1/*
2 *
3 * Alchemy Au1x00 ethernet driver
4 *
5 * Copyright 2001-2003, 2006 MontaVista Software Inc.
6 * Copyright 2002 TimeSys Corp.
7 * Added ethtool/mii-tool support,
8 * Copyright 2004 Matt Porter <mporter@kernel.crashing.org>
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 *  converted to use linux-2.6.x's PHY framework
14 *
15 * Author: MontaVista Software, Inc.
16 *		ppopov@mvista.com or source@mvista.com
17 *
18 * ########################################################################
19 *
20 *  This program is free software; you can distribute it and/or modify it
21 *  under the terms of the GNU General Public License (Version 2) as
22 *  published by the Free Software Foundation.
23 *
24 *  This program is distributed in the hope it will be useful, but WITHOUT
25 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
26 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
27 *  for more details.
28 *
29 *  You should have received a copy of the GNU General Public License along
30 *  with this program; if not, see <http://www.gnu.org/licenses/>.
31 *
32 * ########################################################################
33 *
34 *
35 */
36#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38#include <linux/capability.h>
39#include <linux/dma-mapping.h>
40#include <linux/module.h>
41#include <linux/kernel.h>
42#include <linux/string.h>
43#include <linux/timer.h>
44#include <linux/errno.h>
45#include <linux/in.h>
46#include <linux/ioport.h>
47#include <linux/bitops.h>
48#include <linux/slab.h>
49#include <linux/interrupt.h>
50#include <linux/netdevice.h>
51#include <linux/etherdevice.h>
52#include <linux/ethtool.h>
53#include <linux/mii.h>
54#include <linux/skbuff.h>
55#include <linux/delay.h>
56#include <linux/crc32.h>
57#include <linux/phy.h>
58#include <linux/platform_device.h>
59#include <linux/cpu.h>
60#include <linux/io.h>
61
62#include <asm/mipsregs.h>
63#include <asm/irq.h>
64#include <asm/processor.h>
65
66#include <au1000.h>
67#include <au1xxx_eth.h>
68#include <prom.h>
69
70#include "au1000_eth.h"
71
72#ifdef AU1000_ETH_DEBUG
73static int au1000_debug = 5;
74#else
75static int au1000_debug = 3;
76#endif
77
78#define AU1000_DEF_MSG_ENABLE	(NETIF_MSG_DRV	| \
79				NETIF_MSG_PROBE	| \
80				NETIF_MSG_LINK)
81
82#define DRV_NAME	"au1000_eth"
83#define DRV_VERSION	"1.7"
84#define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>"
85#define DRV_DESC	"Au1xxx on-chip Ethernet driver"
86
87MODULE_AUTHOR(DRV_AUTHOR);
88MODULE_DESCRIPTION(DRV_DESC);
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_VERSION);
91
92/* AU1000 MAC registers and bits */
93#define MAC_CONTROL		0x0
94#  define MAC_RX_ENABLE		(1 << 2)
95#  define MAC_TX_ENABLE		(1 << 3)
96#  define MAC_DEF_CHECK		(1 << 5)
97#  define MAC_SET_BL(X)		(((X) & 0x3) << 6)
98#  define MAC_AUTO_PAD		(1 << 8)
99#  define MAC_DISABLE_RETRY	(1 << 10)
100#  define MAC_DISABLE_BCAST	(1 << 11)
101#  define MAC_LATE_COL		(1 << 12)
102#  define MAC_HASH_MODE		(1 << 13)
103#  define MAC_HASH_ONLY		(1 << 15)
104#  define MAC_PASS_ALL		(1 << 16)
105#  define MAC_INVERSE_FILTER	(1 << 17)
106#  define MAC_PROMISCUOUS	(1 << 18)
107#  define MAC_PASS_ALL_MULTI	(1 << 19)
108#  define MAC_FULL_DUPLEX	(1 << 20)
109#  define MAC_NORMAL_MODE	0
110#  define MAC_INT_LOOPBACK	(1 << 21)
111#  define MAC_EXT_LOOPBACK	(1 << 22)
112#  define MAC_DISABLE_RX_OWN	(1 << 23)
113#  define MAC_BIG_ENDIAN	(1 << 30)
114#  define MAC_RX_ALL		(1 << 31)
115#define MAC_ADDRESS_HIGH	0x4
116#define MAC_ADDRESS_LOW		0x8
117#define MAC_MCAST_HIGH		0xC
118#define MAC_MCAST_LOW		0x10
119#define MAC_MII_CNTRL		0x14
120#  define MAC_MII_BUSY		(1 << 0)
121#  define MAC_MII_READ		0
122#  define MAC_MII_WRITE		(1 << 1)
123#  define MAC_SET_MII_SELECT_REG(X) (((X) & 0x1f) << 6)
124#  define MAC_SET_MII_SELECT_PHY(X) (((X) & 0x1f) << 11)
125#define MAC_MII_DATA		0x18
126#define MAC_FLOW_CNTRL		0x1C
127#  define MAC_FLOW_CNTRL_BUSY	(1 << 0)
128#  define MAC_FLOW_CNTRL_ENABLE (1 << 1)
129#  define MAC_PASS_CONTROL	(1 << 2)
130#  define MAC_SET_PAUSE(X)	(((X) & 0xffff) << 16)
131#define MAC_VLAN1_TAG		0x20
132#define MAC_VLAN2_TAG		0x24
