1/*
2 *      Davicom DM9000 Fast Ethernet driver for Linux.
3 * 	Copyright (C) 1997  Sten Wang
4 *
5 * 	This program is free software; you can redistribute it and/or
6 * 	modify it under the terms of the GNU General Public License
7 * 	as published by the Free Software Foundation; either version 2
8 * 	of the License, or (at your option) any later version.
9 *
10 * 	This program is distributed in the hope that it will be useful,
11 * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * 	GNU General Public License for more details.
14 *
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16 *
17 * Additional updates, Copyright:
18 *	Ben Dooks <ben@simtec.co.uk>
19 *	Sascha Hauer <s.hauer@pengutronix.de>
20 */
21
22#include <linux/module.h>
23#include <linux/ioport.h>
24#include <linux/netdevice.h>
25#include <linux/etherdevice.h>
26#include <linux/interrupt.h>
27#include <linux/skbuff.h>
28#include <linux/spinlock.h>
29#include <linux/crc32.h>
30#include <linux/mii.h>
31#include <linux/of.h>
32#include <linux/of_net.h>
33#include <linux/ethtool.h>
34#include <linux/dm9000.h>
35#include <linux/delay.h>
36#include <linux/platform_device.h>
37#include <linux/irq.h>
38#include <linux/slab.h>
39#include <linux/regulator/consumer.h>
40#include <linux/gpio.h>
41#include <linux/of_gpio.h>
42
43#include <asm/delay.h>
44#include <asm/irq.h>
45#include <asm/io.h>
46
47#include "dm9000.h"
48
49/* Board/System/Debug information/definition ---------------- */
50
51#define DM9000_PHY		0x40	/* PHY address 0x01 */
52
53#define CARDNAME	"dm9000"
54#define DRV_VERSION	"1.31"
55
56/*
57 * Transmit timeout, default 5 seconds.
58 */
59static int watchdog = 5000;
60module_param(watchdog, int, 0400);
61MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
62
63/*
64 * Debug messages level
65 */
66static int debug;
67module_param(debug, int, 0644);
68MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
69
70/* DM9000 register address locking.
71 *
72 * The DM9000 uses an address register to control where data written
73 * to the data register goes. This means that the address register
74 * must be preserved over interrupts or similar calls.
75 *
76 * During interrupt and other critical calls, a spinlock is used to
77 * protect the system, but the calls themselves save the address
78 * in the address register in case they are interrupting another
79 * access to the device.
80 *
81 * For general accesses a lock is provided so that calls which are
82 * allowed to sleep are serialised so that the address register does
83 * not need to be saved. This lock also serves to serialise access
84 * to the EEPROM and PHY access registers which are shared between
85 * these two devices.
86 */
87
88/* The driver supports the original DM9000E, and now the two newer
89 * devices, DM9000A and DM9000B.
90 */
91
92enum dm9000_type {
93	TYPE_DM9000E,	/* original DM9000 */
94	TYPE_DM9000A,
95	TYPE_DM9000B
96};
97
98/* Structure/enum declaration ------------------------------- */
99struct board_info {
100
101	void __iomem	*io_addr;	/* Register I/O base address */
102	void __iomem	*io_data;	/* Data I/O address */
103	u16		 irq;		/* IRQ */
104
105	u16		tx_pkt_cnt;
106	u16		queue_pkt_len;
107	u16		queue_start_addr;
108	u16		queue_ip_summed;
109	u16		dbug_cnt;
110	u8		io_mode;		/* 0:word, 2:byte */
111	u8		phy_addr;
112	u8		imr_all;
113
114	unsigned int	flags;
115	unsigned int	in_timeout:1;
116	unsigned int	in_suspend:1;
117	unsigned int	wake_supported:1;
118
119	enum dm9000_type type;
120
121	void (*inblk)(void __iomem *port, void *data, int length);
122	void (*outblk)(void __iomem *port, void *data, int length);
123	void (*dumpblk)(void __iomem *port, int length);
124
125	struct device	*dev;	     /* parent device */
126
127	struct resource	*addr_res;   /* resources found */
128	struct resource *data_res;
129	struct resource	*addr_req;   /* resources requested */
130	struct resource *data_req;
131	struct resource *irq_res;
132
133	int		 irq_wake;
134
135	struct mutex	 addr_lock;	/* phy and eeprom access lock */
136
137	struct delayed_work phy_poll;
138	struct net_device  *ndev;
139
140	spinlock_t	lock;
141
142	struct mii_if_info mii;
143	u32		msg_enable;
144	u32		wake_state;
145
146	int		ip_summed;
147};
148
149/* debug code */
150
151#define dm9000_dbg(db, lev, msg...) do {		\
152	if ((lev) < debug) {				\
153		dev_dbg(db->dev, msg);			\
154	}						\
155} while (0)
156
157static inline struct board_info *to_dm9000_board(struct net_device *dev)
158{
159	return netdev_priv(dev);
160}
161
162/* DM9000 network board routine ---------------------------- */
163
164/*
165 *   Read a byte from I/O port
166 */
167static u8
168ior(struct board_info *db, int reg)
169{
170	writeb(reg, db->io_addr);
171	return readb(db->io_data);
172}
173
174/*
175 *   Write a byte to I/O port
176 */
177
178static void
179iow(struct board_info *db, int reg, int value)
180{
181	writeb(reg, db->io_addr);
182	writeb(value, db->io_data);
183}
184
185static void
186dm9000_reset(struct board_info *db)
187{
188	dev_dbg(db->dev, "resetting device\n");
189
190	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
191	 * The essential point is that we have to do a double reset, and the
192	 * instruction is to set LBK into MAC internal loopback mode.
193	 */
194	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
195	udelay(100); /* Application note says at least 20 us */
196	if (ior(db, DM9000_NCR) & 1)
197		dev_err(db->dev, "dm9000 did not respond to first reset\n");
198
199	iow(db, DM9000_NCR, 0);
200	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
201	udelay(100);
202	if (ior(db, DM9000_NCR) & 1)
203		dev_err(db->dev, "dm9000 did not respond to second reset\n");
204}
205
206/* routines for sending block to chip */
207
208static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
209{
210	iowrite8_rep(reg, data, count);
211}
212
213static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
214{
215	iowrite16_rep(reg, data, (count+1) >> 1);
216}
217
218static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
219{
220	iowrite32_rep(reg, data, (count+3) >> 2);
221}
222
223/* input block from chip to memory */
224
225static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
226{
227	ioread8_rep(reg, data, count);
228}
229
230
231static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
232{
233	ioread16_rep(reg, data, (count+1) >> 1);
234}
235
236static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
237{
238	ioread32_rep(reg, data, (count+3) >> 2);
239}
240
241/* dump block from chip to null */
242
243static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
244{
245	int i;
246	int tmp;
247
248	for (i = 0; i < count; i++)
249		tmp = readb(reg);
250}
251
252static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
253{
254	int i;
255	int tmp;
256
257	count = (count + 1) >> 1;
258
259	for (i = 0; i < count; i++)
260		tmp = readw(reg);
261}
262
263static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
264{
265	int i;
266	int tmp;
267
268	count = (count + 3) >> 2;
269
270	for (i = 0; i < count; i++)
271		tmp = readl(reg);
272}
273
274/*
275 * Sleep, either by using msleep() or if we are suspending, then
276 * use mdelay() to sleep.
