1/*
2 * CAN driver for EMS Dr. Thomas Wuensche CPC-USB/ARM7
3 *
4 * Copyright (C) 2004-2009 EMS Dr. Thomas Wuensche
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published
8 * by the Free Software Foundation; version 2 of the License.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13 * General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19#include <linux/signal.h>
20#include <linux/slab.h>
21#include <linux/module.h>
22#include <linux/netdevice.h>
23#include <linux/usb.h>
24
25#include <linux/can.h>
26#include <linux/can/dev.h>
27#include <linux/can/error.h>
28
29MODULE_AUTHOR("Sebastian Haas <haas@ems-wuensche.com>");
30MODULE_DESCRIPTION("CAN driver for EMS Dr. Thomas Wuensche CAN/USB interfaces");
31MODULE_LICENSE("GPL v2");
32
33/* Control-Values for CPC_Control() Command Subject Selection */
34#define CONTR_CAN_MESSAGE 0x04
35#define CONTR_CAN_STATE   0x0C
36#define CONTR_BUS_ERROR   0x1C
37
38/* Control Command Actions */
39#define CONTR_CONT_OFF 0
40#define CONTR_CONT_ON  1
41#define CONTR_ONCE     2
42
43/* Messages from CPC to PC */
44#define CPC_MSG_TYPE_CAN_FRAME       1  /* CAN data frame */
45#define CPC_MSG_TYPE_RTR_FRAME       8  /* CAN remote frame */
46#define CPC_MSG_TYPE_CAN_PARAMS      12 /* Actual CAN parameters */
47#define CPC_MSG_TYPE_CAN_STATE       14 /* CAN state message */
48#define CPC_MSG_TYPE_EXT_CAN_FRAME   16 /* Extended CAN data frame */
49#define CPC_MSG_TYPE_EXT_RTR_FRAME   17 /* Extended remote frame */
50#define CPC_MSG_TYPE_CONTROL         19 /* change interface behavior */
51#define CPC_MSG_TYPE_CONFIRM         20 /* command processed confirmation */
52#define CPC_MSG_TYPE_OVERRUN         21 /* overrun events */
53#define CPC_MSG_TYPE_CAN_FRAME_ERROR 23 /* detected bus errors */
54#define CPC_MSG_TYPE_ERR_COUNTER     25 /* RX/TX error counter */
55
56/* Messages from the PC to the CPC interface  */
57#define CPC_CMD_TYPE_CAN_FRAME     1   /* CAN data frame */
58#define CPC_CMD_TYPE_CONTROL       3   /* control of interface behavior */
59#define CPC_CMD_TYPE_CAN_PARAMS    6   /* set CAN parameters */
60#define CPC_CMD_TYPE_RTR_FRAME     13  /* CAN remote frame */
61#define CPC_CMD_TYPE_CAN_STATE     14  /* CAN state message */
62#define CPC_CMD_TYPE_EXT_CAN_FRAME 15  /* Extended CAN data frame */
63#define CPC_CMD_TYPE_EXT_RTR_FRAME 16  /* Extended CAN remote frame */
64#define CPC_CMD_TYPE_CAN_EXIT      200 /* exit the CAN */
65
66#define CPC_CMD_TYPE_INQ_ERR_COUNTER 25 /* request the CAN error counters */
67#define CPC_CMD_TYPE_CLEAR_MSG_QUEUE 8  /* clear CPC_MSG queue */
68#define CPC_CMD_TYPE_CLEAR_CMD_QUEUE 28 /* clear CPC_CMD queue */
69
70#define CPC_CC_TYPE_SJA1000 2 /* Philips basic CAN controller */
71
72#define CPC_CAN_ECODE_ERRFRAME 0x01 /* Ecode type */
73
74/* Overrun types */
75#define CPC_OVR_EVENT_CAN       0x01
76#define CPC_OVR_EVENT_CANSTATE  0x02
77#define CPC_OVR_EVENT_BUSERROR  0x04
78
79/*
80 * If the CAN controller lost a message we indicate it with the highest bit
81 * set in the count field.
82 */
83#define CPC_OVR_HW 0x80
84
85/* Size of the "struct ems_cpc_msg" without the union */
86#define CPC_MSG_HEADER_LEN   11
87#define CPC_CAN_MSG_MIN_SIZE 5
88
89/* Define these values to match your devices */
90#define USB_CPCUSB_VENDOR_ID 0x12D6
91
92#define USB_CPCUSB_ARM7_PRODUCT_ID 0x0444
93
94/* Mode register NXP LPC2119/SJA1000 CAN Controller */
95#define SJA1000_MOD_NORMAL 0x00
96#define SJA1000_MOD_RM     0x01
97
98/* ECC register NXP LPC2119/SJA1000 CAN Controller */
99#define SJA1000_ECC_SEG   0x1F
100#define SJA1000_ECC_DIR   0x20
101#define SJA1000_ECC_ERR   0x06
102#define SJA1000_ECC_BIT   0x00
103#define SJA1000_ECC_FORM  0x40
104#define SJA1000_ECC_STUFF 0x80
105#define SJA1000_ECC_MASK  0xc0
106
107/* Status register content */
108#define SJA1000_SR_BS 0x80
109#define SJA1000_SR_ES 0x40
110
111#define SJA1000_DEFAULT_OUTPUT_CONTROL 0xDA
112
113/*
114 * The device actually uses a 16MHz clock to generate the CAN clock
115 * but it expects SJA1000 bit settings based on 8MHz (is internally
116 * converted).
