1/*
2 * SuperH FLCTL nand controller
3 *
4 * Copyright (c) 2008 Renesas Solutions Corp.
5 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
6 *
7 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21 *
22 */
23
24#include <linux/module.h>
25#include <linux/kernel.h>
26#include <linux/completion.h>
27#include <linux/delay.h>
28#include <linux/dmaengine.h>
29#include <linux/dma-mapping.h>
30#include <linux/interrupt.h>
31#include <linux/io.h>
32#include <linux/of.h>
33#include <linux/of_device.h>
34#include <linux/of_mtd.h>
35#include <linux/platform_device.h>
36#include <linux/pm_runtime.h>
37#include <linux/sh_dma.h>
38#include <linux/slab.h>
39#include <linux/string.h>
40
41#include <linux/mtd/mtd.h>
42#include <linux/mtd/nand.h>
43#include <linux/mtd/partitions.h>
44#include <linux/mtd/sh_flctl.h>
45
46static struct nand_ecclayout flctl_4secc_oob_16 = {
47	.eccbytes = 10,
48	.eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
49	.oobfree = {
50		{.offset = 12,
51		. length = 4} },
52};
53
54static struct nand_ecclayout flctl_4secc_oob_64 = {
55	.eccbytes = 4 * 10,
56	.eccpos = {
57		 6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
58		22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
59		38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
60		54, 55, 56, 57, 58, 59, 60, 61, 62, 63 },
61	.oobfree = {
62		{.offset =  2, .length = 4},
63		{.offset = 16, .length = 6},
64		{.offset = 32, .length = 6},
65		{.offset = 48, .length = 6} },
66};
67
68static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
69
70static struct nand_bbt_descr flctl_4secc_smallpage = {
71	.options = NAND_BBT_SCAN2NDPAGE,
72	.offs = 11,
73	.len = 1,
74	.pattern = scan_ff_pattern,
75};
76
77static struct nand_bbt_descr flctl_4secc_largepage = {
78	.options = NAND_BBT_SCAN2NDPAGE,
79	.offs = 0,
80	.len = 2,
81	.pattern = scan_ff_pattern,
82};
83
84static void empty_fifo(struct sh_flctl *flctl)
85{
86	writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl));
87	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
88}
89
90static void start_translation(struct sh_flctl *flctl)
91{
92	writeb(TRSTRT, FLTRCR(flctl));
93}
94
95static void timeout_error(struct sh_flctl *flctl, const char *str)
96{
97	dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
98}
99
100static void wait_completion(struct sh_flctl *flctl)
101{
102	uint32_t timeout = LOOP_TIMEOUT_MAX;
103
104	while (timeout--) {
105		if (readb(FLTRCR(flctl)) & TREND) {
106			writeb(0x0, FLTRCR(flctl));
107			return;
108		}
109		udelay(1);
110	}
111
112	timeout_error(flctl, __func__);
113	writeb(0x0, FLTRCR(flctl));
114}
115
116static void flctl_dma_complete(void *param)
117{
118	struct sh_flctl *flctl = param;
119
120	complete(&flctl->dma_complete);
121}
122
123static void flctl_release_dma(struct sh_flctl *flctl)
124{
125	if (flctl->chan_fifo0_rx) {
126		dma_release_channel(flctl->chan_fifo0_rx);
127		flctl->chan_fifo0_rx = NULL;
128	}
129	if (flctl->chan_fifo0_tx) {
130		dma_release_channel(flctl->chan_fifo0_tx);
131		flctl->chan_fifo0_tx = NULL;
132	}
133}
134
135static void flctl_setup_dma(struct sh_flctl *flctl)
136{
137	dma_cap_mask_t mask;
138	struct dma_slave_config cfg;
139	struct platform_device *pdev = flctl->pdev;
140	struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev);
141	int ret;
142
143	if (!pdata)
144		return;
145
146	if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0)
147		return;
148
149	/* We can only either use DMA for both Tx and Rx or not use it at all */
150	dma_cap_zero(mask);
151	dma_cap_set(DMA_SLAVE, mask);
152
153	flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter,
154				(void *)(uintptr_t)pdata->slave_id_fifo0_tx);
155	dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__,
156		flctl->chan_fifo0_tx);
157
158	if (!flctl->chan_fifo0_tx)
159		return;
160
161	memset(&cfg, 0, sizeof(cfg));
162	cfg.direction = DMA_MEM_TO_DEV;
163	cfg.dst_addr = (dma_addr_t)FLDTFIFO(flctl);
164	cfg.src_addr = 0;
165	ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg);
