATE_CMD_READ0;
1144		case NAND_CMD_READ1:
1145			return STATE_CMD_READ1;
1146		case NAND_CMD_PAGEPROG:
1147			return STATE_CMD_PAGEPROG;
1148		case NAND_CMD_READSTART:
1149			return STATE_CMD_READSTART;
1150		case NAND_CMD_READOOB:
1151			return STATE_CMD_READOOB;
1152		case NAND_CMD_ERASE1:
1153			return STATE_CMD_ERASE1;
1154		case NAND_CMD_STATUS:
1155			return STATE_CMD_STATUS;
1156		case NAND_CMD_SEQIN:
1157			return STATE_CMD_SEQIN;
1158		case NAND_CMD_READID:
1159			return STATE_CMD_READID;
1160		case NAND_CMD_ERASE2:
1161			return STATE_CMD_ERASE2;
1162		case NAND_CMD_RESET:
1163			return STATE_CMD_RESET;
1164		case NAND_CMD_RNDOUT:
1165			return STATE_CMD_RNDOUT;
1166		case NAND_CMD_RNDOUTSTART:
1167			return STATE_CMD_RNDOUTSTART;
1168	}
1169
1170	NS_ERR("get_state_by_command: unknown command, BUG\n");
1171	return 0;
1172}
1173
1174/*
1175 * Move an address byte to the correspondent internal register.
1176 */
1177static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1178{
1179	uint byte = (uint)bt;
1180
1181	if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1182		ns->regs.column |= (byte << 8 * ns->regs.count);
1183	else {
1184		ns->regs.row |= (byte << 8 * (ns->regs.count -
1185						ns->geom.pgaddrbytes +
1186						ns->geom.secaddrbytes));
1187	}
1188
1189	return;
1190}
1191
1192/*
1193 * Switch to STATE_READY state.
1194 */
1195static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1196{
1197	NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1198
1199	ns->state       = STATE_READY;
1200	ns->nxstate     = STATE_UNKNOWN;
1201	ns->op          = NULL;
1202	ns->npstates    = 0;
1203	ns->stateidx    = 0;
1204	ns->regs.num    = 0;
1205	ns->regs.count  = 0;
1206	ns->regs.off    = 0;
1207	ns->regs.row    = 0;
1208	ns->regs.column = 0;
1209	ns->regs.status = status;
1210}
1211
1212/*
1213 * If the operation isn't known yet, try to find it in the global array
1214 * of supported operations.
1215 *
1216 * Operation can be unknown because of the following.
1217 *   1. New command was accepted and this is the first call to find the
1218 *      correspondent states chain. In this case ns->npstates = 0;
1219 *   2. There are several operations which begin with the same command(s)
1220 *      (for example program from the second half and read from the
1221 *      second half operations both begin with the READ1 command). In this
1222 *      case the ns->pstates[] array contains previous states.
1223 *
1224 * Thus, the function tries to find operation containing the following
1225 * states (if the 'flag' parameter is 0):
1226 *    ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1227 *
1228 * If (one and only one) matching operation is found, it is accepted (
1229 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1230 * zeroed).
1231 *
1232 * If there are several matches, the current state is pushed to the
1233 * ns->pstates.
1234 *
1235 * The operation can be unknown only while commands are input to the chip.
1236 * As soon as address command is accepted, the operation must be known.
1237 * In such situation the function is called with 'flag' != 0, and the
1238 * operation is searched using the following pattern:
1239 *     ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1240 *
1241 * It is supposed that this pattern must either match one operation or
1242 * none. There can't be ambiguity in that case.
1243 *
1244 * If no matches found, the function does the following:
1245 *   1. if there are saved states present, try to ignore them and search
1246 *      again only using the last command. If nothing was found, switch
1247 *      to the STATE_READY state.
1248 *   2. if there are no saved states, switch to the STATE_READY state.
1249 *
1250 * RETURNS: -2 - no matched operations found.
1251 *          -1 - several matches.
1252 *           0 - operation is found.
1253 */
1254static int find_operation(struct nandsim *ns, uint32_t flag)
1255{
1256	int opsfound = 0;
1257	int i, j, idx = 0;
1258
1259	for (i = 0; i < NS_OPER_NUM; i++) {
1260
1261		int found = 1;
1262
1263		if (!(ns->options & ops[i].reqopts))
1264			/* Ignore operations we can't perform */
1265			continue;
1266
1267		if (flag) {
1268			if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1269				continue;
1270		} else {
1271			if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1272				continue;
1273		}
1274
1275		for (j = 0; j < ns->npstates; j++)
1276			if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1277				&& (ns->options & ops[idx].reqopts)) {
1278				found = 0;
1279				break;
1280			}
1281
1282		if (found) {
1283			idx = i;
1284			opsfound += 1;
1285		}
1286	}
1287
1288	if (opsfound == 1) {
1289		/* Exact match */
1290		ns->op = &ops[idx].states[0];
1291		if (flag) {
1292			/*
1293			 * In this case the find_operation function was
1294			 * called when address has just began input. But it isn't
1295			 * yet fully input and the current state must
1296			 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1297			 * state must be the next state (ns->nxstate).
