1/*
2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3 *
4 * Copyright (C) 2003, 2007  IC Plus Corp
5 *
6 * Original Author:
7 *
8 *   Craig Rich
9 *   Sundance Technology, Inc.
10 *   www.sundanceti.com
11 *   craig_rich@sundanceti.com
12 *
13 * Current Maintainer:
14 *
15 *   Sorbica Shieh.
16 *   http://www.icplus.com.tw
17 *   sorbica@icplus.com.tw
18 *
19 *   Jesse Huang
20 *   http://www.icplus.com.tw
21 *   jesse@icplus.com.tw
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/crc32.h>
27#include <linux/ethtool.h>
28#include <linux/interrupt.h>
29#include <linux/gfp.h>
30#include <linux/mii.h>
31#include <linux/mutex.h>
32
33#include <asm/div64.h>
34
35#define IPG_RX_RING_BYTES	(sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
36#define IPG_TX_RING_BYTES	(sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
37#define IPG_RESET_MASK \
38	(IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
39	 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
40	 IPG_AC_AUTO_INIT)
41
42#define ipg_w32(val32, reg)	iowrite32((val32), ioaddr + (reg))
43#define ipg_w16(val16, reg)	iowrite16((val16), ioaddr + (reg))
44#define ipg_w8(val8, reg)	iowrite8((val8), ioaddr + (reg))
45
46#define ipg_r32(reg)		ioread32(ioaddr + (reg))
47#define ipg_r16(reg)		ioread16(ioaddr + (reg))
48#define ipg_r8(reg)		ioread8(ioaddr + (reg))
49
50enum {
51	netdev_io_size = 128
52};
53
54#include "ipg.h"
55#define DRV_NAME	"ipg"
56
57MODULE_AUTHOR("IC Plus Corp. 2003");
58MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
59MODULE_LICENSE("GPL");
60
61/*
62 * Defaults
63 */
64#define IPG_MAX_RXFRAME_SIZE	0x0600
65#define IPG_RXFRAG_SIZE		0x0600
66#define IPG_RXSUPPORT_SIZE	0x0600
67#define IPG_IS_JUMBO		false
68
69/*
70 * Variable record -- index by leading revision/length
71 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
72 */
73static const unsigned short DefaultPhyParam[] = {
74	/* 11/12/03 IP1000A v1-3 rev=0x40 */
75	/*--------------------------------------------------------------------------
76	(0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
77				 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
78				 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
79	  --------------------------------------------------------------------------*/
80	/* 12/17/03 IP1000A v1-4 rev=0x40 */
81	(0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
82	    0x0000,
83	30, 0x005e, 9, 0x0700,
84	/* 01/09/04 IP1000A v1-5 rev=0x41 */
85	(0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
86	    0x0000,
87	30, 0x005e, 9, 0x0700,
88	0x0000
89};
90
91static const char * const ipg_brand_name[] = {
92	"IC PLUS IP1000 1000/100/10 based NIC",
93	"Sundance Technology ST2021 based NIC",
94	"Tamarack Microelectronics TC9020/9021 based NIC",
95	"D-Link NIC IP1000A"
96};
97
98static const struct pci_device_id ipg_pci_tbl[] = {
99	{ PCI_VDEVICE(SUNDANCE,	0x1023), 0 },
100	{ PCI_VDEVICE(SUNDANCE,	0x2021), 1 },
101	{ PCI_VDEVICE(DLINK,	0x9021), 2 },
102	{ PCI_VDEVICE(DLINK,	0x4020), 3 },
103	{ 0, }
104};
105
106MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
107
108static inline void __iomem *ipg_ioaddr(struct net_device *dev)
109{
110	struct ipg_nic_private *sp = netdev_priv(dev);
111	return sp->ioaddr;
112}
113
114#ifdef IPG_DEBUG
115static void ipg_dump_rfdlist(struct net_device *dev)
116{
117	struct ipg_nic_private *sp = netdev_priv(dev);
118	void __iomem *ioaddr = sp->ioaddr;
119	unsigned int i;
120	u32 offset;
121
122	IPG_DEBUG_MSG("_dump_rfdlist\n");
123
124	netdev_info(dev, "rx_current = %02x\n", sp->rx_current);
125	netdev_info(dev, "rx_dirty   = %02x\n", sp->rx_dirty);
126	netdev_info(dev, "RFDList start address = %016lx\n",
127		    (unsigned long)sp->rxd_map);
128	netdev_info(dev, "RFDListPtr register   = %08x%08x\n",
129		    ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
130
131	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
