1/*
2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
5 *
6 * Derived from Intel e1000 driver
7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the Free
11 * Software Foundation; either version 2 of the License, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17 * more details.
18 *
19 * You should have received a copy of the GNU General Public License along with
20 * this program; if not, write to the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
22 *
23 * The full GNU General Public License is included in this distribution in the
24 * file called COPYING.
25 *
26 * Contact Information:
27 * Xiong Huang <xiong.huang@atheros.com>
28 * Jie Yang <jie.yang@atheros.com>
29 * Chris Snook <csnook@redhat.com>
30 * Jay Cliburn <jcliburn@gmail.com>
31 *
32 * This version is adapted from the Attansic reference driver.
33 *
34 * TODO:
35 * Add more ethtool functions.
36 * Fix abstruse irq enable/disable condition described here:
37 *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
38 *
39 * NEEDS TESTING:
40 * VLAN
41 * multicast
42 * promiscuous mode
43 * interrupt coalescing
44 * SMP torture testing
45 */
46
47#include <linux/atomic.h>
48#include <asm/byteorder.h>
49
50#include <linux/compiler.h>
51#include <linux/crc32.h>
52#include <linux/delay.h>
53#include <linux/dma-mapping.h>
54#include <linux/etherdevice.h>
55#include <linux/hardirq.h>
56#include <linux/if_ether.h>
57#include <linux/if_vlan.h>
58#include <linux/in.h>
59#include <linux/interrupt.h>
60#include <linux/ip.h>
61#include <linux/irqflags.h>
62#include <linux/irqreturn.h>
63#include <linux/jiffies.h>
64#include <linux/mii.h>
65#include <linux/module.h>
66#include <linux/moduleparam.h>
67#include <linux/net.h>
68#include <linux/netdevice.h>
69#include <linux/pci.h>
70#include <linux/pci_ids.h>
71#include <linux/pm.h>
72#include <linux/skbuff.h>
73#include <linux/slab.h>
74#include <linux/spinlock.h>
75#include <linux/string.h>
76#include <linux/tcp.h>
77#include <linux/timer.h>
78#include <linux/types.h>
79#include <linux/workqueue.h>
80
81#include <net/checksum.h>
82
83#include "atl1.h"
84
85#define ATLX_DRIVER_VERSION "2.1.3"
86MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
87	      "Chris Snook <csnook@redhat.com>, "
88	      "Jay Cliburn <jcliburn@gmail.com>");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(ATLX_DRIVER_VERSION);
91
92/* Temporary hack for merging atl1 and atl2 */
93#include "atlx.c"
94
95static const struct ethtool_ops atl1_ethtool_ops;
96
97/*
98 * This is the only thing that needs to be changed to adjust the
99 * maximum number of ports that the driver can manage.
100 */
101#define ATL1_MAX_NIC 4
102
103#define OPTION_UNSET    -1
104#define OPTION_DISABLED 0
105#define OPTION_ENABLED  1
106
107#define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
108
109/*
110 * Interrupt Moderate Timer in units of 2 us
111 *
112 * Valid Range: 10-65535
113 *
114 * Default Value: 100 (200us)
115 */
116static int int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
117static unsigned int num_int_mod_timer;
118module_param_array_named(int_mod_timer, int_mod_timer, int,
119	&num_int_mod_timer, 0);
120MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
121
122#define DEFAULT_INT_MOD_CNT	100	/* 200us */
123#define MAX_INT_MOD_CNT		65000
124#define MIN_INT_MOD_CNT		50
125
126struct atl1_option {
127	enum { enable_option, range_option, list_option } type;
128	char *name;
129	char *err;
130	int def;
131	union {
132		struct {	/* range_option info */
133			int min;
134			int max;
135		} r;
136		struct {	/* list_option info */
137			int nr;
138			struct atl1_opt_list {
139				int i;
140				char *str;
141			} *p;
142		} l;
143	} arg;
144};
145
146static int atl1_validate_option(int *value, struct atl1_option *opt,
147				struct pci_dev *pdev)
148{
149	if (*value == OPTION_UNSET) {
150		*value = opt->def;
151		return 0;
152	}
153
154	switch (opt->type) {
155	case enable_option:
156		switch (*value) {
157		case OPTION_ENABLED:
158			dev_info(&pdev->dev, "%s enabled\n", opt->name);
159			return 0;
160		case OPTION_DISABLED:
161			dev_info(&pdev->dev, "%s disabled\n", opt->name);
162			return 0;
163		}
164		break;
165	case range_option:
166		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
167			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
168				*value);
169			return 0;
170		}
171		break;
172	case list_option:{
173			int i;
174			struct atl1_opt_list *ent;
175
176			for (i = 0; i < opt->arg.l.nr; i++) {
177				ent = &opt->arg.l.p[i];
178				if (*value == ent->i) {
179					if (ent->str[0] != '\0')
180						dev_info(&pdev->dev, "%s\n",
181							ent->str);
182					return 0;
183				}
184			}
185		}
186		break;
187
188	default:
189		break;
190	}
191
192	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
193		opt->name, *value, opt->err);
194	*value = opt->def;
195	return -1;
196}
197
198/**
199 * atl1_check_options - Range Checking for Command Line Parameters
200 * @adapter: board private structure
201 *
202 * This routine checks all command line parameters for valid user
203 * input.  If an invalid value is given, or if no user specified
204 * value exists, a default value is used.  The final value is stored
205 * in a variable in the adapter structure.
206 */
207static void atl1_check_options(struct atl1_adapter *adapter)
208{
209	struct pci_dev *pdev = adapter->pdev;
210	int bd = adapter->bd_number;
211	if (bd >= ATL1_MAX_NIC) {
212		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
213		dev_notice(&pdev->dev, "using defaults for all values\n");
214	}
215	{			/* Interrupt Moderate Timer */
216		struct atl1_option opt = {
217			.type = range_option,
218			.name = "Interrupt Moderator Timer",
219			.err = "using default of "
220				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
221			.def = DEFAULT_INT_MOD_CNT,
222			.arg = {.r = {.min = MIN_INT_MOD_CNT,
223					.max = MAX_INT_MOD_CNT} }
224		};
225		int val;
226		if (num_int_mod_timer > bd) {
227			val = int_mod_timer[bd];
228			atl1_validate_option(&val, &opt, pdev);
229			adapter->imt = (u16) val;
230		} else
231			adapter->imt = (u16) (opt.def);
232	}
233}
234
235/*
236 * atl1_pci_tbl - PCI Device ID Table
237 */
238static const struct pci_device_id atl1_pci_tbl[] = {
239	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
240	/* required last entry */
241	{0,}
242};
243MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
244
245static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
246	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
247
248static int debug = -1;
249module_param(debug, int, 0);
250MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
251
252/*
253 * Reset the transmit and receive units; mask and clear all interrupts.
254 * hw - Struct containing variables accessed by shared code
255 * return : 0  or  idle status (if error)
256 */
257static s32 atl1_reset_hw(struct atl1_hw *hw)
258{
259	struct pci_dev *pdev = hw->back->pdev;
260	struct atl1_adapter *adapter = hw->back;
261	u32 icr;
262	int i;
263
264	/*
265	 * Clear Interrupt mask to stop board from generating
266	 * interrupts & Clear any pending interrupt events
267	 */
268	/*
269	 * atlx_irq_disable(adapter);
270	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
271	 */
272
273	/*
274	 * Issue Soft Reset to the MAC.  This will reset the chip's
275	 * transmit, receive, DMA.  It will not effect
276	 * the current PCI configuration.  The global reset bit is self-
277	 * clearing, and should clear within a microsecond.
278	 */
279	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
280	ioread32(hw->hw_addr + REG_MASTER_CTRL);
281
282	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
283	ioread16(hw->hw_addr + REG_PHY_ENABLE);
284
285	/* delay about 1ms */
286	msleep(1);
287
288	/* Wait at least 10ms for All module to be Idle */
289	for (i = 0; i < 10; i++) {
290		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
291		if (!icr)
292			break;
293		/* delay 1 ms */
294		msleep(1);
295		/* FIXME: still the right way to do this? */
296		cpu_relax();
297	}
298
299	if (icr) {
300		if (netif_msg_hw(adapter))
301			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
302		return icr;
303	}
304
305	return 0;
306}
307
308/* function about EEPROM
309 *
310 * check_eeprom_exist
311 * return 0 if eeprom exist
312 */
313static int atl1_check_eeprom_exist(struct atl1_hw *hw)
314{
315	u32 value;
316	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
317	if (value & SPI_FLASH_CTRL_EN_VPD) {
318		value &= ~SPI_FLASH_CTRL_EN_VPD;
319		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
320	}
321
322	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
323	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
324}
325
326static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
327{
328	int i;
329	u32 control;
330
331	if (offset & 3)
332		/* address do not align */
333		return false;
334
335	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
336	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
337	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
338	ioread32(hw->hw_addr + REG_VPD_CAP);
339
340	for (i = 0; i < 10; i++) {
341		msleep(2);
342		control = ioread32(hw->hw_addr + REG_VPD_CAP);
343		if (control & VPD_CAP_VPD_FLAG)
344			break;
345	}
346	if (control & VPD_CAP_VPD_FLAG) {
347		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
348		return true;
349	}
350	/* timeout */
351	return false;
352}
353
354/*
355 * Reads the value from a PHY register
356 * hw - Struct containing variables accessed by shared code
357 * reg_addr - address of the PHY register to read
358 */
359static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
360{
361	u32 val;
362	int i;
363
364	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
365		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
366		MDIO_CLK_SEL_SHIFT;
367	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
368	ioread32(hw->hw_addr + REG_MDIO_CTRL);
369
370	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
371		udelay(2);
372		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
373		if (!(val & (MDIO_START | MDIO_BUSY)))
374			break;
375	}
376	if (!(val & (MDIO_START | MDIO_BUSY))) {
377		*phy_data = (u16) val;
378		return 0;
379	}
380	return ATLX_ERR_PHY;
381}
382
383#define CUSTOM_SPI_CS_SETUP	2
384#define CUSTOM_SPI_CLK_HI	2
385#define CUSTOM_SPI_CLK_LO	2
386#define CUSTOM_SPI_CS_HOLD	2
387#define CUSTOM_SPI_CS_HI	3
388
389static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
390{
391	int i;
392	u32 value;
393
394	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
395	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
396
397	value = SPI_FLASH_CTRL_WAIT_READY |
398	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
399	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
400					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
401	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
402					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
403	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
404					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
405	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
406					    SPI_FLASH_CTRL_CS_HI_MASK) <<
407	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
408	    SPI_FLASH_CTRL_INS_SHIFT;
409
410	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
411
412	value |= SPI_FLASH_CTRL_START;
413	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
414	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
415
416	for (i = 0; i < 10; i++) {
417		msleep(1);
418		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
419		if (!(value & SPI_FLASH_CTRL_START))
420			break;
421	}
422
423	if (value & SPI_FLASH_CTRL_START)
424		return false;
425
426	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
427
428	return true;
429}
430
431/*
432 * get_permanent_address
433 * return 0 if get valid mac address,
434 */
435static int atl1_get_permanent_address(struct atl1_hw *hw)
436{
437	u32 addr[2];
438	u32 i, control;
439	u16 reg;
440	u8 eth_addr[ETH_ALEN];
441	bool key_valid;
442
443	if (is_valid_ether_addr(hw->perm_mac_addr))
444		return 0;
445
446	/* init */
447	addr[0] = addr[1] = 0;
448
449	if (!atl1_check_eeprom_exist(hw)) {
450		reg = 0;
451		key_valid = false;
452		/* Read out all EEPROM content */
453		i = 0;
454		while (1) {
455			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
456				if (key_valid) {
457					if (reg == REG_MAC_STA_ADDR)
458						addr[0] = control;
459					else if (reg == (REG_MAC_STA_ADDR + 4))
460						addr[1] = control;
461					key_valid = false;
462				} else if ((control & 0xff) == 0x5A) {
463					key_valid = true;
464					reg = (u16) (control >> 16);
465				} else
466					break;
467			} else
468				/* read error */
469				break;
470			i += 4;
471		}
472
473		*(u32 *) &eth_addr[2] = swab32(addr[0]);
474		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
475		if (is_valid_ether_addr(eth_addr)) {
476			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
477			return 0;
478		}
479	}
480
481	/* see if SPI FLAGS exist ? */
482	addr[0] = addr[1] = 0;
483	reg = 0;
484	key_valid = false;
485	i = 0;
486	while (1) {
487		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
488			if (key_valid) {
489				if (reg == REG_MAC_STA_ADDR)
490					addr[0] = control;
491				else if (reg == (REG_MAC_STA_ADDR + 4))
492					addr[1] = control;
493				key_valid = false;
494			} else if ((control & 0xff) == 0x5A) {
495				key_valid = true;
496				reg = (u16) (control >> 16);
497			} else
498				/* data end */
499				break;
500		} else
501			/* read error */
502			break;
503		i += 4;
504	}
505
506	*(u32 *) &eth_addr[2] = swab32(addr[0]);
507	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
508	if (is_valid_ether_addr(eth_addr)) {
509		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
510		return 0;
511	}
512
513	/*
514	 * On some motherboards, the MAC address is written by the
515	 * BIOS directly to the MAC register during POST, and is
516	 * not stored in eeprom.  If all else thus far has failed
517	 * to fetch the permanent MAC address, try reading it directly.