133
134/* Ethernet Controller Enable */
135#  define MAC_EN_CLOCK_ENABLE	(1 << 0)
136#  define MAC_EN_RESET0		(1 << 1)
137#  define MAC_EN_TOSS		(0 << 2)
138#  define MAC_EN_CACHEABLE	(1 << 3)
139#  define MAC_EN_RESET1		(1 << 4)
140#  define MAC_EN_RESET2		(1 << 5)
141#  define MAC_DMA_RESET		(1 << 6)
142
143/* Ethernet Controller DMA Channels */
144/* offsets from MAC_TX_RING_ADDR address */
145#define MAC_TX_BUFF0_STATUS	0x0
146#  define TX_FRAME_ABORTED	(1 << 0)
147#  define TX_JAB_TIMEOUT	(1 << 1)
148#  define TX_NO_CARRIER		(1 << 2)
149#  define TX_LOSS_CARRIER	(1 << 3)
150#  define TX_EXC_DEF		(1 << 4)
151#  define TX_LATE_COLL_ABORT	(1 << 5)
152#  define TX_EXC_COLL		(1 << 6)
153#  define TX_UNDERRUN		(1 << 7)
154#  define TX_DEFERRED		(1 << 8)
155#  define TX_LATE_COLL		(1 << 9)
156#  define TX_COLL_CNT_MASK	(0xF << 10)
157#  define TX_PKT_RETRY		(1 << 31)
158#define MAC_TX_BUFF0_ADDR	0x4
159#  define TX_DMA_ENABLE		(1 << 0)
160#  define TX_T_DONE		(1 << 1)
161#  define TX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
162#define MAC_TX_BUFF0_LEN	0x8
163#define MAC_TX_BUFF1_STATUS	0x10
164#define MAC_TX_BUFF1_ADDR	0x14
165#define MAC_TX_BUFF1_LEN	0x18
166#define MAC_TX_BUFF2_STATUS	0x20
167#define MAC_TX_BUFF2_ADDR	0x24
168#define MAC_TX_BUFF2_LEN	0x28
169#define MAC_TX_BUFF3_STATUS	0x30
170#define MAC_TX_BUFF3_ADDR	0x34
171#define MAC_TX_BUFF3_LEN	0x38
172
173/* offsets from MAC_RX_RING_ADDR */
174#define MAC_RX_BUFF0_STATUS	0x0
175#  define RX_FRAME_LEN_MASK	0x3fff
176#  define RX_WDOG_TIMER		(1 << 14)
177#  define RX_RUNT		(1 << 15)
178#  define RX_OVERLEN		(1 << 16)
179#  define RX_COLL		(1 << 17)
180#  define RX_ETHER		(1 << 18)
181#  define RX_MII_ERROR		(1 << 19)
182#  define RX_DRIBBLING		(1 << 20)
183#  define RX_CRC_ERROR		(1 << 21)
184#  define RX_VLAN1		(1 << 22)
185#  define RX_VLAN2		(1 << 23)
186#  define RX_LEN_ERROR		(1 << 24)
187#  define RX_CNTRL_FRAME	(1 << 25)
188#  define RX_U_CNTRL_FRAME	(1 << 26)
189#  define RX_MCAST_FRAME	(1 << 27)
190#  define RX_BCAST_FRAME	(1 << 28)
191#  define RX_FILTER_FAIL	(1 << 29)
192#  define RX_PACKET_FILTER	(1 << 30)
193#  define RX_MISSED_FRAME	(1 << 31)
194
195#  define RX_ERROR (RX_WDOG_TIMER | RX_RUNT | RX_OVERLEN |  \
196		    RX_COLL | RX_MII_ERROR | RX_CRC_ERROR | \
197		    RX_LEN_ERROR | RX_U_CNTRL_FRAME | RX_MISSED_FRAME)
198#define MAC_RX_BUFF0_ADDR	0x4
199#  define RX_DMA_ENABLE		(1 << 0)
200#  define RX_T_DONE		(1 << 1)
201#  define RX_GET_DMA_BUFFER(X)	(((X) >> 2) & 0x3)
202#  define RX_SET_BUFF_ADDR(X)	((X) & 0xffffffc0)
203#define MAC_RX_BUFF1_STATUS	0x10
204#define MAC_RX_BUFF1_ADDR	0x14
205#define MAC_RX_BUFF2_STATUS	0x20
206#define MAC_RX_BUFF2_ADDR	0x24
207#define MAC_RX_BUFF3_STATUS	0x30
208#define MAC_RX_BUFF3_ADDR	0x34
209
210/*
211 * Theory of operation
212 *
213 * The Au1000 MACs use a simple rx and tx descriptor ring scheme.
214 * There are four receive and four transmit descriptors.  These
215 * descriptors are not in memory; rather, they are just a set of
216 * hardware registers.
217 *
218 * Since the Au1000 has a coherent data cache, the receive and
219 * transmit buffers are allocated from the KSEG0 segment. The
220 * hardware registers, however, are still mapped at KSEG1 to
221 * make sure there's no out-of-order writes, and that all writes
222 * complete immediately.
223 */
224
225/*
226 * board-specific configurations
227 *
228 * PHY detection algorithm
229 *
230 * If phy_static_config is undefined, the PHY setup is
231 * autodetected:
232 *
233 * mii_probe() first searches the current MAC's MII bus for a PHY,
234 * selecting the first (or last, if phy_search_highest_addr is
235 * defined) PHY address not already claimed by another netdev.
236 *
237 * If nothing was found that way when searching for the 2nd ethernet
238 * controller's PHY and phy1_search_mac0 is defined, then
239 * the first MII bus is searched as well for an unclaimed PHY; this is
240 * needed in case of a dual-PHY accessible only through the MAC0's MII
241 * bus.
242 *
243 * Finally, if no PHY is found, then the corresponding ethernet
244 * controller is not registered to the network subsystem.