277 */
278static void dm9000_msleep(struct board_info *db, unsigned int ms)
279{
280	if (db->in_suspend || db->in_timeout)
281		mdelay(ms);
282	else
283		msleep(ms);
284}
285
286/* Read a word from phyxcer */
287static int
288dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
289{
290	struct board_info *db = netdev_priv(dev);
291	unsigned long flags;
292	unsigned int reg_save;
293	int ret;
294
295	mutex_lock(&db->addr_lock);
296
297	spin_lock_irqsave(&db->lock, flags);
298
299	/* Save previous register address */
300	reg_save = readb(db->io_addr);
301
302	/* Fill the phyxcer register into REG_0C */
303	iow(db, DM9000_EPAR, DM9000_PHY | reg);
304
305	/* Issue phyxcer read command */
306	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
307
308	writeb(reg_save, db->io_addr);
309	spin_unlock_irqrestore(&db->lock, flags);
310
311	dm9000_msleep(db, 1);		/* Wait read complete */
312
313	spin_lock_irqsave(&db->lock, flags);
314	reg_save = readb(db->io_addr);
315
316	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
317
318	/* The read data keeps on REG_0D & REG_0E */
319	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
320
321	/* restore the previous address */
322	writeb(reg_save, db->io_addr);
323	spin_unlock_irqrestore(&db->lock, flags);
324
325	mutex_unlock(&db->addr_lock);
326
327	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
328	return ret;
329}
330
331/* Write a word to phyxcer */
332static void
333dm9000_phy_write(struct net_device *dev,
334		 int phyaddr_unused, int reg, int value)
335{
336	struct board_info *db = netdev_priv(dev);
337	unsigned long flags;
338	unsigned long reg_save;
339
340	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
341	if (!db->in_timeout)
342		mutex_lock(&db->addr_lock);
343
344	spin_lock_irqsave(&db->lock, flags);
345
346	/* Save previous register address */
347	reg_save = readb(db->io_addr);
348
349	/* Fill the phyxcer register into REG_0C */
350	iow(db, DM9000_EPAR, DM9000_PHY | reg);
351
352	/* Fill the written data into REG_0D & REG_0E */
353	iow(db, DM9000_EPDRL, value);
354	iow(db, DM9000_EPDRH, value >> 8);
355
356	/* Issue phyxcer write command */
357	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
358
359	writeb(reg_save, db->io_addr);
360	spin_unlock_irqrestore(&db->lock, flags);
361
362	dm9000_msleep(db, 1);		/* Wait write complete */
363
364	spin_lock_irqsave(&db->lock, flags);
365	reg_save = readb(db->io_addr);
366
367	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
368
369	/* restore the previous address */
370	writeb(reg_save, db->io_addr);
371
372	spin_unlock_irqrestore(&db->lock, flags);
373	if (!db->in_timeout)
374		mutex_unlock(&db->addr_lock);
375}
376
377/* dm9000_set_io
378 *
379 * select the specified set of io routines to use with the
380 * device
381 */
382
383static void dm9000_set_io(struct board_info *db, int byte_width)
384{
385	/* use the size of the data resource to work out what IO
386	 * routines we want to use
387	 */
388
389	switch (byte_width) {
390	case 1:
391		db->dumpblk = dm9000_dumpblk_8bit;
392		db->outblk  = dm9000_outblk_8bit;
393		db->inblk   = dm9000_inblk_8bit;
394		break;
395
396
397	case 3:
398		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
399	case 2:
400		db->dumpblk = dm9000_dumpblk_16bit;
401		db->outblk  = dm9000_outblk_16bit;
402		db->inblk   = dm9000_inblk_16bit;
403		break;
404
405	case 4:
406	default:
407		db->dumpblk = dm9000_dumpblk_32bit;
408		db->outblk  = dm9000_outblk_32bit;
409		db->inblk   = dm9000_inblk_32bit;
410		break;
411	}
412}
413
414static void dm9000_schedule_poll(struct board_info *db)
415{
416	if (db->type == TYPE_DM9000E)
417		schedule_delayed_work(&db->phy_poll, HZ * 2);
418}
419
420static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
421{
422	struct board_info *dm = to_dm9000_board(dev);
423
424	if (!netif_running(dev))
425		return -EINVAL;
426
427	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
428}
429
430static unsigned int
431dm9000_read_locked(struct board_info *db, int reg)
432{
433	unsigned long flags;
434	unsigned int ret;
435
436	spin_lock_irqsave(&db->lock, flags);
437	ret = ior(db, reg);
438	spin_unlock_irqrestore(&db->lock, flags);
439
440	return ret;
441}
442
443static int dm9000_wait_eeprom(struct board_info *db)
444{
445	unsigned int status;
446	int timeout = 8;	/* wait max 8msec */
447
448	/* The DM9000 data sheets say we should be able to
449	 * poll the ERRE bit in EPCR to wait for the EEPROM
450	 * operation. From testing several chips, this bit
451	 * does not seem to work.
452	 *
453	 * We attempt to use the bit, but fall back to the
454	 * timeout (which is why we do not return an error
455	 * on expiry) to say that the EEPROM operation has
456	 * completed.
