1/* Renesas R-Car CAN device driver
2 *
3 * Copyright (C) 2013 Cogent Embedded, Inc. <source@cogentembedded.com>
4 * Copyright (C) 2013 Renesas Solutions Corp.
5 *
6 * This program is free software; you can redistribute  it and/or modify it
7 * under  the terms of  the GNU General  Public License as published by the
8 * Free Software Foundation;  either version 2 of the  License, or (at your
9 * option) any later version.
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/interrupt.h>
16#include <linux/errno.h>
17#include <linux/netdevice.h>
18#include <linux/platform_device.h>
19#include <linux/can/led.h>
20#include <linux/can/dev.h>
21#include <linux/clk.h>
22#include <linux/can/platform/rcar_can.h>
23#include <linux/of.h>
24
25#define RCAR_CAN_DRV_NAME	"rcar_can"
26
27/* Mailbox configuration:
28 * mailbox 60 - 63 - Rx FIFO mailboxes
29 * mailbox 56 - 59 - Tx FIFO mailboxes
30 * non-FIFO mailboxes are not used
31 */
32#define RCAR_CAN_N_MBX		64 /* Number of mailboxes in non-FIFO mode */
33#define RCAR_CAN_RX_FIFO_MBX	60 /* Mailbox - window to Rx FIFO */
34#define RCAR_CAN_TX_FIFO_MBX	56 /* Mailbox - window to Tx FIFO */
35#define RCAR_CAN_FIFO_DEPTH	4
36
37/* Mailbox registers structure */
38struct rcar_can_mbox_regs {
39	u32 id;		/* IDE and RTR bits, SID and EID */
40	u8 stub;	/* Not used */
41	u8 dlc;		/* Data Length Code - bits [0..3] */
42	u8 data[8];	/* Data Bytes */
43	u8 tsh;		/* Time Stamp Higher Byte */
44	u8 tsl;		/* Time Stamp Lower Byte */
45};
46
47struct rcar_can_regs {
48	struct rcar_can_mbox_regs mb[RCAR_CAN_N_MBX]; /* Mailbox registers */
49	u32 mkr_2_9[8];	/* Mask Registers 2-9 */
50	u32 fidcr[2];	/* FIFO Received ID Compare Register */
51	u32 mkivlr1;	/* Mask Invalid Register 1 */
52	u32 mier1;	/* Mailbox Interrupt Enable Register 1 */
53	u32 mkr_0_1[2];	/* Mask Registers 0-1 */
54	u32 mkivlr0;    /* Mask Invalid Register 0*/
55	u32 mier0;      /* Mailbox Interrupt Enable Register 0 */
56	u8 pad_440[0x3c0];
57	u8 mctl[64];	/* Message Control Registers */
58	u16 ctlr;	/* Control Register */
59	u16 str;	/* Status register */
60	u8 bcr[3];	/* Bit Configuration Register */
61	u8 clkr;	/* Clock Select Register */
62	u8 rfcr;	/* Receive FIFO Control Register */
63	u8 rfpcr;	/* Receive FIFO Pointer Control Register */
64	u8 tfcr;	/* Transmit FIFO Control Register */
65	u8 tfpcr;       /* Transmit FIFO Pointer Control Register */
66	u8 eier;	/* Error Interrupt Enable Register */
67	u8 eifr;	/* Error Interrupt Factor Judge Register */
68	u8 recr;	/* Receive Error Count Register */
69	u8 tecr;        /* Transmit Error Count Register */
70	u8 ecsr;	/* Error Code Store Register */
71	u8 cssr;	/* Channel Search Support Register */
72	u8 mssr;	/* Mailbox Search Status Register */
73	u8 msmr;	/* Mailbox Search Mode Register */
74	u16 tsr;	/* Time Stamp Register */
75	u8 afsr;	/* Acceptance Filter Support Register */
76	u8 pad_857;
77	u8 tcr;		/* Test Control Register */
78	u8 pad_859[7];
79	u8 ier;		/* Interrupt Enable Register */
80	u8 isr;		/* Interrupt Status Register */
81	u8 pad_862;
82	u8 mbsmr;	/* Mailbox Search Mask Register */
83};
84
85struct rcar_can_priv {
86	struct can_priv can;	/* Must be the first member! */
87	struct net_device *ndev;
88	struct napi_struct napi;
89	struct rcar_can_regs __iomem *regs;
90	struct clk *clk;
91	struct clk *can_clk;
92	u8 tx_dlc[RCAR_CAN_FIFO_DEPTH];
93	u32 tx_head;
94	u32 tx_tail;
95	u8 clock_select;
96	u8 ier;
97};
98
99static const struct can_bittiming_const rcar_can_bittiming_const = {
100	.name = RCAR_CAN_DRV_NAME,
101	.tseg1_min = 4,
102	.tseg1_max = 16,
103	.tseg2_min = 2,
104	.tseg2_max = 8,
105	.sjw_max = 4,
106	.brp_min = 1,
107	.brp_max = 1024,
108	.brp_inc = 1,
109};
110
111/* Control Register bits */
112#define RCAR_CAN_CTLR_BOM	(3 << 11) /* Bus-Off Recovery Mode Bits */
113#define RCAR_CAN_CTLR_BOM_ENT	(1 << 11) /* Entry to halt mode */
114					/* at bus-off entry */