166	if (ret < 0)
167		goto err;
168
169	flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter,
170				(void *)(uintptr_t)pdata->slave_id_fifo0_rx);
171	dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__,
172		flctl->chan_fifo0_rx);
173
174	if (!flctl->chan_fifo0_rx)
175		goto err;
176
177	cfg.direction = DMA_DEV_TO_MEM;
178	cfg.dst_addr = 0;
179	cfg.src_addr = (dma_addr_t)FLDTFIFO(flctl);
180	ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg);
181	if (ret < 0)
182		goto err;
183
184	init_completion(&flctl->dma_complete);
185
186	return;
187
188err:
189	flctl_release_dma(flctl);
190}
191
192static void set_addr(struct mtd_info *mtd, int column, int page_addr)
193{
194	struct sh_flctl *flctl = mtd_to_flctl(mtd);
195	uint32_t addr = 0;
196
197	if (column == -1) {
198		addr = page_addr;	/* ERASE1 */
199	} else if (page_addr != -1) {
200		/* SEQIN, READ0, etc.. */
201		if (flctl->chip.options & NAND_BUSWIDTH_16)
202			column >>= 1;
203		if (flctl->page_size) {
204			addr = column & 0x0FFF;
205			addr |= (page_addr & 0xff) << 16;
206			addr |= ((page_addr >> 8) & 0xff) << 24;
207			/* big than 128MB */
208			if (flctl->rw_ADRCNT == ADRCNT2_E) {
209				uint32_t 	addr2;
210				addr2 = (page_addr >> 16) & 0xff;
211				writel(addr2, FLADR2(flctl));
212			}
213		} else {
214			addr = column;
215			addr |= (page_addr & 0xff) << 8;
216			addr |= ((page_addr >> 8) & 0xff) << 16;
217			addr |= ((page_addr >> 16) & 0xff) << 24;
218		}
219	}
220	writel(addr, FLADR(flctl));
221}
222
223static void wait_rfifo_ready(struct sh_flctl *flctl)
224{
225	uint32_t timeout = LOOP_TIMEOUT_MAX;
226
227	while (timeout--) {
228		uint32_t val;
229		/* check FIFO */
230		val = readl(FLDTCNTR(flctl)) >> 16;
231		if (val & 0xFF)
232			return;
233		udelay(1);
234	}
235	timeout_error(flctl, __func__);
236}
237
238static void wait_wfifo_ready(struct sh_flctl *flctl)
239{
240	uint32_t len, timeout = LOOP_TIMEOUT_MAX;
241
242	while (timeout--) {
243		/* check FIFO */
244		len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
245		if (len >= 4)
246			return;
247		udelay(1);
248	}
249	timeout_error(flctl, __func__);
250}
251
252static enum flctl_ecc_res_t wait_recfifo_ready
253		(struct sh_flctl *flctl, int sector_number)
254{
255	uint32_t timeout = LOOP_TIMEOUT_MAX;
256	void __iomem *ecc_reg[4];
257	int i;
258	int state = FL_SUCCESS;
259	uint32_t data, size;
260
261	/*
262	 * First this loops checks in FLDTCNTR if we are ready to read out the
263	 * oob data. This is the case if either all went fine without errors or
264	 * if the bottom part of the loop corrected the errors or marked them as
265	 * uncorrectable and the controller is given time to push the data into
266	 * the FIFO.
267	 */
268	while (timeout--) {
269		/* check if all is ok and we can read out the OOB */
270		size = readl(FLDTCNTR(flctl)) >> 24;
271		if ((size & 0xFF) == 4)
272			return state;
273
274		/* check if a correction code has been calculated */
275		if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) {
276			/*
277			 * either we wait for the fifo to be filled or a
278			 * correction pattern is being generated
279			 */
280			udelay(1);
281			continue;
282		}
283
284		/* check for an uncorrectable error */
285		if (readl(FL4ECCCR(flctl)) & _4ECCFA) {
286			/* check if we face a non-empty page */
287			for (i = 0; i < 512; i++) {
288				if (flctl->done_buff[i] != 0xff) {
289					state = FL_ERROR; /* can't correct */
290					break;
291				}
292			}
293
294			if (state == FL_SUCCESS)
295				dev_dbg(&flctl->pdev->dev,
296				"reading empty sector %d, ecc error ignored\n",
297				sector_number);
298
299			writel(0, FL4ECCCR(flctl));
300			continue;
301		}
302
303		/* start error correction */
304		ecc_reg[0] = FL4ECCRESULT0(flctl);
305		ecc_reg[1] = FL4ECCRESULT1(flctl);
306		ecc_reg[2] = FL4ECCRESULT2(flctl);
307		ecc_reg[3] = FL4ECCRESULT3(flctl);
308
309		for (i = 0; i < 3; i++) {
310			uint8_t org;
311			unsigned int index;
312
313			data = readl(ecc_reg[i]);