457	 */
458
459	while (1) {
460		status = dm9000_read_locked(db, DM9000_EPCR);
461
462		if ((status & EPCR_ERRE) == 0)
463			break;
464
465		msleep(1);
466
467		if (timeout-- < 0) {
468			dev_dbg(db->dev, "timeout waiting EEPROM\n");
469			break;
470		}
471	}
472
473	return 0;
474}
475
476/*
477 *  Read a word data from EEPROM
478 */
479static void
480dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
481{
482	unsigned long flags;
483
484	if (db->flags & DM9000_PLATF_NO_EEPROM) {
485		to[0] = 0xff;
486		to[1] = 0xff;
487		return;
488	}
489
490	mutex_lock(&db->addr_lock);
491
492	spin_lock_irqsave(&db->lock, flags);
493
494	iow(db, DM9000_EPAR, offset);
495	iow(db, DM9000_EPCR, EPCR_ERPRR);
496
497	spin_unlock_irqrestore(&db->lock, flags);
498
499	dm9000_wait_eeprom(db);
500
501	/* delay for at-least 150uS */
502	msleep(1);
503
504	spin_lock_irqsave(&db->lock, flags);
505
506	iow(db, DM9000_EPCR, 0x0);
507
508	to[0] = ior(db, DM9000_EPDRL);
509	to[1] = ior(db, DM9000_EPDRH);
510
511	spin_unlock_irqrestore(&db->lock, flags);
512
513	mutex_unlock(&db->addr_lock);
514}
515
516/*
517 * Write a word data to SROM
518 */
519static void
520dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
521{
522	unsigned long flags;
523
524	if (db->flags & DM9000_PLATF_NO_EEPROM)
525		return;
526
527	mutex_lock(&db->addr_lock);
528
529	spin_lock_irqsave(&db->lock, flags);
530	iow(db, DM9000_EPAR, offset);
531	iow(db, DM9000_EPDRH, data[1]);
532	iow(db, DM9000_EPDRL, data[0]);
533	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
534	spin_unlock_irqrestore(&db->lock, flags);
535
536	dm9000_wait_eeprom(db);
537
538	mdelay(1);	/* wait at least 150uS to clear */
539
540	spin_lock_irqsave(&db->lock, flags);
541	iow(db, DM9000_EPCR, 0);
542	spin_unlock_irqrestore(&db->lock, flags);
543
544	mutex_unlock(&db->addr_lock);
545}
546
547/* ethtool ops */
548
549static void dm9000_get_drvinfo(struct net_device *dev,
550			       struct ethtool_drvinfo *info)
551{
552	struct board_info *dm = to_dm9000_board(dev);
553
554	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
555	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
556	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
557		sizeof(info->bus_info));
558}
559
560static u32 dm9000_get_msglevel(struct net_device *dev)
561{
562	struct board_info *dm = to_dm9000_board(dev);
563
564	return dm->msg_enable;
565}
566
567static void dm9000_set_msglevel(struct net_device *dev, u32 value)
568{
569	struct board_info *dm = to_dm9000_board(dev);
570
571	dm->msg_enable = value;
572}
573
574static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
575{
576	struct board_info *dm = to_dm9000_board(dev);
577
578	mii_ethtool_gset(&dm->mii, cmd);
579	return 0;
580}
581
582static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
583{
584	struct board_info *dm = to_dm9000_board(dev);
585
586	return mii_ethtool_sset(&dm->mii, cmd);
587}
588
589static int dm9000_nway_reset(struct net_device *dev)
590{
591	struct board_info *dm = to_dm9000_board(dev);
592	return mii_nway_restart(&dm->mii);
593}
594
595static int dm9000_set_features(struct net_device *dev,
596	netdev_features_t features)
597{
598	struct board_info *dm = to_dm9000_board(dev);
599	netdev_features_t changed = dev->features ^ features;
600	unsigned long flags;
601
602	if (!(changed & NETIF_F_RXCSUM))
603		return 0;
604
605	spin_lock_irqsave(&dm->lock, flags);
606	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
607	spin_unlock_irqrestore(&dm->lock, flags);
608
609	return 0;
610}
611
612static u32 dm9000_get_link(struct net_device *dev)
613{
614	struct board_info *dm = to_dm9000_board(dev);
615	u32 ret;
616
617	if (dm->flags & DM9000_PLATF_EXT_PHY)
618		ret = mii_link_ok(&dm->mii);
619	else
620		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
621
622	return ret;
623}
624
625#define DM_EEPROM_MAGIC		(0x444D394B)
626
627static int dm9000_get_eeprom_len(struct net_device *dev)
628{
629	return 128;
630}
631
632static int dm9000_get_eeprom(struct net_device *dev,
633			     struct ethtool_eeprom *ee, u8 *data)
634{
635	struct board_info *dm = to_dm9000_board(dev);
636	int offset = ee->offset;
637	int len = ee->len;
638	int i;
639
640	/* EEPROM access is aligned to two bytes */
641
642	if ((len & 1) != 0 || (offset & 1) != 0)
643		return -EINVAL;
644
645	if (dm->flags & DM9000_PLATF_NO_EEPROM)
646		return -ENOENT;
647
648	ee->magic = DM_EEPROM_MAGIC;
649
650	for (i = 0; i < len; i += 2)
651		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
652
653	return 0;
654}
655
656static int dm9000_set_eeprom(struct net_device *dev,
657			     struct ethtool_eeprom *ee, u8 *data)
658{
659	struct board_info *dm = to_dm9000_board(dev);
660	int offset = ee->offset;
661	int len = ee->len;
662	int done;
663
664	/* EEPROM access is aligned to two bytes */
665
666	if (dm->flags & DM9000_PLATF_NO_EEPROM)
667		return -ENOENT;
668
669	if (ee->magic != DM_EEPROM_MAGIC)
670		return -EINVAL;
671
672	while (len > 0) {
673		if (len & 1 || offset & 1) {
674			int which = offset & 1;
675			u8 tmp[2];
676
677			dm9000_read_eeprom(dm, offset / 2, tmp);
678			tmp[which] = *data;
679			dm9000_write_eeprom(dm, offset / 2, tmp);
680
681			done = 1;
682		} else {
683			dm9000_write_eeprom(dm, offset / 2, data);
684			done = 2;
685		}
686
687		data += done;
688		offset += done;
689		len -= done;
690	}
691
692	return 0;
693}
694
695static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
696{
697	struct board_info *dm = to_dm9000_board(dev);
698
699	memset(w, 0, sizeof(struct ethtool_wolinfo));
700
701	/* note, we could probably support wake-phy too */
702	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
703	w->wolopts = dm->wake_state;
704}
705
706static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
707{
708	struct board_info *dm = to_dm9000_board(dev);
709	unsigned long flags;