518	 */
519	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
520	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
521	*(u32 *) &eth_addr[2] = swab32(addr[0]);
522	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
523	if (is_valid_ether_addr(eth_addr)) {
524		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
525		return 0;
526	}
527
528	return 1;
529}
530
531/*
532 * Reads the adapter's MAC address from the EEPROM
533 * hw - Struct containing variables accessed by shared code
534 */
535static s32 atl1_read_mac_addr(struct atl1_hw *hw)
536{
537	s32 ret = 0;
538	u16 i;
539
540	if (atl1_get_permanent_address(hw)) {
541		eth_random_addr(hw->perm_mac_addr);
542		ret = 1;
543	}
544
545	for (i = 0; i < ETH_ALEN; i++)
546		hw->mac_addr[i] = hw->perm_mac_addr[i];
547	return ret;
548}
549
550/*
551 * Hashes an address to determine its location in the multicast table
552 * hw - Struct containing variables accessed by shared code
553 * mc_addr - the multicast address to hash
554 *
555 * atl1_hash_mc_addr
556 *  purpose
557 *      set hash value for a multicast address
558 *      hash calcu processing :
559 *          1. calcu 32bit CRC for multicast address
560 *          2. reverse crc with MSB to LSB
561 */
562static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
563{
564	u32 crc32, value = 0;
565	int i;
566
567	crc32 = ether_crc_le(6, mc_addr);
568	for (i = 0; i < 32; i++)
569		value |= (((crc32 >> i) & 1) << (31 - i));
570
571	return value;
572}
573
574/*
575 * Sets the bit in the multicast table corresponding to the hash value.
576 * hw - Struct containing variables accessed by shared code
577 * hash_value - Multicast address hash value
578 */
579static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
580{
581	u32 hash_bit, hash_reg;
582	u32 mta;
583
584	/*
585	 * The HASH Table  is a register array of 2 32-bit registers.
586	 * It is treated like an array of 64 bits.  We want to set
587	 * bit BitArray[hash_value]. So we figure out what register
588	 * the bit is in, read it, OR in the new bit, then write
589	 * back the new value.  The register is determined by the
590	 * upper 7 bits of the hash value and the bit within that
591	 * register are determined by the lower 5 bits of the value.
592	 */
593	hash_reg = (hash_value >> 31) & 0x1;
594	hash_bit = (hash_value >> 26) & 0x1F;
595	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
596	mta |= (1 << hash_bit);
597	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
598}
599
600/*
601 * Writes a value to a PHY register
602 * hw - Struct containing variables accessed by shared code
603 * reg_addr - address of the PHY register to write
604 * data - data to write to the PHY
605 */
606static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
607{
608	int i;
609	u32 val;
610
611	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
612	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
613	    MDIO_SUP_PREAMBLE |
614	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
615	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
616	ioread32(hw->hw_addr + REG_MDIO_CTRL);
617
618	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
619		udelay(2);
620		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
621		if (!(val & (MDIO_START | MDIO_BUSY)))
622			break;
623	}
624
625	if (!(val & (MDIO_START | MDIO_BUSY)))
626		return 0;
627
628	return ATLX_ERR_PHY;
629}
630
631/*
632 * Make L001's PHY out of Power Saving State (bug)
633 * hw - Struct containing variables accessed by shared code
634 * when power on, L001's PHY always on Power saving State
635 * (Gigabit Link forbidden)
636 */
637static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
638{
639	s32 ret;
640	ret = atl1_write_phy_reg(hw, 29, 0x0029);
641	if (ret)
642		return ret;
643	return atl1_write_phy_reg(hw, 30, 0);
644}
645
646/*
647 * Resets the PHY and make all config validate
648 * hw - Struct containing variables accessed by shared code
649 *
650 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
651 */
652static s32 atl1_phy_reset(struct atl1_hw *hw)
653{
654	struct pci_dev *pdev = hw->back->pdev;
655	struct atl1_adapter *adapter = hw->back;
656	s32 ret_val;
657	u16 phy_data;
658
659	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
660	    hw->media_type == MEDIA_TYPE_1000M_FULL)
661		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
662	else {
663		switch (hw->media_type) {
664		case MEDIA_TYPE_100M_FULL:
665			phy_data =
666			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
667			    MII_CR_RESET;
668			break;
669		case MEDIA_TYPE_100M_HALF:
670			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
671			break;
672		case MEDIA_TYPE_10M_FULL:
673			phy_data =
674			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
675			break;
676		default:
677			/* MEDIA_TYPE_10M_HALF: */
678			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
679			break;
680		}
681	}
682
683	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
684	if (ret_val) {
685		u32 val;
686		int i;
687		/* pcie serdes link may be down! */
688		if (netif_msg_hw(adapter))
689			dev_dbg(&pdev->dev, "pcie phy link down\n");
690
691		for (i = 0; i < 25; i++) {
692			msleep(1);
693			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
694			if (!(val & (MDIO_START | MDIO_BUSY)))
695				break;
696		}
697
698		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
699			if (netif_msg_hw(adapter))
700				dev_warn(&pdev->dev,
701					"pcie link down at least 25ms\n");
702			return ret_val;
703		}
704	}
705	return 0;
706}
707
708/*
709 * Configures PHY autoneg and flow control advertisement settings
710 * hw - Struct containing variables accessed by shared code
711 */
712static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
713{
714	s32 ret_val;
715	s16 mii_autoneg_adv_reg;
716	s16 mii_1000t_ctrl_reg;
717
718	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
719	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
720
721	/* Read the MII 1000Base-T Control Register (Address 9). */
722	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
723
724	/*
725	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
726	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
727	 * the  1000Base-T Control Register (Address 9).
728	 */
729	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
730	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
731
732	/*
733	 * Need to parse media_type  and set up
734	 * the appropriate PHY registers.
735	 */
736	switch (hw->media_type) {
737	case MEDIA_TYPE_AUTO_SENSOR:
738		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
739					MII_AR_10T_FD_CAPS |
740					MII_AR_100TX_HD_CAPS |
741					MII_AR_100TX_FD_CAPS);
742		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
743		break;
744
745	case MEDIA_TYPE_1000M_FULL:
746		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
747		break;
748
749	case MEDIA_TYPE_100M_FULL:
750		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
751		break;
752
753	case MEDIA_TYPE_100M_HALF:
754		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
755		break;
756
757	case MEDIA_TYPE_10M_FULL:
758		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
759		break;
760
761	default:
762		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
763		break;
764	}
765
766	/* flow control fixed to enable all */
767	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
768
769	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
770	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
771
772	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
773	if (ret_val)
774		return ret_val;
775
776	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
777	if (ret_val)
778		return ret_val;
779
780	return 0;
781}
782
783/*
784 * Configures link settings.
785 * hw - Struct containing variables accessed by shared code
786 * Assumes the hardware has previously been reset and the
787 * transmitter and receiver are not enabled.
788 */
789static s32 atl1_setup_link(struct atl1_hw *hw)
790{
791	struct pci_dev *pdev = hw->back->pdev;
792	struct atl1_adapter *adapter = hw->back;
793	s32 ret_val;
794
795	/*
796	 * Options:
797	 *  PHY will advertise value(s) parsed from
798	 *  autoneg_advertised and fc
799	 *  no matter what autoneg is , We will not wait link result.
800	 */
801	ret_val = atl1_phy_setup_autoneg_adv(hw);
802	if (ret_val) {
803		if (netif_msg_link(adapter))
804			dev_dbg(&pdev->dev,
805				"error setting up autonegotiation\n");
806		return ret_val;
807	}
808	/* SW.Reset , En-Auto-Neg if needed */
809	ret_val = atl1_phy_reset(hw);
810	if (ret_val) {
811		if (netif_msg_link(adapter))
812			dev_dbg(&pdev->dev, "error resetting phy\n");
813		return ret_val;
814	}
815	hw->phy_configured = true;
816	return ret_val;
817}
818
819static void atl1_init_flash_opcode(struct atl1_hw *hw)
820{
821	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
822		/* Atmel */
823		hw->flash_vendor = 0;
824
825	/* Init OP table */
826	iowrite8(flash_table[hw->flash_vendor].cmd_program,
827		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
828	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
829		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
830	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
831		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
832	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
833		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
834	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
835		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
836	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
837		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
838	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
839		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
840	iowrite8(flash_table[hw->flash_vendor].cmd_read,
841		hw->hw_addr + REG_SPI_FLASH_OP_READ);
842}
843
844/*
845 * Performs basic configuration of the adapter.
846 * hw - Struct containing variables accessed by shared code
847 * Assumes that the controller has previously been reset and is in a
848 * post-reset uninitialized state. Initializes multicast table,
849 * and  Calls routines to setup link
850 * Leaves the transmit and receive units disabled and uninitialized.
851 */
852static s32 atl1_init_hw(struct atl1_hw *hw)
853{
854	u32 ret_val = 0;
855
856	/* Zero out the Multicast HASH table */
857	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
858	/* clear the old settings from the multicast hash table */
859	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
860
861	atl1_init_flash_opcode(hw);
862
863	if (!hw->phy_configured) {
864		/* enable GPHY LinkChange Interrupt */
865		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
866		if (ret_val)
867			return ret_val;
868		/* make PHY out of power-saving state */
869		ret_val = atl1_phy_leave_power_saving(hw);
870		if (ret_val)
871			return ret_val;
872		/* Call a subroutine to configure the link */
873		ret_val = atl1_setup_link(hw);
874	}
875	return ret_val;
876}
877
878/*
879 * Detects the current speed and duplex settings of the hardware.
880 * hw - Struct containing variables accessed by shared code
881 * speed - Speed of the connection
882 * duplex - Duplex setting of the connection
883 */
884static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
885{
886	struct pci_dev *pdev = hw->back->pdev;
887	struct atl1_adapter *adapter = hw->back;
888	s32 ret_val;
889	u16 phy_data;
890
891	/* ; --- Read   PHY Specific Status Register (17) */
892	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
893	if (ret_val)
894		return ret_val;
895
896	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
897		return ATLX_ERR_PHY_RES;
898
899	switch (phy_data & MII_ATLX_PSSR_SPEED) {
900	case MII_ATLX_PSSR_1000MBS:
901		*speed = SPEED_1000;
902		break;
903	case MII_ATLX_PSSR_100MBS:
904		*speed = SPEED_100;
905		break;
906	case MII_ATLX_PSSR_10MBS:
907		*speed = SPEED_10;
908		break;
909	default:
910		if (netif_msg_hw(adapter))
911			dev_dbg(&pdev->dev, "error getting speed\n");
912		return ATLX_ERR_PHY_SPEED;
913	}
914	if (phy_data & MII_ATLX_PSSR_DPLX)
915		*duplex = FULL_DUPLEX;
916	else
917		*duplex = HALF_DUPLEX;
918
919	return 0;
920}
921
922static void atl1_set_mac_addr(struct atl1_hw *hw)
923{
924	u32 value;
925	/*
926	 * 00-0B-6A-F6-00-DC
927	 * 0:  6AF600DC   1: 000B
928	 * low dword
929	 */
930	value = (((u32) hw->mac_addr[2]) << 24) |
931	    (((u32) hw->mac_addr[3]) << 16) |
932	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
933	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
934	/* high dword */
935	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
936	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
937}
938
939/**
940 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
941 * @adapter: board private structure to initialize
942 *
943 * atl1_sw_init initializes the Adapter private data structure.
944 * Fields are initialized based on PCI device information and
945 * OS network device settings (MTU size).
946 */
947static int atl1_sw_init(struct atl1_adapter *adapter)
948{
949	struct atl1_hw *hw = &adapter->hw;
950	struct net_device *netdev = adapter->netdev;
951
952	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
953	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
954
955	adapter->wol = 0;
956	device_set_wakeup_enable(&adapter->pdev->dev, false);
957	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
958	adapter->ict = 50000;		/* 100ms */
959	adapter->link_speed = SPEED_0;	/* hardware init */
960	adapter->link_duplex = FULL_DUPLEX;
961
962	hw->phy_configured = false;
963	hw->preamble_len = 7;
964	hw->ipgt = 0x60;
965	hw->min_ifg = 0x50;
966	hw->ipgr1 = 0x40;
967	hw->ipgr2 = 0x60;
968	hw->max_retry = 0xf;
969	hw->lcol = 0x37;
970	hw->jam_ipg = 7;
971	hw->rfd_burst = 8;
972	hw->rrd_burst = 8;
973	hw->rfd_fetch_gap = 1;
974	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
975	hw->rx_jumbo_lkah = 1;
976	hw->rrd_ret_timer = 16;
977	hw->tpd_burst = 4;
978	hw->tpd_fetch_th = 16;
979	hw->txf_burst = 0x100;
980	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
981	hw->tpd_fetch_gap = 1;
982	hw->rcb_value = atl1_rcb_64;
983	hw->dma_ord = atl1_dma_ord_enh;
984	hw->dmar_block = atl1_dma_req_256;
985	hw->dmaw_block = atl1_dma_req_256;
986	hw->cmb_rrd = 4;
987	hw->cmb_tpd = 4;
988	hw->cmb_rx_timer = 1;	/* about 2us */
989	hw->cmb_tx_timer = 1;	/* about 2us */
990	hw->smb_timer = 100000;	/* about 200ms */
991
992	spin_lock_init(&adapter->lock);
993	spin_lock_init(&adapter->mb_lock);
994
995	return 0;
996}
997
998static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
999{
1000	struct atl1_adapter *adapter = netdev_priv(netdev);
1001	u16 result;
1002
1003	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1004
1005	return result;
1006}
1007
1008static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1009	int val)
1010{
1011	struct atl1_adapter *adapter = netdev_priv(netdev);
1012
1013	atl1_write_phy_reg(&adapter->hw, reg_num, val);
1014}
1015
1016static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1017{
1018	struct atl1_adapter *adapter = netdev_priv(netdev);
1019	unsigned long flags;
1020	int retval;
1021
1022	if (!netif_running(netdev))
1023		return -EINVAL;
1024
1025	spin_lock_irqsave(&adapter->lock, flags);
1026	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1027	spin_unlock_irqrestore(&adapter->lock, flags);
1028
1029	return retval;
1030}
1031
1032/**
1033 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1034 * @adapter: board private structure
1035 *
1036 * Return 0 on success, negative on failure
1037 */
1038static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1039{
1040	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1041	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1042	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1043	struct atl1_ring_header *ring_header = &adapter->ring_header;
1044	struct pci_dev *pdev = adapter->pdev;
1045	int size;
1046	u8 offset = 0;
1047
1048	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1049	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1050	if (unlikely(!tpd_ring->buffer_info)) {
1051		if (netif_msg_drv(adapter))
1052			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1053				size);
1054		goto err_nomem;
1055	}
1056	rfd_ring->buffer_info =
1057		(tpd_ring->buffer_info + tpd_ring->count);
1058
1059	/*
1060	 * real ring DMA buffer
1061	 * each ring/block may need up to 8 bytes for alignment, hence the
1062	 * additional 40 bytes tacked onto the end.