1298			 */
1299			ns->stateidx = ns->npstates - 1;
1300		} else {
1301			ns->stateidx = ns->npstates;
1302		}
1303		ns->npstates = 0;
1304		ns->state = ns->op[ns->stateidx];
1305		ns->nxstate = ns->op[ns->stateidx + 1];
1306		NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1307				idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1308		return 0;
1309	}
1310
1311	if (opsfound == 0) {
1312		/* Nothing was found. Try to ignore previous commands (if any) and search again */
1313		if (ns->npstates != 0) {
1314			NS_DBG("find_operation: no operation found, try again with state %s\n",
1315					get_state_name(ns->state));
1316			ns->npstates = 0;
1317			return find_operation(ns, 0);
1318
1319		}
1320		NS_DBG("find_operation: no operations found\n");
1321		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1322		return -2;
1323	}
1324
1325	if (flag) {
1326		/* This shouldn't happen */
1327		NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1328		return -2;
1329	}
1330
1331	NS_DBG("find_operation: there is still ambiguity\n");
1332
1333	ns->pstates[ns->npstates++] = ns->state;
1334
1335	return -1;
1336}
1337
1338static void put_pages(struct nandsim *ns)
1339{
1340	int i;
1341
1342	for (i = 0; i < ns->held_cnt; i++)
1343		page_cache_release(ns->held_pages[i]);
1344}
1345
1346/* Get page cache pages in advance to provide NOFS memory allocation */
1347static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1348{
1349	pgoff_t index, start_index, end_index;
1350	struct page *page;
1351	struct address_space *mapping = file->f_mapping;
1352
1353	start_index = pos >> PAGE_CACHE_SHIFT;
1354	end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1355	if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1356		return -EINVAL;
1357	ns->held_cnt = 0;
1358	for (index = start_index; index <= end_index; index++) {
1359		page = find_get_page(mapping, index);
1360		if (page == NULL) {
1361			page = find_or_create_page(mapping, index, GFP_NOFS);
1362			if (page == NULL) {
1363				write_inode_now(mapping->host, 1);
1364				page = find_or_create_page(mapping, index, GFP_NOFS);
1365			}
1366			if (page == NULL) {
1367				put_pages(ns);
1368				return -ENOMEM;
1369			}
1370			unlock_page(page);
1371		}
1372		ns->held_pages[ns->held_cnt++] = page;
1373	}
1374	return 0;
1375}
1376
1377static int set_memalloc(void)
1378{
1379	if (current->flags & PF_MEMALLOC)
1380		return 0;
1381	current->flags |= PF_MEMALLOC;
1382	return 1;
1383}
1384
1385static void clear_memalloc(int memalloc)
1386{
1387	if (memalloc)
1388		current->flags &= ~PF_MEMALLOC;
1389}
1390
1391static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1392{
1393	ssize_t tx;
1394	int err, memalloc;
1395
1396	err = get_pages(ns, file, count, pos);
1397	if (err)
1398		return err;
1399	memalloc = set_memalloc();
1400	tx = kernel_read(file, pos, buf, count);
1401	clear_memalloc(memalloc);
1402	put_pages(ns);
1403	return tx;
1404}
1405
1406static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t pos)
1407{
1408	ssize_t tx;
1409	int err, memalloc;
1410
1411	err = get_pages(ns, file, count, pos);
1412	if (err)
1413		return err;
1414	memalloc = set_memalloc();
1415	tx = kernel_write(file, buf, count, pos);
1416	clear_memalloc(memalloc);
1417	put_pages(ns);
1418	return tx;
1419}
1420
1421/*
1422 * Returns a pointer to the current page.
1423 */
1424static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1425{
1426	return &(ns->pages[ns->regs.row]);
1427}
1428
1429/*
1430 * Retuns a pointer to the current byte, within the current page.
1431 */
1432static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1433{
1434	return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1435}
1436
1437static int do_read_error(struct nandsim *ns, int num)
1438{
1439	unsigned int page_no = ns->regs.row;
1440
1441	if (read_error(page_no)) {
1442		prandom_bytes(ns->buf.byte, num);
1443		NS_WARN("simulating read error in page %u\n", page_no);
1444		return 1;
1445	}
1446	return 0;
1447}
1448
1449static void do_bit_flips(struct nandsim *ns, int num)
1450{
1451	if (bitflips && prandom_u32() < (1 << 22)) {
1452		int flips = 1;
1453		if (bitflips > 1)
1454			flips = (prandom_u32() % (int) bitflips) + 1;
1455		while (flips--) {
1456			int pos = prandom_u32() % (num * 8);
1457			ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1458			NS_WARN("read_page: flipping bit %d in page %d "
1459				"reading from %d ecc: corrected=%u failed=%u\n",
1460				pos, ns->regs.row, ns->regs.column + ns->regs.off,
1461				nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1462		}
1463	}
1464}
1465
1466/*
1467 * Fill the NAND buffer with data read from the specified page.