115#define RCAR_CAN_CTLR_SLPM	(1 << 10)
116#define RCAR_CAN_CTLR_CANM	(3 << 8) /* Operating Mode Select Bit */
117#define RCAR_CAN_CTLR_CANM_HALT	(1 << 9)
118#define RCAR_CAN_CTLR_CANM_RESET (1 << 8)
119#define RCAR_CAN_CTLR_CANM_FORCE_RESET (3 << 8)
120#define RCAR_CAN_CTLR_MLM	(1 << 3) /* Message Lost Mode Select */
121#define RCAR_CAN_CTLR_IDFM	(3 << 1) /* ID Format Mode Select Bits */
122#define RCAR_CAN_CTLR_IDFM_MIXED (1 << 2) /* Mixed ID mode */
123#define RCAR_CAN_CTLR_MBM	(1 << 0) /* Mailbox Mode select */
124
125/* Status Register bits */
126#define RCAR_CAN_STR_RSTST	(1 << 8) /* Reset Status Bit */
127
128/* FIFO Received ID Compare Registers 0 and 1 bits */
129#define RCAR_CAN_FIDCR_IDE	(1 << 31) /* ID Extension Bit */
130#define RCAR_CAN_FIDCR_RTR	(1 << 30) /* Remote Transmission Request Bit */
131
132/* Receive FIFO Control Register bits */
133#define RCAR_CAN_RFCR_RFEST	(1 << 7) /* Receive FIFO Empty Status Flag */
134#define RCAR_CAN_RFCR_RFE	(1 << 0) /* Receive FIFO Enable */
135
136/* Transmit FIFO Control Register bits */
137#define RCAR_CAN_TFCR_TFUST	(7 << 1) /* Transmit FIFO Unsent Message */
138					/* Number Status Bits */
139#define RCAR_CAN_TFCR_TFUST_SHIFT 1	/* Offset of Transmit FIFO Unsent */
140					/* Message Number Status Bits */
141#define RCAR_CAN_TFCR_TFE	(1 << 0) /* Transmit FIFO Enable */
142
143#define RCAR_CAN_N_RX_MKREGS1	2	/* Number of mask registers */
144					/* for Rx mailboxes 0-31 */
145#define RCAR_CAN_N_RX_MKREGS2	8
146
147/* Bit Configuration Register settings */
148#define RCAR_CAN_BCR_TSEG1(x)	(((x) & 0x0f) << 20)
149#define RCAR_CAN_BCR_BPR(x)	(((x) & 0x3ff) << 8)
150#define RCAR_CAN_BCR_SJW(x)	(((x) & 0x3) << 4)
151#define RCAR_CAN_BCR_TSEG2(x)	((x) & 0x07)
152
153/* Mailbox and Mask Registers bits */
154#define RCAR_CAN_IDE		(1 << 31)
155#define RCAR_CAN_RTR		(1 << 30)
156#define RCAR_CAN_SID_SHIFT	18
157
158/* Mailbox Interrupt Enable Register 1 bits */
159#define RCAR_CAN_MIER1_RXFIE	(1 << 28) /* Receive  FIFO Interrupt Enable */
160#define RCAR_CAN_MIER1_TXFIE	(1 << 24) /* Transmit FIFO Interrupt Enable */
161
162/* Interrupt Enable Register bits */
163#define RCAR_CAN_IER_ERSIE	(1 << 5) /* Error (ERS) Interrupt Enable Bit */
164#define RCAR_CAN_IER_RXFIE	(1 << 4) /* Reception FIFO Interrupt */
165					/* Enable Bit */
166#define RCAR_CAN_IER_TXFIE	(1 << 3) /* Transmission FIFO Interrupt */
167					/* Enable Bit */
168/* Interrupt Status Register bits */
169#define RCAR_CAN_ISR_ERSF	(1 << 5) /* Error (ERS) Interrupt Status Bit */
170#define RCAR_CAN_ISR_RXFF	(1 << 4) /* Reception FIFO Interrupt */
171					/* Status Bit */
172#define RCAR_CAN_ISR_TXFF	(1 << 3) /* Transmission FIFO Interrupt */
173					/* Status Bit */
174
175/* Error Interrupt Enable Register bits */
176#define RCAR_CAN_EIER_BLIE	(1 << 7) /* Bus Lock Interrupt Enable */
177#define RCAR_CAN_EIER_OLIE	(1 << 6) /* Overload Frame Transmit */
178					/* Interrupt Enable */
179#define RCAR_CAN_EIER_ORIE	(1 << 5) /* Receive Overrun  Interrupt Enable */
180#define RCAR_CAN_EIER_BORIE	(1 << 4) /* Bus-Off Recovery Interrupt Enable */
181#define RCAR_CAN_EIER_BOEIE	(1 << 3) /* Bus-Off Entry Interrupt Enable */
182#define RCAR_CAN_EIER_EPIE	(1 << 2) /* Error Passive Interrupt Enable */
183#define RCAR_CAN_EIER_EWIE	(1 << 1) /* Error Warning Interrupt Enable */
184#define RCAR_CAN_EIER_BEIE	(1 << 0) /* Bus Error Interrupt Enable */
185
186/* Error Interrupt Factor Judge Register bits */
187#define RCAR_CAN_EIFR_BLIF	(1 << 7) /* Bus Lock Detect Flag */
188#define RCAR_CAN_EIFR_OLIF	(1 << 6) /* Overload Frame Transmission */
189					 /* Detect Flag */
190#define RCAR_CAN_EIFR_ORIF	(1 << 5) /* Receive Overrun Detect Flag */
191#define RCAR_CAN_EIFR_BORIF	(1 << 4) /* Bus-Off Recovery Detect Flag */
192#define RCAR_CAN_EIFR_BOEIF	(1 << 3) /* Bus-Off Entry Detect Flag */
193#define RCAR_CAN_EIFR_EPIF	(1 << 2) /* Error Passive Detect Flag */