1063	 */
1064	ring_header->size = size =
1065		sizeof(struct tx_packet_desc) * tpd_ring->count
1066		+ sizeof(struct rx_free_desc) * rfd_ring->count
1067		+ sizeof(struct rx_return_desc) * rrd_ring->count
1068		+ sizeof(struct coals_msg_block)
1069		+ sizeof(struct stats_msg_block)
1070		+ 40;
1071
1072	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1073		&ring_header->dma);
1074	if (unlikely(!ring_header->desc)) {
1075		if (netif_msg_drv(adapter))
1076			dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1077		goto err_nomem;
1078	}
1079
1080	memset(ring_header->desc, 0, ring_header->size);
1081
1082	/* init TPD ring */
1083	tpd_ring->dma = ring_header->dma;
1084	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1085	tpd_ring->dma += offset;
1086	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1087	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1088
1089	/* init RFD ring */
1090	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1091	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1092	rfd_ring->dma += offset;
1093	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1094	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1095
1096
1097	/* init RRD ring */
1098	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1099	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1100	rrd_ring->dma += offset;
1101	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1102	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1103
1104
1105	/* init CMB */
1106	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1107	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1108	adapter->cmb.dma += offset;
1109	adapter->cmb.cmb = (struct coals_msg_block *)
1110		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1111
1112	/* init SMB */
1113	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1114	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1115	adapter->smb.dma += offset;
1116	adapter->smb.smb = (struct stats_msg_block *)
1117		((u8 *) adapter->cmb.cmb +
1118		(sizeof(struct coals_msg_block) + offset));
1119
1120	return 0;
1121
1122err_nomem:
1123	kfree(tpd_ring->buffer_info);
1124	return -ENOMEM;
1125}
1126
1127static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1128{
1129	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1130	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1131	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1132
1133	atomic_set(&tpd_ring->next_to_use, 0);
1134	atomic_set(&tpd_ring->next_to_clean, 0);
1135
1136	rfd_ring->next_to_clean = 0;
1137	atomic_set(&rfd_ring->next_to_use, 0);
1138
1139	rrd_ring->next_to_use = 0;
1140	atomic_set(&rrd_ring->next_to_clean, 0);
1141}
1142
1143/**
1144 * atl1_clean_rx_ring - Free RFD Buffers
1145 * @adapter: board private structure
1146 */
1147static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1148{
1149	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1150	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1151	struct atl1_buffer *buffer_info;
1152	struct pci_dev *pdev = adapter->pdev;
1153	unsigned long size;
1154	unsigned int i;
1155
1156	/* Free all the Rx ring sk_buffs */
1157	for (i = 0; i < rfd_ring->count; i++) {
1158		buffer_info = &rfd_ring->buffer_info[i];
1159		if (buffer_info->dma) {
1160			pci_unmap_page(pdev, buffer_info->dma,
1161				buffer_info->length, PCI_DMA_FROMDEVICE);
1162			buffer_info->dma = 0;
1163		}
1164		if (buffer_info->skb) {
1165			dev_kfree_skb(buffer_info->skb);
1166			buffer_info->skb = NULL;
1167		}
1168	}
1169
1170	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1171	memset(rfd_ring->buffer_info, 0, size);
1172
1173	/* Zero out the descriptor ring */
1174	memset(rfd_ring->desc, 0, rfd_ring->size);
1175
1176	rfd_ring->next_to_clean = 0;
1177	atomic_set(&rfd_ring->next_to_use, 0);
1178
1179	rrd_ring->next_to_use = 0;
1180	atomic_set(&rrd_ring->next_to_clean, 0);
1181}
1182
1183/**
1184 * atl1_clean_tx_ring - Free Tx Buffers
1185 * @adapter: board private structure
1186 */
1187static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1188{
1189	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1190	struct atl1_buffer *buffer_info;
1191	struct pci_dev *pdev = adapter->pdev;
1192	unsigned long size;
1193	unsigned int i;
1194
1195	/* Free all the Tx ring sk_buffs */
1196	for (i = 0; i < tpd_ring->count; i++) {
1197		buffer_info = &tpd_ring->buffer_info[i];
1198		if (buffer_info->dma) {
1199			pci_unmap_page(pdev, buffer_info->dma,
1200				buffer_info->length, PCI_DMA_TODEVICE);
1201			buffer_info->dma = 0;
1202		}
1203	}
1204
1205	for (i = 0; i < tpd_ring->count; i++) {
1206		buffer_info = &tpd_ring->buffer_info[i];
1207		if (buffer_info->skb) {
1208			dev_kfree_skb_any(buffer_info->skb);
1209			buffer_info->skb = NULL;
1210		}
1211	}
1212
1213	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1214	memset(tpd_ring->buffer_info, 0, size);
1215
1216	/* Zero out the descriptor ring */
1217	memset(tpd_ring->desc, 0, tpd_ring->size);
1218
1219	atomic_set(&tpd_ring->next_to_use, 0);
1220	atomic_set(&tpd_ring->next_to_clean, 0);
1221}
1222
1223/**
1224 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1225 * @adapter: board private structure
1226 *
1227 * Free all transmit software resources
1228 */
1229static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1230{
1231	struct pci_dev *pdev = adapter->pdev;
1232	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1233	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1234	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1235	struct atl1_ring_header *ring_header = &adapter->ring_header;
1236
1237	atl1_clean_tx_ring(adapter);
1238	atl1_clean_rx_ring(adapter);
1239
1240	kfree(tpd_ring->buffer_info);
1241	pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1242		ring_header->dma);
1243
1244	tpd_ring->buffer_info = NULL;
1245	tpd_ring->desc = NULL;
1246	tpd_ring->dma = 0;
1247
1248	rfd_ring->buffer_info = NULL;
1249	rfd_ring->desc = NULL;
1250	rfd_ring->dma = 0;
1251
1252	rrd_ring->desc = NULL;
1253	rrd_ring->dma = 0;
1254
1255	adapter->cmb.dma = 0;
1256	adapter->cmb.cmb = NULL;
1257
1258	adapter->smb.dma = 0;
1259	adapter->smb.smb = NULL;
1260}
1261
1262static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1263{
1264	u32 value;
1265	struct atl1_hw *hw = &adapter->hw;
1266	struct net_device *netdev = adapter->netdev;
1267	/* Config MAC CTRL Register */
1268	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1269	/* duplex */
1270	if (FULL_DUPLEX == adapter->link_duplex)
1271		value |= MAC_CTRL_DUPLX;
1272	/* speed */
1273	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1274			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1275		  MAC_CTRL_SPEED_SHIFT);
1276	/* flow control */
1277	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1278	/* PAD & CRC */
1279	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1280	/* preamble length */
1281	value |= (((u32) adapter->hw.preamble_len
1282		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1283	/* vlan */
1284	__atlx_vlan_mode(netdev->features, &value);
1285	/* rx checksum
1286	   if (adapter->rx_csum)
1287	   value |= MAC_CTRL_RX_CHKSUM_EN;
1288	 */
1289	/* filter mode */
1290	value |= MAC_CTRL_BC_EN;
1291	if (netdev->flags & IFF_PROMISC)
1292		value |= MAC_CTRL_PROMIS_EN;
1293	else if (netdev->flags & IFF_ALLMULTI)
1294		value |= MAC_CTRL_MC_ALL_EN;
1295	/* value |= MAC_CTRL_LOOPBACK; */
1296	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1297}
1298
1299static u32 atl1_check_link(struct atl1_adapter *adapter)
1300{
1301	struct atl1_hw *hw = &adapter->hw;
1302	struct net_device *netdev = adapter->netdev;
1303	u32 ret_val;
1304	u16 speed, duplex, phy_data;
1305	int reconfig = 0;
1306
1307	/* MII_BMSR must read twice */
1308	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1309	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1310	if (!(phy_data & BMSR_LSTATUS)) {
1311		/* link down */
1312		if (netif_carrier_ok(netdev)) {
1313			/* old link state: Up */
1314			if (netif_msg_link(adapter))
1315				dev_info(&adapter->pdev->dev, "link is down\n");
1316			adapter->link_speed = SPEED_0;
1317			netif_carrier_off(netdev);
1318		}
1319		return 0;
1320	}
1321
1322	/* Link Up */
1323	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1324	if (ret_val)
1325		return ret_val;
1326
1327	switch (hw->media_type) {
1328	case MEDIA_TYPE_1000M_FULL:
1329		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1330			reconfig = 1;
1331		break;
1332	case MEDIA_TYPE_100M_FULL:
1333		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1334			reconfig = 1;
1335		break;
1336	case MEDIA_TYPE_100M_HALF:
1337		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1338			reconfig = 1;
1339		break;
1340	case MEDIA_TYPE_10M_FULL:
1341		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1342			reconfig = 1;
1343		break;
1344	case MEDIA_TYPE_10M_HALF:
1345		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1346			reconfig = 1;
1347		break;
1348	}
1349
1350	/* link result is our setting */
1351	if (!reconfig) {
1352		if (adapter->link_speed != speed ||
1353		    adapter->link_duplex != duplex) {
1354			adapter->link_speed = speed;
1355			adapter->link_duplex = duplex;
1356			atl1_setup_mac_ctrl(adapter);
1357			if (netif_msg_link(adapter))
1358				dev_info(&adapter->pdev->dev,
1359					"%s link is up %d Mbps %s\n",
1360					netdev->name, adapter->link_speed,
1361					adapter->link_duplex == FULL_DUPLEX ?
1362					"full duplex" : "half duplex");
1363		}
1364		if (!netif_carrier_ok(netdev)) {
1365			/* Link down -> Up */
1366			netif_carrier_on(netdev);
1367		}
1368		return 0;
1369	}
1370
1371	/* change original link status */
1372	if (netif_carrier_ok(netdev)) {
1373		adapter->link_speed = SPEED_0;
1374		netif_carrier_off(netdev);
1375		netif_stop_queue(netdev);
1376	}
1377
1378	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1379	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1380		switch (hw->media_type) {
1381		case MEDIA_TYPE_100M_FULL:
1382			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1383			           MII_CR_RESET;
1384			break;
1385		case MEDIA_TYPE_100M_HALF:
1386			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1387			break;
1388		case MEDIA_TYPE_10M_FULL:
1389			phy_data =
1390			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1391			break;
1392		default:
1393			/* MEDIA_TYPE_10M_HALF: */
1394			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1395			break;
1396		}
1397		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1398		return 0;
1399	}
1400
1401	/* auto-neg, insert timer to re-config phy */
1402	if (!adapter->phy_timer_pending) {
1403		adapter->phy_timer_pending = true;
1404		mod_timer(&adapter->phy_config_timer,
1405			  round_jiffies(jiffies + 3 * HZ));
1406	}
1407
1408	return 0;
1409}
1410
1411static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1412{
1413	u32 hi, lo, value;
1414
1415	/* RFD Flow Control */
1416	value = adapter->rfd_ring.count;
1417	hi = value / 16;
1418	if (hi < 2)
1419		hi = 2;
1420	lo = value * 7 / 8;
1421
1422	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1423		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1424	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1425
1426	/* RRD Flow Control */
1427	value = adapter->rrd_ring.count;
1428	lo = value / 16;
1429	hi = value * 7 / 8;
1430	if (lo < 2)
1431		lo = 2;
1432	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1433		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1434	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1435}
1436
1437static void set_flow_ctrl_new(struct atl1_hw *hw)
1438{
1439	u32 hi, lo, value;
1440
1441	/* RXF Flow Control */
1442	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1443	lo = value / 16;
1444	if (lo < 192)
1445		lo = 192;
1446	hi = value * 7 / 8;
1447	if (hi < lo)
1448		hi = lo + 16;
1449	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1450		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1451	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1452
1453	/* RRD Flow Control */
1454	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1455	lo = value / 8;
1456	hi = value * 7 / 8;
1457	if (lo < 2)
1458		lo = 2;
1459	if (hi < lo)
1460		hi = lo + 3;
1461	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1462		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1463	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1464}
1465
1466/**
1467 * atl1_configure - Configure Transmit&Receive Unit after Reset
1468 * @adapter: board private structure
1469 *
1470 * Configure the Tx /Rx unit of the MAC after a reset.