117 */
118#define EMS_USB_ARM7_CLOCK 8000000
119
120#define CPC_TX_QUEUE_TRIGGER_LOW	25
121#define CPC_TX_QUEUE_TRIGGER_HIGH	35
122
123/*
124 * CAN-Message representation in a CPC_MSG. Message object type is
125 * CPC_MSG_TYPE_CAN_FRAME or CPC_MSG_TYPE_RTR_FRAME or
126 * CPC_MSG_TYPE_EXT_CAN_FRAME or CPC_MSG_TYPE_EXT_RTR_FRAME.
127 */
128struct cpc_can_msg {
129	__le32 id;
130	u8 length;
131	u8 msg[8];
132};
133
134/* Representation of the CAN parameters for the SJA1000 controller */
135struct cpc_sja1000_params {
136	u8 mode;
137	u8 acc_code0;
138	u8 acc_code1;
139	u8 acc_code2;
140	u8 acc_code3;
141	u8 acc_mask0;
142	u8 acc_mask1;
143	u8 acc_mask2;
144	u8 acc_mask3;
145	u8 btr0;
146	u8 btr1;
147	u8 outp_contr;
148};
149
150/* CAN params message representation */
151struct cpc_can_params {
152	u8 cc_type;
153
154	/* Will support M16C CAN controller in the future */
155	union {
156		struct cpc_sja1000_params sja1000;
157	} cc_params;
158};
159
160/* Structure for confirmed message handling */
161struct cpc_confirm {
162	u8 error; /* error code */
163};
164
165/* Structure for overrun conditions */
166struct cpc_overrun {
167	u8 event;
168	u8 count;
169};
170
171/* SJA1000 CAN errors (compatible to NXP LPC2119) */
172struct cpc_sja1000_can_error {
173	u8 ecc;
174	u8 rxerr;
175	u8 txerr;
176};
177
178/* structure for CAN error conditions */
179struct cpc_can_error {
180	u8 ecode;
181
182	struct {
183		u8 cc_type;
184
185		/* Other controllers may also provide error code capture regs */
186		union {
187			struct cpc_sja1000_can_error sja1000;
188		} regs;
189	} cc;
190};
191
192/*
193 * Structure containing RX/TX error counter. This structure is used to request
194 * the values of the CAN controllers TX and RX error counter.
195 */
196struct cpc_can_err_counter {
197	u8 rx;
198	u8 tx;
199};
200
201/* Main message type used between library and application */
202struct __packed ems_cpc_msg {
203	u8 type;	/* type of message */
204	u8 length;	/* length of data within union 'msg' */
205	u8 msgid;	/* confirmation handle */
206	__le32 ts_sec;	/* timestamp in seconds */
207	__le32 ts_nsec;	/* timestamp in nano seconds */
208
209	union {
210		u8 generic[64];
211		struct cpc_can_msg can_msg;
212		struct cpc_can_params can_params;
213		struct cpc_confirm confirmation;
214		struct cpc_overrun overrun;
215		struct cpc_can_error error;
216		struct cpc_can_err_counter err_counter;
217		u8 can_state;
218	} msg;
219};
220
221/*
222 * Table of devices that work with this driver
223 * NOTE: This driver supports only CPC-USB/ARM7 (LPC2119) yet.