314
315			if (flctl->page_size)
316				index = (512 * sector_number) +
317					(data >> 16);
318			else
319				index = data >> 16;
320
321			org = flctl->done_buff[index];
322			flctl->done_buff[index] = org ^ (data & 0xFF);
323		}
324		state = FL_REPAIRABLE;
325		writel(0, FL4ECCCR(flctl));
326	}
327
328	timeout_error(flctl, __func__);
329	return FL_TIMEOUT;	/* timeout */
330}
331
332static void wait_wecfifo_ready(struct sh_flctl *flctl)
333{
334	uint32_t timeout = LOOP_TIMEOUT_MAX;
335	uint32_t len;
336
337	while (timeout--) {
338		/* check FLECFIFO */
339		len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
340		if (len >= 4)
341			return;
342		udelay(1);
343	}
344	timeout_error(flctl, __func__);
345}
346
347static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf,
348					int len, enum dma_data_direction dir)
349{
350	struct dma_async_tx_descriptor *desc = NULL;
351	struct dma_chan *chan;
352	enum dma_transfer_direction tr_dir;
353	dma_addr_t dma_addr;
354	dma_cookie_t cookie = -EINVAL;
355	uint32_t reg;
356	int ret;
357
358	if (dir == DMA_FROM_DEVICE) {
359		chan = flctl->chan_fifo0_rx;
360		tr_dir = DMA_DEV_TO_MEM;
361	} else {
362		chan = flctl->chan_fifo0_tx;
363		tr_dir = DMA_MEM_TO_DEV;
364	}
365
366	dma_addr = dma_map_single(chan->device->dev, buf, len, dir);
367
368	if (dma_addr)
369		desc = dmaengine_prep_slave_single(chan, dma_addr, len,
370			tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
371
372	if (desc) {
373		reg = readl(FLINTDMACR(flctl));
374		reg |= DREQ0EN;
375		writel(reg, FLINTDMACR(flctl));
376
377		desc->callback = flctl_dma_complete;
378		desc->callback_param = flctl;
379		cookie = dmaengine_submit(desc);
380
381		dma_async_issue_pending(chan);
382	} else {
383		/* DMA failed, fall back to PIO */
384		flctl_release_dma(flctl);
385		dev_warn(&flctl->pdev->dev,
386			 "DMA failed, falling back to PIO\n");
387		ret = -EIO;
388		goto out;
389	}
390
391	ret =
392	wait_for_completion_timeout(&flctl->dma_complete,
393				msecs_to_jiffies(3000));
394
395	if (ret <= 0) {
396		dmaengine_terminate_all(chan);
397		dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n");
398	}
399
400out:
401	reg = readl(FLINTDMACR(flctl));
402	reg &= ~DREQ0EN;
403	writel(reg, FLINTDMACR(flctl));
404
405	dma_unmap_single(chan->device->dev, dma_addr, len, dir);
406
407	/* ret > 0 is success */
408	return ret;
409}
410
411static void read_datareg(struct sh_flctl *flctl, int offset)
412{
413	unsigned long data;
414	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
415
416	wait_completion(flctl);
417
418	data = readl(FLDATAR(flctl));
419	*buf = le32_to_cpu(data);
420}
421
422static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
423{
424	int i, len_4align;
425	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
426
427	len_4align = (rlen + 3) / 4;
428
429	/* initiate DMA transfer */
430	if (flctl->chan_fifo0_rx && rlen >= 32 &&
431		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_DEV_TO_MEM) > 0)
432			goto convert;	/* DMA success */
433
434	/* do polling transfer */
435	for (i = 0; i < len_4align; i++) {
436		wait_rfifo_ready(flctl);
437		buf[i] = readl(FLDTFIFO(flctl));
438	}
439
440convert:
441	for (i = 0; i < len_4align; i++)
442		buf[i] = be32_to_cpu(buf[i]);
443}
444
445static enum flctl_ecc_res_t read_ecfiforeg
446		(struct sh_flctl *flctl, uint8_t *buff, int sector)
447{
448	int i;
449	enum flctl_ecc_res_t res;
450	unsigned long *ecc_buf = (unsigned long *)buff;
451
452	res = wait_recfifo_ready(flctl , sector);
453
454	if (res != FL_ERROR) {
455		for (i = 0; i < 4; i++) {
456			ecc_buf[i] = readl(FLECFIFO(flctl));
457			ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
458		}
459	}
460
461	return res;
462}
463
464static void write_fiforeg(struct sh_flctl *flctl, int rlen,
465						unsigned int offset)
466{
467	int i, len_4align;
468	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
469
470	len_4align = (rlen + 3) / 4;
471	for (i = 0; i < len_4align; i++) {
472		wait_wfifo_ready(flctl);