1468 */
1469static void read_page(struct nandsim *ns, int num)
1470{
1471	union ns_mem *mypage;
1472
1473	if (ns->cfile) {
1474		if (!test_bit(ns->regs.row, ns->pages_written)) {
1475			NS_DBG("read_page: page %d not written\n", ns->regs.row);
1476			memset(ns->buf.byte, 0xFF, num);
1477		} else {
1478			loff_t pos;
1479			ssize_t tx;
1480
1481			NS_DBG("read_page: page %d written, reading from %d\n",
1482				ns->regs.row, ns->regs.column + ns->regs.off);
1483			if (do_read_error(ns, num))
1484				return;
1485			pos = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1486			tx = read_file(ns, ns->cfile, ns->buf.byte, num, pos);
1487			if (tx != num) {
1488				NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1489				return;
1490			}
1491			do_bit_flips(ns, num);
1492		}
1493		return;
1494	}
1495
1496	mypage = NS_GET_PAGE(ns);
1497	if (mypage->byte == NULL) {
1498		NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1499		memset(ns->buf.byte, 0xFF, num);
1500	} else {
1501		NS_DBG("read_page: page %d allocated, reading from %d\n",
1502			ns->regs.row, ns->regs.column + ns->regs.off);
1503		if (do_read_error(ns, num))
1504			return;
1505		memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1506		do_bit_flips(ns, num);
1507	}
1508}
1509
1510/*
1511 * Erase all pages in the specified sector.
1512 */
1513static void erase_sector(struct nandsim *ns)
1514{
1515	union ns_mem *mypage;
1516	int i;
1517
1518	if (ns->cfile) {
1519		for (i = 0; i < ns->geom.pgsec; i++)
1520			if (__test_and_clear_bit(ns->regs.row + i,
1521						 ns->pages_written)) {
1522				NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1523			}
1524		return;
1525	}
1526
1527	mypage = NS_GET_PAGE(ns);
1528	for (i = 0; i < ns->geom.pgsec; i++) {
1529		if (mypage->byte != NULL) {
1530			NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1531			kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1532			mypage->byte = NULL;
1533		}
1534		mypage++;
1535	}
1536}
1537
1538/*
1539 * Program the specified page with the contents from the NAND buffer.
1540 */
1541static int prog_page(struct nandsim *ns, int num)
1542{
1543	int i;
1544	union ns_mem *mypage;
1545	u_char *pg_off;
1546
1547	if (ns->cfile) {
1548		loff_t off;
1549		ssize_t tx;
1550		int all;
1551
1552		NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1553		pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1554		off = (loff_t)NS_RAW_OFFSET(ns) + ns->regs.off;
1555		if (!test_bit(ns->regs.row, ns->pages_written)) {
1556			all = 1;
1557			memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1558		} else {
1559			all = 0;
1560			tx = read_file(ns, ns->cfile, pg_off, num, off);
1561			if (tx != num) {
1562				NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1563				return -1;
1564			}
1565		}
1566		for (i = 0; i < num; i++)
1567			pg_off[i] &= ns->buf.byte[i];
1568		if (all) {
1569			loff_t pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1570			tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, pos);
1571			if (tx != ns->geom.pgszoob) {
1572				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1573				return -1;
1574			}
1575			__set_bit(ns->regs.row, ns->pages_written);
1576		} else {
1577			tx = write_file(ns, ns->cfile, pg_off, num, off);
1578			if (tx != num) {
1579				NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1580				return -1;
1581			}
1582		}
1583		return 0;
1584	}
1585
1586	mypage = NS_GET_PAGE(ns);
1587	if (mypage->byte == NULL) {
1588		NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1589		/*
1590		 * We allocate memory with GFP_NOFS because a flash FS may
1591		 * utilize this. If it is holding an FS lock, then gets here,
1592		 * then kernel memory alloc runs writeback which goes to the FS
1593		 * again and deadlocks. This was seen in practice.
1594		 */
1595		mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1596		if (mypage->byte == NULL) {
1597			NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1598			return -1;
1599		}
1600		memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1601	}
1602
1603	pg_off = NS_PAGE_BYTE_OFF(ns);
1604	for (i = 0; i < num; i++)
1605		pg_off[i] &= ns->buf.byte[i];
1606
1607	return 0;
1608}
1609
1610/*
1611 * If state has any action bit, perform this action.