1471 */
1472static u32 atl1_configure(struct atl1_adapter *adapter)
1473{
1474	struct atl1_hw *hw = &adapter->hw;
1475	u32 value;
1476
1477	/* clear interrupt status */
1478	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1479
1480	/* set MAC Address */
1481	value = (((u32) hw->mac_addr[2]) << 24) |
1482		(((u32) hw->mac_addr[3]) << 16) |
1483		(((u32) hw->mac_addr[4]) << 8) |
1484		(((u32) hw->mac_addr[5]));
1485	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1486	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1487	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1488
1489	/* tx / rx ring */
1490
1491	/* HI base address */
1492	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1493		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1494	/* LO base address */
1495	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1496		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1497	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1498		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1499	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1500		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1501	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1502		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1503	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1504		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1505
1506	/* element count */
1507	value = adapter->rrd_ring.count;
1508	value <<= 16;
1509	value += adapter->rfd_ring.count;
1510	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1511	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1512		REG_DESC_TPD_RING_SIZE);
1513
1514	/* Load Ptr */
1515	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1516
1517	/* config Mailbox */
1518	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1519		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1520		((atomic_read(&adapter->rrd_ring.next_to_clean)
1521		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1522		((atomic_read(&adapter->rfd_ring.next_to_use)
1523		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1524	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1525
1526	/* config IPG/IFG */
1527	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1528		 << MAC_IPG_IFG_IPGT_SHIFT) |
1529		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1530		<< MAC_IPG_IFG_MIFG_SHIFT) |
1531		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1532		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1533		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1534		<< MAC_IPG_IFG_IPGR2_SHIFT);
1535	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1536
1537	/* config  Half-Duplex Control */
1538	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1539		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1540		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1541		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1542		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1543		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1544		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1545	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1546
1547	/* set Interrupt Moderator Timer */
1548	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1549	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1550
1551	/* set Interrupt Clear Timer */
1552	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1553
1554	/* set max frame size hw will accept */
1555	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1556
1557	/* jumbo size & rrd retirement timer */
1558	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1559		 << RXQ_JMBOSZ_TH_SHIFT) |
1560		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1561		<< RXQ_JMBO_LKAH_SHIFT) |
1562		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1563		<< RXQ_RRD_TIMER_SHIFT);
1564	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1565
1566	/* Flow Control */
1567	switch (hw->dev_rev) {
1568	case 0x8001:
1569	case 0x9001:
1570	case 0x9002:
1571	case 0x9003:
1572		set_flow_ctrl_old(adapter);
1573		break;
1574	default:
1575		set_flow_ctrl_new(hw);
1576		break;
1577	}
1578
1579	/* config TXQ */
1580	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1581		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1582		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1583		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1584		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1585		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1586		TXQ_CTRL_EN;
1587	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1588
1589	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1590	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1591		<< TX_JUMBO_TASK_TH_SHIFT) |
1592		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1593		<< TX_TPD_MIN_IPG_SHIFT);
1594	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1595
1596	/* config RXQ */
1597	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1598		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1599		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1600		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1601		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1602		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1603		RXQ_CTRL_EN;
1604	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1605
1606	/* config DMA Engine */
1607	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1608		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1609		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1610		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1611		DMA_CTRL_DMAW_EN;
1612	value |= (u32) hw->dma_ord;
1613	if (atl1_rcb_128 == hw->rcb_value)
1614		value |= DMA_CTRL_RCB_VALUE;
1615	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1616
1617	/* config CMB / SMB */
1618	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1619		hw->cmb_tpd : adapter->tpd_ring.count;
1620	value <<= 16;
1621	value |= hw->cmb_rrd;
1622	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1623	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1624	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1625	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1626
1627	/* --- enable CMB / SMB */
1628	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1629	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1630
1631	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1632	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1633		value = 1;	/* config failed */
1634	else
1635		value = 0;
1636
1637	/* clear all interrupt status */
1638	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1639	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1640	return value;
1641}
1642
1643/*
1644 * atl1_pcie_patch - Patch for PCIE module
1645 */
1646static void atl1_pcie_patch(struct atl1_adapter *adapter)
1647{
1648	u32 value;
1649
1650	/* much vendor magic here */
1651	value = 0x6500;
1652	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1653	/* pcie flow control mode change */
1654	value = ioread32(adapter->hw.hw_addr + 0x1008);
1655	value |= 0x8000;
1656	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1657}
1658
1659/*
1660 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1661 * on PCI Command register is disable.
1662 * The function enable this bit.
1663 * Brackett, 2006/03/15
1664 */
1665static void atl1_via_workaround(struct atl1_adapter *adapter)
1666{
1667	unsigned long value;
1668
1669	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1670	if (value & PCI_COMMAND_INTX_DISABLE)
1671		value &= ~PCI_COMMAND_INTX_DISABLE;
1672	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1673}
1674
1675static void atl1_inc_smb(struct atl1_adapter *adapter)
1676{
1677	struct net_device *netdev = adapter->netdev;
1678	struct stats_msg_block *smb = adapter->smb.smb;
1679
1680	u64 new_rx_errors = smb->rx_frag +
1681			    smb->rx_fcs_err +
1682			    smb->rx_len_err +
1683			    smb->rx_sz_ov +
1684			    smb->rx_rxf_ov +
1685			    smb->rx_rrd_ov +
1686			    smb->rx_align_err;
1687	u64 new_tx_errors = smb->tx_late_col +
1688			    smb->tx_abort_col +
1689			    smb->tx_underrun +
1690			    smb->tx_trunc;
1691
1692	/* Fill out the OS statistics structure */
1693	adapter->soft_stats.rx_packets += smb->rx_ok + new_rx_errors;
1694	adapter->soft_stats.tx_packets += smb->tx_ok + new_tx_errors;
1695	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1696	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1697	adapter->soft_stats.multicast += smb->rx_mcast;
1698	adapter->soft_stats.collisions += smb->tx_1_col +
1699					  smb->tx_2_col +
1700					  smb->tx_late_col +
1701					  smb->tx_abort_col;
1702
1703	/* Rx Errors */
1704	adapter->soft_stats.rx_errors += new_rx_errors;
1705	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1706	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1707	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1708	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1709
1710	adapter->soft_stats.rx_pause += smb->rx_pause;
1711	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1712	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1713
1714	/* Tx Errors */
1715	adapter->soft_stats.tx_errors += new_tx_errors;
1716	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1717	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1718	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1719
1720	adapter->soft_stats.excecol += smb->tx_abort_col;
1721	adapter->soft_stats.deffer += smb->tx_defer;
1722	adapter->soft_stats.scc += smb->tx_1_col;
1723	adapter->soft_stats.mcc += smb->tx_2_col;
1724	adapter->soft_stats.latecol += smb->tx_late_col;
1725	adapter->soft_stats.tx_underun += smb->tx_underrun;
1726	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1727	adapter->soft_stats.tx_pause += smb->tx_pause;
1728
1729	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1730	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1731	netdev->stats.multicast = adapter->soft_stats.multicast;
1732	netdev->stats.collisions = adapter->soft_stats.collisions;
1733	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1734	netdev->stats.rx_length_errors =
1735		adapter->soft_stats.rx_length_errors;
1736	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1737	netdev->stats.rx_frame_errors =
1738		adapter->soft_stats.rx_frame_errors;
1739	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1740	netdev->stats.rx_dropped = adapter->soft_stats.rx_rrd_ov;
1741	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1742	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1743	netdev->stats.tx_aborted_errors =
1744		adapter->soft_stats.tx_aborted_errors;
1745	netdev->stats.tx_window_errors =
1746		adapter->soft_stats.tx_window_errors;
1747	netdev->stats.tx_carrier_errors =
1748		adapter->soft_stats.tx_carrier_errors;
1749
1750	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1751	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1752}
1753
1754static void atl1_update_mailbox(struct atl1_adapter *adapter)
1755{
1756	unsigned long flags;
1757	u32 tpd_next_to_use;
1758	u32 rfd_next_to_use;
1759	u32 rrd_next_to_clean;
1760	u32 value;
1761
1762	spin_lock_irqsave(&adapter->mb_lock, flags);
1763
1764	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1765	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1766	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1767
1768	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1769		MB_RFD_PROD_INDX_SHIFT) |
1770		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1771		MB_RRD_CONS_INDX_SHIFT) |
1772		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1773		MB_TPD_PROD_INDX_SHIFT);
1774	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1775
1776	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1777}
1778
1779static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1780	struct rx_return_desc *rrd, u16 offset)
1781{
1782	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1783
1784	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1785		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1786		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1787			rfd_ring->next_to_clean = 0;
1788		}
1789	}
1790}
1791
1792static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1793	struct rx_return_desc *rrd)
1794{
1795	u16 num_buf;
1796
1797	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1798		adapter->rx_buffer_len;
1799	if (rrd->num_buf == num_buf)
1800		/* clean alloc flag for bad rrd */
1801		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1802}
1803
1804static void atl1_rx_checksum(struct atl1_adapter *adapter,
1805	struct rx_return_desc *rrd, struct sk_buff *skb)
1806{
1807	struct pci_dev *pdev = adapter->pdev;
1808
1809	/*
1810	 * The L1 hardware contains a bug that erroneously sets the
1811	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1812	 * fragmented IP packet is received, even though the packet
1813	 * is perfectly valid and its checksum is correct. There's
1814	 * no way to distinguish between one of these good packets
1815	 * and a packet that actually contains a TCP/UDP checksum
1816	 * error, so all we can do is allow it to be handed up to
1817	 * the higher layers and let it be sorted out there.
1818	 */
1819
1820	skb_checksum_none_assert(skb);
1821
1822	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1823		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1824					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1825			adapter->hw_csum_err++;
1826			if (netif_msg_rx_err(adapter))
1827				dev_printk(KERN_DEBUG, &pdev->dev,
1828					"rx checksum error\n");
1829			return;
1830		}
1831	}
1832
1833	/* not IPv4 */
1834	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1835		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1836		return;
1837
1838	/* IPv4 packet */
1839	if (likely(!(rrd->err_flg &
1840		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1841		skb->ip_summed = CHECKSUM_UNNECESSARY;
1842		adapter->hw_csum_good++;
1843		return;
1844	}
1845}
1846
1847/**
1848 * atl1_alloc_rx_buffers - Replace used receive buffers
1849 * @adapter: address of board private structure
1850 */
1851static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1852{
1853	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1854	struct pci_dev *pdev = adapter->pdev;
1855	struct page *page;
1856	unsigned long offset;
1857	struct atl1_buffer *buffer_info, *next_info;
1858	struct sk_buff *skb;
1859	u16 num_alloc = 0;
1860	u16 rfd_next_to_use, next_next;
1861	struct rx_free_desc *rfd_desc;
1862
1863	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1864	if (++next_next == rfd_ring->count)
1865		next_next = 0;
1866	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1867	next_info = &rfd_ring->buffer_info[next_next];
1868
1869	while (!buffer_info->alloced && !next_info->alloced) {
1870		if (buffer_info->skb) {
1871			buffer_info->alloced = 1;
1872			goto next;
1873		}
1874
1875		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1876
1877		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1878						adapter->rx_buffer_len);
1879		if (unlikely(!skb)) {
1880			/* Better luck next round */
1881			adapter->soft_stats.rx_dropped++;
1882			break;
1883		}
1884
1885		buffer_info->alloced = 1;
1886		buffer_info->skb = skb;
1887		buffer_info->length = (u16) adapter->rx_buffer_len;
1888		page = virt_to_page(skb->data);
1889		offset = (unsigned long)skb->data & ~PAGE_MASK;
1890		buffer_info->dma = pci_map_page(pdev, page, offset,
1891						adapter->rx_buffer_len,
1892						PCI_DMA_FROMDEVICE);
1893		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1894		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1895		rfd_desc->coalese = 0;
1896
1897next:
1898		rfd_next_to_use = next_next;
1899		if (unlikely(++next_next == rfd_ring->count))
1900			next_next = 0;
1901
1902		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1903		next_info = &rfd_ring->buffer_info[next_next];
1904		num_alloc++;
1905	}
1906
1907	if (num_alloc) {
1908		/*
1909		 * Force memory writes to complete before letting h/w
1910		 * know there are new descriptors to fetch.  (Only
1911		 * applicable for weak-ordered memory model archs,
1912		 * such as IA-64).