473		writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl));
474	}
475}
476
477static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen,
478						unsigned int offset)
479{
480	int i, len_4align;
481	unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
482
483	len_4align = (rlen + 3) / 4;
484
485	for (i = 0; i < len_4align; i++)
486		buf[i] = cpu_to_be32(buf[i]);
487
488	/* initiate DMA transfer */
489	if (flctl->chan_fifo0_tx && rlen >= 32 &&
490		flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_MEM_TO_DEV) > 0)
491			return;	/* DMA success */
492
493	/* do polling transfer */
494	for (i = 0; i < len_4align; i++) {
495		wait_wecfifo_ready(flctl);
496		writel(buf[i], FLECFIFO(flctl));
497	}
498}
499
500static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
501{
502	struct sh_flctl *flctl = mtd_to_flctl(mtd);
503	uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT;
504	uint32_t flcmdcr_val, addr_len_bytes = 0;
505
506	/* Set SNAND bit if page size is 2048byte */
507	if (flctl->page_size)
508		flcmncr_val |= SNAND_E;
509	else
510		flcmncr_val &= ~SNAND_E;
511
512	/* default FLCMDCR val */
513	flcmdcr_val = DOCMD1_E | DOADR_E;
514
515	/* Set for FLCMDCR */
516	switch (cmd) {
517	case NAND_CMD_ERASE1:
518		addr_len_bytes = flctl->erase_ADRCNT;
519		flcmdcr_val |= DOCMD2_E;
520		break;
521	case NAND_CMD_READ0:
522	case NAND_CMD_READOOB:
523	case NAND_CMD_RNDOUT:
524		addr_len_bytes = flctl->rw_ADRCNT;
525		flcmdcr_val |= CDSRC_E;
526		if (flctl->chip.options & NAND_BUSWIDTH_16)
527			flcmncr_val |= SEL_16BIT;
528		break;
529	case NAND_CMD_SEQIN:
530		/* This case is that cmd is READ0 or READ1 or READ00 */
531		flcmdcr_val &= ~DOADR_E;	/* ONLY execute 1st cmd */
532		break;
533	case NAND_CMD_PAGEPROG:
534		addr_len_bytes = flctl->rw_ADRCNT;
535		flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
536		if (flctl->chip.options & NAND_BUSWIDTH_16)
537			flcmncr_val |= SEL_16BIT;
538		break;
539	case NAND_CMD_READID:
540		flcmncr_val &= ~SNAND_E;
541		flcmdcr_val |= CDSRC_E;
542		addr_len_bytes = ADRCNT_1;
543		break;
544	case NAND_CMD_STATUS:
545	case NAND_CMD_RESET:
546		flcmncr_val &= ~SNAND_E;
547		flcmdcr_val &= ~(DOADR_E | DOSR_E);
548		break;
549	default:
550		break;
551	}
552
553	/* Set address bytes parameter */
554	flcmdcr_val |= addr_len_bytes;
555
556	/* Now actually write */
557	writel(flcmncr_val, FLCMNCR(flctl));
558	writel(flcmdcr_val, FLCMDCR(flctl));
559	writel(flcmcdr_val, FLCMCDR(flctl));
560}
561
562static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
563				uint8_t *buf, int oob_required, int page)
564{
565	chip->read_buf(mtd, buf, mtd->writesize);
566	if (oob_required)
567		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
568	return 0;
569}
570
571static int flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
572				   const uint8_t *buf, int oob_required)
573{
574	chip->write_buf(mtd, buf, mtd->writesize);
575	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
576	return 0;
577}
578
579static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
580{
581	struct sh_flctl *flctl = mtd_to_flctl(mtd);
582	int sector, page_sectors;
583	enum flctl_ecc_res_t ecc_result;
584
585	page_sectors = flctl->page_size ? 4 : 1;
586
587	set_cmd_regs(mtd, NAND_CMD_READ0,
588		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
589
590	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
591		 FLCMNCR(flctl));
592	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
593	writel(page_addr << 2, FLADR(flctl));
594
595	empty_fifo(flctl);
596	start_translation(flctl);
597
598	for (sector = 0; sector < page_sectors; sector++) {
599		read_fiforeg(flctl, 512, 512 * sector);
600
601		ecc_result = read_ecfiforeg(flctl,
602			&flctl->done_buff[mtd->writesize + 16 * sector],
603			sector);
604
605		switch (ecc_result) {
606		case FL_REPAIRABLE:
607			dev_info(&flctl->pdev->dev,
608				"applied ecc on page 0x%x", page_addr);
609			flctl->mtd.ecc_stats.corrected++;
610			break;