1612 *
1613 * RETURNS: 0 if success, -1 if error.
1614 */
1615static int do_state_action(struct nandsim *ns, uint32_t action)
1616{
1617	int num;
1618	int busdiv = ns->busw == 8 ? 1 : 2;
1619	unsigned int erase_block_no, page_no;
1620
1621	action &= ACTION_MASK;
1622
1623	/* Check that page address input is correct */
1624	if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1625		NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1626		return -1;
1627	}
1628
1629	switch (action) {
1630
1631	case ACTION_CPY:
1632		/*
1633		 * Copy page data to the internal buffer.
1634		 */
1635
1636		/* Column shouldn't be very large */
1637		if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1638			NS_ERR("do_state_action: column number is too large\n");
1639			break;
1640		}
1641		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1642		read_page(ns, num);
1643
1644		NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1645			num, NS_RAW_OFFSET(ns) + ns->regs.off);
1646
1647		if (ns->regs.off == 0)
1648			NS_LOG("read page %d\n", ns->regs.row);
1649		else if (ns->regs.off < ns->geom.pgsz)
1650			NS_LOG("read page %d (second half)\n", ns->regs.row);
1651		else
1652			NS_LOG("read OOB of page %d\n", ns->regs.row);
1653
1654		NS_UDELAY(access_delay);
1655		NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1656
1657		break;
1658
1659	case ACTION_SECERASE:
1660		/*
1661		 * Erase sector.
1662		 */
1663
1664		if (ns->lines.wp) {
1665			NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1666			return -1;
1667		}
1668
1669		if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1670			|| (ns->regs.row & ~(ns->geom.secsz - 1))) {
1671			NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1672			return -1;
1673		}
1674
1675		ns->regs.row = (ns->regs.row <<
1676				8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1677		ns->regs.column = 0;
1678
1679		erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1680
1681		NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1682				ns->regs.row, NS_RAW_OFFSET(ns));
1683		NS_LOG("erase sector %u\n", erase_block_no);
1684
1685		erase_sector(ns);
1686
1687		NS_MDELAY(erase_delay);
1688
1689		if (erase_block_wear)
1690			update_wear(erase_block_no);
1691
1692		if (erase_error(erase_block_no)) {
1693			NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1694			return -1;
1695		}
1696
1697		break;
1698
1699	case ACTION_PRGPAGE:
1700		/*
1701		 * Program page - move internal buffer data to the page.
1702		 */
1703
1704		if (ns->lines.wp) {
1705			NS_WARN("do_state_action: device is write-protected, programm\n");
1706			return -1;
1707		}
1708
1709		num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1710		if (num != ns->regs.count) {
1711			NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1712					ns->regs.count, num);
1713			return -1;
1714		}
1715
1716		if (prog_page(ns, num) == -1)
1717			return -1;
1718
1719		page_no = ns->regs.row;
1720
1721		NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1722			num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1723		NS_LOG("programm page %d\n", ns->regs.row);
1724
1725		NS_UDELAY(programm_delay);
1726		NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1727
1728		if (write_error(page_no)) {
1729			NS_WARN("simulating write failure in page %u\n", page_no);
1730			return -1;
1731		}
1732
1733		break;
1734
1735	case ACTION_ZEROOFF:
1736		NS_DBG("do_state_action: set internal offset to 0\n");
1737		ns->regs.off = 0;
1738		break;
1739
1740	case ACTION_HALFOFF:
1741		if (!(ns->options & OPT_PAGE512_8BIT)) {
1742			NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1743				"byte page size 8x chips\n");
1744			return -1;
1745		}
1746		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1747		ns->regs.off = ns->geom.pgsz/2;
1748		break;
1749
1750	case ACTION_OOBOFF:
1751		NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1752		ns->regs.off = ns->geom.pgsz;
1753		break;
1754
1755	default:
1756		NS_DBG("do_state_action: BUG! unknown action\n");
1757	}
1758
1759	return 0;
1760}
1761
1762/*
1763 * Switch simulator's state.
1764 */
1765static void switch_state(struct nandsim *ns)
1766{
1767	if (ns->op) {
1768		/*
1769		 * The current operation have already been identified.
1770		 * Just follow the states chain.
1771		 */
1772
1773		ns->stateidx += 1;
1774		ns->state = ns->nxstate;
1775		ns->nxstate = ns->op[ns->stateidx + 1];
1776
1777		NS_DBG("switch_state: operation is known, switch to the next state, "
1778			"state: %s, nxstate: %s\n",
1779			get_state_name(ns->state), get_state_name(ns->nxstate));
1780
1781		/* See, whether we need to do some action */
1782		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1783			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1784			return;
1785		}
1786
1787	} else {
1788		/*
1789		 * We don't yet know which operation we perform.