194#define RCAR_CAN_EIFR_EWIF	(1 << 1) /* Error Warning Detect Flag */
195#define RCAR_CAN_EIFR_BEIF	(1 << 0) /* Bus Error Detect Flag */
196
197/* Error Code Store Register bits */
198#define RCAR_CAN_ECSR_EDPM	(1 << 7) /* Error Display Mode Select Bit */
199#define RCAR_CAN_ECSR_ADEF	(1 << 6) /* ACK Delimiter Error Flag */
200#define RCAR_CAN_ECSR_BE0F	(1 << 5) /* Bit Error (dominant) Flag */
201#define RCAR_CAN_ECSR_BE1F	(1 << 4) /* Bit Error (recessive) Flag */
202#define RCAR_CAN_ECSR_CEF	(1 << 3) /* CRC Error Flag */
203#define RCAR_CAN_ECSR_AEF	(1 << 2) /* ACK Error Flag */
204#define RCAR_CAN_ECSR_FEF	(1 << 1) /* Form Error Flag */
205#define RCAR_CAN_ECSR_SEF	(1 << 0) /* Stuff Error Flag */
206
207#define RCAR_CAN_NAPI_WEIGHT	4
208#define MAX_STR_READS		0x100
209
210static void tx_failure_cleanup(struct net_device *ndev)
211{
212	int i;
213
214	for (i = 0; i < RCAR_CAN_FIFO_DEPTH; i++)
215		can_free_echo_skb(ndev, i);
216}
217
218static void rcar_can_error(struct net_device *ndev)
219{
220	struct rcar_can_priv *priv = netdev_priv(ndev);
221	struct net_device_stats *stats = &ndev->stats;
222	struct can_frame *cf;
223	struct sk_buff *skb;
224	u8 eifr, txerr = 0, rxerr = 0;
225
226	/* Propagate the error condition to the CAN stack */
227	skb = alloc_can_err_skb(ndev, &cf);
228
229	eifr = readb(&priv->regs->eifr);
230	if (eifr & (RCAR_CAN_EIFR_EWIF | RCAR_CAN_EIFR_EPIF)) {
231		txerr = readb(&priv->regs->tecr);
232		rxerr = readb(&priv->regs->recr);
233		if (skb) {
234			cf->can_id |= CAN_ERR_CRTL;
235			cf->data[6] = txerr;
236			cf->data[7] = rxerr;
237		}
238	}
239	if (eifr & RCAR_CAN_EIFR_BEIF) {
240		int rx_errors = 0, tx_errors = 0;
241		u8 ecsr;
242
243		netdev_dbg(priv->ndev, "Bus error interrupt:\n");
244		if (skb) {
245			cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
246			cf->data[2] = CAN_ERR_PROT_UNSPEC;
247		}
248		ecsr = readb(&priv->regs->ecsr);
249		if (ecsr & RCAR_CAN_ECSR_ADEF) {
250			netdev_dbg(priv->ndev, "ACK Delimiter Error\n");
251			tx_errors++;
252			writeb(~RCAR_CAN_ECSR_ADEF, &priv->regs->ecsr);
253			if (skb)
254				cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
255		}
256		if (ecsr & RCAR_CAN_ECSR_BE0F) {
257			netdev_dbg(priv->ndev, "Bit Error (dominant)\n");
258			tx_errors++;
259			writeb(~RCAR_CAN_ECSR_BE0F, &priv->regs->ecsr);
260			if (skb)
261				cf->data[2] |= CAN_ERR_PROT_BIT0;
262		}
263		if (ecsr & RCAR_CAN_ECSR_BE1F) {
264			netdev_dbg(priv->ndev, "Bit Error (recessive)\n");
265			tx_errors++;
266			writeb(~RCAR_CAN_ECSR_BE1F, &priv->regs->ecsr);
267			if (skb)
268				cf->data[2] |= CAN_ERR_PROT_BIT1;
269		}
270		if (ecsr & RCAR_CAN_ECSR_CEF) {
271			netdev_dbg(priv->ndev, "CRC Error\n");
272			rx_errors++;
273			writeb(~RCAR_CAN_ECSR_CEF, &priv->regs->ecsr);
274			if (skb)
275				cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
276		}
277		if (ecsr & RCAR_CAN_ECSR_AEF) {
278			netdev_dbg(priv->ndev, "ACK Error\n");
279			tx_errors++;
280			writeb(~RCAR_CAN_ECSR_AEF, &priv->regs->ecsr);
281			if (skb) {
282				cf->can_id |= CAN_ERR_ACK;
283				cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
284			}
285		}
286		if (ecsr & RCAR_CAN_ECSR_FEF) {
287			netdev_dbg(priv->ndev, "Form Error\n");
288			rx_errors++;
289			writeb(~RCAR_CAN_ECSR_FEF, &priv->regs->ecsr);
290			if (skb)
291				cf->data[2] |= CAN_ERR_PROT_FORM;
292		}
293		if (ecsr & RCAR_CAN_ECSR_SEF) {
294			netdev_dbg(priv->ndev, "Stuff Error\n");
295			rx_errors++;
296			writeb(~RCAR_CAN_ECSR_SEF, &priv->regs->ecsr);
297			if (skb)
298				cf->data[2] |= CAN_ERR_PROT_STUFF;
299		}
300
301		priv->can.can_stats.bus_error++;
302		ndev->stats.rx_errors += rx_errors;
303		ndev->stats.tx_errors += tx_errors;
304		writeb(~RCAR_CAN_EIFR_BEIF, &priv->regs->eifr);
305	}
306	if (eifr & RCAR_CAN_EIFR_EWIF) {
307		netdev_dbg(priv->ndev, "Error warning interrupt\n");
308		priv->can.state = CAN_STATE_ERROR_WARNING;