611		case FL_ERROR:
612			dev_warn(&flctl->pdev->dev,
613				"page 0x%x contains corrupted data\n",
614				page_addr);
615			flctl->mtd.ecc_stats.failed++;
616			break;
617		default:
618			;
619		}
620	}
621
622	wait_completion(flctl);
623
624	writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
625			FLCMNCR(flctl));
626}
627
628static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
629{
630	struct sh_flctl *flctl = mtd_to_flctl(mtd);
631	int page_sectors = flctl->page_size ? 4 : 1;
632	int i;
633
634	set_cmd_regs(mtd, NAND_CMD_READ0,
635		(NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
636
637	empty_fifo(flctl);
638
639	for (i = 0; i < page_sectors; i++) {
640		set_addr(mtd, (512 + 16) * i + 512 , page_addr);
641		writel(16, FLDTCNTR(flctl));
642
643		start_translation(flctl);
644		read_fiforeg(flctl, 16, 16 * i);
645		wait_completion(flctl);
646	}
647}
648
649static void execmd_write_page_sector(struct mtd_info *mtd)
650{
651	struct sh_flctl *flctl = mtd_to_flctl(mtd);
652	int page_addr = flctl->seqin_page_addr;
653	int sector, page_sectors;
654
655	page_sectors = flctl->page_size ? 4 : 1;
656
657	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
658			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
659
660	empty_fifo(flctl);
661	writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
662	writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl));
663	writel(page_addr << 2, FLADR(flctl));
664	start_translation(flctl);
665
666	for (sector = 0; sector < page_sectors; sector++) {
667		write_fiforeg(flctl, 512, 512 * sector);
668		write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector);
669	}
670
671	wait_completion(flctl);
672	writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
673}
674
675static void execmd_write_oob(struct mtd_info *mtd)
676{
677	struct sh_flctl *flctl = mtd_to_flctl(mtd);
678	int page_addr = flctl->seqin_page_addr;
679	int sector, page_sectors;
680
681	page_sectors = flctl->page_size ? 4 : 1;
682
683	set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
684			(NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
685
686	for (sector = 0; sector < page_sectors; sector++) {
687		empty_fifo(flctl);
688		set_addr(mtd, sector * 528 + 512, page_addr);
689		writel(16, FLDTCNTR(flctl));	/* set read size */
690
691		start_translation(flctl);
692		write_fiforeg(flctl, 16, 16 * sector);
693		wait_completion(flctl);
694	}
695}
696
697static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
698			int column, int page_addr)
699{
700	struct sh_flctl *flctl = mtd_to_flctl(mtd);
701	uint32_t read_cmd = 0;
702
703	pm_runtime_get_sync(&flctl->pdev->dev);
704
705	flctl->read_bytes = 0;
706	if (command != NAND_CMD_PAGEPROG)
707		flctl->index = 0;
708
709	switch (command) {
710	case NAND_CMD_READ1:
711	case NAND_CMD_READ0:
712		if (flctl->hwecc) {
713			/* read page with hwecc */
714			execmd_read_page_sector(mtd, page_addr);
715			break;
716		}
717		if (flctl->page_size)
718			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
719				| command);
720		else
721			set_cmd_regs(mtd, command, command);
722
723		set_addr(mtd, 0, page_addr);
724
725		flctl->read_bytes = mtd->writesize + mtd->oobsize;
726		if (flctl->chip.options & NAND_BUSWIDTH_16)
727			column >>= 1;
728		flctl->index += column;
729		goto read_normal_exit;
730
731	case NAND_CMD_READOOB:
732		if (flctl->hwecc) {
733			/* read page with hwecc */
734			execmd_read_oob(mtd, page_addr);
735			break;
736		}
737
738		if (flctl->page_size) {
739			set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
740				| NAND_CMD_READ0);
741			set_addr(mtd, mtd->writesize, page_addr);
742		} else {
743			set_cmd_regs(mtd, command, command);
744			set_addr(mtd, 0, page_addr);
745		}
746		flctl->read_bytes = mtd->oobsize;
747		goto read_normal_exit;
748
749	case NAND_CMD_RNDOUT:
750		if (flctl->hwecc)
751			break;
752
753		if (flctl->page_size)
754			set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8)
755				| command);
756		else