1790		 * Try to identify it.
1791		 */
1792
1793		/*
1794		 *  The only event causing the switch_state function to
1795		 *  be called with yet unknown operation is new command.
1796		 */
1797		ns->state = get_state_by_command(ns->regs.command);
1798
1799		NS_DBG("switch_state: operation is unknown, try to find it\n");
1800
1801		if (find_operation(ns, 0) != 0)
1802			return;
1803
1804		if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1805			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1806			return;
1807		}
1808	}
1809
1810	/* For 16x devices column means the page offset in words */
1811	if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1812		NS_DBG("switch_state: double the column number for 16x device\n");
1813		ns->regs.column <<= 1;
1814	}
1815
1816	if (NS_STATE(ns->nxstate) == STATE_READY) {
1817		/*
1818		 * The current state is the last. Return to STATE_READY
1819		 */
1820
1821		u_char status = NS_STATUS_OK(ns);
1822
1823		/* In case of data states, see if all bytes were input/output */
1824		if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1825			&& ns->regs.count != ns->regs.num) {
1826			NS_WARN("switch_state: not all bytes were processed, %d left\n",
1827					ns->regs.num - ns->regs.count);
1828			status = NS_STATUS_FAILED(ns);
1829		}
1830
1831		NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1832
1833		switch_to_ready_state(ns, status);
1834
1835		return;
1836	} else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1837		/*
1838		 * If the next state is data input/output, switch to it now
1839		 */
1840
1841		ns->state      = ns->nxstate;
1842		ns->nxstate    = ns->op[++ns->stateidx + 1];
1843		ns->regs.num   = ns->regs.count = 0;
1844
1845		NS_DBG("switch_state: the next state is data I/O, switch, "
1846			"state: %s, nxstate: %s\n",
1847			get_state_name(ns->state), get_state_name(ns->nxstate));
1848
1849		/*
1850		 * Set the internal register to the count of bytes which
1851		 * are expected to be input or output
1852		 */
1853		switch (NS_STATE(ns->state)) {
1854			case STATE_DATAIN:
1855			case STATE_DATAOUT:
1856				ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1857				break;
1858
1859			case STATE_DATAOUT_ID:
1860				ns->regs.num = ns->geom.idbytes;
1861				break;
1862
1863			case STATE_DATAOUT_STATUS:
1864				ns->regs.count = ns->regs.num = 0;
1865				break;
1866
1867			default:
1868				NS_ERR("switch_state: BUG! unknown data state\n");
1869		}
1870
1871	} else if (ns->nxstate & STATE_ADDR_MASK) {
1872		/*
1873		 * If the next state is address input, set the internal
1874		 * register to the number of expected address bytes
1875		 */
1876
1877		ns->regs.count = 0;
1878
1879		switch (NS_STATE(ns->nxstate)) {
1880			case STATE_ADDR_PAGE:
1881				ns->regs.num = ns->geom.pgaddrbytes;
1882
1883				break;
1884			case STATE_ADDR_SEC:
1885				ns->regs.num = ns->geom.secaddrbytes;
1886				break;
1887
1888			case STATE_ADDR_ZERO:
1889				ns->regs.num = 1;
1890				break;
1891
1892			case STATE_ADDR_COLUMN:
1893				/* Column address is always 2 bytes */
1894				ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1895				break;
1896
1897			default:
1898				NS_ERR("switch_state: BUG! unknown address state\n");
1899		}
1900	} else {
1901		/*
1902		 * Just reset internal counters.
1903		 */
1904
1905		ns->regs.num = 0;
1906		ns->regs.count = 0;
1907	}
1908}
1909
1910static u_char ns_nand_read_byte(struct mtd_info *mtd)
1911{
1912	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1913	u_char outb = 0x00;
1914
1915	/* Sanity and correctness checks */
1916	if (!ns->lines.ce) {
1917		NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1918		return outb;
1919	}
1920	if (ns->lines.ale || ns->lines.cle) {
1921		NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1922		return outb;
1923	}
1924	if (!(ns->state & STATE_DATAOUT_MASK)) {
1925		NS_WARN("read_byte: unexpected data output cycle, state is %s "
1926			"return %#x\n", get_state_name(ns->state), (uint)outb);
1927		return outb;
1928	}
1929
1930	/* Status register may be read as many times as it is wanted */
1931	if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1932		NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1933		return ns->regs.status;
1934	}
1935
1936	/* Check if there is any data in the internal buffer which may be read */
1937	if (ns->regs.count == ns->regs.num) {
1938		NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1939		return outb;
1940	}
1941
1942	switch (NS_STATE(ns->state)) {
1943		case STATE_DATAOUT:
1944			if (ns->busw == 8) {
1945				outb = ns->buf.byte[ns->regs.count];
1946				ns->regs.count += 1;
1947			} else {
1948				outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1949				ns->regs.count += 2;
1950			}
1951			break;
1952		case STATE_DATAOUT_ID:
1953			NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1954			outb = ns->ids[ns->regs.count];
1955			ns->regs.count += 1;
1956			break;
1957		default:
1958			BUG();
1959	}
1960
1961	if (ns->regs.count == ns->regs.num) {
1962		NS_DBG("read_byte: all bytes were read\n");
1963
1964		if (NS_STATE(ns->nxstate) == STATE_READY)
1965			switch_state(ns);
1966	}
1967
1968	return outb;
1969}
1970
1971static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1972{
1973	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1974
1975	/* Sanity and correctness checks */
1976	if (!ns->lines.ce) {
1977		NS_ERR("write_byte: chip is disabled, ignore write\n");
1978		return;
1979	}
1980	if (ns->lines.ale && ns->lines.cle) {
1981		NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1982		return;
1983	}
1984
1985	if (ns->lines.cle == 1) {
1986		/*
1987		 * The byte written is a command.