224 */
225static struct usb_device_id ems_usb_table[] = {
226	{USB_DEVICE(USB_CPCUSB_VENDOR_ID, USB_CPCUSB_ARM7_PRODUCT_ID)},
227	{} /* Terminating entry */
228};
229
230MODULE_DEVICE_TABLE(usb, ems_usb_table);
231
232#define RX_BUFFER_SIZE      64
233#define CPC_HEADER_SIZE     4
234#define INTR_IN_BUFFER_SIZE 4
235
236#define MAX_RX_URBS 10
237#define MAX_TX_URBS 10
238
239struct ems_usb;
240
241struct ems_tx_urb_context {
242	struct ems_usb *dev;
243
244	u32 echo_index;
245	u8 dlc;
246};
247
248struct ems_usb {
249	struct can_priv can; /* must be the first member */
250
251	struct sk_buff *echo_skb[MAX_TX_URBS];
252
253	struct usb_device *udev;
254	struct net_device *netdev;
255
256	atomic_t active_tx_urbs;
257	struct usb_anchor tx_submitted;
258	struct ems_tx_urb_context tx_contexts[MAX_TX_URBS];
259
260	struct usb_anchor rx_submitted;
261
262	struct urb *intr_urb;
263
264	u8 *tx_msg_buffer;
265
266	u8 *intr_in_buffer;
267	unsigned int free_slots; /* remember number of available slots */
268
269	struct ems_cpc_msg active_params; /* active controller parameters */
270};
271
272static void ems_usb_read_interrupt_callback(struct urb *urb)
273{
274	struct ems_usb *dev = urb->context;
275	struct net_device *netdev = dev->netdev;
276	int err;
277
278	if (!netif_device_present(netdev))
279		return;
280
281	switch (urb->status) {
282	case 0:
283		dev->free_slots = dev->intr_in_buffer[1];
284		if(dev->free_slots > CPC_TX_QUEUE_TRIGGER_HIGH){
285			if (netif_queue_stopped(netdev)){
286				netif_wake_queue(netdev);
287			}
288		}
289		break;
290
291	case -ECONNRESET: /* unlink */
292	case -ENOENT:
293	case -ESHUTDOWN:
294		return;
295
296	default:
297		netdev_info(netdev, "Rx interrupt aborted %d\n", urb->status);
298		break;
299	}
300
301	err = usb_submit_urb(urb, GFP_ATOMIC);
302
303	if (err == -ENODEV)
304		netif_device_detach(netdev);
305	else if (err)
306		netdev_err(netdev, "failed resubmitting intr urb: %d\n", err);
307}
308
309static void ems_usb_rx_can_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
310{
311	struct can_frame *cf;
312	struct sk_buff *skb;
313	int i;
314	struct net_device_stats *stats = &dev->netdev->stats;
315
316	skb = alloc_can_skb(dev->netdev, &cf);
317	if (skb == NULL)
318		return;
319
320	cf->can_id = le32_to_cpu(msg->msg.can_msg.id);
321	cf->can_dlc = get_can_dlc(msg->msg.can_msg.length & 0xF);
322
323	if (msg->type == CPC_MSG_TYPE_EXT_CAN_FRAME ||
324	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME)
325		cf->can_id |= CAN_EFF_FLAG;
326
327	if (msg->type == CPC_MSG_TYPE_RTR_FRAME ||
328	    msg->type == CPC_MSG_TYPE_EXT_RTR_FRAME) {
329		cf->can_id |= CAN_RTR_FLAG;
330	} else {
331		for (i = 0; i < cf->can_dlc; i++)
332			cf->data[i] = msg->msg.can_msg.msg[i];
333	}
334
335	netif_rx(skb);
336
337	stats->rx_packets++;
338	stats->rx_bytes += cf->can_dlc;
339}
340
341static void ems_usb_rx_err(struct ems_usb *dev, struct ems_cpc_msg *msg)
342{
343	struct can_frame *cf;
344	struct sk_buff *skb;
345	struct net_device_stats *stats = &dev->netdev->stats;
346
347	skb = alloc_can_err_skb(dev->netdev, &cf);
348	if (skb == NULL)
349		return;
350
351	if (msg->type == CPC_MSG_TYPE_CAN_STATE) {
352		u8 state = msg->msg.can_state;
353
354		if (state & SJA1000_SR_BS) {
355			dev->can.state = CAN_STATE_BUS_OFF;
356			cf->can_id |= CAN_ERR_BUSOFF;
357
358			dev->can.can_stats.bus_off++;
359			can_bus_off(dev->netdev);
360		} else if (state & SJA1000_SR_ES) {
361			dev->can.state = CAN_STATE_ERROR_WARNING;
362			dev->can.can_stats.error_warning++;
363		} else {
364			dev->can.state = CAN_STATE_ERROR_ACTIVE;
365			dev->can.can_stats.error_passive++;
366		}
367	} else if (msg->type == CPC_MSG_TYPE_CAN_FRAME_ERROR) {
368		u8 ecc = msg->msg.error.cc.regs.sja1000.ecc;
369		u8 txerr = msg->msg.error.cc.regs.sja1000.txerr;
370		u8 rxerr = msg->msg.error.cc.regs.sja1000.rxerr;
371
372		/* bus error interrupt */
373		dev->can.can_stats.bus_error++;
374		stats->rx_errors++;
375
376		cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
377
378		switch (ecc & SJA1000_ECC_MASK) {
379		case SJA1000_ECC_BIT:
380			cf->data[2] |= CAN_ERR_PROT_BIT;
381			break;
382		case SJA1000_ECC_FORM:
383			cf->data[2] |= CAN_ERR_PROT_FORM;
384			break;
385		case SJA1000_ECC_STUFF:
386			cf->data[2] |= CAN_ERR_PROT_STUFF;
387			break;
388		default:
389			cf->data[2] |= CAN_ERR_PROT_UNSPEC;
390			cf->data[3] = ecc & SJA1000_ECC_SEG;
391			break;
392		}
393
394		/* Error occurred during transmission? */
395		if ((ecc & SJA1000_ECC_DIR) == 0)
396			cf->data[2] |= CAN_ERR_PROT_TX;
397
398		if (dev->can.state == CAN_STATE_ERROR_WARNING ||
399		    dev->can.state == CAN_STATE_ERROR_PASSIVE) {
400			cf->data[1] = (txerr > rxerr) ?