309		priv->can.can_stats.error_warning++;
310		/* Clear interrupt condition */
311		writeb(~RCAR_CAN_EIFR_EWIF, &priv->regs->eifr);
312		if (skb)
313			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
314					      CAN_ERR_CRTL_RX_WARNING;
315	}
316	if (eifr & RCAR_CAN_EIFR_EPIF) {
317		netdev_dbg(priv->ndev, "Error passive interrupt\n");
318		priv->can.state = CAN_STATE_ERROR_PASSIVE;
319		priv->can.can_stats.error_passive++;
320		/* Clear interrupt condition */
321		writeb(~RCAR_CAN_EIFR_EPIF, &priv->regs->eifr);
322		if (skb)
323			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
324					      CAN_ERR_CRTL_RX_PASSIVE;
325	}
326	if (eifr & RCAR_CAN_EIFR_BOEIF) {
327		netdev_dbg(priv->ndev, "Bus-off entry interrupt\n");
328		tx_failure_cleanup(ndev);
329		priv->ier = RCAR_CAN_IER_ERSIE;
330		writeb(priv->ier, &priv->regs->ier);
331		priv->can.state = CAN_STATE_BUS_OFF;
332		/* Clear interrupt condition */
333		writeb(~RCAR_CAN_EIFR_BOEIF, &priv->regs->eifr);
334		priv->can.can_stats.bus_off++;
335		can_bus_off(ndev);
336		if (skb)
337			cf->can_id |= CAN_ERR_BUSOFF;
338	}
339	if (eifr & RCAR_CAN_EIFR_ORIF) {
340		netdev_dbg(priv->ndev, "Receive overrun error interrupt\n");
341		ndev->stats.rx_over_errors++;
342		ndev->stats.rx_errors++;
343		writeb(~RCAR_CAN_EIFR_ORIF, &priv->regs->eifr);
344		if (skb) {
345			cf->can_id |= CAN_ERR_CRTL;
346			cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
347		}
348	}
349	if (eifr & RCAR_CAN_EIFR_OLIF) {
350		netdev_dbg(priv->ndev,
351			   "Overload Frame Transmission error interrupt\n");
352		ndev->stats.rx_over_errors++;
353		ndev->stats.rx_errors++;
354		writeb(~RCAR_CAN_EIFR_OLIF, &priv->regs->eifr);
355		if (skb) {
356			cf->can_id |= CAN_ERR_PROT;
357			cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
358		}
359	}
360
361	if (skb) {
362		stats->rx_packets++;
363		stats->rx_bytes += cf->can_dlc;
364		netif_rx(skb);
365	}
366}
367
368static void rcar_can_tx_done(struct net_device *ndev)
369{
370	struct rcar_can_priv *priv = netdev_priv(ndev);
371	struct net_device_stats *stats = &ndev->stats;
372	u8 isr;
373
374	while (1) {
375		u8 unsent = readb(&priv->regs->tfcr);
376
377		unsent = (unsent & RCAR_CAN_TFCR_TFUST) >>
378			  RCAR_CAN_TFCR_TFUST_SHIFT;
379		if (priv->tx_head - priv->tx_tail <= unsent)
380			break;
381		stats->tx_packets++;
382		stats->tx_bytes += priv->tx_dlc[priv->tx_tail %
383						RCAR_CAN_FIFO_DEPTH];
384		priv->tx_dlc[priv->tx_tail % RCAR_CAN_FIFO_DEPTH] = 0;
385		can_get_echo_skb(ndev, priv->tx_tail % RCAR_CAN_FIFO_DEPTH);
386		priv->tx_tail++;
387		netif_wake_queue(ndev);
388	}
389	/* Clear interrupt */
390	isr = readb(&priv->regs->isr);
391	writeb(isr & ~RCAR_CAN_ISR_TXFF, &priv->regs->isr);
392	can_led_event(ndev, CAN_LED_EVENT_TX);
393}
394
395static irqreturn_t rcar_can_interrupt(int irq, void *dev_id)
396{
397	struct net_device *ndev = dev_id;
398	struct rcar_can_priv *priv = netdev_priv(ndev);
399	u8 isr;
400
401	isr = readb(&priv->regs->isr);
402	if (!(isr & priv->ier))
403		return IRQ_NONE;
404
405	if (isr & RCAR_CAN_ISR_ERSF)
406		rcar_can_error(ndev);
407
408	if (isr & RCAR_CAN_ISR_TXFF)
409		rcar_can_tx_done(ndev);
410
411	if (isr & RCAR_CAN_ISR_RXFF) {
412		if (napi_schedule_prep(&priv->napi)) {
413			/* Disable Rx FIFO interrupts */
414			priv->ier &= ~RCAR_CAN_IER_RXFIE;
415			writeb(priv->ier, &priv->regs->ier);
416			__napi_schedule(&priv->napi);
417		}
418	}
419
420	return IRQ_HANDLED;
421}
422
423static void rcar_can_set_bittiming(struct net_device *dev)
424{
425	struct rcar_can_priv *priv = netdev_priv(dev);
426	struct can_bittiming *bt = &priv->can.bittiming;
427	u32 bcr;
428
429	bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
430	      RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) |
431	      RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
432	/* Don't overwrite CLKR with 32-bit BCR access; CLKR has 8-bit access.