245 */
246
247/* autodetection defaults: phy1_search_mac0 */
248
249/* static PHY setup
250 *
251 * most boards PHY setup should be detectable properly with the
252 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
253 * you have a switch attached, or want to use the PHY's interrupt
254 * notification capabilities) you can provide a static PHY
255 * configuration here
256 *
257 * IRQs may only be set, if a PHY address was configured
258 * If a PHY address is given, also a bus id is required to be set
259 *
260 * ps: make sure the used irqs are configured properly in the board
261 * specific irq-map
262 */
263
264static void au1000_enable_mac(struct net_device *dev, int force_reset)
265{
266	unsigned long flags;
267	struct au1000_private *aup = netdev_priv(dev);
268
269	spin_lock_irqsave(&aup->lock, flags);
270
271	if (force_reset || (!aup->mac_enabled)) {
272		writel(MAC_EN_CLOCK_ENABLE, aup->enable);
273		wmb(); /* drain writebuffer */
274		mdelay(2);
275		writel((MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
276				| MAC_EN_CLOCK_ENABLE), aup->enable);
277		wmb(); /* drain writebuffer */
278		mdelay(2);
279
280		aup->mac_enabled = 1;
281	}
282
283	spin_unlock_irqrestore(&aup->lock, flags);
284}
285
286/*
287 * MII operations
288 */
289static int au1000_mdio_read(struct net_device *dev, int phy_addr, int reg)
290{
291	struct au1000_private *aup = netdev_priv(dev);
292	u32 *const mii_control_reg = &aup->mac->mii_control;
293	u32 *const mii_data_reg = &aup->mac->mii_data;
294	u32 timedout = 20;
295	u32 mii_control;
296
297	while (readl(mii_control_reg) & MAC_MII_BUSY) {
298		mdelay(1);
299		if (--timedout == 0) {
300			netdev_err(dev, "read_MII busy timeout!!\n");
301			return -1;
302		}
303	}
304
305	mii_control = MAC_SET_MII_SELECT_REG(reg) |
306		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
307
308	writel(mii_control, mii_control_reg);
309
310	timedout = 20;
311	while (readl(mii_control_reg) & MAC_MII_BUSY) {
312		mdelay(1);
313		if (--timedout == 0) {
314			netdev_err(dev, "mdio_read busy timeout!!\n");
315			return -1;
316		}
317	}
318	return readl(mii_data_reg);
319}
320
321static void au1000_mdio_write(struct net_device *dev, int phy_addr,
322			      int reg, u16 value)
323{
324	struct au1000_private *aup = netdev_priv(dev);
325	u32 *const mii_control_reg = &aup->mac->mii_control;
326	u32 *const mii_data_reg = &aup->mac->mii_data;
327	u32 timedout = 20;
328	u32 mii_control;
329
330	while (readl(mii_control_reg) & MAC_MII_BUSY) {
331		mdelay(1);
332		if (--timedout == 0) {
333			netdev_err(dev, "mdio_write busy timeout!!\n");
334			return;
335		}
336	}
337
338	mii_control = MAC_SET_MII_SELECT_REG(reg) |
339		MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
340
341	writel(value, mii_data_reg);
342	writel(mii_control, mii_control_reg);
343}
344
345static int au1000_mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
346{
347	/* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
348	 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus)
349	 */
350	struct net_device *const dev = bus->priv;
351
352	/* make sure the MAC associated with this
353	 * mii_bus is enabled
354	 */
355	au1000_enable_mac(dev, 0);
356
357	return au1000_mdio_read(dev, phy_addr, regnum);
358}
359
360static int au1000_mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
361				u16 value)
362{
363	struct net_device *const dev = bus->priv;
364
365	/* make sure the MAC associated with this
366	 * mii_bus is enabled
367	 */
368	au1000_enable_mac(dev, 0);
369
370	au1000_mdio_write(dev, phy_addr, regnum, value);
371	return 0;
372}
373
374static int au1000_mdiobus_reset(struct mii_bus *bus)
375{
376	struct net_device *const dev = bus->priv;
377
378	/* make sure the MAC associated with this
379	 * mii_bus is enabled
380	 */
381	au1000_enable_mac(dev, 0);
382
383	return 0;
384}
385
386static void au1000_hard_stop(struct net_device *dev)
387{
388	struct au1000_private *aup = netdev_priv(dev);
389	u32 reg;
390
391	netif_dbg(aup, drv, dev, "hard stop\n");
392
393	reg = readl(&aup->mac->control);
394	reg &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
395	writel(reg, &aup->mac->control);
396	wmb(); /* drain writebuffer */
397	mdelay(10);
398}
399
400static void au1000_enable_rx_tx(struct net_device *dev)
401{
402	struct au1000_private *aup = netdev_priv(dev);
403	u32 reg;
404
405	netif_dbg(aup, hw, dev, "enable_rx_tx\n");
406
407	reg = readl(&aup->mac->control);
408	reg |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
409	writel(reg, &aup->mac->control);
410	wmb(); /* drain writebuffer */
411	mdelay(10);
412}
413
414static void
415au1000_adjust_link(struct net_device *dev)
416{
417	struct au1000_private *aup = netdev_priv(dev);
418	struct phy_device *phydev = aup->phy_dev;
419	unsigned long flags;
420	u32 reg;
421
422	int status_change = 0;
423
424	BUG_ON(!aup->phy_dev);
425
426	spin_lock_irqsave(&aup->lock, flags);
427
428	if (phydev->link && (aup->old_speed != phydev->speed)) {
429		/* speed changed */
430
431		switch (phydev->speed) {
432		case SPEED_10:
433		case SPEED_100:
434			break;
435		default:
436			netdev_warn(dev, "Speed (%d) is not 10/100 ???\n",
437							phydev->speed);
438			break;
439		}
440
441		aup->old_speed = phydev->speed;
442
443		status_change = 1;
444	}
445
446	if (phydev->link && (aup->old_duplex != phydev->duplex)) {
447		/* duplex mode changed */
448
449		/* switching duplex mode requires to disable rx and tx! */
450		au1000_hard_stop(dev);
451
452		reg = readl(&aup->mac->control);
453		if (DUPLEX_FULL == phydev->duplex) {
454			reg |= MAC_FULL_DUPLEX;
455			reg &= ~MAC_DISABLE_RX_OWN;
456		} else {
457			reg &= ~MAC_FULL_DUPLEX;
458			reg |= MAC_DISABLE_RX_OWN;
459		}
460		writel(reg, &aup->mac->control);
461		wmb(); /* drain writebuffer */
462		mdelay(1);
463
464		au1000_enable_rx_tx(dev);
465		aup->old_duplex = phydev->duplex;
466
467		status_change = 1;
468	}
469
470	if (phydev->link != aup->old_link) {
471		/* link state changed */
472
473		if (!phydev->link) {
474			/* link went down */
475			aup->old_speed = 0;
476			aup->old_duplex = -1;
477		}
478
479		aup->old_link = phydev->link;
480		status_change = 1;
481	}
482
483	spin_unlock_irqrestore(&aup->lock, flags);
484
485	if (status_change) {
486		if (phydev->link)
487			netdev_info(dev, "link up (%d/%s)\n",
488			       phydev->speed,
489			       DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
490		else
491			netdev_info(dev, "link down\n");
492	}
493}
494
495static int au1000_mii_probe(struct net_device *dev)