1913		 */
1914		wmb();
1915		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1916	}
1917	return num_alloc;
1918}
1919
1920static int atl1_intr_rx(struct atl1_adapter *adapter, int budget)
1921{
1922	int i, count;
1923	u16 length;
1924	u16 rrd_next_to_clean;
1925	u32 value;
1926	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1927	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1928	struct atl1_buffer *buffer_info;
1929	struct rx_return_desc *rrd;
1930	struct sk_buff *skb;
1931
1932	count = 0;
1933
1934	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1935
1936	while (count < budget) {
1937		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1938		i = 1;
1939		if (likely(rrd->xsz.valid)) {	/* packet valid */
1940chk_rrd:
1941			/* check rrd status */
1942			if (likely(rrd->num_buf == 1))
1943				goto rrd_ok;
1944			else if (netif_msg_rx_err(adapter)) {
1945				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1946					"unexpected RRD buffer count\n");
1947				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948					"rx_buf_len = %d\n",
1949					adapter->rx_buffer_len);
1950				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951					"RRD num_buf = %d\n",
1952					rrd->num_buf);
1953				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954					"RRD pkt_len = %d\n",
1955					rrd->xsz.xsum_sz.pkt_size);
1956				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957					"RRD pkt_flg = 0x%08X\n",
1958					rrd->pkt_flg);
1959				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960					"RRD err_flg = 0x%08X\n",
1961					rrd->err_flg);
1962				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1963					"RRD vlan_tag = 0x%08X\n",
1964					rrd->vlan_tag);
1965			}
1966
1967			/* rrd seems to be bad */
1968			if (unlikely(i-- > 0)) {
1969				/* rrd may not be DMAed completely */
1970				udelay(1);
1971				goto chk_rrd;
1972			}
1973			/* bad rrd */
1974			if (netif_msg_rx_err(adapter))
1975				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1976					"bad RRD\n");
1977			/* see if update RFD index */
1978			if (rrd->num_buf > 1)
1979				atl1_update_rfd_index(adapter, rrd);
1980
1981			/* update rrd */
1982			rrd->xsz.valid = 0;
1983			if (++rrd_next_to_clean == rrd_ring->count)
1984				rrd_next_to_clean = 0;
1985			count++;
1986			continue;
1987		} else {	/* current rrd still not be updated */
1988
1989			break;
1990		}
1991rrd_ok:
1992		/* clean alloc flag for bad rrd */
1993		atl1_clean_alloc_flag(adapter, rrd, 0);
1994
1995		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1996		if (++rfd_ring->next_to_clean == rfd_ring->count)
1997			rfd_ring->next_to_clean = 0;
1998
1999		/* update rrd next to clean */
2000		if (++rrd_next_to_clean == rrd_ring->count)
2001			rrd_next_to_clean = 0;
2002		count++;
2003
2004		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2005			if (!(rrd->err_flg &
2006				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2007				| ERR_FLAG_LEN))) {
2008				/* packet error, don't need upstream */
2009				buffer_info->alloced = 0;
2010				rrd->xsz.valid = 0;
2011				continue;
2012			}
2013		}
2014
2015		/* Good Receive */
2016		pci_unmap_page(adapter->pdev, buffer_info->dma,
2017			       buffer_info->length, PCI_DMA_FROMDEVICE);
2018		buffer_info->dma = 0;
2019		skb = buffer_info->skb;
2020		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2021
2022		skb_put(skb, length - ETH_FCS_LEN);
2023
2024		/* Receive Checksum Offload */
2025		atl1_rx_checksum(adapter, rrd, skb);
2026		skb->protocol = eth_type_trans(skb, adapter->netdev);
2027
2028		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2029			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2030					((rrd->vlan_tag & 7) << 13) |
2031					((rrd->vlan_tag & 8) << 9);
2032
2033			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
2034		}
2035		netif_receive_skb(skb);
2036
2037		/* let protocol layer free skb */
2038		buffer_info->skb = NULL;
2039		buffer_info->alloced = 0;
2040		rrd->xsz.valid = 0;
2041	}
2042
2043	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2044
2045	atl1_alloc_rx_buffers(adapter);
2046
2047	/* update mailbox ? */
2048	if (count) {
2049		u32 tpd_next_to_use;
2050		u32 rfd_next_to_use;
2051
2052		spin_lock(&adapter->mb_lock);
2053
2054		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2055		rfd_next_to_use =
2056		    atomic_read(&adapter->rfd_ring.next_to_use);
2057		rrd_next_to_clean =
2058		    atomic_read(&adapter->rrd_ring.next_to_clean);
2059		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2060			MB_RFD_PROD_INDX_SHIFT) |
2061                        ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2062			MB_RRD_CONS_INDX_SHIFT) |
2063                        ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2064			MB_TPD_PROD_INDX_SHIFT);
2065		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2066		spin_unlock(&adapter->mb_lock);
2067	}
2068
2069	return count;
2070}
2071
2072static int atl1_intr_tx(struct atl1_adapter *adapter)
2073{
2074	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2075	struct atl1_buffer *buffer_info;
2076	u16 sw_tpd_next_to_clean;
2077	u16 cmb_tpd_next_to_clean;
2078	int count = 0;
2079
2080	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2081	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2082
2083	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2084		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2085		if (buffer_info->dma) {
2086			pci_unmap_page(adapter->pdev, buffer_info->dma,
2087				       buffer_info->length, PCI_DMA_TODEVICE);
2088			buffer_info->dma = 0;
2089		}
2090
2091		if (buffer_info->skb) {
2092			dev_kfree_skb_irq(buffer_info->skb);
2093			buffer_info->skb = NULL;
2094		}
2095
2096		if (++sw_tpd_next_to_clean == tpd_ring->count)
2097			sw_tpd_next_to_clean = 0;
2098
2099		count++;
2100	}
2101	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2102
2103	if (netif_queue_stopped(adapter->netdev) &&
2104	    netif_carrier_ok(adapter->netdev))
2105		netif_wake_queue(adapter->netdev);
2106
2107	return count;
2108}
2109
2110static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2111{
2112	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2113	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2114	return (next_to_clean > next_to_use) ?
2115		next_to_clean - next_to_use - 1 :
2116		tpd_ring->count + next_to_clean - next_to_use - 1;
2117}
2118
2119static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2120		    struct tx_packet_desc *ptpd)
2121{
2122	u8 hdr_len, ip_off;
2123	u32 real_len;
2124
2125	if (skb_shinfo(skb)->gso_size) {
2126		int err;
2127
2128		err = skb_cow_head(skb, 0);
2129		if (err < 0)
2130			return err;
2131
2132		if (skb->protocol == htons(ETH_P_IP)) {
2133			struct iphdr *iph = ip_hdr(skb);
2134
2135			real_len = (((unsigned char *)iph - skb->data) +
2136				ntohs(iph->tot_len));
2137			if (real_len < skb->len)
2138				pskb_trim(skb, real_len);
2139			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2140			if (skb->len == hdr_len) {
2141				iph->check = 0;
2142				tcp_hdr(skb)->check =
2143					~csum_tcpudp_magic(iph->saddr,
2144					iph->daddr, tcp_hdrlen(skb),
2145					IPPROTO_TCP, 0);
2146				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2147					TPD_IPHL_SHIFT;
2148				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2149					TPD_TCPHDRLEN_MASK) <<
2150					TPD_TCPHDRLEN_SHIFT;
2151				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2152				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2153				return 1;
2154			}
2155
2156			iph->check = 0;
2157			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2158					iph->daddr, 0, IPPROTO_TCP, 0);
2159			ip_off = (unsigned char *)iph -
2160				(unsigned char *) skb_network_header(skb);
2161			if (ip_off == 8) /* 802.3-SNAP frame */
2162				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2163			else if (ip_off != 0)
2164				return -2;
2165
2166			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2167				TPD_IPHL_SHIFT;
2168			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2169				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2170			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2171				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2172			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2173			return 3;
2174		}
2175	}
2176	return 0;
2177}
2178
2179static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2180	struct tx_packet_desc *ptpd)
2181{
2182	u8 css, cso;
2183
2184	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2185		css = skb_checksum_start_offset(skb);
2186		cso = css + (u8) skb->csum_offset;
2187		if (unlikely(css & 0x1)) {
2188			/* L1 hardware requires an even number here */
2189			if (netif_msg_tx_err(adapter))
2190				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2191					"payload offset not an even number\n");
2192			return -1;
2193		}
2194		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2195			TPD_PLOADOFFSET_SHIFT;
2196		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2197			TPD_CCSUMOFFSET_SHIFT;
2198		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2199		return true;
2200	}
2201	return 0;
2202}
2203
2204static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2205	struct tx_packet_desc *ptpd)
2206{
2207	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2208	struct atl1_buffer *buffer_info;
2209	u16 buf_len = skb->len;
2210	struct page *page;
2211	unsigned long offset;
2212	unsigned int nr_frags;
2213	unsigned int f;
2214	int retval;
2215	u16 next_to_use;
2216	u16 data_len;
2217	u8 hdr_len;
2218
2219	buf_len -= skb->data_len;
2220	nr_frags = skb_shinfo(skb)->nr_frags;
2221	next_to_use = atomic_read(&tpd_ring->next_to_use);
2222	buffer_info = &tpd_ring->buffer_info[next_to_use];
2223	BUG_ON(buffer_info->skb);
2224	/* put skb in last TPD */
2225	buffer_info->skb = NULL;
2226
2227	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2228	if (retval) {
2229		/* TSO */
2230		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2231		buffer_info->length = hdr_len;
2232		page = virt_to_page(skb->data);
2233		offset = (unsigned long)skb->data & ~PAGE_MASK;
2234		buffer_info->dma = pci_map_page(adapter->pdev, page,
2235						offset, hdr_len,
2236						PCI_DMA_TODEVICE);
2237
2238		if (++next_to_use == tpd_ring->count)
2239			next_to_use = 0;
2240
2241		if (buf_len > hdr_len) {
2242			int i, nseg;
2243
2244			data_len = buf_len - hdr_len;
2245			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2246				ATL1_MAX_TX_BUF_LEN;
2247			for (i = 0; i < nseg; i++) {
2248				buffer_info =
2249				    &tpd_ring->buffer_info[next_to_use];
2250				buffer_info->skb = NULL;
2251				buffer_info->length =
2252				    (ATL1_MAX_TX_BUF_LEN >=
2253				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2254				data_len -= buffer_info->length;
2255				page = virt_to_page(skb->data +
2256					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2257				offset = (unsigned long)(skb->data +
2258					(hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2259					~PAGE_MASK;
2260				buffer_info->dma = pci_map_page(adapter->pdev,
2261					page, offset, buffer_info->length,
2262					PCI_DMA_TODEVICE);
2263				if (++next_to_use == tpd_ring->count)
2264					next_to_use = 0;
2265			}
2266		}
2267	} else {
2268		/* not TSO */
2269		buffer_info->length = buf_len;
2270		page = virt_to_page(skb->data);
2271		offset = (unsigned long)skb->data & ~PAGE_MASK;
2272		buffer_info->dma = pci_map_page(adapter->pdev, page,
2273			offset, buf_len, PCI_DMA_TODEVICE);
2274		if (++next_to_use == tpd_ring->count)
2275			next_to_use = 0;
2276	}
2277
2278	for (f = 0; f < nr_frags; f++) {
2279		const struct skb_frag_struct *frag;
2280		u16 i, nseg;
2281
2282		frag = &skb_shinfo(skb)->frags[f];
2283		buf_len = skb_frag_size(frag);
2284
2285		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2286			ATL1_MAX_TX_BUF_LEN;
2287		for (i = 0; i < nseg; i++) {
2288			buffer_info = &tpd_ring->buffer_info[next_to_use];
2289			BUG_ON(buffer_info->skb);
2290
2291			buffer_info->skb = NULL;
2292			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2293				ATL1_MAX_TX_BUF_LEN : buf_len;
2294			buf_len -= buffer_info->length;
2295			buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev,
2296				frag, i * ATL1_MAX_TX_BUF_LEN,
2297				buffer_info->length, DMA_TO_DEVICE);
2298
2299			if (++next_to_use == tpd_ring->count)
2300				next_to_use = 0;
2301		}
2302	}
2303
2304	/* last tpd's buffer-info */
2305	buffer_info->skb = skb;
2306}
2307
2308static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2309       struct tx_packet_desc *ptpd)
2310{
2311	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2312	struct atl1_buffer *buffer_info;
2313	struct tx_packet_desc *tpd;
2314	u16 j;
2315	u32 val;
2316	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2317
2318	for (j = 0; j < count; j++) {
2319		buffer_info = &tpd_ring->buffer_info[next_to_use];
2320		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2321		if (tpd != ptpd)
2322			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2323		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2324		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2325		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2326			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2327
2328		/*
2329		 * if this is the first packet in a TSO chain, set
2330		 * TPD_HDRFLAG, otherwise, clear it.
2331		 */
2332		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2333			TPD_SEGMENT_EN_MASK;
2334		if (val) {
2335			if (!j)
2336				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2337			else
2338				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2339		}
2340
2341		if (j == (count - 1))
2342			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2343
2344		if (++next_to_use == tpd_ring->count)
2345			next_to_use = 0;
2346	}
2347	/*
2348	 * Force memory writes to complete before letting h/w
2349	 * know there are new descriptors to fetch.  (Only
2350	 * applicable for weak-ordered memory model archs,
2351	 * such as IA-64).
2352	 */
2353	wmb();
2354
2355	atomic_set(&tpd_ring->next_to_use, next_to_use);
2356}
2357
2358static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2359					 struct net_device *netdev)
2360{
2361	struct atl1_adapter *adapter = netdev_priv(netdev);
2362	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2363	int len;
2364	int tso;
2365	int count = 1;
2366	int ret_val;
2367	struct tx_packet_desc *ptpd;
2368	u16 vlan_tag;
2369	unsigned int nr_frags = 0;
2370	unsigned int mss = 0;
2371	unsigned int f;
2372	unsigned int proto_hdr_len;
2373
2374	len = skb_headlen(skb);
2375
2376	if (unlikely(skb->len <= 0)) {
2377		dev_kfree_skb_any(skb);
2378		return NETDEV_TX_OK;
2379	}
2380
2381	nr_frags = skb_shinfo(skb)->nr_frags;
2382	for (f = 0; f < nr_frags; f++) {
2383		unsigned int f_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
2384		count += (f_size + ATL1_MAX_TX_BUF_LEN - 1) /
2385			 ATL1_MAX_TX_BUF_LEN;
2386	}
2387
2388	mss = skb_shinfo(skb)->gso_size;
2389	if (mss) {
2390		if (skb->protocol == htons(ETH_P_IP)) {
2391			proto_hdr_len = (skb_transport_offset(skb) +
2392					 tcp_hdrlen(skb));
2393			if (unlikely(proto_hdr_len > len)) {
2394				dev_kfree_skb_any(skb);
2395				return NETDEV_TX_OK;
2396			}
2397			/* need additional TPD ? */
2398			if (proto_hdr_len != len)
2399				count += (len - proto_hdr_len +
2400					ATL1_MAX_TX_BUF_LEN - 1) /
2401					ATL1_MAX_TX_BUF_LEN;
2402		}
2403	}
2404
2405	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2406		/* not enough descriptors */
2407		netif_stop_queue(netdev);
2408		if (netif_msg_tx_queued(adapter))
2409			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2410				"tx busy\n");
2411		return NETDEV_TX_BUSY;
2412	}
2413
2414	ptpd = ATL1_TPD_DESC(tpd_ring,
2415		(u16) atomic_read(&tpd_ring->next_to_use));
2416	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2417
2418	if (skb_vlan_tag_present(skb)) {
2419		vlan_tag = skb_vlan_tag_get(skb);
2420		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2421			((vlan_tag >> 9) & 0x8);
2422		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2423		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2424			TPD_VLANTAG_SHIFT;
2425	}
2426
2427	tso = atl1_tso(adapter, skb, ptpd);
2428	if (tso < 0) {
2429		dev_kfree_skb_any(skb);
2430		return NETDEV_TX_OK;
2431	}
2432
2433	if (!tso) {
2434		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2435		if (ret_val < 0) {
2436			dev_kfree_skb_any(skb);
2437			return NETDEV_TX_OK;
2438		}
2439	}
2440
2441	atl1_tx_map(adapter, skb, ptpd);
2442	atl1_tx_queue(adapter, count, ptpd);
2443	atl1_update_mailbox(adapter);
2444	mmiowb();
2445	return NETDEV_TX_OK;
2446}
2447
2448static int atl1_rings_clean(struct napi_struct *napi, int budget)
2449{
2450	struct atl1_adapter *adapter = container_of(napi, struct atl1_adapter, napi);
2451	int work_done = atl1_intr_rx(adapter, budget);
2452
2453	if (atl1_intr_tx(adapter))
2454		work_done = budget;
2455
2456	/* Let's come again to process some more packets */
2457	if (work_done >= budget)
2458		return work_done;
2459
2460	napi_complete(napi);
2461	/* re-enable Interrupt */
2462	if (likely(adapter->int_enabled))
2463		atlx_imr_set(adapter, IMR_NORMAL_MASK);
2464	return work_done;
2465}
2466
2467static inline int atl1_sched_rings_clean(struct atl1_adapter* adapter)
2468{
2469	if (!napi_schedule_prep(&adapter->napi))
2470		/* It is possible in case even the RX/TX ints are disabled via IMR
2471		 * register the ISR bits are set anyway (but do not produce IRQ).