401			    CAN_ERR_CRTL_TX_PASSIVE : CAN_ERR_CRTL_RX_PASSIVE;
402		}
403	} else if (msg->type == CPC_MSG_TYPE_OVERRUN) {
404		cf->can_id |= CAN_ERR_CRTL;
405		cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
406
407		stats->rx_over_errors++;
408		stats->rx_errors++;
409	}
410
411	netif_rx(skb);
412
413	stats->rx_packets++;
414	stats->rx_bytes += cf->can_dlc;
415}
416
417/*
418 * callback for bulk IN urb
419 */
420static void ems_usb_read_bulk_callback(struct urb *urb)
421{
422	struct ems_usb *dev = urb->context;
423	struct net_device *netdev;
424	int retval;
425
426	netdev = dev->netdev;
427
428	if (!netif_device_present(netdev))
429		return;
430
431	switch (urb->status) {
432	case 0: /* success */
433		break;
434
435	case -ENOENT:
436		return;
437
438	default:
439		netdev_info(netdev, "Rx URB aborted (%d)\n", urb->status);
440		goto resubmit_urb;
441	}
442
443	if (urb->actual_length > CPC_HEADER_SIZE) {
444		struct ems_cpc_msg *msg;
445		u8 *ibuf = urb->transfer_buffer;
446		u8 msg_count, start;
447
448		msg_count = ibuf[0] & ~0x80;
449
450		start = CPC_HEADER_SIZE;
451
452		while (msg_count) {
453			msg = (struct ems_cpc_msg *)&ibuf[start];
454
455			switch (msg->type) {
456			case CPC_MSG_TYPE_CAN_STATE:
457				/* Process CAN state changes */
458				ems_usb_rx_err(dev, msg);
459				break;
460
461			case CPC_MSG_TYPE_CAN_FRAME:
462			case CPC_MSG_TYPE_EXT_CAN_FRAME:
463			case CPC_MSG_TYPE_RTR_FRAME:
464			case CPC_MSG_TYPE_EXT_RTR_FRAME:
465				ems_usb_rx_can_msg(dev, msg);
466				break;
467
468			case CPC_MSG_TYPE_CAN_FRAME_ERROR:
469				/* Process errorframe */
470				ems_usb_rx_err(dev, msg);
471				break;
472
473			case CPC_MSG_TYPE_OVERRUN:
474				/* Message lost while receiving */
475				ems_usb_rx_err(dev, msg);
476				break;
477			}
478
479			start += CPC_MSG_HEADER_LEN + msg->length;
480			msg_count--;
481
482			if (start > urb->transfer_buffer_length) {
483				netdev_err(netdev, "format error\n");
484				break;
485			}
486		}
487	}
488
489resubmit_urb:
490	usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
491			  urb->transfer_buffer, RX_BUFFER_SIZE,
492			  ems_usb_read_bulk_callback, dev);
493
494	retval = usb_submit_urb(urb, GFP_ATOMIC);
495
496	if (retval == -ENODEV)
497		netif_device_detach(netdev);
498	else if (retval)
499		netdev_err(netdev,
500			   "failed resubmitting read bulk urb: %d\n", retval);
501}
502
503/*
504 * callback for bulk IN urb
505 */
506static void ems_usb_write_bulk_callback(struct urb *urb)
507{
508	struct ems_tx_urb_context *context = urb->context;
509	struct ems_usb *dev;
510	struct net_device *netdev;
511
512	BUG_ON(!context);
513
514	dev = context->dev;
515	netdev = dev->netdev;
516
517	/* free up our allocated buffer */
518	usb_free_coherent(urb->dev, urb->transfer_buffer_length,
519			  urb->transfer_buffer, urb->transfer_dma);
520
521	atomic_dec(&dev->active_tx_urbs);
522
523	if (!netif_device_present(netdev))
524		return;
525
526	if (urb->status)
527		netdev_info(netdev, "Tx URB aborted (%d)\n", urb->status);
528
529	netdev->trans_start = jiffies;
530
531	/* transmission complete interrupt */
532	netdev->stats.tx_packets++;
533	netdev->stats.tx_bytes += context->dlc;
534
535	can_get_echo_skb(netdev, context->echo_index);
536
537	/* Release context */
538	context->echo_index = MAX_TX_URBS;
539
540}
541
542/*
543 * Send the given CPC command synchronously
544 */