496{
497	struct au1000_private *const aup = netdev_priv(dev);
498	struct phy_device *phydev = NULL;
499	int phy_addr;
500
501	if (aup->phy_static_config) {
502		BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
503
504		if (aup->phy_addr)
505			phydev = aup->mii_bus->phy_map[aup->phy_addr];
506		else
507			netdev_info(dev, "using PHY-less setup\n");
508		return 0;
509	}
510
511	/* find the first (lowest address) PHY
512	 * on the current MAC's MII bus
513	 */
514	for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
515		if (aup->mii_bus->phy_map[phy_addr]) {
516			phydev = aup->mii_bus->phy_map[phy_addr];
517			if (!aup->phy_search_highest_addr)
518				/* break out with first one found */
519				break;
520		}
521
522	if (aup->phy1_search_mac0) {
523		/* try harder to find a PHY */
524		if (!phydev && (aup->mac_id == 1)) {
525			/* no PHY found, maybe we have a dual PHY? */
526			dev_info(&dev->dev, ": no PHY found on MAC1, "
527				"let's see if it's attached to MAC0...\n");
528
529			/* find the first (lowest address) non-attached
530			 * PHY on the MAC0 MII bus
531			 */
532			for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
533				struct phy_device *const tmp_phydev =
534					aup->mii_bus->phy_map[phy_addr];
535
536				if (aup->mac_id == 1)
537					break;
538
539				/* no PHY here... */
540				if (!tmp_phydev)
541					continue;
542
543				/* already claimed by MAC0 */
544				if (tmp_phydev->attached_dev)
545					continue;
546
547				phydev = tmp_phydev;
548				break; /* found it */
549			}
550		}
551	}
552
553	if (!phydev) {
554		netdev_err(dev, "no PHY found\n");
555		return -1;
556	}
557
558	/* now we are supposed to have a proper phydev, to attach to... */
559	BUG_ON(phydev->attached_dev);
560
561	phydev = phy_connect(dev, dev_name(&phydev->dev),
562			     &au1000_adjust_link, PHY_INTERFACE_MODE_MII);
563
564	if (IS_ERR(phydev)) {
565		netdev_err(dev, "Could not attach to PHY\n");
566		return PTR_ERR(phydev);
567	}
568
569	/* mask with MAC supported features */
570	phydev->supported &= (SUPPORTED_10baseT_Half
571			      | SUPPORTED_10baseT_Full
572			      | SUPPORTED_100baseT_Half
573			      | SUPPORTED_100baseT_Full
574			      | SUPPORTED_Autoneg
575			      /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
576			      | SUPPORTED_MII
577			      | SUPPORTED_TP);
578
579	phydev->advertising = phydev->supported;
580
581	aup->old_link = 0;
582	aup->old_speed = 0;
583	aup->old_duplex = -1;
584	aup->phy_dev = phydev;
585
586	netdev_info(dev, "attached PHY driver [%s] "
587	       "(mii_bus:phy_addr=%s, irq=%d)\n",
588	       phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
589
590	return 0;
591}
592
593
594/*
595 * Buffer allocation/deallocation routines. The buffer descriptor returned
596 * has the virtual and dma address of a buffer suitable for
597 * both, receive and transmit operations.
598 */
599static struct db_dest *au1000_GetFreeDB(struct au1000_private *aup)
600{
601	struct db_dest *pDB;
602	pDB = aup->pDBfree;
603
604	if (pDB)
605		aup->pDBfree = pDB->pnext;
606
607	return pDB;
608}
609
610void au1000_ReleaseDB(struct au1000_private *aup, struct db_dest *pDB)
611{
612	struct db_dest *pDBfree = aup->pDBfree;
613	if (pDBfree)
614		pDBfree->pnext = pDB;
615	aup->pDBfree = pDB;
616}
617
618static void au1000_reset_mac_unlocked(struct net_device *dev)
619{
620	struct au1000_private *const aup = netdev_priv(dev);
621	int i;
622
623	au1000_hard_stop(dev);
624
625	writel(MAC_EN_CLOCK_ENABLE, aup->enable);
626	wmb(); /* drain writebuffer */
627	mdelay(2);
628	writel(0, aup->enable);
629	wmb(); /* drain writebuffer */
630	mdelay(2);
631
632	aup->tx_full = 0;
633	for (i = 0; i < NUM_RX_DMA; i++) {
634		/* reset control bits */
635		aup->rx_dma_ring[i]->buff_stat &= ~0xf;
636	}
637	for (i = 0; i < NUM_TX_DMA; i++) {
638		/* reset control bits */
639		aup->tx_dma_ring[i]->buff_stat &= ~0xf;
640	}
641
642	aup->mac_enabled = 0;
643
644}
645
646static void au1000_reset_mac(struct net_device *dev)
647{
648	struct au1000_private *const aup = netdev_priv(dev);
649	unsigned long flags;
650
651	netif_dbg(aup, hw, dev, "reset mac, aup %x\n",
652					(unsigned)aup);
653
654	spin_lock_irqsave(&aup->lock, flags);
655
656	au1000_reset_mac_unlocked(dev);
657
658	spin_unlock_irqrestore(&aup->lock, flags);
659}
660
661/*
662 * Setup the receive and transmit "rings".  These pointers are the addresses
663 * of the rx and tx MAC DMA registers so they are fixed by the hardware --
664 * these are not descriptors sitting in memory.
665 */
666static void
667au1000_setup_hw_rings(struct au1000_private *aup, void __iomem *tx_base)
668{
669	int i;
670
671	for (i = 0; i < NUM_RX_DMA; i++) {
672		aup->rx_dma_ring[i] = (struct rx_dma *)
673			(tx_base + 0x100 + sizeof(struct rx_dma) * i);
674	}
675	for (i = 0; i < NUM_TX_DMA; i++) {
676		aup->tx_dma_ring[i] = (struct tx_dma *)
677			(tx_base + sizeof(struct tx_dma) * i);
678	}
679}
680
681/*
682 * ethtool operations
683 */
684
685static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
686{
687	struct au1000_private *aup = netdev_priv(dev);
688
689	if (aup->phy_dev)
690		return phy_ethtool_gset(aup->phy_dev, cmd);
691
692	return -EINVAL;
693}
694
695static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
696{
697	struct au1000_private *aup = netdev_priv(dev);
698
699	if (!capable(CAP_NET_ADMIN))
700		return -EPERM;
701
702	if (aup->phy_dev)
703		return phy_ethtool_sset(aup->phy_dev, cmd);
704
705	return -EINVAL;
706}
707
708static void
709au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
710{
711	struct au1000_private *aup = netdev_priv(dev);
712
713	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
714	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
715	snprintf(info->bus_info, sizeof(info->bus_info), "%s %d", DRV_NAME,
716		 aup->mac_id);
717	info->regdump_len = 0;
718}
719
720static void au1000_set_msglevel(struct net_device *dev, u32 value)
721{
722	struct au1000_private *aup = netdev_priv(dev);
723	aup->msg_enable = value;
724}
725
726static u32 au1000_get_msglevel(struct net_device *dev)
727{
728	struct au1000_private *aup = netdev_priv(dev);
729	return aup->msg_enable;
730}
731
732static const struct ethtool_ops au1000_ethtool_ops = {
733	.get_settings = au1000_get_settings,
734	.set_settings = au1000_set_settings,
735	.get_drvinfo = au1000_get_drvinfo,
736	.get_link = ethtool_op_get_link,
737	.get_msglevel = au1000_get_msglevel,
738	.set_msglevel = au1000_set_msglevel,
739};
740
741
742/*
743 * Initialize the interface.