1988		 */
1989
1990		if (byte == NAND_CMD_RESET) {
1991			NS_LOG("reset chip\n");
1992			switch_to_ready_state(ns, NS_STATUS_OK(ns));
1993			return;
1994		}
1995
1996		/* Check that the command byte is correct */
1997		if (check_command(byte)) {
1998			NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1999			return;
2000		}
2001
2002		if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
2003			|| NS_STATE(ns->state) == STATE_DATAOUT) {
2004			int row = ns->regs.row;
2005
2006			switch_state(ns);
2007			if (byte == NAND_CMD_RNDOUT)
2008				ns->regs.row = row;
2009		}
2010
2011		/* Check if chip is expecting command */
2012		if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
2013			/* Do not warn if only 2 id bytes are read */
2014			if (!(ns->regs.command == NAND_CMD_READID &&
2015			    NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
2016				/*
2017				 * We are in situation when something else (not command)
2018				 * was expected but command was input. In this case ignore
2019				 * previous command(s)/state(s) and accept the last one.
2020				 */
2021				NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2022					"ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2023			}
2024			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2025		}
2026
2027		NS_DBG("command byte corresponding to %s state accepted\n",
2028			get_state_name(get_state_by_command(byte)));
2029		ns->regs.command = byte;
2030		switch_state(ns);
2031
2032	} else if (ns->lines.ale == 1) {
2033		/*
2034		 * The byte written is an address.
2035		 */
2036
2037		if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2038
2039			NS_DBG("write_byte: operation isn't known yet, identify it\n");
2040
2041			if (find_operation(ns, 1) < 0)
2042				return;
2043
2044			if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2045				switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2046				return;
2047			}
2048
2049			ns->regs.count = 0;
2050			switch (NS_STATE(ns->nxstate)) {
2051				case STATE_ADDR_PAGE:
2052					ns->regs.num = ns->geom.pgaddrbytes;
2053					break;
2054				case STATE_ADDR_SEC:
2055					ns->regs.num = ns->geom.secaddrbytes;
2056					break;
2057				case STATE_ADDR_ZERO:
2058					ns->regs.num = 1;
2059					break;
2060				default:
2061					BUG();
2062			}
2063		}
2064
2065		/* Check that chip is expecting address */
2066		if (!(ns->nxstate & STATE_ADDR_MASK)) {
2067			NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2068				"switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2069			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2070			return;
2071		}
2072
2073		/* Check if this is expected byte */
2074		if (ns->regs.count == ns->regs.num) {
2075			NS_ERR("write_byte: no more address bytes expected\n");
2076			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2077			return;
2078		}
2079
2080		accept_addr_byte(ns, byte);
2081
2082		ns->regs.count += 1;
2083
2084		NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2085				(uint)byte, ns->regs.count, ns->regs.num);
2086
2087		if (ns->regs.count == ns->regs.num) {
2088			NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2089			switch_state(ns);
2090		}
2091
2092	} else {
2093		/*
2094		 * The byte written is an input data.