710	u32 opts = w->wolopts;
711	u32 wcr = 0;
712
713	if (!dm->wake_supported)
714		return -EOPNOTSUPP;
715
716	if (opts & ~WAKE_MAGIC)
717		return -EINVAL;
718
719	if (opts & WAKE_MAGIC)
720		wcr |= WCR_MAGICEN;
721
722	mutex_lock(&dm->addr_lock);
723
724	spin_lock_irqsave(&dm->lock, flags);
725	iow(dm, DM9000_WCR, wcr);
726	spin_unlock_irqrestore(&dm->lock, flags);
727
728	mutex_unlock(&dm->addr_lock);
729
730	if (dm->wake_state != opts) {
731		/* change in wol state, update IRQ state */
732
733		if (!dm->wake_state)
734			irq_set_irq_wake(dm->irq_wake, 1);
735		else if (dm->wake_state && !opts)
736			irq_set_irq_wake(dm->irq_wake, 0);
737	}
738
739	dm->wake_state = opts;
740	return 0;
741}
742
743static const struct ethtool_ops dm9000_ethtool_ops = {
744	.get_drvinfo		= dm9000_get_drvinfo,
745	.get_settings		= dm9000_get_settings,
746	.set_settings		= dm9000_set_settings,
747	.get_msglevel		= dm9000_get_msglevel,
748	.set_msglevel		= dm9000_set_msglevel,
749	.nway_reset		= dm9000_nway_reset,
750	.get_link		= dm9000_get_link,
751	.get_wol		= dm9000_get_wol,
752	.set_wol		= dm9000_set_wol,
753	.get_eeprom_len		= dm9000_get_eeprom_len,
754	.get_eeprom		= dm9000_get_eeprom,
755	.set_eeprom		= dm9000_set_eeprom,
756};
757
758static void dm9000_show_carrier(struct board_info *db,
759				unsigned carrier, unsigned nsr)
760{
761	int lpa;
762	struct net_device *ndev = db->ndev;
763	struct mii_if_info *mii = &db->mii;
764	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
765
766	if (carrier) {
767		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
768		dev_info(db->dev,
769			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
770			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
771			 (ncr & NCR_FDX) ? "full" : "half", lpa);
772	} else {
773		dev_info(db->dev, "%s: link down\n", ndev->name);
774	}
775}
776
777static void
778dm9000_poll_work(struct work_struct *w)
779{
780	struct delayed_work *dw = to_delayed_work(w);
781	struct board_info *db = container_of(dw, struct board_info, phy_poll);
782	struct net_device *ndev = db->ndev;
783
784	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
785	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
786		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
787		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
788		unsigned new_carrier;
789
790		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
791
792		if (old_carrier != new_carrier) {
793			if (netif_msg_link(db))
794				dm9000_show_carrier(db, new_carrier, nsr);
795
796			if (!new_carrier)
797				netif_carrier_off(ndev);
798			else
799				netif_carrier_on(ndev);
800		}
801	} else
802		mii_check_media(&db->mii, netif_msg_link(db), 0);
803
804	if (netif_running(ndev))
805		dm9000_schedule_poll(db);
806}
807
808/* dm9000_release_board
809 *
810 * release a board, and any mapped resources
811 */
812
813static void
814dm9000_release_board(struct platform_device *pdev, struct board_info *db)
815{
816	/* unmap our resources */
817
818	iounmap(db->io_addr);
819	iounmap(db->io_data);
820
821	/* release the resources */
822
823	if (db->data_req)
824		release_resource(db->data_req);
825	kfree(db->data_req);
826
827	if (db->addr_req)
828		release_resource(db->addr_req);
829	kfree(db->addr_req);
830}
831
832static unsigned char dm9000_type_to_char(enum dm9000_type type)
833{
834	switch (type) {
835	case TYPE_DM9000E: return 'e';
836	case TYPE_DM9000A: return 'a';
837	case TYPE_DM9000B: return 'b';
838	}
839
840	return '?';
841}
842
843/*
844 *  Set DM9000 multicast address
845 */
846static void
847dm9000_hash_table_unlocked(struct net_device *dev)
848{
849	struct board_info *db = netdev_priv(dev);
850	struct netdev_hw_addr *ha;
851	int i, oft;
852	u32 hash_val;
853	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
854	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
855
856	dm9000_dbg(db, 1, "entering %s\n", __func__);
857
858	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
859		iow(db, oft, dev->dev_addr[i]);
860
861	if (dev->flags & IFF_PROMISC)
862		rcr |= RCR_PRMSC;
863
864	if (dev->flags & IFF_ALLMULTI)
865		rcr |= RCR_ALL;
866
867	/* the multicast address in Hash Table : 64 bits */
868	netdev_for_each_mc_addr(ha, dev) {
869		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
870		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
871	}
872
873	/* Write the hash table to MAC MD table */
874	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
875		iow(db, oft++, hash_table[i]);
876		iow(db, oft++, hash_table[i] >> 8);
877	}
878
879	iow(db, DM9000_RCR, rcr);
880}
881
882static void
883dm9000_hash_table(struct net_device *dev)
884{
885	struct board_info *db = netdev_priv(dev);
886	unsigned long flags;
887
888	spin_lock_irqsave(&db->lock, flags);
889	dm9000_hash_table_unlocked(dev);
890	spin_unlock_irqrestore(&db->lock, flags);
891}
892
893static void
894dm9000_mask_interrupts(struct board_info *db)
895{
896	iow(db, DM9000_IMR, IMR_PAR);
897}
898
899static void
900dm9000_unmask_interrupts(struct board_info *db)
901{
902	iow(db, DM9000_IMR, db->imr_all);
903}
904
905/*
906 * Initialize dm9000 board
907 */
908static void
909dm9000_init_dm9000(struct net_device *dev)
910{
911	struct board_info *db = netdev_priv(dev);
912	unsigned int imr;
913	unsigned int ncr;
914
915	dm9000_dbg(db, 1, "entering %s\n", __func__);
916
917	dm9000_reset(db);
918	dm9000_mask_interrupts(db);
919
920	/* I/O mode */
921	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
922
923	/* Checksum mode */
924	if (dev->hw_features & NETIF_F_RXCSUM)
925		iow(db, DM9000_RCSR,
926			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
927
928	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
929	iow(db, DM9000_GPR, 0);
930
931	/* If we are dealing with DM9000B, some extra steps are required: a
932	 * manual phy reset, and setting init params.