744 *
745 * When the device powers up, the clocks are disabled and the
746 * mac is in reset state.  When the interface is closed, we
747 * do the same -- reset the device and disable the clocks to
748 * conserve power. Thus, whenever au1000_init() is called,
749 * the device should already be in reset state.
750 */
751static int au1000_init(struct net_device *dev)
752{
753	struct au1000_private *aup = netdev_priv(dev);
754	unsigned long flags;
755	int i;
756	u32 control;
757
758	netif_dbg(aup, hw, dev, "au1000_init\n");
759
760	/* bring the device out of reset */
761	au1000_enable_mac(dev, 1);
762
763	spin_lock_irqsave(&aup->lock, flags);
764
765	writel(0, &aup->mac->control);
766	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
767	aup->tx_tail = aup->tx_head;
768	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2;
769
770	writel(dev->dev_addr[5]<<8 | dev->dev_addr[4],
771					&aup->mac->mac_addr_high);
772	writel(dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 |
773		dev->dev_addr[1]<<8 | dev->dev_addr[0],
774					&aup->mac->mac_addr_low);
775
776
777	for (i = 0; i < NUM_RX_DMA; i++)
778		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
779
780	wmb(); /* drain writebuffer */
781
782	control = MAC_RX_ENABLE | MAC_TX_ENABLE;
783#ifndef CONFIG_CPU_LITTLE_ENDIAN
784	control |= MAC_BIG_ENDIAN;
785#endif
786	if (aup->phy_dev) {
787		if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
788			control |= MAC_FULL_DUPLEX;
789		else
790			control |= MAC_DISABLE_RX_OWN;
791	} else { /* PHY-less op, assume full-duplex */
792		control |= MAC_FULL_DUPLEX;
793	}
794
795	writel(control, &aup->mac->control);
796	writel(0x8100, &aup->mac->vlan1_tag); /* activate vlan support */
797	wmb(); /* drain writebuffer */
798
799	spin_unlock_irqrestore(&aup->lock, flags);
800	return 0;
801}
802
803static inline void au1000_update_rx_stats(struct net_device *dev, u32 status)
804{
805	struct net_device_stats *ps = &dev->stats;
806
807	ps->rx_packets++;
808	if (status & RX_MCAST_FRAME)
809		ps->multicast++;
810
811	if (status & RX_ERROR) {
812		ps->rx_errors++;
813		if (status & RX_MISSED_FRAME)
814			ps->rx_missed_errors++;
815		if (status & (RX_OVERLEN | RX_RUNT | RX_LEN_ERROR))
816			ps->rx_length_errors++;
817		if (status & RX_CRC_ERROR)
818			ps->rx_crc_errors++;
819		if (status & RX_COLL)
820			ps->collisions++;
821	} else
822		ps->rx_bytes += status & RX_FRAME_LEN_MASK;
823
824}
825
826/*
827 * Au1000 receive routine.
828 */
829static int au1000_rx(struct net_device *dev)
830{
831	struct au1000_private *aup = netdev_priv(dev);
832	struct sk_buff *skb;
833	struct rx_dma *prxd;
834	u32 buff_stat, status;
835	struct db_dest *pDB;
836	u32	frmlen;
837
838	netif_dbg(aup, rx_status, dev, "au1000_rx head %d\n", aup->rx_head);
839
840	prxd = aup->rx_dma_ring[aup->rx_head];
841	buff_stat = prxd->buff_stat;
842	while (buff_stat & RX_T_DONE)  {
843		status = prxd->status;
844		pDB = aup->rx_db_inuse[aup->rx_head];
845		au1000_update_rx_stats(dev, status);
846		if (!(status & RX_ERROR))  {
847
848			/* good frame */
849			frmlen = (status & RX_FRAME_LEN_MASK);
850			frmlen -= 4; /* Remove FCS */
851			skb = netdev_alloc_skb(dev, frmlen + 2);
852			if (skb == NULL) {
853				dev->stats.rx_dropped++;
854				continue;
855			}
856			skb_reserve(skb, 2);	/* 16 byte IP header align */
857			skb_copy_to_linear_data(skb,
858				(unsigned char *)pDB->vaddr, frmlen);
859			skb_put(skb, frmlen);
860			skb->protocol = eth_type_trans(skb, dev);
861			netif_rx(skb);	/* pass the packet to upper layers */
862		} else {
863			if (au1000_debug > 4) {
864				pr_err("rx_error(s):");
865				if (status & RX_MISSED_FRAME)
866					pr_cont(" miss");
867				if (status & RX_WDOG_TIMER)
868					pr_cont(" wdog");
869				if (status & RX_RUNT)
870					pr_cont(" runt");
871				if (status & RX_OVERLEN)
872					pr_cont(" overlen");
873				if (status & RX_COLL)
874					pr_cont(" coll");
875				if (status & RX_MII_ERROR)
876					pr_cont(" mii error");
877				if (status & RX_CRC_ERROR)
878					pr_cont(" crc error");
879				if (status & RX_LEN_ERROR)
880					pr_cont(" len error");
881				if (status & RX_U_CNTRL_FRAME)
882					pr_cont(" u control frame");
883				pr_cont("\n");
884			}
885		}
886		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
887		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
888		wmb(); /* drain writebuffer */
889
890		/* next descriptor */
891		prxd = aup->rx_dma_ring[aup->rx_head];
892		buff_stat = prxd->buff_stat;
893	}
894	return 0;
895}
896
897static void au1000_update_tx_stats(struct net_device *dev, u32 status)
898{
899	struct au1000_private *aup = netdev_priv(dev);
900	struct net_device_stats *ps = &dev->stats;
901
902	if (status & TX_FRAME_ABORTED) {
903		if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
904			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
905				/* any other tx errors are only valid
906				 * in half duplex mode
907				 */
908				ps->tx_errors++;
909				ps->tx_aborted_errors++;
910			}
911		} else {
912			ps->tx_errors++;
913			ps->tx_aborted_errors++;
914			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
915				ps->tx_carrier_errors++;
916		}
917	}
918}
919
920/*
921 * Called from the interrupt service routine to acknowledge
922 * the TX DONE bits.  This is a must if the irq is setup as
923 * edge triggered.
924 */
925static void au1000_tx_ack(struct net_device *dev)
926{
927	struct au1000_private *aup = netdev_priv(dev);
928	struct tx_dma *ptxd;
929
930	ptxd = aup->tx_dma_ring[aup->tx_tail];
931
932	while (ptxd->buff_stat & TX_T_DONE) {
933		au1000_update_tx_stats(dev, ptxd->status);
934		ptxd->buff_stat &= ~TX_T_DONE;
935		ptxd->len = 0;
936		wmb(); /* drain writebuffer */
937
938		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
939		ptxd = aup->tx_dma_ring[aup->tx_tail];
940
941		if (aup->tx_full) {
942			aup->tx_full = 0;
943			netif_wake_queue(dev);
944		}
945	}
946}
947
948/*
949 * Au1000 interrupt service routine.