545static int ems_usb_command_msg(struct ems_usb *dev, struct ems_cpc_msg *msg)
546{
547	int actual_length;
548
549	/* Copy payload */
550	memcpy(&dev->tx_msg_buffer[CPC_HEADER_SIZE], msg,
551	       msg->length + CPC_MSG_HEADER_LEN);
552
553	/* Clear header */
554	memset(&dev->tx_msg_buffer[0], 0, CPC_HEADER_SIZE);
555
556	return usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, 2),
557			    &dev->tx_msg_buffer[0],
558			    msg->length + CPC_MSG_HEADER_LEN + CPC_HEADER_SIZE,
559			    &actual_length, 1000);
560}
561
562/*
563 * Change CAN controllers' mode register
564 */
565static int ems_usb_write_mode(struct ems_usb *dev, u8 mode)
566{
567	dev->active_params.msg.can_params.cc_params.sja1000.mode = mode;
568
569	return ems_usb_command_msg(dev, &dev->active_params);
570}
571
572/*
573 * Send a CPC_Control command to change behaviour when interface receives a CAN
574 * message, bus error or CAN state changed notifications.
575 */
576static int ems_usb_control_cmd(struct ems_usb *dev, u8 val)
577{
578	struct ems_cpc_msg cmd;
579
580	cmd.type = CPC_CMD_TYPE_CONTROL;
581	cmd.length = CPC_MSG_HEADER_LEN + 1;
582
583	cmd.msgid = 0;
584
585	cmd.msg.generic[0] = val;
586
587	return ems_usb_command_msg(dev, &cmd);
588}
589
590/*
591 * Start interface
592 */
593static int ems_usb_start(struct ems_usb *dev)
594{
595	struct net_device *netdev = dev->netdev;
596	int err, i;
597
598	dev->intr_in_buffer[0] = 0;
599	dev->free_slots = 50; /* initial size */
600
601	for (i = 0; i < MAX_RX_URBS; i++) {
602		struct urb *urb = NULL;
603		u8 *buf = NULL;
604
605		/* create a URB, and a buffer for it */
606		urb = usb_alloc_urb(0, GFP_KERNEL);
607		if (!urb) {
608			netdev_err(netdev, "No memory left for URBs\n");
609			err = -ENOMEM;
610			break;
611		}
612
613		buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
614					 &urb->transfer_dma);
615		if (!buf) {
616			netdev_err(netdev, "No memory left for USB buffer\n");
617			usb_free_urb(urb);
618			err = -ENOMEM;
619			break;
620		}
621
622		usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 2),
623				  buf, RX_BUFFER_SIZE,
624				  ems_usb_read_bulk_callback, dev);
625		urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
626		usb_anchor_urb(urb, &dev->rx_submitted);
627
628		err = usb_submit_urb(urb, GFP_KERNEL);
629		if (err) {
630			usb_unanchor_urb(urb);
631			usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
632					  urb->transfer_dma);
633			usb_free_urb(urb);
634			break;
635		}
636
637		/* Drop reference, USB core will take care of freeing it */
638		usb_free_urb(urb);
639	}
640
641	/* Did we submit any URBs */
642	if (i == 0) {
643		netdev_warn(netdev, "couldn't setup read URBs\n");
644		return err;
645	}
646
647	/* Warn if we've couldn't transmit all the URBs */
648	if (i < MAX_RX_URBS)
649		netdev_warn(netdev, "rx performance may be slow\n");
650
651	/* Setup and start interrupt URB */
652	usb_fill_int_urb(dev->intr_urb, dev->udev,
653			 usb_rcvintpipe(dev->udev, 1),
654			 dev->intr_in_buffer,
655			 INTR_IN_BUFFER_SIZE,
656			 ems_usb_read_interrupt_callback, dev, 1);
657
658	err = usb_submit_urb(dev->intr_urb, GFP_KERNEL);
659	if (err) {
660		netdev_warn(netdev, "intr URB submit failed: %d\n", err);
661
662		return err;
663	}
664
665	/* CPC-USB will transfer received message to host */
666	err = ems_usb_control_cmd(dev, CONTR_CAN_MESSAGE | CONTR_CONT_ON);
667	if (err)
668		goto failed;
669
670	/* CPC-USB will transfer CAN state changes to host */