933	 */
934	if (db->type == TYPE_DM9000B) {
935		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
936		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
937	}
938
939	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
940
941	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
942	 * up dumping the wake events if we disable this. There is already
943	 * a wake-mask in DM9000_WCR */
944	if (db->wake_supported)
945		ncr |= NCR_WAKEEN;
946
947	iow(db, DM9000_NCR, ncr);
948
949	/* Program operating register */
950	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
951	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
952	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
953	iow(db, DM9000_SMCR, 0);        /* Special Mode */
954	/* clear TX status */
955	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
956	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
957
958	/* Set address filter table */
959	dm9000_hash_table_unlocked(dev);
960
961	imr = IMR_PAR | IMR_PTM | IMR_PRM;
962	if (db->type != TYPE_DM9000E)
963		imr |= IMR_LNKCHNG;
964
965	db->imr_all = imr;
966
967	/* Init Driver variable */
968	db->tx_pkt_cnt = 0;
969	db->queue_pkt_len = 0;
970	dev->trans_start = jiffies;
971}
972
973/* Our watchdog timed out. Called by the networking layer */
974static void dm9000_timeout(struct net_device *dev)
975{
976	struct board_info *db = netdev_priv(dev);
977	u8 reg_save;
978	unsigned long flags;
979
980	/* Save previous register address */
981	spin_lock_irqsave(&db->lock, flags);
982	db->in_timeout = 1;
983	reg_save = readb(db->io_addr);
984
985	netif_stop_queue(dev);
986	dm9000_init_dm9000(dev);
987	dm9000_unmask_interrupts(db);
988	/* We can accept TX packets again */
989	dev->trans_start = jiffies; /* prevent tx timeout */
990	netif_wake_queue(dev);
991
992	/* Restore previous register address */
993	writeb(reg_save, db->io_addr);
994	db->in_timeout = 0;
995	spin_unlock_irqrestore(&db->lock, flags);
996}
997
998static void dm9000_send_packet(struct net_device *dev,
999			       int ip_summed,
1000			       u16 pkt_len)
1001{
1002	struct board_info *dm = to_dm9000_board(dev);
1003
1004	/* The DM9000 is not smart enough to leave fragmented packets alone. */
1005	if (dm->ip_summed != ip_summed) {
1006		if (ip_summed == CHECKSUM_NONE)
1007			iow(dm, DM9000_TCCR, 0);
1008		else
1009			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
1010		dm->ip_summed = ip_summed;
1011	}
1012
1013	/* Set TX length to DM9000 */
1014	iow(dm, DM9000_TXPLL, pkt_len);
1015	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1016
1017	/* Issue TX polling command */
1018	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1019}
1020
1021/*
1022 *  Hardware start transmission.
1023 *  Send a packet to media from the upper layer.
1024 */
1025static int
1026dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1027{
1028	unsigned long flags;
1029	struct board_info *db = netdev_priv(dev);
1030
1031	dm9000_dbg(db, 3, "%s:\n", __func__);
1032
1033	if (db->tx_pkt_cnt > 1)
1034		return NETDEV_TX_BUSY;
1035
1036	spin_lock_irqsave(&db->lock, flags);
1037
1038	/* Move data to DM9000 TX RAM */
1039	writeb(DM9000_MWCMD, db->io_addr);
1040
1041	(db->outblk)(db->io_data, skb->data, skb->len);
1042	dev->stats.tx_bytes += skb->len;
1043
1044	db->tx_pkt_cnt++;
1045	/* TX control: First packet immediately send, second packet queue */
1046	if (db->tx_pkt_cnt == 1) {
1047		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1048	} else {
1049		/* Second packet */
1050		db->queue_pkt_len = skb->len;
1051		db->queue_ip_summed = skb->ip_summed;
1052		netif_stop_queue(dev);
1053	}
1054
1055	spin_unlock_irqrestore(&db->lock, flags);
1056
1057	/* free this SKB */
1058	dev_consume_skb_any(skb);
1059
1060	return NETDEV_TX_OK;
1061}
1062
1063/*
1064 * DM9000 interrupt handler
1065 * receive the packet to upper layer, free the transmitted packet
1066 */
1067
1068static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1069{
1070	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1071
1072	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1073		/* One packet sent complete */
1074		db->tx_pkt_cnt--;
1075		dev->stats.tx_packets++;
1076
1077		if (netif_msg_tx_done(db))
1078			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1079
1080		/* Queue packet check & send */
1081		if (db->tx_pkt_cnt > 0)
1082			dm9000_send_packet(dev, db->queue_ip_summed,
1083					   db->queue_pkt_len);
1084		netif_wake_queue(dev);
1085	}
1086}
1087
1088struct dm9000_rxhdr {
1089	u8	RxPktReady;
1090	u8	RxStatus;
1091	__le16	RxLen;
1092} __packed;
1093
1094/*
1095 *  Received a packet and pass to upper layer
1096 */
1097static void
1098dm9000_rx(struct net_device *dev)
1099{
1100	struct board_info *db = netdev_priv(dev);
1101	struct dm9000_rxhdr rxhdr;
1102	struct sk_buff *skb;
1103	u8 rxbyte, *rdptr;
1104	bool GoodPacket;
1105	int RxLen;
1106
1107	/* Check packet ready or not */
1108	do {
1109		ior(db, DM9000_MRCMDX);	/* Dummy read */
1110
1111		/* Get most updated data */
1112		rxbyte = readb(db->io_data);
1113
1114		/* Status check: this byte must be 0 or 1 */
1115		if (rxbyte & DM9000_PKT_ERR) {
1116			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1117			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1118			return;
1119		}
1120
1121		if (!(rxbyte & DM9000_PKT_RDY))
1122			return;
1123
1124		/* A packet ready now  & Get status/length */
1125		GoodPacket = true;
1126		writeb(DM9000_MRCMD, db->io_addr);
1127
1128		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1129
1130		RxLen = le16_to_cpu(rxhdr.RxLen);
1131
1132		if (netif_msg_rx_status(db))
1133			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1134				rxhdr.RxStatus, RxLen);
1135
1136		/* Packet Status check */
1137		if (RxLen < 0x40) {
1138			GoodPacket = false;
1139			if (netif_msg_rx_err(db))
1140				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1141		}
1142
1143		if (RxLen > DM9000_PKT_MAX) {
1144			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1145		}
1146
1147		/* rxhdr.RxStatus is identical to RSR register. */