950 */
951static irqreturn_t au1000_interrupt(int irq, void *dev_id)
952{
953	struct net_device *dev = dev_id;
954
955	/* Handle RX interrupts first to minimize chance of overrun */
956
957	au1000_rx(dev);
958	au1000_tx_ack(dev);
959	return IRQ_RETVAL(1);
960}
961
962static int au1000_open(struct net_device *dev)
963{
964	int retval;
965	struct au1000_private *aup = netdev_priv(dev);
966
967	netif_dbg(aup, drv, dev, "open: dev=%p\n", dev);
968
969	retval = request_irq(dev->irq, au1000_interrupt, 0,
970					dev->name, dev);
971	if (retval) {
972		netdev_err(dev, "unable to get IRQ %d\n", dev->irq);
973		return retval;
974	}
975
976	retval = au1000_init(dev);
977	if (retval) {
978		netdev_err(dev, "error in au1000_init\n");
979		free_irq(dev->irq, dev);
980		return retval;
981	}
982
983	if (aup->phy_dev) {
984		/* cause the PHY state machine to schedule a link state check */
985		aup->phy_dev->state = PHY_CHANGELINK;
986		phy_start(aup->phy_dev);
987	}
988
989	netif_start_queue(dev);
990
991	netif_dbg(aup, drv, dev, "open: Initialization done.\n");
992
993	return 0;
994}
995
996static int au1000_close(struct net_device *dev)
997{
998	unsigned long flags;
999	struct au1000_private *const aup = netdev_priv(dev);
1000
1001	netif_dbg(aup, drv, dev, "close: dev=%p\n", dev);
1002
1003	if (aup->phy_dev)
1004		phy_stop(aup->phy_dev);
1005
1006	spin_lock_irqsave(&aup->lock, flags);
1007
1008	au1000_reset_mac_unlocked(dev);
1009
1010	/* stop the device */
1011	netif_stop_queue(dev);
1012
1013	/* disable the interrupt */
1014	free_irq(dev->irq, dev);
1015	spin_unlock_irqrestore(&aup->lock, flags);
1016
1017	return 0;
1018}
1019
1020/*
1021 * Au1000 transmit routine.
1022 */
1023static netdev_tx_t au1000_tx(struct sk_buff *skb, struct net_device *dev)
1024{
1025	struct au1000_private *aup = netdev_priv(dev);
1026	struct net_device_stats *ps = &dev->stats;
1027	struct tx_dma *ptxd;
1028	u32 buff_stat;
1029	struct db_dest *pDB;
1030	int i;
1031
1032	netif_dbg(aup, tx_queued, dev, "tx: aup %x len=%d, data=%p, head %d\n",
1033				(unsigned)aup, skb->len,
1034				skb->data, aup->tx_head);
1035
1036	ptxd = aup->tx_dma_ring[aup->tx_head];
1037	buff_stat = ptxd->buff_stat;
1038	if (buff_stat & TX_DMA_ENABLE) {
1039		/* We've wrapped around and the transmitter is still busy */
1040		netif_stop_queue(dev);
1041		aup->tx_full = 1;
1042		return NETDEV_TX_BUSY;
1043	} else if (buff_stat & TX_T_DONE) {
1044		au1000_update_tx_stats(dev, ptxd->status);
1045		ptxd->len = 0;
1046	}
1047
1048	if (aup->tx_full) {
1049		aup->tx_full = 0;
1050		netif_wake_queue(dev);
1051	}
1052
1053	pDB = aup->tx_db_inuse[aup->tx_head];
1054	skb_copy_from_linear_data(skb, (void *)pDB->vaddr, skb->len);
1055	if (skb->len < ETH_ZLEN) {
1056		for (i = skb->len; i < ETH_ZLEN; i++)
1057			((char *)pDB->vaddr)[i] = 0;
1058
1059		ptxd->len = ETH_ZLEN;
1060	} else
1061		ptxd->len = skb->len;
1062
1063	ps->tx_packets++;
1064	ps->tx_bytes += ptxd->len;
1065
1066	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
1067	wmb(); /* drain writebuffer */
1068	dev_kfree_skb(skb);
1069	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
1070	return NETDEV_TX_OK;
1071}
1072
1073/*
1074 * The Tx ring has been full longer than the watchdog timeout
1075 * value. The transmitter must be hung?