671	err = ems_usb_control_cmd(dev, CONTR_CAN_STATE | CONTR_CONT_ON);
672	if (err)
673		goto failed;
674
675	/* CPC-USB will transfer bus errors to host */
676	err = ems_usb_control_cmd(dev, CONTR_BUS_ERROR | CONTR_CONT_ON);
677	if (err)
678		goto failed;
679
680	err = ems_usb_write_mode(dev, SJA1000_MOD_NORMAL);
681	if (err)
682		goto failed;
683
684	dev->can.state = CAN_STATE_ERROR_ACTIVE;
685
686	return 0;
687
688failed:
689	netdev_warn(netdev, "couldn't submit control: %d\n", err);
690
691	return err;
692}
693
694static void unlink_all_urbs(struct ems_usb *dev)
695{
696	int i;
697
698	usb_unlink_urb(dev->intr_urb);
699
700	usb_kill_anchored_urbs(&dev->rx_submitted);
701
702	usb_kill_anchored_urbs(&dev->tx_submitted);
703	atomic_set(&dev->active_tx_urbs, 0);
704
705	for (i = 0; i < MAX_TX_URBS; i++)
706		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
707}
708
709static int ems_usb_open(struct net_device *netdev)
710{
711	struct ems_usb *dev = netdev_priv(netdev);
712	int err;
713
714	err = ems_usb_write_mode(dev, SJA1000_MOD_RM);
715	if (err)
716		return err;
717
718	/* common open */
719	err = open_candev(netdev);
720	if (err)
721		return err;
722
723	/* finally start device */
724	err = ems_usb_start(dev);
725	if (err) {
726		if (err == -ENODEV)
727			netif_device_detach(dev->netdev);
728
729		netdev_warn(netdev, "couldn't start device: %d\n", err);
730
731		close_candev(netdev);
732
733		return err;
734	}
735
736
737	netif_start_queue(netdev);
738
739	return 0;
740}
741
742static netdev_tx_t ems_usb_start_xmit(struct sk_buff *skb, struct net_device *netdev)
743{
744	struct ems_usb *dev = netdev_priv(netdev);
745	struct ems_tx_urb_context *context = NULL;
746	struct net_device_stats *stats = &netdev->stats;
747	struct can_frame *cf = (struct can_frame *)skb->data;
748	struct ems_cpc_msg *msg;
749	struct urb *urb;
750	u8 *buf;
751	int i, err;
752	size_t size = CPC_HEADER_SIZE + CPC_MSG_HEADER_LEN
753			+ sizeof(struct cpc_can_msg);
754
755	if (can_dropped_invalid_skb(netdev, skb))
756		return NETDEV_TX_OK;
757
758	/* create a URB, and a buffer for it, and copy the data to the URB */
759	urb = usb_alloc_urb(0, GFP_ATOMIC);
760	if (!urb) {
761		netdev_err(netdev, "No memory left for URBs\n");
762		goto nomem;
763	}
764
765	buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC, &urb->transfer_dma);
766	if (!buf) {
767		netdev_err(netdev, "No memory left for USB buffer\n");
768		usb_free_urb(urb);
769		goto nomem;
770	}
771
772	msg = (struct ems_cpc_msg *)&buf[CPC_HEADER_SIZE];
773
774	msg->msg.can_msg.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
775	msg->msg.can_msg.length = cf->can_dlc;
776
777	if (cf->can_id & CAN_RTR_FLAG) {
778		msg->type = cf->can_id & CAN_EFF_FLAG ?
779			CPC_CMD_TYPE_EXT_RTR_FRAME : CPC_CMD_TYPE_RTR_FRAME;
780
781		msg->length = CPC_CAN_MSG_MIN_SIZE;
782	} else {
783		msg->type = cf->can_id & CAN_EFF_FLAG ?
784			CPC_CMD_TYPE_EXT_CAN_FRAME : CPC_CMD_TYPE_CAN_FRAME;
785
786		for (i = 0; i < cf->can_dlc; i++)
787			msg->msg.can_msg.msg[i] = cf->data[i];
788
789		msg->length = CPC_CAN_MSG_MIN_SIZE + cf->can_dlc;
790	}
791
792	for (i = 0; i < MAX_TX_URBS; i++) {
793		if (dev->tx_contexts[i].echo_index == MAX_TX_URBS) {
794			context = &dev->tx_contexts[i];
795			break;
796		}
797	}
798
799	/*
800	 * May never happen! When this happens we'd more URBs in flight as
801	 * allowed (MAX_TX_URBS).