1148		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1149				      RSR_PLE | RSR_RWTO |
1150				      RSR_LCS | RSR_RF)) {
1151			GoodPacket = false;
1152			if (rxhdr.RxStatus & RSR_FOE) {
1153				if (netif_msg_rx_err(db))
1154					dev_dbg(db->dev, "fifo error\n");
1155				dev->stats.rx_fifo_errors++;
1156			}
1157			if (rxhdr.RxStatus & RSR_CE) {
1158				if (netif_msg_rx_err(db))
1159					dev_dbg(db->dev, "crc error\n");
1160				dev->stats.rx_crc_errors++;
1161			}
1162			if (rxhdr.RxStatus & RSR_RF) {
1163				if (netif_msg_rx_err(db))
1164					dev_dbg(db->dev, "length error\n");
1165				dev->stats.rx_length_errors++;
1166			}
1167		}
1168
1169		/* Move data from DM9000 */
1170		if (GoodPacket &&
1171		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1172			skb_reserve(skb, 2);
1173			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1174
1175			/* Read received packet from RX SRAM */
1176
1177			(db->inblk)(db->io_data, rdptr, RxLen);
1178			dev->stats.rx_bytes += RxLen;
1179
1180			/* Pass to upper layer */
1181			skb->protocol = eth_type_trans(skb, dev);
1182			if (dev->features & NETIF_F_RXCSUM) {
1183				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1184					skb->ip_summed = CHECKSUM_UNNECESSARY;
1185				else
1186					skb_checksum_none_assert(skb);
1187			}
1188			netif_rx(skb);
1189			dev->stats.rx_packets++;
1190
1191		} else {
1192			/* need to dump the packet's data */
1193
1194			(db->dumpblk)(db->io_data, RxLen);
1195		}
1196	} while (rxbyte & DM9000_PKT_RDY);
1197}
1198
1199static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1200{
1201	struct net_device *dev = dev_id;
1202	struct board_info *db = netdev_priv(dev);
1203	int int_status;
1204	unsigned long flags;
1205	u8 reg_save;
1206
1207	dm9000_dbg(db, 3, "entering %s\n", __func__);
1208
1209	/* A real interrupt coming */
1210
1211	/* holders of db->lock must always block IRQs */
1212	spin_lock_irqsave(&db->lock, flags);
1213
1214	/* Save previous register address */
1215	reg_save = readb(db->io_addr);
1216
1217	dm9000_mask_interrupts(db);
1218	/* Got DM9000 interrupt status */
1219	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1220	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1221
1222	if (netif_msg_intr(db))
1223		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1224
1225	/* Received the coming packet */
1226	if (int_status & ISR_PRS)
1227		dm9000_rx(dev);
1228
1229	/* Trnasmit Interrupt check */
1230	if (int_status & ISR_PTS)
1231		dm9000_tx_done(dev, db);
1232
1233	if (db->type != TYPE_DM9000E) {
1234		if (int_status & ISR_LNKCHNG) {
1235			/* fire a link-change request */
1236			schedule_delayed_work(&db->phy_poll, 1);
1237		}
1238	}
1239
1240	dm9000_unmask_interrupts(db);
1241	/* Restore previous register address */
1242	writeb(reg_save, db->io_addr);
1243
1244	spin_unlock_irqrestore(&db->lock, flags);
1245
1246	return IRQ_HANDLED;
1247}
1248
1249static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1250{
1251	struct net_device *dev = dev_id;
1252	struct board_info *db = netdev_priv(dev);
1253	unsigned long flags;
1254	unsigned nsr, wcr;
1255
1256	spin_lock_irqsave(&db->lock, flags);
1257
1258	nsr = ior(db, DM9000_NSR);
1259	wcr = ior(db, DM9000_WCR);
1260
1261	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1262
1263	if (nsr & NSR_WAKEST) {
1264		/* clear, so we can avoid */
1265		iow(db, DM9000_NSR, NSR_WAKEST);
1266
1267		if (wcr & WCR_LINKST)
1268			dev_info(db->dev, "wake by link status change\n");
1269		if (wcr & WCR_SAMPLEST)
1270			dev_info(db->dev, "wake by sample packet\n");
1271		if (wcr & WCR_MAGICST)
1272			dev_info(db->dev, "wake by magic packet\n");
1273		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1274			dev_err(db->dev, "wake signalled with no reason? "
1275				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1276	}
1277
1278	spin_unlock_irqrestore(&db->lock, flags);
1279
1280	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1281}
1282
1283#ifdef CONFIG_NET_POLL_CONTROLLER
1284/*
1285 *Used by netconsole
1286 */
1287static void dm9000_poll_controller(struct net_device *dev)
1288{
1289	disable_irq(dev->irq);
1290	dm9000_interrupt(dev->irq, dev);
1291	enable_irq(dev->irq);
1292}
1293#endif
1294
1295/*
1296 *  Open the interface.
1297 *  The interface is opened whenever "ifconfig" actives it.
1298 */
1299static int
1300dm9000_open(struct net_device *dev)
1301{
1302	struct board_info *db = netdev_priv(dev);
1303	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1304
1305	if (netif_msg_ifup(db))
1306		dev_dbg(db->dev, "enabling %s\n", dev->name);
1307
1308	/* If there is no IRQ type specified, default to something that
1309	 * may work, and tell the user that this is a problem */
1310
1311	if (irqflags == IRQF_TRIGGER_NONE)
1312		irqflags = irq_get_trigger_type(dev->irq);
1313
1314	if (irqflags == IRQF_TRIGGER_NONE)
1315		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1316
1317	irqflags |= IRQF_SHARED;
1318
1319	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1320	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1321	mdelay(1); /* delay needs by DM9000B */
1322
1323	/* Initialize DM9000 board */
1324	dm9000_init_dm9000(dev);
1325
1326	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1327		return -EAGAIN;
1328	/* Now that we have an interrupt handler hooked up we can unmask
1329	 * our interrupts
1330	 */
1331	dm9000_unmask_interrupts(db);
1332
1333	/* Init driver variable */
1334	db->dbug_cnt = 0;
1335
1336	mii_check_media(&db->mii, netif_msg_link(db), 1);
1337	netif_start_queue(dev);
1338
1339	/* Poll initial link status */
1340	schedule_delayed_work(&db->phy_poll, 1);
1341
1342	return 0;
1343}
1344
1345static void
1346dm9000_shutdown(struct net_device *dev)
1347{
1348	struct board_info *db = netdev_priv(dev);
1349
1350	/* RESET device */
1351	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1352	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1353	dm9000_mask_interrupts(db);
1354	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1355}
1356
1357/*
1358 * Stop the interface.
1359 * The interface is stopped when it is brought.