433	 * All the registers are big-endian but they get byte-swapped on 32-bit
434	 * read/write (but not on 8-bit, contrary to the manuals)...
435	 */
436	writel((bcr << 8) | priv->clock_select, &priv->regs->bcr);
437}
438
439static void rcar_can_start(struct net_device *ndev)
440{
441	struct rcar_can_priv *priv = netdev_priv(ndev);
442	u16 ctlr;
443	int i;
444
445	/* Set controller to known mode:
446	 * - FIFO mailbox mode
447	 * - accept all messages
448	 * - overrun mode
449	 * CAN is in sleep mode after MCU hardware or software reset.
450	 */
451	ctlr = readw(&priv->regs->ctlr);
452	ctlr &= ~RCAR_CAN_CTLR_SLPM;
453	writew(ctlr, &priv->regs->ctlr);
454	/* Go to reset mode */
455	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
456	writew(ctlr, &priv->regs->ctlr);
457	for (i = 0; i < MAX_STR_READS; i++) {
458		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
459			break;
460	}
461	rcar_can_set_bittiming(ndev);
462	ctlr |= RCAR_CAN_CTLR_IDFM_MIXED; /* Select mixed ID mode */
463	ctlr |= RCAR_CAN_CTLR_BOM_ENT;	/* Entry to halt mode automatically */
464					/* at bus-off */
465	ctlr |= RCAR_CAN_CTLR_MBM;	/* Select FIFO mailbox mode */
466	ctlr |= RCAR_CAN_CTLR_MLM;	/* Overrun mode */
467	writew(ctlr, &priv->regs->ctlr);
468
469	/* Accept all SID and EID */
470	writel(0, &priv->regs->mkr_2_9[6]);
471	writel(0, &priv->regs->mkr_2_9[7]);
472	/* In FIFO mailbox mode, write "0" to bits 24 to 31 */
473	writel(0, &priv->regs->mkivlr1);
474	/* Accept all frames */
475	writel(0, &priv->regs->fidcr[0]);
476	writel(RCAR_CAN_FIDCR_IDE | RCAR_CAN_FIDCR_RTR, &priv->regs->fidcr[1]);
477	/* Enable and configure FIFO mailbox interrupts */
478	writel(RCAR_CAN_MIER1_RXFIE | RCAR_CAN_MIER1_TXFIE, &priv->regs->mier1);
479
480	priv->ier = RCAR_CAN_IER_ERSIE | RCAR_CAN_IER_RXFIE |
481		    RCAR_CAN_IER_TXFIE;
482	writeb(priv->ier, &priv->regs->ier);
483
484	/* Accumulate error codes */
485	writeb(RCAR_CAN_ECSR_EDPM, &priv->regs->ecsr);
486	/* Enable error interrupts */
487	writeb(RCAR_CAN_EIER_EWIE | RCAR_CAN_EIER_EPIE | RCAR_CAN_EIER_BOEIE |
488	       (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING ?