2472		 * To handle such situation the napi functions used to check is
2473		 * something scheduled or not.
2474		 */
2475		return 0;
2476
2477	__napi_schedule(&adapter->napi);
2478
2479	/*
2480	 * Disable RX/TX ints via IMR register if it is
2481	 * allowed. NAPI handler must reenable them in same
2482	 * way.
2483	 */
2484	if (!adapter->int_enabled)
2485		return 1;
2486
2487	atlx_imr_set(adapter, IMR_NORXTX_MASK);
2488	return 1;
2489}
2490
2491/**
2492 * atl1_intr - Interrupt Handler
2493 * @irq: interrupt number
2494 * @data: pointer to a network interface device structure
2495 */
2496static irqreturn_t atl1_intr(int irq, void *data)
2497{
2498	struct atl1_adapter *adapter = netdev_priv(data);
2499	u32 status;
2500
2501	status = adapter->cmb.cmb->int_stats;
2502	if (!status)
2503		return IRQ_NONE;
2504
2505	/* clear CMB interrupt status at once,
2506	 * but leave rx/tx interrupt status in case it should be dropped
2507	 * only if rx/tx processing queued. In other case interrupt
2508	 * can be lost.
2509	 */
2510	adapter->cmb.cmb->int_stats = status & (ISR_CMB_TX | ISR_CMB_RX);
2511
2512	if (status & ISR_GPHY)	/* clear phy status */
2513		atlx_clear_phy_int(adapter);
2514
2515	/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2516	iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2517
2518	/* check if SMB intr */
2519	if (status & ISR_SMB)
2520		atl1_inc_smb(adapter);
2521
2522	/* check if PCIE PHY Link down */
2523	if (status & ISR_PHY_LINKDOWN) {
2524		if (netif_msg_intr(adapter))
2525			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2526				"pcie phy link down %x\n", status);
2527		if (netif_running(adapter->netdev)) {	/* reset MAC */
2528			atlx_irq_disable(adapter);
2529			schedule_work(&adapter->reset_dev_task);
2530			return IRQ_HANDLED;
2531		}
2532	}
2533
2534	/* check if DMA read/write error ? */
2535	if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2536		if (netif_msg_intr(adapter))
2537			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2538				"pcie DMA r/w error (status = 0x%x)\n",
2539				status);
2540		atlx_irq_disable(adapter);
2541		schedule_work(&adapter->reset_dev_task);
2542		return IRQ_HANDLED;
2543	}
2544
2545	/* link event */
2546	if (status & ISR_GPHY) {
2547		adapter->soft_stats.tx_carrier_errors++;
2548		atl1_check_for_link(adapter);
2549	}
2550
2551	/* transmit or receive event */
2552	if (status & (ISR_CMB_TX | ISR_CMB_RX) &&
2553	    atl1_sched_rings_clean(adapter))
2554		adapter->cmb.cmb->int_stats = adapter->cmb.cmb->int_stats &
2555					      ~(ISR_CMB_TX | ISR_CMB_RX);
2556
2557	/* rx exception */
2558	if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2559		ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2560		ISR_HOST_RRD_OV))) {
2561		if (netif_msg_intr(adapter))
2562			dev_printk(KERN_DEBUG,
2563				&adapter->pdev->dev,
2564				"rx exception, ISR = 0x%x\n",
2565				status);
2566		atl1_sched_rings_clean(adapter);
2567	}
2568
2569	/* re-enable Interrupt */
2570	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2571	return IRQ_HANDLED;
2572}
2573
2574
2575/**
2576 * atl1_phy_config - Timer Call-back
2577 * @data: pointer to netdev cast into an unsigned long
2578 */
2579static void atl1_phy_config(unsigned long data)
2580{
2581	struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2582	struct atl1_hw *hw = &adapter->hw;
2583	unsigned long flags;
2584
2585	spin_lock_irqsave(&adapter->lock, flags);
2586	adapter->phy_timer_pending = false;
2587	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2588	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2589	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2590	spin_unlock_irqrestore(&adapter->lock, flags);
2591}
2592
2593/*
2594 * Orphaned vendor comment left intact here:
2595 * <vendor comment>
2596 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2597 * will assert. We do soft reset <0x1400=1> according
2598 * with the SPEC. BUT, it seemes that PCIE or DMA
2599 * state-machine will not be reset. DMAR_TO_INT will
2600 * assert again and again.
2601 * </vendor comment>
2602 */
2603
2604static int atl1_reset(struct atl1_adapter *adapter)
2605{
2606	int ret;
2607	ret = atl1_reset_hw(&adapter->hw);
2608	if (ret)
2609		return ret;
2610	return atl1_init_hw(&adapter->hw);
2611}
2612
2613static s32 atl1_up(struct atl1_adapter *adapter)
2614{
2615	struct net_device *netdev = adapter->netdev;
2616	int err;
2617	int irq_flags = 0;
2618
2619	/* hardware has been reset, we need to reload some things */
2620	atlx_set_multi(netdev);
2621	atl1_init_ring_ptrs(adapter);
2622	atlx_restore_vlan(adapter);
2623	err = atl1_alloc_rx_buffers(adapter);
2624	if (unlikely(!err))
2625		/* no RX BUFFER allocated */
2626		return -ENOMEM;
2627
2628	if (unlikely(atl1_configure(adapter))) {
2629		err = -EIO;
2630		goto err_up;
2631	}
2632
2633	err = pci_enable_msi(adapter->pdev);
2634	if (err) {
2635		if (netif_msg_ifup(adapter))
2636			dev_info(&adapter->pdev->dev,
2637				"Unable to enable MSI: %d\n", err);
2638		irq_flags |= IRQF_SHARED;
2639	}
2640
2641	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2642			netdev->name, netdev);
2643	if (unlikely(err))
2644		goto err_up;
2645
2646	napi_enable(&adapter->napi);
2647	atlx_irq_enable(adapter);
2648	atl1_check_link(adapter);
2649	netif_start_queue(netdev);
2650	return 0;
2651
2652err_up:
2653	pci_disable_msi(adapter->pdev);
2654	/* free rx_buffers */
2655	atl1_clean_rx_ring(adapter);
2656	return err;
2657}
2658
2659static void atl1_down(struct atl1_adapter *adapter)
2660{
2661	struct net_device *netdev = adapter->netdev;
2662
2663	napi_disable(&adapter->napi);
2664	netif_stop_queue(netdev);
2665	del_timer_sync(&adapter->phy_config_timer);
2666	adapter->phy_timer_pending = false;
2667
2668	atlx_irq_disable(adapter);
2669	free_irq(adapter->pdev->irq, netdev);
2670	pci_disable_msi(adapter->pdev);
2671	atl1_reset_hw(&adapter->hw);
2672	adapter->cmb.cmb->int_stats = 0;
2673
2674	adapter->link_speed = SPEED_0;
2675	adapter->link_duplex = -1;
2676	netif_carrier_off(netdev);
2677
2678	atl1_clean_tx_ring(adapter);
2679	atl1_clean_rx_ring(adapter);
2680}
2681
2682static void atl1_reset_dev_task(struct work_struct *work)
2683{
2684	struct atl1_adapter *adapter =
2685		container_of(work, struct atl1_adapter, reset_dev_task);
2686	struct net_device *netdev = adapter->netdev;
2687
2688	netif_device_detach(netdev);
2689	atl1_down(adapter);
2690	atl1_up(adapter);
2691	netif_device_attach(netdev);
2692}
2693
2694/**
2695 * atl1_change_mtu - Change the Maximum Transfer Unit
2696 * @netdev: network interface device structure
2697 * @new_mtu: new value for maximum frame size
2698 *
2699 * Returns 0 on success, negative on failure
2700 */
2701static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2702{
2703	struct atl1_adapter *adapter = netdev_priv(netdev);
2704	int old_mtu = netdev->mtu;
2705	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2706
2707	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2708	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2709		if (netif_msg_link(adapter))
2710			dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2711		return -EINVAL;
2712	}
2713
2714	adapter->hw.max_frame_size = max_frame;
2715	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2716	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2717	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2718
2719	netdev->mtu = new_mtu;
2720	if ((old_mtu != new_mtu) && netif_running(netdev)) {
2721		atl1_down(adapter);
2722		atl1_up(adapter);
2723	}
2724
2725	return 0;
2726}
2727
2728/**
2729 * atl1_open - Called when a network interface is made active
2730 * @netdev: network interface device structure
2731 *
2732 * Returns 0 on success, negative value on failure
2733 *
2734 * The open entry point is called when a network interface is made
2735 * active by the system (IFF_UP).  At this point all resources needed
2736 * for transmit and receive operations are allocated, the interrupt
2737 * handler is registered with the OS, the watchdog timer is started,
2738 * and the stack is notified that the interface is ready.
2739 */
2740static int atl1_open(struct net_device *netdev)
2741{
2742	struct atl1_adapter *adapter = netdev_priv(netdev);
2743	int err;
2744
2745	netif_carrier_off(netdev);
2746
2747	/* allocate transmit descriptors */
2748	err = atl1_setup_ring_resources(adapter);
2749	if (err)
2750		return err;
2751
2752	err = atl1_up(adapter);
2753	if (err)
2754		goto err_up;
2755
2756	return 0;
2757
2758err_up:
2759	atl1_reset(adapter);
2760	return err;
2761}
2762
2763/**
2764 * atl1_close - Disables a network interface
2765 * @netdev: network interface device structure
2766 *
2767 * Returns 0, this is not allowed to fail
2768 *
2769 * The close entry point is called when an interface is de-activated
2770 * by the OS.  The hardware is still under the drivers control, but
2771 * needs to be disabled.  A global MAC reset is issued to stop the
2772 * hardware, and all transmit and receive resources are freed.