1360 */
1361static int
1362dm9000_stop(struct net_device *ndev)
1363{
1364	struct board_info *db = netdev_priv(ndev);
1365
1366	if (netif_msg_ifdown(db))
1367		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1368
1369	cancel_delayed_work_sync(&db->phy_poll);
1370
1371	netif_stop_queue(ndev);
1372	netif_carrier_off(ndev);
1373
1374	/* free interrupt */
1375	free_irq(ndev->irq, ndev);
1376
1377	dm9000_shutdown(ndev);
1378
1379	return 0;
1380}
1381
1382static const struct net_device_ops dm9000_netdev_ops = {
1383	.ndo_open		= dm9000_open,
1384	.ndo_stop		= dm9000_stop,
1385	.ndo_start_xmit		= dm9000_start_xmit,
1386	.ndo_tx_timeout		= dm9000_timeout,
1387	.ndo_set_rx_mode	= dm9000_hash_table,
1388	.ndo_do_ioctl		= dm9000_ioctl,
1389	.ndo_change_mtu		= eth_change_mtu,
1390	.ndo_set_features	= dm9000_set_features,
1391	.ndo_validate_addr	= eth_validate_addr,
1392	.ndo_set_mac_address	= eth_mac_addr,
1393#ifdef CONFIG_NET_POLL_CONTROLLER
1394	.ndo_poll_controller	= dm9000_poll_controller,
1395#endif
1396};
1397
1398static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1399{
1400	struct dm9000_plat_data *pdata;
1401	struct device_node *np = dev->of_node;
1402	const void *mac_addr;
1403
1404	if (!IS_ENABLED(CONFIG_OF) || !np)
1405		return ERR_PTR(-ENXIO);
1406
1407	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1408	if (!pdata)
1409		return ERR_PTR(-ENOMEM);
1410
1411	if (of_find_property(np, "davicom,ext-phy", NULL))
1412		pdata->flags |= DM9000_PLATF_EXT_PHY;
1413	if (of_find_property(np, "davicom,no-eeprom", NULL))
1414		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1415
1416	mac_addr = of_get_mac_address(np);
1417	if (mac_addr)
1418		memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1419
1420	return pdata;
1421}
1422
1423/*
1424 * Search DM9000 board, allocate space and register it
1425 */
1426static int
1427dm9000_probe(struct platform_device *pdev)
1428{
1429	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1430	struct board_info *db;	/* Point a board information structure */
1431	struct net_device *ndev;
1432	struct device *dev = &pdev->dev;
1433	const unsigned char *mac_src;
1434	int ret = 0;
1435	int iosize;
1436	int i;
1437	u32 id_val;
1438	int reset_gpios;
1439	enum of_gpio_flags flags;
1440	struct regulator *power;
1441
1442	power = devm_regulator_get(dev, "vcc");
1443	if (IS_ERR(power)) {
1444		if (PTR_ERR(power) == -EPROBE_DEFER)
1445			return -EPROBE_DEFER;
1446		dev_dbg(dev, "no regulator provided\n");
1447	} else {
1448		ret = regulator_enable(power);
1449		if (ret != 0) {
1450			dev_err(dev,
1451				"Failed to enable power regulator: %d\n", ret);
1452			return ret;
1453		}
1454		dev_dbg(dev, "regulator enabled\n");
1455	}
1456
1457	reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1458					      &flags);
1459	if (gpio_is_valid(reset_gpios)) {
1460		ret = devm_gpio_request_one(dev, reset_gpios, flags,
1461					    "dm9000_reset");
1462		if (ret) {
1463			dev_err(dev, "failed to request reset gpio %d: %d\n",
1464				reset_gpios, ret);
1465			return -ENODEV;
1466		}
1467
1468		/* According to manual PWRST# Low Period Min 1ms */
1469		msleep(2);
1470		gpio_set_value(reset_gpios, 1);
1471		/* Needs 3ms to read eeprom when PWRST is deasserted */
1472		msleep(4);
1473	}
1474
1475	if (!pdata) {
1476		pdata = dm9000_parse_dt(&pdev->dev);
1477		if (IS_ERR(pdata))
1478			return PTR_ERR(pdata);
1479	}
1480
1481	/* Init network device */
1482	ndev = alloc_etherdev(sizeof(struct board_info));
1483	if (!ndev)
1484		return -ENOMEM;
1485
1486	SET_NETDEV_DEV(ndev, &pdev->dev);
1487
1488	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1489
1490	/* setup board info structure */
1491	db = netdev_priv(ndev);
1492
1493	db->dev = &pdev->dev;
1494	db->ndev = ndev;
1495
1496	spin_lock_init(&db->lock);
1497	mutex_init(&db->addr_lock);
1498
1499	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1500
1501	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1503	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1504
1505	if (db->addr_res == NULL || db->data_res == NULL ||
1506	    db->irq_res == NULL) {
1507		dev_err(db->dev, "insufficient resources\n");
1508		ret = -ENOENT;
1509		goto out;
1510	}
1511
1512	db->irq_wake = platform_get_irq(pdev, 1);
1513	if (db->irq_wake >= 0) {
1514		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1515
1516		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1517				  IRQF_SHARED, dev_name(db->dev), ndev);
1518		if (ret) {
1519			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1520		} else {
1521
1522			/* test to see if irq is really wakeup capable */
1523			ret = irq_set_irq_wake(db->irq_wake, 1);
1524			if (ret) {
1525				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1526					db->irq_wake, ret);
1527				ret = 0;
1528			} else {
1529				irq_set_irq_wake(db->irq_wake, 0);
1530				db->wake_supported = 1;
1531			}
1532		}
1533	}
1534
1535	iosize = resource_size(db->addr_res);
1536	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1537					  pdev->name);
1538
1539	if (db->addr_req == NULL) {
1540		dev_err(db->dev, "cannot claim address reg area\n");
1541		ret = -EIO;
1542		goto out;
1543	}
1544
1545	db->io_addr = ioremap(db->addr_res->start, iosize);
1546
1547	if (db->io_addr == NULL) {
1548		dev_err(db->dev, "failed to ioremap address reg\n");
1549		ret = -EINVAL;
1550		goto out;
1551	}
1552
1553	iosize = resource_size(db->data_res);
1554	db->data_req = request_mem_region(db->data_res->start, iosize,
1555					  pdev->name);
1556
1557	if (db->data_req == NULL) {
1558		dev_err(db->dev, "cannot claim data reg area\n");
1559		ret = -EIO;
1560		goto out;
1561	}
1562
1563	db->io_data = ioremap(db->data_res->start, iosize);
1564
1565	if (db->io_data == NULL) {
1566		dev_err(db->dev, "failed to ioremap data reg\n");
1567		ret = -EINVAL;
1568		goto out;
1569	}
1570
1571	/* fill in parameters for net-dev structure */
1572	ndev->base_addr = (unsigned long)db->io_addr;
1573	ndev->irq	= db->irq_res->start;
1574
1575	/* ensure at least we have a default set of IO routines */
1576	dm9000_set_io(db, iosize);
1577
1578	/* check to see if anything is being over-ridden */
1579	if (pdata != NULL) {
1580		/* check to see if the driver wants to over-ride the