757			set_cmd_regs(mtd, command, command);
758
759		set_addr(mtd, column, 0);
760
761		flctl->read_bytes = mtd->writesize + mtd->oobsize - column;
762		goto read_normal_exit;
763
764	case NAND_CMD_READID:
765		set_cmd_regs(mtd, command, command);
766
767		/* READID is always performed using an 8-bit bus */
768		if (flctl->chip.options & NAND_BUSWIDTH_16)
769			column <<= 1;
770		set_addr(mtd, column, 0);
771
772		flctl->read_bytes = 8;
773		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
774		empty_fifo(flctl);
775		start_translation(flctl);
776		read_fiforeg(flctl, flctl->read_bytes, 0);
777		wait_completion(flctl);
778		break;
779
780	case NAND_CMD_ERASE1:
781		flctl->erase1_page_addr = page_addr;
782		break;
783
784	case NAND_CMD_ERASE2:
785		set_cmd_regs(mtd, NAND_CMD_ERASE1,
786			(command << 8) | NAND_CMD_ERASE1);
787		set_addr(mtd, -1, flctl->erase1_page_addr);
788		start_translation(flctl);
789		wait_completion(flctl);
790		break;
791
792	case NAND_CMD_SEQIN:
793		if (!flctl->page_size) {
794			/* output read command */
795			if (column >= mtd->writesize) {
796				column -= mtd->writesize;
797				read_cmd = NAND_CMD_READOOB;
798			} else if (column < 256) {
799				read_cmd = NAND_CMD_READ0;
800			} else {
801				column -= 256;
802				read_cmd = NAND_CMD_READ1;
803			}
804		}
805		flctl->seqin_column = column;
806		flctl->seqin_page_addr = page_addr;
807		flctl->seqin_read_cmd = read_cmd;
808		break;
809
810	case NAND_CMD_PAGEPROG:
811		empty_fifo(flctl);
812		if (!flctl->page_size) {
813			set_cmd_regs(mtd, NAND_CMD_SEQIN,
814					flctl->seqin_read_cmd);
815			set_addr(mtd, -1, -1);
816			writel(0, FLDTCNTR(flctl));	/* set 0 size */
817			start_translation(flctl);
818			wait_completion(flctl);
819		}
820		if (flctl->hwecc) {
821			/* write page with hwecc */
822			if (flctl->seqin_column == mtd->writesize)
823				execmd_write_oob(mtd);
824			else if (!flctl->seqin_column)
825				execmd_write_page_sector(mtd);
826			else
827				printk(KERN_ERR "Invalid address !?\n");
828			break;
829		}
830		set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
831		set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
832		writel(flctl->index, FLDTCNTR(flctl));	/* set write size */
833		start_translation(flctl);
834		write_fiforeg(flctl, flctl->index, 0);
835		wait_completion(flctl);
836		break;
837
838	case NAND_CMD_STATUS:
839		set_cmd_regs(mtd, command, command);
840		set_addr(mtd, -1, -1);
841
842		flctl->read_bytes = 1;
843		writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
844		start_translation(flctl);
845		read_datareg(flctl, 0); /* read and end */
846		break;
847
848	case NAND_CMD_RESET:
849		set_cmd_regs(mtd, command, command);
850		set_addr(mtd, -1, -1);
851
852		writel(0, FLDTCNTR(flctl));	/* set 0 size */
853		start_translation(flctl);
854		wait_completion(flctl);
855		break;
856
857	default:
858		break;
859	}
860	goto runtime_exit;
861
862read_normal_exit:
863	writel(flctl->read_bytes, FLDTCNTR(flctl));	/* set read size */
864	empty_fifo(flctl);
865	start_translation(flctl);
866	read_fiforeg(flctl, flctl->read_bytes, 0);
867	wait_completion(flctl);
868runtime_exit:
869	pm_runtime_put_sync(&flctl->pdev->dev);
870	return;
871}
872
873static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
874{
875	struct sh_flctl *flctl = mtd_to_flctl(mtd);
876	int ret;
877
878	switch (chipnr) {
879	case -1:
880		flctl->flcmncr_base &= ~CE0_ENABLE;
881
882		pm_runtime_get_sync(&flctl->pdev->dev);
883		writel(flctl->flcmncr_base, FLCMNCR(flctl));
884
885		if (flctl->qos_request) {
886			dev_pm_qos_remove_request(&flctl->pm_qos);
887			flctl->qos_request = 0;
888		}
889
890		pm_runtime_put_sync(&flctl->pdev->dev);
891		break;
892	case 0:
893		flctl->flcmncr_base |= CE0_ENABLE;
894
895		if (!flctl->qos_request) {
896			ret = dev_pm_qos_add_request(&flctl->pdev->dev,
897							&flctl->pm_qos,
898							DEV_PM_QOS_RESUME_LATENCY,
899							100);
900			if (ret < 0)
901				dev_err(&flctl->pdev->dev,
902					"PM QoS request failed: %d\n", ret);