2095		 */
2096
2097		/* Check that chip is expecting data input */
2098		if (!(ns->state & STATE_DATAIN_MASK)) {
2099			NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2100				"switch to %s\n", (uint)byte,
2101				get_state_name(ns->state), get_state_name(STATE_READY));
2102			switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2103			return;
2104		}
2105
2106		/* Check if this is expected byte */
2107		if (ns->regs.count == ns->regs.num) {
2108			NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2109					ns->regs.num);
2110			return;
2111		}
2112
2113		if (ns->busw == 8) {
2114			ns->buf.byte[ns->regs.count] = byte;
2115			ns->regs.count += 1;
2116		} else {
2117			ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2118			ns->regs.count += 2;
2119		}
2120	}
2121
2122	return;
2123}
2124
2125static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2126{
2127	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2128
2129	ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2130	ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2131	ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2132
2133	if (cmd != NAND_CMD_NONE)
2134		ns_nand_write_byte(mtd, cmd);
2135}
2136
2137static int ns_device_ready(struct mtd_info *mtd)
2138{
2139	NS_DBG("device_ready\n");
2140	return 1;
2141}
2142
2143static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2144{
2145	struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2146
2147	NS_DBG("read_word\n");
2148
2149	return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2150}
2151
2152static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2153{
2154	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2155
2156	/* Check that chip is expecting data input */
2157	if (!(ns->state & STATE_DATAIN_MASK)) {
2158		NS_ERR("write_buf: data input isn't expected, state is %s, "
2159			"switch to STATE_READY\n", get_state_name(ns->state));
2160		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2161		return;
2162	}
2163
2164	/* Check if these are expected bytes */
2165	if (ns->regs.count + len > ns->regs.num) {
2166		NS_ERR("write_buf: too many input bytes\n");
2167		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2168		return;
2169	}
2170
2171	memcpy(ns->buf.byte + ns->regs.count, buf, len);
2172	ns->regs.count += len;
2173
2174	if (ns->regs.count == ns->regs.num) {
2175		NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2176	}
2177}
2178
2179static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2180{
2181	struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2182
2183	/* Sanity and correctness checks */
2184	if (!ns->lines.ce) {
2185		NS_ERR("read_buf: chip is disabled\n");
2186		return;
2187	}
2188	if (ns->lines.ale || ns->lines.cle) {
2189		NS_ERR("read_buf: ALE or CLE pin is high\n");
2190		return;
2191	}
2192	if (!(ns->state & STATE_DATAOUT_MASK)) {
2193		NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2194			get_state_name(ns->state));
2195		return;
2196	}
2197
2198	if (NS_STATE(ns->state) != STATE_DATAOUT) {
2199		int i;
2200
2201		for (i = 0; i < len; i++)
2202			buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2203
2204		return;
2205	}
2206
2207	/* Check if these are expected bytes */
2208	if (ns->regs.count + len > ns->regs.num) {
2209		NS_ERR("read_buf: too many bytes to read\n");
2210		switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2211		return;
2212	}
2213
2214	memcpy(buf, ns->buf.byte + ns->regs.count, len);
2215	ns->regs.count += len;
2216
2217	if (ns->regs.count == ns->regs.num) {
2218		if (NS_STATE(ns->nxstate) == STATE_READY)
2219			switch_state(ns);
2220	}
2221
2222	return;
2223}
2224
2225/*
2226 * Module initialization function
2227 */
2228static int __init ns_init_module(void)
2229{
2230	struct nand_chip *chip;
2231	struct nandsim *nand;
2232	int retval = -ENOMEM, i;
2233
2234	if (bus_width != 8 && bus_width != 16) {
2235		NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2236		return -EINVAL;
2237	}
2238
2239	/* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2240	nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2241				+ sizeof(struct nandsim), GFP_KERNEL);
2242	if (!nsmtd) {
2243		NS_ERR("unable to allocate core structures.\n");
2244		return -ENOMEM;
2245	}
2246	chip        = (struct nand_chip *)(nsmtd + 1);
2247        nsmtd->priv = (void *)chip;
2248	nand        = (struct nandsim *)(chip + 1);
2249	chip->priv  = (void *)nand;
2250
2251	/*
2252	 * Register simulator's callbacks.