489	       RCAR_CAN_EIER_BEIE : 0) | RCAR_CAN_EIER_ORIE |
490	       RCAR_CAN_EIER_OLIE, &priv->regs->eier);
491	priv->can.state = CAN_STATE_ERROR_ACTIVE;
492
493	/* Go to operation mode */
494	writew(ctlr & ~RCAR_CAN_CTLR_CANM, &priv->regs->ctlr);
495	for (i = 0; i < MAX_STR_READS; i++) {
496		if (!(readw(&priv->regs->str) & RCAR_CAN_STR_RSTST))
497			break;
498	}
499	/* Enable Rx and Tx FIFO */
500	writeb(RCAR_CAN_RFCR_RFE, &priv->regs->rfcr);
501	writeb(RCAR_CAN_TFCR_TFE, &priv->regs->tfcr);
502}
503
504static int rcar_can_open(struct net_device *ndev)
505{
506	struct rcar_can_priv *priv = netdev_priv(ndev);
507	int err;
508
509	err = clk_prepare_enable(priv->clk);
510	if (err) {
511		netdev_err(ndev, "failed to enable periperal clock, error %d\n",
512			   err);
513		goto out;
514	}
515	err = clk_prepare_enable(priv->can_clk);
516	if (err) {
517		netdev_err(ndev, "failed to enable CAN clock, error %d\n",
518			   err);
519		goto out_clock;
520	}
521	err = open_candev(ndev);
522	if (err) {
523		netdev_err(ndev, "open_candev() failed, error %d\n", err);
524		goto out_can_clock;
525	}
526	napi_enable(&priv->napi);
527	err = request_irq(ndev->irq, rcar_can_interrupt, 0, ndev->name, ndev);
528	if (err) {
529		netdev_err(ndev, "error requesting interrupt %d\n", ndev->irq);
530		goto out_close;
531	}
532	can_led_event(ndev, CAN_LED_EVENT_OPEN);
533	rcar_can_start(ndev);
534	netif_start_queue(ndev);
535	return 0;
536out_close:
537	napi_disable(&priv->napi);
538	close_candev(ndev);
539out_can_clock:
540	clk_disable_unprepare(priv->can_clk);
541out_clock:
542	clk_disable_unprepare(priv->clk);
543out:
544	return err;
545}
546
547static void rcar_can_stop(struct net_device *ndev)
548{
549	struct rcar_can_priv *priv = netdev_priv(ndev);
550	u16 ctlr;
551	int i;
552
553	/* Go to (force) reset mode */
554	ctlr = readw(&priv->regs->ctlr);
555	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
556	writew(ctlr, &priv->regs->ctlr);
557	for (i = 0; i < MAX_STR_READS; i++) {
558		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
559			break;
560	}
561	writel(0, &priv->regs->mier0);
562	writel(0, &priv->regs->mier1);
563	writeb(0, &priv->regs->ier);
564	writeb(0, &priv->regs->eier);
565	/* Go to sleep mode */
566	ctlr |= RCAR_CAN_CTLR_SLPM;
567	writew(ctlr, &priv->regs->ctlr);
568	priv->can.state = CAN_STATE_STOPPED;
569}
570
571static int rcar_can_close(struct net_device *ndev)
572{
573	struct rcar_can_priv *priv = netdev_priv(ndev);
574
575	netif_stop_queue(ndev);
576	rcar_can_stop(ndev);
577	free_irq(ndev->irq, ndev);
578	napi_disable(&priv->napi);
579	clk_disable_unprepare(priv->can_clk);
580	clk_disable_unprepare(priv->clk);
581	close_candev(ndev);
582	can_led_event(ndev, CAN_LED_EVENT_STOP);
583	return 0;
584}
585
586static netdev_tx_t rcar_can_start_xmit(struct sk_buff *skb,
587				       struct net_device *ndev)
588{
589	struct rcar_can_priv *priv = netdev_priv(ndev);
590	struct can_frame *cf = (struct can_frame *)skb->data;
591	u32 data, i;
592
593	if (can_dropped_invalid_skb(ndev, skb))
594		return NETDEV_TX_OK;
595
596	if (cf->can_id & CAN_EFF_FLAG)	/* Extended frame format */
597		data = (cf->can_id & CAN_EFF_MASK) | RCAR_CAN_IDE;
598	else				/* Standard frame format */
599		data = (cf->can_id & CAN_SFF_MASK) << RCAR_CAN_SID_SHIFT;
600
601	if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
602		data |= RCAR_CAN_RTR;
603	} else {
604		for (i = 0; i < cf->can_dlc; i++)
605			writeb(cf->data[i],
606			       &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].data[i]);
607	}
608
609	writel(data, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].id);
610
611	writeb(cf->can_dlc, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].dlc);
612
613	priv->tx_dlc[priv->tx_head % RCAR_CAN_FIFO_DEPTH] = cf->can_dlc;
614	can_put_echo_skb(skb, ndev, priv->tx_head % RCAR_CAN_FIFO_DEPTH);
615	priv->tx_head++;
616	/* Start Tx: write 0xff to the TFPCR register to increment
617	 * the CPU-side pointer for the transmit FIFO to the next
618	 * mailbox location
619	 */
620	writeb(0xff, &priv->regs->tfpcr);
621	/* Stop the queue if we've filled all FIFO entries */
622	if (priv->tx_head - priv->tx_tail >= RCAR_CAN_FIFO_DEPTH)