903			flctl->qos_request = 1;
904		}
905
906		if (flctl->holden) {
907			pm_runtime_get_sync(&flctl->pdev->dev);
908			writel(HOLDEN, FLHOLDCR(flctl));
909			pm_runtime_put_sync(&flctl->pdev->dev);
910		}
911		break;
912	default:
913		BUG();
914	}
915}
916
917static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
918{
919	struct sh_flctl *flctl = mtd_to_flctl(mtd);
920
921	memcpy(&flctl->done_buff[flctl->index], buf, len);
922	flctl->index += len;
923}
924
925static uint8_t flctl_read_byte(struct mtd_info *mtd)
926{
927	struct sh_flctl *flctl = mtd_to_flctl(mtd);
928	uint8_t data;
929
930	data = flctl->done_buff[flctl->index];
931	flctl->index++;
932	return data;
933}
934
935static uint16_t flctl_read_word(struct mtd_info *mtd)
936{
937	struct sh_flctl *flctl = mtd_to_flctl(mtd);
938	uint16_t *buf = (uint16_t *)&flctl->done_buff[flctl->index];
939
940	flctl->index += 2;
941	return *buf;
942}
943
944static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
945{
946	struct sh_flctl *flctl = mtd_to_flctl(mtd);
947
948	memcpy(buf, &flctl->done_buff[flctl->index], len);
949	flctl->index += len;
950}
951
952static int flctl_chip_init_tail(struct mtd_info *mtd)
953{
954	struct sh_flctl *flctl = mtd_to_flctl(mtd);
955	struct nand_chip *chip = &flctl->chip;
956
957	if (mtd->writesize == 512) {
958		flctl->page_size = 0;
959		if (chip->chipsize > (32 << 20)) {
960			/* big than 32MB */
961			flctl->rw_ADRCNT = ADRCNT_4;
962			flctl->erase_ADRCNT = ADRCNT_3;
963		} else if (chip->chipsize > (2 << 16)) {
964			/* big than 128KB */
965			flctl->rw_ADRCNT = ADRCNT_3;
966			flctl->erase_ADRCNT = ADRCNT_2;
967		} else {
968			flctl->rw_ADRCNT = ADRCNT_2;
969			flctl->erase_ADRCNT = ADRCNT_1;
970		}
971	} else {
972		flctl->page_size = 1;
973		if (chip->chipsize > (128 << 20)) {
974			/* big than 128MB */
975			flctl->rw_ADRCNT = ADRCNT2_E;
976			flctl->erase_ADRCNT = ADRCNT_3;
977		} else if (chip->chipsize > (8 << 16)) {
978			/* big than 512KB */
979			flctl->rw_ADRCNT = ADRCNT_4;
980			flctl->erase_ADRCNT = ADRCNT_2;
981		} else {
982			flctl->rw_ADRCNT = ADRCNT_3;
983			flctl->erase_ADRCNT = ADRCNT_1;
984		}
985	}
986
987	if (flctl->hwecc) {
988		if (mtd->writesize == 512) {
989			chip->ecc.layout = &flctl_4secc_oob_16;
990			chip->badblock_pattern = &flctl_4secc_smallpage;
991		} else {
992			chip->ecc.layout = &flctl_4secc_oob_64;
993			chip->badblock_pattern = &flctl_4secc_largepage;
994		}
995
996		chip->ecc.size = 512;
997		chip->ecc.bytes = 10;
998		chip->ecc.strength = 4;
999		chip->ecc.read_page = flctl_read_page_hwecc;
1000		chip->ecc.write_page = flctl_write_page_hwecc;
1001		chip->ecc.mode = NAND_ECC_HW;
1002
1003		/* 4 symbols ECC enabled */
1004		flctl->flcmncr_base |= _4ECCEN;
1005	} else {
1006		chip->ecc.mode = NAND_ECC_SOFT;
1007	}
1008
1009	return 0;
1010}
1011
1012static irqreturn_t flctl_handle_flste(int irq, void *dev_id)
1013{
1014	struct sh_flctl *flctl = dev_id;
1015
1016	dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl)));
1017	writel(flctl->flintdmacr_base, FLINTDMACR(flctl));
1018
1019	return IRQ_HANDLED;
1020}
1021
1022struct flctl_soc_config {
1023	unsigned long flcmncr_val;
1024	unsigned has_hwecc:1;
1025	unsigned use_holden:1;
1026};
1027
1028static struct flctl_soc_config flctl_sh7372_config = {
1029	.flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL,
1030	.has_hwecc = 1,
1031	.use_holden = 1,
1032};
1033
1034static const struct of_device_id of_flctl_match[] = {
1035	{ .compatible = "renesas,shmobile-flctl-sh7372",
1036				.data = &flctl_sh7372_config },
1037	{},
1038};
1039MODULE_DEVICE_TABLE(of, of_flctl_match);
1040
1041static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev)
1042{
1043	const struct of_device_id *match;
1044	struct flctl_soc_config *config;
1045	struct sh_flctl_platform_data *pdata;
1046	struct device_node *dn = dev->of_node;
1047	int ret;
1048
1049	match = of_match_device(of_flctl_match, dev);
1050	if (match)
1051		config = (struct flctl_soc_config *)match->data;