2773 */
2774static int atl1_close(struct net_device *netdev)
2775{
2776	struct atl1_adapter *adapter = netdev_priv(netdev);
2777	atl1_down(adapter);
2778	atl1_free_ring_resources(adapter);
2779	return 0;
2780}
2781
2782#ifdef CONFIG_PM_SLEEP
2783static int atl1_suspend(struct device *dev)
2784{
2785	struct pci_dev *pdev = to_pci_dev(dev);
2786	struct net_device *netdev = pci_get_drvdata(pdev);
2787	struct atl1_adapter *adapter = netdev_priv(netdev);
2788	struct atl1_hw *hw = &adapter->hw;
2789	u32 ctrl = 0;
2790	u32 wufc = adapter->wol;
2791	u32 val;
2792	u16 speed;
2793	u16 duplex;
2794
2795	netif_device_detach(netdev);
2796	if (netif_running(netdev))
2797		atl1_down(adapter);
2798
2799	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2800	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2801	val = ctrl & BMSR_LSTATUS;
2802	if (val)
2803		wufc &= ~ATLX_WUFC_LNKC;
2804	if (!wufc)
2805		goto disable_wol;
2806
2807	if (val) {
2808		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2809		if (val) {
2810			if (netif_msg_ifdown(adapter))
2811				dev_printk(KERN_DEBUG, &pdev->dev,
2812					"error getting speed/duplex\n");
2813			goto disable_wol;
2814		}
2815
2816		ctrl = 0;
2817
2818		/* enable magic packet WOL */
2819		if (wufc & ATLX_WUFC_MAG)
2820			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2821		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2822		ioread32(hw->hw_addr + REG_WOL_CTRL);
2823
2824		/* configure the mac */
2825		ctrl = MAC_CTRL_RX_EN;
2826		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2827			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2828		if (duplex == FULL_DUPLEX)
2829			ctrl |= MAC_CTRL_DUPLX;
2830		ctrl |= (((u32)adapter->hw.preamble_len &
2831			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2832		__atlx_vlan_mode(netdev->features, &ctrl);
2833		if (wufc & ATLX_WUFC_MAG)
2834			ctrl |= MAC_CTRL_BC_EN;
2835		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2836		ioread32(hw->hw_addr + REG_MAC_CTRL);
2837
2838		/* poke the PHY */
2839		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2840		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2841		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2842		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2843	} else {
2844		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2845		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2846		ioread32(hw->hw_addr + REG_WOL_CTRL);
2847		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2848		ioread32(hw->hw_addr + REG_MAC_CTRL);
2849		hw->phy_configured = false;
2850	}
2851
2852	return 0;
2853
2854 disable_wol:
2855	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2856	ioread32(hw->hw_addr + REG_WOL_CTRL);
2857	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2858	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2859	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2860	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2861	hw->phy_configured = false;
2862
2863	return 0;
2864}
2865
2866static int atl1_resume(struct device *dev)
2867{
2868	struct pci_dev *pdev = to_pci_dev(dev);
2869	struct net_device *netdev = pci_get_drvdata(pdev);
2870	struct atl1_adapter *adapter = netdev_priv(netdev);
2871
2872	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2873
2874	atl1_reset_hw(&adapter->hw);
2875
2876	if (netif_running(netdev)) {
2877		adapter->cmb.cmb->int_stats = 0;
2878		atl1_up(adapter);
2879	}
2880	netif_device_attach(netdev);
2881
2882	return 0;
2883}
2884#endif
2885
2886static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2887
2888static void atl1_shutdown(struct pci_dev *pdev)
2889{
2890	struct net_device *netdev = pci_get_drvdata(pdev);
2891	struct atl1_adapter *adapter = netdev_priv(netdev);
2892
2893#ifdef CONFIG_PM_SLEEP
2894	atl1_suspend(&pdev->dev);
2895#endif
2896	pci_wake_from_d3(pdev, adapter->wol);
2897	pci_set_power_state(pdev, PCI_D3hot);
2898}
2899
2900#ifdef CONFIG_NET_POLL_CONTROLLER
2901static void atl1_poll_controller(struct net_device *netdev)
2902{
2903	disable_irq(netdev->irq);
2904	atl1_intr(netdev->irq, netdev);
2905	enable_irq(netdev->irq);
2906}
2907#endif
2908
2909static const struct net_device_ops atl1_netdev_ops = {
2910	.ndo_open		= atl1_open,
2911	.ndo_stop		= atl1_close,
2912	.ndo_start_xmit		= atl1_xmit_frame,
2913	.ndo_set_rx_mode	= atlx_set_multi,
2914	.ndo_validate_addr	= eth_validate_addr,
2915	.ndo_set_mac_address	= atl1_set_mac,
2916	.ndo_change_mtu		= atl1_change_mtu,
2917	.ndo_fix_features	= atlx_fix_features,
2918	.ndo_set_features	= atlx_set_features,
2919	.ndo_do_ioctl		= atlx_ioctl,
2920	.ndo_tx_timeout		= atlx_tx_timeout,
2921#ifdef CONFIG_NET_POLL_CONTROLLER
2922	.ndo_poll_controller	= atl1_poll_controller,
2923#endif
2924};
2925
2926/**
2927 * atl1_probe - Device Initialization Routine
2928 * @pdev: PCI device information struct
2929 * @ent: entry in atl1_pci_tbl
2930 *
2931 * Returns 0 on success, negative on failure
2932 *
2933 * atl1_probe initializes an adapter identified by a pci_dev structure.
2934 * The OS initialization, configuring of the adapter private structure,
2935 * and a hardware reset occur.
2936 */
2937static int atl1_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2938{
2939	struct net_device *netdev;
2940	struct atl1_adapter *adapter;
2941	static int cards_found = 0;
2942	int err;
2943
2944	err = pci_enable_device(pdev);
2945	if (err)
2946		return err;
2947
2948	/*
2949	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2950	 * shared register for the high 32 bits, so only a single, aligned,
2951	 * 4 GB physical address range can be used at a time.
2952	 *
2953	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2954	 * worth.  It is far easier to limit to 32-bit DMA than update
2955	 * various kernel subsystems to support the mechanics required by a
2956	 * fixed-high-32-bit system.
2957	 */
2958	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2959	if (err) {
2960		dev_err(&pdev->dev, "no usable DMA configuration\n");
2961		goto err_dma;
2962	}
2963	/*
2964	 * Mark all PCI regions associated with PCI device
2965	 * pdev as being reserved by owner atl1_driver_name
2966	 */
2967	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2968	if (err)
2969		goto err_request_regions;
2970
2971	/*
2972	 * Enables bus-mastering on the device and calls
2973	 * pcibios_set_master to do the needed arch specific settings
2974	 */
2975	pci_set_master(pdev);
2976
2977	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2978	if (!netdev) {
2979		err = -ENOMEM;
2980		goto err_alloc_etherdev;
2981	}
2982	SET_NETDEV_DEV(netdev, &pdev->dev);
2983
2984	pci_set_drvdata(pdev, netdev);
2985	adapter = netdev_priv(netdev);
2986	adapter->netdev = netdev;
2987	adapter->pdev = pdev;
2988	adapter->hw.back = adapter;
2989	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2990
2991	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2992	if (!adapter->hw.hw_addr) {
2993		err = -EIO;
2994		goto err_pci_iomap;
2995	}
2996	/* get device revision number */
2997	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2998		(REG_MASTER_CTRL + 2));
2999	if (netif_msg_probe(adapter))
3000		dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
3001
3002	/* set default ring resource counts */
3003	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
3004	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
3005
3006	adapter->mii.dev = netdev;
3007	adapter->mii.mdio_read = mdio_read;
3008	adapter->mii.mdio_write = mdio_write;
3009	adapter->mii.phy_id_mask = 0x1f;
3010	adapter->mii.reg_num_mask = 0x1f;
3011
3012	netdev->netdev_ops = &atl1_netdev_ops;
3013	netdev->watchdog_timeo = 5 * HZ;
3014	netif_napi_add(netdev, &adapter->napi, atl1_rings_clean, 64);
3015
3016	netdev->ethtool_ops = &atl1_ethtool_ops;
3017	adapter->bd_number = cards_found;
3018
3019	/* setup the private structure */
3020	err = atl1_sw_init(adapter);
3021	if (err)
3022		goto err_common;
3023
3024	netdev->features = NETIF_F_HW_CSUM;
3025	netdev->features |= NETIF_F_SG;
3026	netdev->features |= (NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX);
3027
3028	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
3029			      NETIF_F_HW_VLAN_CTAG_RX;
3030
3031	/* is this valid? see atl1_setup_mac_ctrl() */
3032	netdev->features |= NETIF_F_RXCSUM;
3033
3034	/*
3035	 * patch for some L1 of old version,
3036	 * the final version of L1 may not need these
3037	 * patches
3038	 */
3039	/* atl1_pcie_patch(adapter); */
3040
3041	/* really reset GPHY core */
3042	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3043
3044	/*
3045	 * reset the controller to
3046	 * put the device in a known good starting state
3047	 */
3048	if (atl1_reset_hw(&adapter->hw)) {
3049		err = -EIO;
3050		goto err_common;
3051	}
3052
3053	/* copy the MAC address out of the EEPROM */
3054	if (atl1_read_mac_addr(&adapter->hw)) {
3055		/* mark random mac */
3056		netdev->addr_assign_type = NET_ADDR_RANDOM;
3057	}
3058	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3059
3060	if (!is_valid_ether_addr(netdev->dev_addr)) {
3061		err = -EIO;
3062		goto err_common;
3063	}
3064
3065	atl1_check_options(adapter);
3066
3067	/* pre-init the MAC, and setup link */
3068	err = atl1_init_hw(&adapter->hw);
3069	if (err) {
3070		err = -EIO;
3071		goto err_common;
3072	}
3073
3074	atl1_pcie_patch(adapter);
3075	/* assume we have no link for now */
3076	netif_carrier_off(netdev);
3077
3078	setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3079		    (unsigned long)adapter);
3080	adapter->phy_timer_pending = false;
3081
3082	INIT_WORK(&adapter->reset_dev_task, atl1_reset_dev_task);
3083
3084	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3085
3086	err = register_netdev(netdev);
3087	if (err)
3088		goto err_common;
3089
3090	cards_found++;
3091	atl1_via_workaround(adapter);
3092	return 0;
3093
3094err_common:
3095	pci_iounmap(pdev, adapter->hw.hw_addr);
3096err_pci_iomap:
3097	free_netdev(netdev);
3098err_alloc_etherdev:
3099	pci_release_regions(pdev);
3100err_dma:
3101err_request_regions:
3102	pci_disable_device(pdev);
3103	return err;
3104}
3105
3106/**
3107 * atl1_remove - Device Removal Routine
3108 * @pdev: PCI device information struct
3109 *
3110 * atl1_remove is called by the PCI subsystem to alert the driver
3111 * that it should release a PCI device.  The could be caused by a
3112 * Hot-Plug event, or because the driver is going to be removed from
3113 * memory.
3114 */
3115static void atl1_remove(struct pci_dev *pdev)
3116{
3117	struct net_device *netdev = pci_get_drvdata(pdev);
3118	struct atl1_adapter *adapter;
3119	/* Device not available. Return. */
3120	if (!netdev)
3121		return;
3122
3123	adapter = netdev_priv(netdev);
3124
3125	/*
3126	 * Some atl1 boards lack persistent storage for their MAC, and get it
3127	 * from the BIOS during POST.  If we've been messing with the MAC
3128	 * address, we need to save the permanent one.
3129	 */
3130	if (!ether_addr_equal_unaligned(adapter->hw.mac_addr,
3131					adapter->hw.perm_mac_addr)) {
3132		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3133			ETH_ALEN);
3134		atl1_set_mac_addr(&adapter->hw);
3135	}
3136
3137	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3138	unregister_netdev(netdev);
3139	pci_iounmap(pdev, adapter->hw.hw_addr);
3140	pci_release_regions(pdev);
3141	free_netdev(netdev);
3142	pci_disable_device(pdev);
3143}
3144
3145static struct pci_driver atl1_driver = {
3146	.name = ATLX_DRIVER_NAME,
3147	.id_table = atl1_pci_tbl,
3148	.probe = atl1_probe,
3149	.remove = atl1_remove,
3150	.shutdown = atl1_shutdown,
3151	.driver.pm = &atl1_pm_ops,
3152};
3153
3154struct atl1_stats {
3155	char stat_string[ETH_GSTRING_LEN];
3156	int sizeof_stat;
3157	int stat_offset;
3158};
3159
3160#define ATL1_STAT(m) \
3161	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3162
3163static struct atl1_stats atl1_gstrings_stats[] = {
3164	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3165	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3166	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3167	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3168	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3169	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3170	{"multicast", ATL1_STAT(soft_stats.multicast)},
3171	{"collisions", ATL1_STAT(soft_stats.collisions)},
3172	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3173	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3174	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3175	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3176	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3177	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3178	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3179	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3180	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3181	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3182	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3183	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3184	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3185	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3186	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3187	{"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3188	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3189	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3190	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3191	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3192	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3193};
3194
3195static void atl1_get_ethtool_stats(struct net_device *netdev,
3196	struct ethtool_stats *stats, u64 *data)
3197{
3198	struct atl1_adapter *adapter = netdev_priv(netdev);
3199	int i;
3200	char *p;
3201
3202	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3203		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3204		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3205			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3206	}
3207
3208}
3209
3210static int atl1_get_sset_count(struct net_device *netdev, int sset)
3211{
3212	switch (sset) {
3213	case ETH_SS_STATS:
3214		return ARRAY_SIZE(atl1_gstrings_stats);
3215	default:
3216		return -EOPNOTSUPP;
3217	}