1076 */
1077static void au1000_tx_timeout(struct net_device *dev)
1078{
1079	netdev_err(dev, "au1000_tx_timeout: dev=%p\n", dev);
1080	au1000_reset_mac(dev);
1081	au1000_init(dev);
1082	dev->trans_start = jiffies; /* prevent tx timeout */
1083	netif_wake_queue(dev);
1084}
1085
1086static void au1000_multicast_list(struct net_device *dev)
1087{
1088	struct au1000_private *aup = netdev_priv(dev);
1089	u32 reg;
1090
1091	netif_dbg(aup, drv, dev, "%s: flags=%x\n", __func__, dev->flags);
1092	reg = readl(&aup->mac->control);
1093	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1094		reg |= MAC_PROMISCUOUS;
1095	} else if ((dev->flags & IFF_ALLMULTI)  ||
1096			   netdev_mc_count(dev) > MULTICAST_FILTER_LIMIT) {
1097		reg |= MAC_PASS_ALL_MULTI;
1098		reg &= ~MAC_PROMISCUOUS;
1099		netdev_info(dev, "Pass all multicast\n");
1100	} else {
1101		struct netdev_hw_addr *ha;
1102		u32 mc_filter[2];	/* Multicast hash filter */
1103
1104		mc_filter[1] = mc_filter[0] = 0;
1105		netdev_for_each_mc_addr(ha, dev)
1106			set_bit(ether_crc(ETH_ALEN, ha->addr)>>26,
1107					(long *)mc_filter);
1108		writel(mc_filter[1], &aup->mac->multi_hash_high);
1109		writel(mc_filter[0], &aup->mac->multi_hash_low);
1110		reg &= ~MAC_PROMISCUOUS;
1111		reg |= MAC_HASH_MODE;
1112	}
1113	writel(reg, &aup->mac->control);
1114}
1115
1116static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1117{
1118	struct au1000_private *aup = netdev_priv(dev);
1119
1120	if (!netif_running(dev))
1121		return -EINVAL;
1122
1123	if (!aup->phy_dev)
1124		return -EINVAL; /* PHY not controllable */
1125
1126	return phy_mii_ioctl(aup->phy_dev, rq, cmd);
1127}
1128
1129static const struct net_device_ops au1000_netdev_ops = {
1130	.ndo_open		= au1000_open,
1131	.ndo_stop		= au1000_close,
1132	.ndo_start_xmit		= au1000_tx,
1133	.ndo_set_rx_mode	= au1000_multicast_list,
1134	.ndo_do_ioctl		= au1000_ioctl,
1135	.ndo_tx_timeout		= au1000_tx_timeout,
1136	.ndo_set_mac_address	= eth_mac_addr,
1137	.ndo_validate_addr	= eth_validate_addr,
1138	.ndo_change_mtu		= eth_change_mtu,
1139};
1140
1141static int au1000_probe(struct platform_device *pdev)
1142{
1143	struct au1000_private *aup = NULL;
1144	struct au1000_eth_platform_data *pd;
1145	struct net_device *dev = NULL;
1146	struct db_dest *pDB, *pDBfree;
1147	int irq, i, err = 0;
1148	struct resource *base, *macen, *macdma;
1149
1150	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1151	if (!base) {
1152		dev_err(&pdev->dev, "failed to retrieve base register\n");
1153		err = -ENODEV;
1154		goto out;
1155	}
1156
1157	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1158	if (!macen) {
1159		dev_err(&pdev->dev, "failed to retrieve MAC Enable register\n");
1160		err = -ENODEV;
1161		goto out;
1162	}
1163
1164	irq = platform_get_irq(pdev, 0);
1165	if (irq < 0) {
1166		dev_err(&pdev->dev, "failed to retrieve IRQ\n");
1167		err = -ENODEV;
1168		goto out;
1169	}
1170
1171	macdma = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1172	if (!macdma) {
1173		dev_err(&pdev->dev, "failed to retrieve MACDMA registers\n");
1174		err = -ENODEV;
1175		goto out;
1176	}
1177
1178	if (!request_mem_region(base->start, resource_size(base),
1179							pdev->name)) {
1180		dev_err(&pdev->dev, "failed to request memory region for base registers\n");
1181		err = -ENXIO;
1182		goto out;
1183	}
1184
1185	if (!request_mem_region(macen->start, resource_size(macen),
1186							pdev->name)) {
1187		dev_err(&pdev->dev, "failed to request memory region for MAC enable register\n");
1188		err = -ENXIO;
1189		goto err_request;
1190	}
1191
1192	if (!request_mem_region(macdma->start, resource_size(macdma),
1193							pdev->name)) {
1194		dev_err(&pdev->dev, "failed to request MACDMA memory region\n");
1195		err = -ENXIO;
1196		goto err_macdma;
1197	}
1198
1199	dev = alloc_etherdev(sizeof(struct au1000_private));
1200	if (!dev) {
1201		err = -ENOMEM;
1202		goto err_alloc;
1203	}
1204
1205	SET_NETDEV_DEV(dev, &pdev->dev);
1206	platform_set_drvdata(pdev, dev);
1207	aup = netdev_priv(dev);
1208
1209	spin_lock_init(&aup->lock);
1210	aup->msg_enable = (au1000_debug < 4 ?
1211				AU1000_DEF_MSG_ENABLE : au1000_debug);
1212
1213	/* Allocate the data buffers
1214	 * Snooping works fine with eth on all au1xxx
1215	 */
1216	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, MAX_BUF_SIZE *
1217						(NUM_TX_BUFFS + NUM_RX_BUFFS),
1218						&aup->dma_addr,	0);
1219	if (!aup->vaddr) {
1220		dev_err(&pdev->dev, "failed to allocate data buffers\n");
1221		err = -ENOMEM;
1222		goto err_vaddr;
1223	}
1224
1225	/* aup->mac is the base address of the MAC's registers */
1226	aup->mac = (struct mac_reg *)
1227			ioremap_nocache(base->start, resource_size(base));
1228	if (!aup->mac) {
1229		dev_err(&pdev->dev, "failed to ioremap MAC registers\n");
1230		err = -ENXIO;
1231		goto err_remap1;
1232	}
1233
1234	/* Setup some variables for quick register address access */
1235	aup->enable = (u32 *)ioremap_nocache(macen->start,
1236						resource_size(macen));
1237	if (!aup->enable) {
1238		dev_err(&pdev->dev, "failed to ioremap MAC enable register\n");
1239		err = -ENXIO;
1240		goto err_remap2;
1241	}
1242	aup->mac_id = pdev->id;
1243
1244	aup->macdma = ioremap_nocache(macdma->start, resource_size(macdma));
1245	if (!aup->macdma) {
1246		dev_err(&pdev->dev, "failed to ioremap MACDMA registers\n");
1247		err = -ENXIO;
1248		goto err_remap3;
1249	}
1250
1251	au1000_setup_hw_rings(aup, aup->macdma);
1252
1253	writel(0, aup->enable);
1254	aup->mac_enabled = 0;
1255
1256	pd = dev_get_platdata(&pdev->dev);
1257	if (!pd) {
1258		dev_info(&pdev->dev, "no platform_data passed,"
1259					" PHY search on MAC0\n");
1260		aup->phy1_search_mac0 = 1;
1261	} else {
1262		if (is_valid_ether_addr(pd->mac)) {
1263			memcpy(dev->dev_addr, pd->mac, ETH_ALEN);
1264		} else {
1265			/* Set a random MAC since no valid provided by platform_data. */
1266			eth_hw_addr_random(dev);
1267		}
1268
1269		aup->phy_static_config = pd->phy_static_config;