1052	else {
1053		dev_err(dev, "%s: no OF configuration attached\n", __func__);
1054		return NULL;
1055	}
1056
1057	pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data),
1058								GFP_KERNEL);
1059	if (!pdata)
1060		return NULL;
1061
1062	/* set SoC specific options */
1063	pdata->flcmncr_val = config->flcmncr_val;
1064	pdata->has_hwecc = config->has_hwecc;
1065	pdata->use_holden = config->use_holden;
1066
1067	/* parse user defined options */
1068	ret = of_get_nand_bus_width(dn);
1069	if (ret == 16)
1070		pdata->flcmncr_val |= SEL_16BIT;
1071	else if (ret != 8) {
1072		dev_err(dev, "%s: invalid bus width\n", __func__);
1073		return NULL;
1074	}
1075
1076	return pdata;
1077}
1078
1079static int flctl_probe(struct platform_device *pdev)
1080{
1081	struct resource *res;
1082	struct sh_flctl *flctl;
1083	struct mtd_info *flctl_mtd;
1084	struct nand_chip *nand;
1085	struct sh_flctl_platform_data *pdata;
1086	int ret;
1087	int irq;
1088	struct mtd_part_parser_data ppdata = {};
1089
1090	flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL);
1091	if (!flctl)
1092		return -ENOMEM;
1093
1094	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1095	flctl->reg = devm_ioremap_resource(&pdev->dev, res);
1096	if (IS_ERR(flctl->reg))
1097		return PTR_ERR(flctl->reg);
1098
1099	irq = platform_get_irq(pdev, 0);
1100	if (irq < 0) {
1101		dev_err(&pdev->dev, "failed to get flste irq data\n");
1102		return -ENXIO;
1103	}
1104
1105	ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED,
1106			       "flste", flctl);
1107	if (ret) {
1108		dev_err(&pdev->dev, "request interrupt failed.\n");
1109		return ret;
1110	}
1111
1112	if (pdev->dev.of_node)
1113		pdata = flctl_parse_dt(&pdev->dev);
1114	else
1115		pdata = dev_get_platdata(&pdev->dev);
1116
1117	if (!pdata) {
1118		dev_err(&pdev->dev, "no setup data defined\n");
1119		return -EINVAL;
1120	}
1121
1122	platform_set_drvdata(pdev, flctl);
1123	flctl_mtd = &flctl->mtd;
1124	nand = &flctl->chip;
1125	flctl_mtd->priv = nand;
1126	flctl->pdev = pdev;
1127	flctl->hwecc = pdata->has_hwecc;
1128	flctl->holden = pdata->use_holden;
1129	flctl->flcmncr_base = pdata->flcmncr_val;
1130	flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE;
1131
1132	/* Set address of hardware control function */
1133	/* 20 us command delay time */
1134	nand->chip_delay = 20;
1135
1136	nand->read_byte = flctl_read_byte;
1137	nand->write_buf = flctl_write_buf;
1138	nand->read_buf = flctl_read_buf;
1139	nand->select_chip = flctl_select_chip;
1140	nand->cmdfunc = flctl_cmdfunc;
1141
1142	if (pdata->flcmncr_val & SEL_16BIT) {
1143		nand->options |= NAND_BUSWIDTH_16;
1144		nand->read_word = flctl_read_word;
1145	}
1146
1147	pm_runtime_enable(&pdev->dev);
1148	pm_runtime_resume(&pdev->dev);
1149
1150	flctl_setup_dma(flctl);
1151
1152	ret = nand_scan_ident(flctl_mtd, 1, NULL);
1153	if (ret)
1154		goto err_chip;
1155
1156	ret = flctl_chip_init_tail(flctl_mtd);
1157	if (ret)
1158		goto err_chip;
1159
1160	ret = nand_scan_tail(flctl_mtd);
1161	if (ret)
1162		goto err_chip;
1163
1164	ppdata.of_node = pdev->dev.of_node;
1165	ret = mtd_device_parse_register(flctl_mtd, NULL, &ppdata, pdata->parts,
1166			pdata->nr_parts);
1167
1168	return 0;
1169
1170err_chip:
1171	flctl_release_dma(flctl);
1172	pm_runtime_disable(&pdev->dev);
1173	return ret;
1174}
1175
1176static int flctl_remove(struct platform_device *pdev)
1177{
1178	struct sh_flctl *flctl = platform_get_drvdata(pdev);
1179
1180	flctl_release_dma(flctl);
1181	nand_release(&flctl->mtd);
1182	pm_runtime_disable(&pdev->dev);
1183
1184	return 0;
1185}
1186
1187static struct platform_driver flctl_driver = {
1188	.remove		= flctl_remove,
1189	.driver = {
1190		.name	= "sh_flctl",
1191		.of_match_table = of_match_ptr(of_flctl_match),
1192	},
1193};
1194
1195module_platform_driver_probe(flctl_driver, flctl_probe);
1196
1197MODULE_LICENSE("GPL");
1198MODULE_AUTHOR("Yoshihiro Shimoda");
1199MODULE_DESCRIPTION("SuperH FLCTL driver");
1200MODULE_ALIAS("platform:sh_flctl");
1201