802	 */
803	if (!context) {
804		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
805		usb_free_urb(urb);
806
807		netdev_warn(netdev, "couldn't find free context\n");
808
809		return NETDEV_TX_BUSY;
810	}
811
812	context->dev = dev;
813	context->echo_index = i;
814	context->dlc = cf->can_dlc;
815
816	usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
817			  size, ems_usb_write_bulk_callback, context);
818	urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
819	usb_anchor_urb(urb, &dev->tx_submitted);
820
821	can_put_echo_skb(skb, netdev, context->echo_index);
822
823	atomic_inc(&dev->active_tx_urbs);
824
825	err = usb_submit_urb(urb, GFP_ATOMIC);
826	if (unlikely(err)) {
827		can_free_echo_skb(netdev, context->echo_index);
828
829		usb_unanchor_urb(urb);
830		usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
831		dev_kfree_skb(skb);
832
833		atomic_dec(&dev->active_tx_urbs);
834
835		if (err == -ENODEV) {
836			netif_device_detach(netdev);
837		} else {
838			netdev_warn(netdev, "failed tx_urb %d\n", err);
839
840			stats->tx_dropped++;
841		}
842	} else {
843		netdev->trans_start = jiffies;
844
845		/* Slow down tx path */
846		if (atomic_read(&dev->active_tx_urbs) >= MAX_TX_URBS ||
847		    dev->free_slots < CPC_TX_QUEUE_TRIGGER_LOW) {
848			netif_stop_queue(netdev);
849		}
850	}
851
852	/*
853	 * Release our reference to this URB, the USB core will eventually free
854	 * it entirely.
855	 */
856	usb_free_urb(urb);
857
858	return NETDEV_TX_OK;
859
860nomem:
861	dev_kfree_skb(skb);
862	stats->tx_dropped++;
863
864	return NETDEV_TX_OK;
865}
866
867static int ems_usb_close(struct net_device *netdev)
868{
869	struct ems_usb *dev = netdev_priv(netdev);
870
871	/* Stop polling */
872	unlink_all_urbs(dev);
873
874	netif_stop_queue(netdev);
875
876	/* Set CAN controller to reset mode */
877	if (ems_usb_write_mode(dev, SJA1000_MOD_RM))
878		netdev_warn(netdev, "couldn't stop device");
879
880	close_candev(netdev);
881
882	return 0;
883}
884
885static const struct net_device_ops ems_usb_netdev_ops = {
886	.ndo_open = ems_usb_open,
887	.ndo_stop = ems_usb_close,
888	.ndo_start_xmit = ems_usb_start_xmit,
889	.ndo_change_mtu = can_change_mtu,
890};
891
892static const struct can_bittiming_const ems_usb_bittiming_const = {
893	.name = "ems_usb",
894	.tseg1_min = 1,
895	.tseg1_max = 16,
896	.tseg2_min = 1,
897	.tseg2_max = 8,
898	.sjw_max = 4,
899	.brp_min = 1,
900	.brp_max = 64,
901	.brp_inc = 1,
902};
903
904static int ems_usb_set_mode(struct net_device *netdev, enum can_mode mode)
905{
906	struct ems_usb *dev = netdev_priv(netdev);
907
908	switch (mode) {
909	case CAN_MODE_START:
910		if (ems_usb_write_mode(dev, SJA1000_MOD_NORMAL))
911			netdev_warn(netdev, "couldn't start device");
912
913		if (netif_queue_stopped(netdev))
914			netif_wake_queue(netdev);
915		break;
916
917	default:
918		return -EOPNOTSUPP;
919	}
920
921	return 0;
922}
923
924static int ems_usb_set_bittiming(struct net_device *netdev)
925{
926	struct ems_usb *dev = netdev_priv(netdev);
927	struct can_bittiming *bt = &dev->can.bittiming;
928	u8 btr0, btr1;
929
930	btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
931	btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
932		(((bt->phase_seg2 - 1) & 0x7) << 4);
933	if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
934		btr1 |= 0x80;
935
936	netdev_info(netdev, "setting BTR0=0x%02x BTR1=0x%02x\n", btr0, btr1);
937
938	dev->active_params.msg.can_params.cc_params.sja1000.btr0 = btr0;
939	dev->active_params.msg.can_params.cc_params.sja1000.btr1 = btr1;
940
941	return ems_usb_command_msg(dev, &dev->active_params);
942}
943
944static void init_params_sja1000(struct ems_cpc_msg *msg)
945{
946	struct cpc_sja1000_params *sja1000 =
947		&msg->msg.can_params.cc_params.sja1000;
948
949	msg->type = CPC_CMD_TYPE_CAN_PARAMS;