1270		aup->phy_search_highest_addr = pd->phy_search_highest_addr;
1271		aup->phy1_search_mac0 = pd->phy1_search_mac0;
1272		aup->phy_addr = pd->phy_addr;
1273		aup->phy_busid = pd->phy_busid;
1274		aup->phy_irq = pd->phy_irq;
1275	}
1276
1277	if (aup->phy_busid && aup->phy_busid > 0) {
1278		dev_err(&pdev->dev, "MAC0-associated PHY attached 2nd MACs MII bus not supported yet\n");
1279		err = -ENODEV;
1280		goto err_mdiobus_alloc;
1281	}
1282
1283	aup->mii_bus = mdiobus_alloc();
1284	if (aup->mii_bus == NULL) {
1285		dev_err(&pdev->dev, "failed to allocate mdiobus structure\n");
1286		err = -ENOMEM;
1287		goto err_mdiobus_alloc;
1288	}
1289
1290	aup->mii_bus->priv = dev;
1291	aup->mii_bus->read = au1000_mdiobus_read;
1292	aup->mii_bus->write = au1000_mdiobus_write;
1293	aup->mii_bus->reset = au1000_mdiobus_reset;
1294	aup->mii_bus->name = "au1000_eth_mii";
1295	snprintf(aup->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1296		pdev->name, aup->mac_id);
1297	aup->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1298	if (aup->mii_bus->irq == NULL) {
1299		err = -ENOMEM;
1300		goto err_out;
1301	}
1302
1303	for (i = 0; i < PHY_MAX_ADDR; ++i)
1304		aup->mii_bus->irq[i] = PHY_POLL;
1305	/* if known, set corresponding PHY IRQs */
1306	if (aup->phy_static_config)
1307		if (aup->phy_irq && aup->phy_busid == aup->mac_id)
1308			aup->mii_bus->irq[aup->phy_addr] = aup->phy_irq;
1309
1310	err = mdiobus_register(aup->mii_bus);
1311	if (err) {
1312		dev_err(&pdev->dev, "failed to register MDIO bus\n");
1313		goto err_mdiobus_reg;
1314	}
1315
1316	err = au1000_mii_probe(dev);
1317	if (err != 0)
1318		goto err_out;
1319
1320	pDBfree = NULL;
1321	/* setup the data buffer descriptors and attach a buffer to each one */
1322	pDB = aup->db;
1323	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) {
1324		pDB->pnext = pDBfree;
1325		pDBfree = pDB;
1326		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i);
1327		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr);
1328		pDB++;
1329	}
1330	aup->pDBfree = pDBfree;
1331
1332	err = -ENODEV;
1333	for (i = 0; i < NUM_RX_DMA; i++) {
1334		pDB = au1000_GetFreeDB(aup);
1335		if (!pDB)
1336			goto err_out;
1337
1338		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1339		aup->rx_db_inuse[i] = pDB;
1340	}
1341
1342	err = -ENODEV;
1343	for (i = 0; i < NUM_TX_DMA; i++) {
1344		pDB = au1000_GetFreeDB(aup);
1345		if (!pDB)
1346			goto err_out;
1347
1348		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr;
1349		aup->tx_dma_ring[i]->len = 0;
1350		aup->tx_db_inuse[i] = pDB;
1351	}
1352
1353	dev->base_addr = base->start;
1354	dev->irq = irq;
1355	dev->netdev_ops = &au1000_netdev_ops;
1356	dev->ethtool_ops = &au1000_ethtool_ops;
1357	dev->watchdog_timeo = ETH_TX_TIMEOUT;
1358
1359	/*
1360	 * The boot code uses the ethernet controller, so reset it to start
1361	 * fresh.  au1000_init() expects that the device is in reset state.
1362	 */
1363	au1000_reset_mac(dev);
1364
1365	err = register_netdev(dev);
1366	if (err) {
1367		netdev_err(dev, "Cannot register net device, aborting.\n");
1368		goto err_out;
1369	}
1370
1371	netdev_info(dev, "Au1xx0 Ethernet found at 0x%lx, irq %d\n",
1372			(unsigned long)base->start, irq);
1373
1374	pr_info_once("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR);
1375
1376	return 0;
1377
1378err_out:
1379	if (aup->mii_bus != NULL)
1380		mdiobus_unregister(aup->mii_bus);
1381
1382	/* here we should have a valid dev plus aup-> register addresses
1383	 * so we can reset the mac properly.
1384	 */
1385	au1000_reset_mac(dev);
1386
1387	for (i = 0; i < NUM_RX_DMA; i++) {
1388		if (aup->rx_db_inuse[i])
1389			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1390	}
1391	for (i = 0; i < NUM_TX_DMA; i++) {
1392		if (aup->tx_db_inuse[i])
1393			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1394	}
1395err_mdiobus_reg:
1396	mdiobus_free(aup->mii_bus);
1397err_mdiobus_alloc:
1398	iounmap(aup->macdma);
1399err_remap3:
1400	iounmap(aup->enable);
1401err_remap2:
1402	iounmap(aup->mac);
1403err_remap1:
1404	dma_free_noncoherent(NULL, MAX_BUF_SIZE * (NUM_TX_BUFFS + NUM_RX_BUFFS),
1405			     (void *)aup->vaddr, aup->dma_addr);
1406err_vaddr:
1407	free_netdev(dev);
1408err_alloc:
1409	release_mem_region(macdma->start, resource_size(macdma));
1410err_macdma:
1411	release_mem_region(macen->start, resource_size(macen));
1412err_request:
1413	release_mem_region(base->start, resource_size(base));
1414out:
1415	return err;
1416}
1417
1418static int au1000_remove(struct platform_device *pdev)
1419{
1420	struct net_device *dev = platform_get_drvdata(pdev);
1421	struct au1000_private *aup = netdev_priv(dev);
1422	int i;
1423	struct resource *base, *macen;
1424
1425	unregister_netdev(dev);
1426	mdiobus_unregister(aup->mii_bus);
1427	mdiobus_free(aup->mii_bus);
1428
1429	for (i = 0; i < NUM_RX_DMA; i++)
1430		if (aup->rx_db_inuse[i])
1431			au1000_ReleaseDB(aup, aup->rx_db_inuse[i]);
1432
1433	for (i = 0; i < NUM_TX_DMA; i++)
1434		if (aup->tx_db_inuse[i])
1435			au1000_ReleaseDB(aup, aup->tx_db_inuse[i]);
1436
1437	dma_free_noncoherent(NULL, MAX_BUF_SIZE *
1438			(NUM_TX_BUFFS + NUM_RX_BUFFS),
1439			(void *)aup->vaddr, aup->dma_addr);
1440
1441	iounmap(aup->macdma);
1442	iounmap(aup->mac);
1443	iounmap(aup->enable);
1444
1445	base = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1446	release_mem_region(base->start, resource_size(base));
1447
1448	base = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1449	release_mem_region(base->start, resource_size(base));
1450
1451	macen = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1452	release_mem_region(macen->start, resource_size(macen));
1453
1454	free_netdev(dev);
1455
1456	return 0;
1457}
1458
1459static struct platform_driver au1000_eth_driver = {
1460	.probe  = au1000_probe,
1461	.remove = au1000_remove,
1462	.driver = {
1463		.name   = "au1000-eth",
1464	},
1465};
1466
1467module_platform_driver(au1000_eth_driver);
1468
1469MODULE_ALIAS("platform:au1000-eth");
1470