623		netif_stop_queue(ndev);
624
625	return NETDEV_TX_OK;
626}
627
628static const struct net_device_ops rcar_can_netdev_ops = {
629	.ndo_open = rcar_can_open,
630	.ndo_stop = rcar_can_close,
631	.ndo_start_xmit = rcar_can_start_xmit,
632	.ndo_change_mtu = can_change_mtu,
633};
634
635static void rcar_can_rx_pkt(struct rcar_can_priv *priv)
636{
637	struct net_device_stats *stats = &priv->ndev->stats;
638	struct can_frame *cf;
639	struct sk_buff *skb;
640	u32 data;
641	u8 dlc;
642
643	skb = alloc_can_skb(priv->ndev, &cf);
644	if (!skb) {
645		stats->rx_dropped++;
646		return;
647	}
648
649	data = readl(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].id);
650	if (data & RCAR_CAN_IDE)
651		cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
652	else
653		cf->can_id = (data >> RCAR_CAN_SID_SHIFT) & CAN_SFF_MASK;
654
655	dlc = readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].dlc);
656	cf->can_dlc = get_can_dlc(dlc);
657	if (data & RCAR_CAN_RTR) {
658		cf->can_id |= CAN_RTR_FLAG;
659	} else {
660		for (dlc = 0; dlc < cf->can_dlc; dlc++)
661			cf->data[dlc] =
662			readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].data[dlc]);
663	}
664
665	can_led_event(priv->ndev, CAN_LED_EVENT_RX);
666
667	stats->rx_bytes += cf->can_dlc;
668	stats->rx_packets++;
669	netif_receive_skb(skb);
670}
671
672static int rcar_can_rx_poll(struct napi_struct *napi, int quota)
673{
674	struct rcar_can_priv *priv = container_of(napi,
675						  struct rcar_can_priv, napi);
676	int num_pkts;
677
678	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
679		u8 rfcr, isr;
680
681		isr = readb(&priv->regs->isr);
682		/* Clear interrupt bit */
683		if (isr & RCAR_CAN_ISR_RXFF)
684			writeb(isr & ~RCAR_CAN_ISR_RXFF, &priv->regs->isr);
685		rfcr = readb(&priv->regs->rfcr);
686		if (rfcr & RCAR_CAN_RFCR_RFEST)
687			break;
688		rcar_can_rx_pkt(priv);
689		/* Write 0xff to the RFPCR register to increment
690		 * the CPU-side pointer for the receive FIFO
691		 * to the next mailbox location
692		 */
693		writeb(0xff, &priv->regs->rfpcr);
694	}
695	/* All packets processed */
696	if (num_pkts < quota) {
697		napi_complete(napi);
698		priv->ier |= RCAR_CAN_IER_RXFIE;
699		writeb(priv->ier, &priv->regs->ier);
700	}
701	return num_pkts;
702}
703
704static int rcar_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
705{
706	switch (mode) {
707	case CAN_MODE_START:
708		rcar_can_start(ndev);
709		netif_wake_queue(ndev);
710		return 0;
711	default:
712		return -EOPNOTSUPP;
713	}
714}
715
716static int rcar_can_get_berr_counter(const struct net_device *dev,
717				     struct can_berr_counter *bec)
718{
719	struct rcar_can_priv *priv = netdev_priv(dev);
720	int err;
721
722	err = clk_prepare_enable(priv->clk);
723	if (err)
724		return err;
725	bec->txerr = readb(&priv->regs->tecr);
726	bec->rxerr = readb(&priv->regs->recr);
727	clk_disable_unprepare(priv->clk);
728	return 0;
729}
730
731static const char * const clock_names[] = {
732	[CLKR_CLKP1]	= "clkp1",
733	[CLKR_CLKP2]	= "clkp2",
734	[CLKR_CLKEXT]	= "can_clk",
735};
736
737static int rcar_can_probe(struct platform_device *pdev)
738{
739	struct rcar_can_platform_data *pdata;
740	struct rcar_can_priv *priv;
741	struct net_device *ndev;
742	struct resource *mem;
743	void __iomem *addr;
744	u32 clock_select = CLKR_CLKP1;
745	int err = -ENODEV;
746	int irq;
747
748	if (pdev->dev.of_node) {
749		of_property_read_u32(pdev->dev.of_node,
750				     "renesas,can-clock-select", &clock_select);
751	} else {
752		pdata = dev_get_platdata(&pdev->dev);
753		if (!pdata) {
754			dev_err(&pdev->dev, "No platform data provided!\n");
755			goto fail;
756		}
757		clock_select = pdata->clock_select;
758	}
759
760	irq = platform_get_irq(pdev, 0);
761	if (irq < 0) {
762		dev_err(&pdev->dev, "No IRQ resource\n");
763		err = irq;
764		goto fail;
765	}
766
767	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
768	addr = devm_ioremap_resource(&pdev->dev, mem);
769	if (IS_ERR(addr)) {
770		err = PTR_ERR(addr);
771		goto fail;
772	}
773
774	ndev = alloc_candev(sizeof(struct rcar_can_priv), RCAR_CAN_FIFO_DEPTH);
775	if (!ndev) {
776		dev_err(&pdev->dev, "alloc_candev() failed\n");