950	msg->length = sizeof(struct cpc_can_params);
951	msg->msgid = 0;
952
953	msg->msg.can_params.cc_type = CPC_CC_TYPE_SJA1000;
954
955	/* Acceptance filter open */
956	sja1000->acc_code0 = 0x00;
957	sja1000->acc_code1 = 0x00;
958	sja1000->acc_code2 = 0x00;
959	sja1000->acc_code3 = 0x00;
960
961	/* Acceptance filter open */
962	sja1000->acc_mask0 = 0xFF;
963	sja1000->acc_mask1 = 0xFF;
964	sja1000->acc_mask2 = 0xFF;
965	sja1000->acc_mask3 = 0xFF;
966
967	sja1000->btr0 = 0;
968	sja1000->btr1 = 0;
969
970	sja1000->outp_contr = SJA1000_DEFAULT_OUTPUT_CONTROL;
971	sja1000->mode = SJA1000_MOD_RM;
972}
973
974/*
975 * probe function for new CPC-USB devices
976 */
977static int ems_usb_probe(struct usb_interface *intf,
978			 const struct usb_device_id *id)
979{
980	struct net_device *netdev;
981	struct ems_usb *dev;
982	int i, err = -ENOMEM;
983
984	netdev = alloc_candev(sizeof(struct ems_usb), MAX_TX_URBS);
985	if (!netdev) {
986		dev_err(&intf->dev, "ems_usb: Couldn't alloc candev\n");
987		return -ENOMEM;
988	}
989
990	dev = netdev_priv(netdev);
991
992	dev->udev = interface_to_usbdev(intf);
993	dev->netdev = netdev;
994
995	dev->can.state = CAN_STATE_STOPPED;
996	dev->can.clock.freq = EMS_USB_ARM7_CLOCK;
997	dev->can.bittiming_const = &ems_usb_bittiming_const;
998	dev->can.do_set_bittiming = ems_usb_set_bittiming;
999	dev->can.do_set_mode = ems_usb_set_mode;
1000	dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
1001
1002	netdev->netdev_ops = &ems_usb_netdev_ops;
1003
1004	netdev->flags |= IFF_ECHO; /* we support local echo */
1005
1006	init_usb_anchor(&dev->rx_submitted);
1007
1008	init_usb_anchor(&dev->tx_submitted);
1009	atomic_set(&dev->active_tx_urbs, 0);
1010
1011	for (i = 0; i < MAX_TX_URBS; i++)
1012		dev->tx_contexts[i].echo_index = MAX_TX_URBS;
1013
1014	dev->intr_urb = usb_alloc_urb(0, GFP_KERNEL);
1015	if (!dev->intr_urb) {
1016		dev_err(&intf->dev, "Couldn't alloc intr URB\n");
1017		goto cleanup_candev;
1018	}
1019
1020	dev->intr_in_buffer = kzalloc(INTR_IN_BUFFER_SIZE, GFP_KERNEL);
1021	if (!dev->intr_in_buffer)
1022		goto cleanup_intr_urb;
1023
1024	dev->tx_msg_buffer = kzalloc(CPC_HEADER_SIZE +
1025				     sizeof(struct ems_cpc_msg), GFP_KERNEL);
1026	if (!dev->tx_msg_buffer)
1027		goto cleanup_intr_in_buffer;
1028
1029	usb_set_intfdata(intf, dev);
1030
1031	SET_NETDEV_DEV(netdev, &intf->dev);
1032
1033	init_params_sja1000(&dev->active_params);
1034
1035	err = ems_usb_command_msg(dev, &dev->active_params);
1036	if (err) {
1037		netdev_err(netdev, "couldn't initialize controller: %d\n", err);
1038		goto cleanup_tx_msg_buffer;
1039	}
1040
1041	err = register_candev(netdev);
1042	if (err) {
1043		netdev_err(netdev, "couldn't register CAN device: %d\n", err);
1044		goto cleanup_tx_msg_buffer;
1045	}
1046
1047	return 0;
1048
1049cleanup_tx_msg_buffer:
1050	kfree(dev->tx_msg_buffer);
1051
1052cleanup_intr_in_buffer:
1053	kfree(dev->intr_in_buffer);
1054
1055cleanup_intr_urb:
1056	usb_free_urb(dev->intr_urb);
1057
1058cleanup_candev:
1059	free_candev(netdev);
1060
1061	return err;
1062}
1063
1064/*
1065 * called by the usb core when the device is removed from the system
1066 */
1067static void ems_usb_disconnect(struct usb_interface *intf)
1068{
1069	struct ems_usb *dev = usb_get_intfdata(intf);
1070
1071	usb_set_intfdata(intf, NULL);
1072
1073	if (dev) {
1074		unregister_netdev(dev->netdev);
1075		free_candev(dev->netdev);
1076
1077		unlink_all_urbs(dev);
1078
1079		usb_free_urb(dev->intr_urb);
1080
1081		kfree(dev->intr_in_buffer);
1082	}
1083}
1084
1085/* usb specific object needed to register this driver with the usb subsystem */
1086static struct usb_driver ems_usb_driver = {
1087	.name = "ems_usb",
1088	.probe = ems_usb_probe,
1089	.disconnect = ems_usb_disconnect,
1090	.id_table = ems_usb_table,
1091};
1092
1093module_usb_driver(ems_usb_driver);
1094