2253	 */
2254	chip->cmd_ctrl	 = ns_hwcontrol;
2255	chip->read_byte  = ns_nand_read_byte;
2256	chip->dev_ready  = ns_device_ready;
2257	chip->write_buf  = ns_nand_write_buf;
2258	chip->read_buf   = ns_nand_read_buf;
2259	chip->read_word  = ns_nand_read_word;
2260	chip->ecc.mode   = NAND_ECC_SOFT;
2261	/* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2262	/* and 'badblocks' parameters to work */
2263	chip->options   |= NAND_SKIP_BBTSCAN;
2264
2265	switch (bbt) {
2266	case 2:
2267		 chip->bbt_options |= NAND_BBT_NO_OOB;
2268	case 1:
2269		 chip->bbt_options |= NAND_BBT_USE_FLASH;
2270	case 0:
2271		break;
2272	default:
2273		NS_ERR("bbt has to be 0..2\n");
2274		retval = -EINVAL;
2275		goto error;
2276	}
2277	/*
2278	 * Perform minimum nandsim structure initialization to handle
2279	 * the initial ID read command correctly
2280	 */
2281	if (id_bytes[6] != 0xFF || id_bytes[7] != 0xFF)
2282		nand->geom.idbytes = 8;
2283	else if (id_bytes[4] != 0xFF || id_bytes[5] != 0xFF)
2284		nand->geom.idbytes = 6;
2285	else if (id_bytes[2] != 0xFF || id_bytes[3] != 0xFF)
2286		nand->geom.idbytes = 4;
2287	else
2288		nand->geom.idbytes = 2;
2289	nand->regs.status = NS_STATUS_OK(nand);
2290	nand->nxstate = STATE_UNKNOWN;
2291	nand->options |= OPT_PAGE512; /* temporary value */
2292	memcpy(nand->ids, id_bytes, sizeof(nand->ids));
2293	if (bus_width == 16) {
2294		nand->busw = 16;
2295		chip->options |= NAND_BUSWIDTH_16;
2296	}
2297
2298	nsmtd->owner = THIS_MODULE;
2299
2300	if ((retval = parse_weakblocks()) != 0)
2301		goto error;
2302
2303	if ((retval = parse_weakpages()) != 0)
2304		goto error;
2305
2306	if ((retval = parse_gravepages()) != 0)
2307		goto error;
2308
2309	retval = nand_scan_ident(nsmtd, 1, NULL);
2310	if (retval) {
2311		NS_ERR("cannot scan NAND Simulator device\n");
2312		if (retval > 0)
2313			retval = -ENXIO;
2314		goto error;
2315	}
2316
2317	if (bch) {
2318		unsigned int eccsteps, eccbytes;
2319		if (!mtd_nand_has_bch()) {
2320			NS_ERR("BCH ECC support is disabled\n");
2321			retval = -EINVAL;
2322			goto error;
2323		}
2324		/* use 512-byte ecc blocks */
2325		eccsteps = nsmtd->writesize/512;
2326		eccbytes = (bch*13+7)/8;
2327		/* do not bother supporting small page devices */
2328		if ((nsmtd->oobsize < 64) || !eccsteps) {
2329			NS_ERR("bch not available on small page devices\n");
2330			retval = -EINVAL;
2331			goto error;
2332		}
2333		if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2334			NS_ERR("invalid bch value %u\n", bch);
2335			retval = -EINVAL;
2336			goto error;
2337		}
2338		chip->ecc.mode = NAND_ECC_SOFT_BCH;
2339		chip->ecc.size = 512;
2340		chip->ecc.strength = bch;
2341		chip->ecc.bytes = eccbytes;
2342		NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2343	}
2344
2345	retval = nand_scan_tail(nsmtd);
2346	if (retval) {
2347		NS_ERR("can't register NAND Simulator\n");
2348		if (retval > 0)
2349			retval = -ENXIO;
2350		goto error;
2351	}
2352
2353	if (overridesize) {
2354		uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2355		if (new_size >> overridesize != nsmtd->erasesize) {
2356			NS_ERR("overridesize is too big\n");
2357			retval = -EINVAL;
2358			goto err_exit;
2359		}
2360		/* N.B. This relies on nand_scan not doing anything with the size before we change it */
2361		nsmtd->size = new_size;
2362		chip->chipsize = new_size;
2363		chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2364		chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2365	}
2366
2367	if ((retval = setup_wear_reporting(nsmtd)) != 0)
2368		goto err_exit;
2369
2370	if ((retval = nandsim_debugfs_create(nand)) != 0)
2371		goto err_exit;
2372
2373	if ((retval = init_nandsim(nsmtd)) != 0)
2374		goto err_exit;
2375
2376	if ((retval = chip->scan_bbt(nsmtd)) != 0)
2377		goto err_exit;
2378
2379	if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2380		goto err_exit;
2381
2382	/* Register NAND partitions */
2383	retval = mtd_device_register(nsmtd, &nand->partitions[0],
2384				     nand->nbparts);
2385	if (retval != 0)
2386		goto err_exit;
2387
2388        return 0;
2389
2390err_exit:
2391	free_nandsim(nand);
2392	nand_release(nsmtd);
2393	for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2394		kfree(nand->partitions[i].name);
2395error:
2396	kfree(nsmtd);
2397	free_lists();
2398
2399	return retval;
2400}
2401
2402module_init(ns_init_module);
2403
2404/*
2405 * Module clean-up function
2406 */
2407static void __exit ns_cleanup_module(void)
2408{
2409	struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2410	int i;
2411
2412	nandsim_debugfs_remove(ns);
2413	free_nandsim(ns);    /* Free nandsim private resources */
2414	nand_release(nsmtd); /* Unregister driver */
2415	for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2416		kfree(ns->partitions[i].name);
2417	kfree(nsmtd);        /* Free other structures */
2418	free_lists();
2419}
2420
2421module_exit(ns_cleanup_module);
2422
2423MODULE_LICENSE ("GPL");
2424MODULE_AUTHOR ("Artem B. Bityuckiy");
2425MODULE_DESCRIPTION ("The NAND flash simulator");
2426