3218}
3219
3220static int atl1_get_settings(struct net_device *netdev,
3221	struct ethtool_cmd *ecmd)
3222{
3223	struct atl1_adapter *adapter = netdev_priv(netdev);
3224	struct atl1_hw *hw = &adapter->hw;
3225
3226	ecmd->supported = (SUPPORTED_10baseT_Half |
3227			   SUPPORTED_10baseT_Full |
3228			   SUPPORTED_100baseT_Half |
3229			   SUPPORTED_100baseT_Full |
3230			   SUPPORTED_1000baseT_Full |
3231			   SUPPORTED_Autoneg | SUPPORTED_TP);
3232	ecmd->advertising = ADVERTISED_TP;
3233	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3234	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3235		ecmd->advertising |= ADVERTISED_Autoneg;
3236		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3237			ecmd->advertising |= ADVERTISED_Autoneg;
3238			ecmd->advertising |=
3239			    (ADVERTISED_10baseT_Half |
3240			     ADVERTISED_10baseT_Full |
3241			     ADVERTISED_100baseT_Half |
3242			     ADVERTISED_100baseT_Full |
3243			     ADVERTISED_1000baseT_Full);
3244		} else
3245			ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3246	}
3247	ecmd->port = PORT_TP;
3248	ecmd->phy_address = 0;
3249	ecmd->transceiver = XCVR_INTERNAL;
3250
3251	if (netif_carrier_ok(adapter->netdev)) {
3252		u16 link_speed, link_duplex;
3253		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3254		ethtool_cmd_speed_set(ecmd, link_speed);
3255		if (link_duplex == FULL_DUPLEX)
3256			ecmd->duplex = DUPLEX_FULL;
3257		else
3258			ecmd->duplex = DUPLEX_HALF;
3259	} else {
3260		ethtool_cmd_speed_set(ecmd, SPEED_UNKNOWN);
3261		ecmd->duplex = DUPLEX_UNKNOWN;
3262	}
3263	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3264	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3265		ecmd->autoneg = AUTONEG_ENABLE;
3266	else
3267		ecmd->autoneg = AUTONEG_DISABLE;
3268
3269	return 0;
3270}
3271
3272static int atl1_set_settings(struct net_device *netdev,
3273	struct ethtool_cmd *ecmd)
3274{
3275	struct atl1_adapter *adapter = netdev_priv(netdev);
3276	struct atl1_hw *hw = &adapter->hw;
3277	u16 phy_data;
3278	int ret_val = 0;
3279	u16 old_media_type = hw->media_type;
3280
3281	if (netif_running(adapter->netdev)) {
3282		if (netif_msg_link(adapter))
3283			dev_dbg(&adapter->pdev->dev,
3284				"ethtool shutting down adapter\n");
3285		atl1_down(adapter);
3286	}
3287
3288	if (ecmd->autoneg == AUTONEG_ENABLE)
3289		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3290	else {
3291		u32 speed = ethtool_cmd_speed(ecmd);
3292		if (speed == SPEED_1000) {
3293			if (ecmd->duplex != DUPLEX_FULL) {
3294				if (netif_msg_link(adapter))
3295					dev_warn(&adapter->pdev->dev,
3296						"1000M half is invalid\n");
3297				ret_val = -EINVAL;
3298				goto exit_sset;
3299			}
3300			hw->media_type = MEDIA_TYPE_1000M_FULL;
3301		} else if (speed == SPEED_100) {
3302			if (ecmd->duplex == DUPLEX_FULL)
3303				hw->media_type = MEDIA_TYPE_100M_FULL;
3304			else
3305				hw->media_type = MEDIA_TYPE_100M_HALF;
3306		} else {
3307			if (ecmd->duplex == DUPLEX_FULL)
3308				hw->media_type = MEDIA_TYPE_10M_FULL;
3309			else
3310				hw->media_type = MEDIA_TYPE_10M_HALF;
3311		}
3312	}
3313	switch (hw->media_type) {
3314	case MEDIA_TYPE_AUTO_SENSOR:
3315		ecmd->advertising =
3316		    ADVERTISED_10baseT_Half |
3317		    ADVERTISED_10baseT_Full |
3318		    ADVERTISED_100baseT_Half |
3319		    ADVERTISED_100baseT_Full |
3320		    ADVERTISED_1000baseT_Full |
3321		    ADVERTISED_Autoneg | ADVERTISED_TP;
3322		break;
3323	case MEDIA_TYPE_1000M_FULL:
3324		ecmd->advertising =
3325		    ADVERTISED_1000baseT_Full |
3326		    ADVERTISED_Autoneg | ADVERTISED_TP;
3327		break;
3328	default:
3329		ecmd->advertising = 0;
3330		break;
3331	}
3332	if (atl1_phy_setup_autoneg_adv(hw)) {
3333		ret_val = -EINVAL;
3334		if (netif_msg_link(adapter))
3335			dev_warn(&adapter->pdev->dev,
3336				"invalid ethtool speed/duplex setting\n");
3337		goto exit_sset;
3338	}
3339	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3340	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3341		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3342	else {
3343		switch (hw->media_type) {
3344		case MEDIA_TYPE_100M_FULL:
3345			phy_data =
3346			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3347			    MII_CR_RESET;
3348			break;
3349		case MEDIA_TYPE_100M_HALF:
3350			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3351			break;
3352		case MEDIA_TYPE_10M_FULL:
3353			phy_data =
3354			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3355			break;
3356		default:
3357			/* MEDIA_TYPE_10M_HALF: */
3358			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3359			break;
3360		}
3361	}
3362	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3363exit_sset:
3364	if (ret_val)
3365		hw->media_type = old_media_type;
3366
3367	if (netif_running(adapter->netdev)) {
3368		if (netif_msg_link(adapter))
3369			dev_dbg(&adapter->pdev->dev,
3370				"ethtool starting adapter\n");
3371		atl1_up(adapter);
3372	} else if (!ret_val) {
3373		if (netif_msg_link(adapter))
3374			dev_dbg(&adapter->pdev->dev,
3375				"ethtool resetting adapter\n");
3376		atl1_reset(adapter);
3377	}
3378	return ret_val;
3379}
3380
3381static void atl1_get_drvinfo(struct net_device *netdev,
3382	struct ethtool_drvinfo *drvinfo)
3383{
3384	struct atl1_adapter *adapter = netdev_priv(netdev);
3385
3386	strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3387	strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3388		sizeof(drvinfo->version));
3389	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3390		sizeof(drvinfo->bus_info));
3391	drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3392}
3393
3394static void atl1_get_wol(struct net_device *netdev,
3395	struct ethtool_wolinfo *wol)
3396{
3397	struct atl1_adapter *adapter = netdev_priv(netdev);
3398
3399	wol->supported = WAKE_MAGIC;
3400	wol->wolopts = 0;
3401	if (adapter->wol & ATLX_WUFC_MAG)
3402		wol->wolopts |= WAKE_MAGIC;
3403}
3404
3405static int atl1_set_wol(struct net_device *netdev,
3406	struct ethtool_wolinfo *wol)
3407{
3408	struct atl1_adapter *adapter = netdev_priv(netdev);
3409
3410	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3411		WAKE_ARP | WAKE_MAGICSECURE))
3412		return -EOPNOTSUPP;
3413	adapter->wol = 0;
3414	if (wol->wolopts & WAKE_MAGIC)
3415		adapter->wol |= ATLX_WUFC_MAG;
3416
3417	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3418
3419	return 0;
3420}
3421
3422static u32 atl1_get_msglevel(struct net_device *netdev)
3423{
3424	struct atl1_adapter *adapter = netdev_priv(netdev);
3425	return adapter->msg_enable;
3426}
3427
3428static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3429{
3430	struct atl1_adapter *adapter = netdev_priv(netdev);
3431	adapter->msg_enable = value;
3432}
3433
3434static int atl1_get_regs_len(struct net_device *netdev)
3435{
3436	return ATL1_REG_COUNT * sizeof(u32);
3437}
3438
3439static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3440	void *p)
3441{
3442	struct atl1_adapter *adapter = netdev_priv(netdev);
3443	struct atl1_hw *hw = &adapter->hw;
3444	unsigned int i;
3445	u32 *regbuf = p;
3446
3447	for (i = 0; i < ATL1_REG_COUNT; i++) {
3448		/*
3449		 * This switch statement avoids reserved regions
3450		 * of register space.
3451		 */
3452		switch (i) {
3453		case 6 ... 9:
3454		case 14:
3455		case 29 ... 31:
3456		case 34 ... 63:
3457		case 75 ... 127:
3458		case 136 ... 1023:
3459		case 1027 ... 1087:
3460		case 1091 ... 1151:
3461		case 1194 ... 1195:
3462		case 1200 ... 1201:
3463		case 1206 ... 1213:
3464		case 1216 ... 1279:
3465		case 1290 ... 1311:
3466		case 1323 ... 1343:
3467		case 1358 ... 1359:
3468		case 1368 ... 1375:
3469		case 1378 ... 1383:
3470		case 1388 ... 1391:
3471		case 1393 ... 1395:
3472		case 1402 ... 1403:
3473		case 1410 ... 1471:
3474		case 1522 ... 1535:
3475			/* reserved region; don't read it */
3476			regbuf[i] = 0;
3477			break;
3478		default:
3479			/* unreserved region */
3480			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3481		}
3482	}
3483}
3484
3485static void atl1_get_ringparam(struct net_device *netdev,
3486	struct ethtool_ringparam *ring)
3487{
3488	struct atl1_adapter *adapter = netdev_priv(netdev);
3489	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3490	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3491
3492	ring->rx_max_pending = ATL1_MAX_RFD;
3493	ring->tx_max_pending = ATL1_MAX_TPD;
3494	ring->rx_pending = rxdr->count;
3495	ring->tx_pending = txdr->count;
3496}
3497
3498static int atl1_set_ringparam(struct net_device *netdev,
3499	struct ethtool_ringparam *ring)
3500{
3501	struct atl1_adapter *adapter = netdev_priv(netdev);
3502	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3503	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3504	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3505
3506	struct atl1_tpd_ring tpd_old, tpd_new;
3507	struct atl1_rfd_ring rfd_old, rfd_new;
3508	struct atl1_rrd_ring rrd_old, rrd_new;
3509	struct atl1_ring_header rhdr_old, rhdr_new;
3510	struct atl1_smb smb;
3511	struct atl1_cmb cmb;
3512	int err;
3513
3514	tpd_old = adapter->tpd_ring;
3515	rfd_old = adapter->rfd_ring;
3516	rrd_old = adapter->rrd_ring;
3517	rhdr_old = adapter->ring_header;
3518
3519	if (netif_running(adapter->netdev))
3520		atl1_down(adapter);
3521
3522	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3523	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3524			rfdr->count;
3525	rfdr->count = (rfdr->count + 3) & ~3;
3526	rrdr->count = rfdr->count;
3527
3528	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3529	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3530			tpdr->count;
3531	tpdr->count = (tpdr->count + 3) & ~3;
3532
3533	if (netif_running(adapter->netdev)) {
3534		/* try to get new resources before deleting old */
3535		err = atl1_setup_ring_resources(adapter);
3536		if (err)
3537			goto err_setup_ring;
3538
3539		/*
3540		 * save the new, restore the old in order to free it,
3541		 * then restore the new back again
3542		 */
3543
3544		rfd_new = adapter->rfd_ring;
3545		rrd_new = adapter->rrd_ring;
3546		tpd_new = adapter->tpd_ring;
3547		rhdr_new = adapter->ring_header;
3548		adapter->rfd_ring = rfd_old;
3549		adapter->rrd_ring = rrd_old;
3550		adapter->tpd_ring = tpd_old;
3551		adapter->ring_header = rhdr_old;
3552		/*
3553		 * Save SMB and CMB, since atl1_free_ring_resources
3554		 * will clear them.
3555		 */
3556		smb = adapter->smb;
3557		cmb = adapter->cmb;
3558		atl1_free_ring_resources(adapter);
3559		adapter->rfd_ring = rfd_new;
3560		adapter->rrd_ring = rrd_new;
3561		adapter->tpd_ring = tpd_new;
3562		adapter->ring_header = rhdr_new;
3563		adapter->smb = smb;
3564		adapter->cmb = cmb;
3565
3566		err = atl1_up(adapter);
3567		if (err)
3568			return err;
3569	}
3570	return 0;
3571
3572err_setup_ring:
3573	adapter->rfd_ring = rfd_old;
3574	adapter->rrd_ring = rrd_old;
3575	adapter->tpd_ring = tpd_old;
3576	adapter->ring_header = rhdr_old;
3577	atl1_up(adapter);
3578	return err;
3579}
3580
3581static void atl1_get_pauseparam(struct net_device *netdev,
3582	struct ethtool_pauseparam *epause)
3583{
3584	struct atl1_adapter *adapter = netdev_priv(netdev);
3585	struct atl1_hw *hw = &adapter->hw;
3586
3587	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3588	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3589		epause->autoneg = AUTONEG_ENABLE;
3590	} else {
3591		epause->autoneg = AUTONEG_DISABLE;
3592	}
3593	epause->rx_pause = 1;
3594	epause->tx_pause = 1;
3595}
3596
3597static int atl1_set_pauseparam(struct net_device *netdev,
3598	struct ethtool_pauseparam *epause)
3599{
3600	struct atl1_adapter *adapter = netdev_priv(netdev);
3601	struct atl1_hw *hw = &adapter->hw;
3602
3603	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3604	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3605		epause->autoneg = AUTONEG_ENABLE;
3606	} else {
3607		epause->autoneg = AUTONEG_DISABLE;
3608	}
3609
3610	epause->rx_pause = 1;
3611	epause->tx_pause = 1;
3612
3613	return 0;
3614}
3615
3616static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3617	u8 *data)
3618{
3619	u8 *p = data;
3620	int i;
3621
3622	switch (stringset) {
3623	case ETH_SS_STATS:
3624		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3625			memcpy(p, atl1_gstrings_stats[i].stat_string,
3626				ETH_GSTRING_LEN);
3627			p += ETH_GSTRING_LEN;
3628		}
3629		break;
3630	}
3631}
3632
3633static int atl1_nway_reset(struct net_device *netdev)
3634{
3635	struct atl1_adapter *adapter = netdev_priv(netdev);
3636	struct atl1_hw *hw = &adapter->hw;
3637
3638	if (netif_running(netdev)) {
3639		u16 phy_data;
3640		atl1_down(adapter);
3641
3642		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3643			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3644			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3645		} else {
3646			switch (hw->media_type) {
3647			case MEDIA_TYPE_100M_FULL:
3648				phy_data = MII_CR_FULL_DUPLEX |
3649					MII_CR_SPEED_100 | MII_CR_RESET;
3650				break;
3651			case MEDIA_TYPE_100M_HALF:
3652				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3653				break;
3654			case MEDIA_TYPE_10M_FULL:
3655				phy_data = MII_CR_FULL_DUPLEX |
3656					MII_CR_SPEED_10 | MII_CR_RESET;
3657				break;
3658			default:
3659				/* MEDIA_TYPE_10M_HALF */
3660				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3661			}
3662		}
3663		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3664		atl1_up(adapter);
3665	}
3666	return 0;
3667}
3668
3669static const struct ethtool_ops atl1_ethtool_ops = {
3670	.get_settings		= atl1_get_settings,
3671	.set_settings		= atl1_set_settings,
3672	.get_drvinfo		= atl1_get_drvinfo,
3673	.get_wol		= atl1_get_wol,
3674	.set_wol		= atl1_set_wol,
3675	.get_msglevel		= atl1_get_msglevel,
3676	.set_msglevel		= atl1_set_msglevel,
3677	.get_regs_len		= atl1_get_regs_len,
3678	.get_regs		= atl1_get_regs,
3679	.get_ringparam		= atl1_get_ringparam,
3680	.set_ringparam		= atl1_set_ringparam,
3681	.get_pauseparam		= atl1_get_pauseparam,
3682	.set_pauseparam		= atl1_set_pauseparam,
3683	.get_link		= ethtool_op_get_link,
3684	.get_strings		= atl1_get_strings,
3685	.nway_reset		= atl1_nway_reset,
3686	.get_ethtool_stats	= atl1_get_ethtool_stats,
3687	.get_sset_count		= atl1_get_sset_count,
3688};
3689
3690module_pci_driver(atl1_driver);
3691