1581		 * default IO width */
1582
1583		if (pdata->flags & DM9000_PLATF_8BITONLY)
1584			dm9000_set_io(db, 1);
1585
1586		if (pdata->flags & DM9000_PLATF_16BITONLY)
1587			dm9000_set_io(db, 2);
1588
1589		if (pdata->flags & DM9000_PLATF_32BITONLY)
1590			dm9000_set_io(db, 4);
1591
1592		/* check to see if there are any IO routine
1593		 * over-rides */
1594
1595		if (pdata->inblk != NULL)
1596			db->inblk = pdata->inblk;
1597
1598		if (pdata->outblk != NULL)
1599			db->outblk = pdata->outblk;
1600
1601		if (pdata->dumpblk != NULL)
1602			db->dumpblk = pdata->dumpblk;
1603
1604		db->flags = pdata->flags;
1605	}
1606
1607#ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1608	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1609#endif
1610
1611	dm9000_reset(db);
1612
1613	/* try multiple times, DM9000 sometimes gets the read wrong */
1614	for (i = 0; i < 8; i++) {
1615		id_val  = ior(db, DM9000_VIDL);
1616		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1617		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1618		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1619
1620		if (id_val == DM9000_ID)
1621			break;
1622		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1623	}
1624
1625	if (id_val != DM9000_ID) {
1626		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1627		ret = -ENODEV;
1628		goto out;
1629	}
1630
1631	/* Identify what type of DM9000 we are working on */
1632
1633	id_val = ior(db, DM9000_CHIPR);
1634	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1635
1636	switch (id_val) {
1637	case CHIPR_DM9000A:
1638		db->type = TYPE_DM9000A;
1639		break;
1640	case CHIPR_DM9000B:
1641		db->type = TYPE_DM9000B;
1642		break;
1643	default:
1644		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1645		db->type = TYPE_DM9000E;
1646	}
1647
1648	/* dm9000a/b are capable of hardware checksum offload */
1649	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1650		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1651		ndev->features |= ndev->hw_features;
1652	}
1653
1654	/* from this point we assume that we have found a DM9000 */
1655
1656	ndev->netdev_ops	= &dm9000_netdev_ops;
1657	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1658	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1659
1660	db->msg_enable       = NETIF_MSG_LINK;
1661	db->mii.phy_id_mask  = 0x1f;
1662	db->mii.reg_num_mask = 0x1f;
1663	db->mii.force_media  = 0;
1664	db->mii.full_duplex  = 0;
1665	db->mii.dev	     = ndev;
1666	db->mii.mdio_read    = dm9000_phy_read;
1667	db->mii.mdio_write   = dm9000_phy_write;
1668
1669	mac_src = "eeprom";
1670
1671	/* try reading the node address from the attached EEPROM */
1672	for (i = 0; i < 6; i += 2)
1673		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1674
1675	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1676		mac_src = "platform data";
1677		memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1678	}
1679
1680	if (!is_valid_ether_addr(ndev->dev_addr)) {
1681		/* try reading from mac */
1682
1683		mac_src = "chip";
1684		for (i = 0; i < 6; i++)
1685			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1686	}
1687
1688	if (!is_valid_ether_addr(ndev->dev_addr)) {
1689		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1690			 "set using ifconfig\n", ndev->name);
1691
1692		eth_hw_addr_random(ndev);
1693		mac_src = "random";
1694	}
1695
1696
1697	platform_set_drvdata(pdev, ndev);
1698	ret = register_netdev(ndev);
1699
1700	if (ret == 0)
1701		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1702		       ndev->name, dm9000_type_to_char(db->type),
1703		       db->io_addr, db->io_data, ndev->irq,
1704		       ndev->dev_addr, mac_src);
1705	return 0;
1706
1707out:
1708	dev_err(db->dev, "not found (%d).\n", ret);
1709
1710	dm9000_release_board(pdev, db);
1711	free_netdev(ndev);
1712
1713	return ret;
1714}
1715
1716static int
1717dm9000_drv_suspend(struct device *dev)
1718{
1719	struct platform_device *pdev = to_platform_device(dev);
1720	struct net_device *ndev = platform_get_drvdata(pdev);
1721	struct board_info *db;
1722
1723	if (ndev) {
1724		db = netdev_priv(ndev);
1725		db->in_suspend = 1;
1726
1727		if (!netif_running(ndev))
1728			return 0;
1729
1730		netif_device_detach(ndev);
1731
1732		/* only shutdown if not using WoL */
1733		if (!db->wake_state)
1734			dm9000_shutdown(ndev);
1735	}
1736	return 0;
1737}
1738
1739static int
1740dm9000_drv_resume(struct device *dev)
1741{
1742	struct platform_device *pdev = to_platform_device(dev);
1743	struct net_device *ndev = platform_get_drvdata(pdev);
1744	struct board_info *db = netdev_priv(ndev);
1745
1746	if (ndev) {
1747		if (netif_running(ndev)) {
1748			/* reset if we were not in wake mode to ensure if
1749			 * the device was powered off it is in a known state */
1750			if (!db->wake_state) {
1751				dm9000_init_dm9000(ndev);
1752				dm9000_unmask_interrupts(db);
1753			}
1754
1755			netif_device_attach(ndev);
1756		}
1757
1758		db->in_suspend = 0;
1759	}
1760	return 0;
1761}
1762
1763static const struct dev_pm_ops dm9000_drv_pm_ops = {
1764	.suspend	= dm9000_drv_suspend,
1765	.resume		= dm9000_drv_resume,
1766};
1767
1768static int
1769dm9000_drv_remove(struct platform_device *pdev)
1770{
1771	struct net_device *ndev = platform_get_drvdata(pdev);
1772
1773	unregister_netdev(ndev);
1774	dm9000_release_board(pdev, netdev_priv(ndev));
1775	free_netdev(ndev);		/* free device structure */
1776
1777	dev_dbg(&pdev->dev, "released and freed device\n");
1778	return 0;
1779}
1780
1781#ifdef CONFIG_OF
1782static const struct of_device_id dm9000_of_matches[] = {
1783	{ .compatible = "davicom,dm9000", },
1784	{ /* sentinel */ }
1785};
1786MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1787#endif
1788
1789static struct platform_driver dm9000_driver = {
1790	.driver	= {
1791		.name    = "dm9000",
1792		.pm	 = &dm9000_drv_pm_ops,
1793		.of_match_table = of_match_ptr(dm9000_of_matches),
1794	},
1795	.probe   = dm9000_probe,
1796	.remove  = dm9000_drv_remove,
1797};
1798
1799module_platform_driver(dm9000_driver);
1800
1801MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1802MODULE_DESCRIPTION("Davicom DM9000 network driver");
1803MODULE_LICENSE("GPL");
1804MODULE_ALIAS("platform:dm9000");
1805