777		err = -ENOMEM;
778		goto fail;
779	}
780
781	priv = netdev_priv(ndev);
782
783	priv->clk = devm_clk_get(&pdev->dev, "clkp1");
784	if (IS_ERR(priv->clk)) {
785		err = PTR_ERR(priv->clk);
786		dev_err(&pdev->dev, "cannot get peripheral clock: %d\n", err);
787		goto fail_clk;
788	}
789
790	if (clock_select >= ARRAY_SIZE(clock_names)) {
791		err = -EINVAL;
792		dev_err(&pdev->dev, "invalid CAN clock selected\n");
793		goto fail_clk;
794	}
795	priv->can_clk = devm_clk_get(&pdev->dev, clock_names[clock_select]);
796	if (IS_ERR(priv->can_clk)) {
797		err = PTR_ERR(priv->can_clk);
798		dev_err(&pdev->dev, "cannot get CAN clock: %d\n", err);
799		goto fail_clk;
800	}
801
802	ndev->netdev_ops = &rcar_can_netdev_ops;
803	ndev->irq = irq;
804	ndev->flags |= IFF_ECHO;
805	priv->ndev = ndev;
806	priv->regs = addr;
807	priv->clock_select = clock_select;
808	priv->can.clock.freq = clk_get_rate(priv->can_clk);
809	priv->can.bittiming_const = &rcar_can_bittiming_const;
810	priv->can.do_set_mode = rcar_can_do_set_mode;
811	priv->can.do_get_berr_counter = rcar_can_get_berr_counter;
812	priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
813	platform_set_drvdata(pdev, ndev);
814	SET_NETDEV_DEV(ndev, &pdev->dev);
815
816	netif_napi_add(ndev, &priv->napi, rcar_can_rx_poll,
817		       RCAR_CAN_NAPI_WEIGHT);
818	err = register_candev(ndev);
819	if (err) {
820		dev_err(&pdev->dev, "register_candev() failed, error %d\n",
821			err);
822		goto fail_candev;
823	}
824
825	devm_can_led_init(ndev);
826
827	dev_info(&pdev->dev, "device registered (regs @ %p, IRQ%d)\n",
828		 priv->regs, ndev->irq);
829
830	return 0;
831fail_candev:
832	netif_napi_del(&priv->napi);
833fail_clk:
834	free_candev(ndev);
835fail:
836	return err;
837}
838
839static int rcar_can_remove(struct platform_device *pdev)
840{
841	struct net_device *ndev = platform_get_drvdata(pdev);
842	struct rcar_can_priv *priv = netdev_priv(ndev);
843
844	unregister_candev(ndev);
845	netif_napi_del(&priv->napi);
846	free_candev(ndev);
847	return 0;
848}
849
850static int __maybe_unused rcar_can_suspend(struct device *dev)
851{
852	struct net_device *ndev = dev_get_drvdata(dev);
853	struct rcar_can_priv *priv = netdev_priv(ndev);
854	u16 ctlr;
855
856	if (netif_running(ndev)) {
857		netif_stop_queue(ndev);
858		netif_device_detach(ndev);
859	}
860	ctlr = readw(&priv->regs->ctlr);
861	ctlr |= RCAR_CAN_CTLR_CANM_HALT;
862	writew(ctlr, &priv->regs->ctlr);
863	ctlr |= RCAR_CAN_CTLR_SLPM;
864	writew(ctlr, &priv->regs->ctlr);
865	priv->can.state = CAN_STATE_SLEEPING;
866
867	clk_disable(priv->clk);
868	return 0;
869}
870
871static int __maybe_unused rcar_can_resume(struct device *dev)
872{
873	struct net_device *ndev = dev_get_drvdata(dev);
874	struct rcar_can_priv *priv = netdev_priv(ndev);
875	u16 ctlr;
876	int err;
877
878	err = clk_enable(priv->clk);
879	if (err) {
880		netdev_err(ndev, "clk_enable() failed, error %d\n", err);
881		return err;
882	}
883
884	ctlr = readw(&priv->regs->ctlr);
885	ctlr &= ~RCAR_CAN_CTLR_SLPM;
886	writew(ctlr, &priv->regs->ctlr);
887	ctlr &= ~RCAR_CAN_CTLR_CANM;
888	writew(ctlr, &priv->regs->ctlr);
889	priv->can.state = CAN_STATE_ERROR_ACTIVE;
890
891	if (netif_running(ndev)) {
892		netif_device_attach(ndev);
893		netif_start_queue(ndev);
894	}
895	return 0;
896}
897
898static SIMPLE_DEV_PM_OPS(rcar_can_pm_ops, rcar_can_suspend, rcar_can_resume);
899
900static const struct of_device_id rcar_can_of_table[] __maybe_unused = {
901	{ .compatible = "renesas,can-r8a7778" },
902	{ .compatible = "renesas,can-r8a7779" },
903	{ .compatible = "renesas,can-r8a7790" },
904	{ .compatible = "renesas,can-r8a7791" },
905	{ }
906};
907MODULE_DEVICE_TABLE(of, rcar_can_of_table);
908
909static struct platform_driver rcar_can_driver = {
910	.driver = {
911		.name = RCAR_CAN_DRV_NAME,
912		.of_match_table = of_match_ptr(rcar_can_of_table),
913		.pm = &rcar_can_pm_ops,
914	},
915	.probe = rcar_can_probe,
916	.remove = rcar_can_remove,
917};
918
919module_platform_driver(rcar_can_driver);
920
921MODULE_AUTHOR("Cogent Embedded, Inc.");
922MODULE_LICENSE("GPL");
923MODULE_DESCRIPTION("CAN driver for Renesas R-Car SoC");
924MODULE_ALIAS("platform:" RCAR_CAN_DRV_NAME);
925