132		offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
133		netdev_info(dev, "%02x %04x RFDNextPtr = %016lx\n",
134			    i, offset, (unsigned long)sp->rxd[i].next_desc);
135		offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
136		netdev_info(dev, "%02x %04x RFS        = %016lx\n",
137			    i, offset, (unsigned long)sp->rxd[i].rfs);
138		offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
139		netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
140			    i, offset, (unsigned long)sp->rxd[i].frag_info);
141	}
142}
143
144static void ipg_dump_tfdlist(struct net_device *dev)
145{
146	struct ipg_nic_private *sp = netdev_priv(dev);
147	void __iomem *ioaddr = sp->ioaddr;
148	unsigned int i;
149	u32 offset;
150
151	IPG_DEBUG_MSG("_dump_tfdlist\n");
152
153	netdev_info(dev, "tx_current         = %02x\n", sp->tx_current);
154	netdev_info(dev, "tx_dirty = %02x\n", sp->tx_dirty);
155	netdev_info(dev, "TFDList start address = %016lx\n",
156		    (unsigned long) sp->txd_map);
157	netdev_info(dev, "TFDListPtr register   = %08x%08x\n",
158		    ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
159
160	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
161		offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
162		netdev_info(dev, "%02x %04x TFDNextPtr = %016lx\n",
163			    i, offset, (unsigned long)sp->txd[i].next_desc);
164
165		offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
166		netdev_info(dev, "%02x %04x TFC        = %016lx\n",
167			    i, offset, (unsigned long) sp->txd[i].tfc);
168		offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
169		netdev_info(dev, "%02x %04x frag_info   = %016lx\n",
170			    i, offset, (unsigned long) sp->txd[i].frag_info);
171	}
172}
173#endif
174
175static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
176{
177	ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
178	ndelay(IPG_PC_PHYCTRLWAIT_NS);
179}
180
181static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
182{
183	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
184	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
185}
186
187static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
188{
189	phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
190
191	ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
192}
193
194static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
195{
196	ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
197		phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
198}
199
200static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
201{
202	u16 bit_data;
203
204	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
205
206	bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
207
208	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
209
210	return bit_data;
211}
212
213/*
214 * Read a register from the Physical Layer device located
215 * on the IPG NIC, using the IPG PHYCTRL register.
216 */
217static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
218{
219	void __iomem *ioaddr = ipg_ioaddr(dev);
220	/*
221	 * The GMII mangement frame structure for a read is as follows:
222	 *
223	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
224	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
225	 *
226	 * <32 1s> = 32 consecutive logic 1 values
227	 * A = bit of Physical Layer device address (MSB first)
228	 * R = bit of register address (MSB first)
229	 * z = High impedance state
230	 * D = bit of read data (MSB first)
231	 *
232	 * Transmission order is 'Preamble' field first, bits transmitted
233	 * left to right (first to last).
234	 */
235	struct {
236		u32 field;
237		unsigned int len;
238	} p[] = {
239		{ GMII_PREAMBLE,	32 },	/* Preamble */
240		{ GMII_ST,		2  },	/* ST */
241		{ GMII_READ,		2  },	/* OP */
242		{ phy_id,		5  },	/* PHYAD */
243		{ phy_reg,		5  },	/* REGAD */
244		{ 0x0000,		2  },	/* TA */
245		{ 0x0000,		16 },	/* DATA */
246		{ 0x0000,		1  }	/* IDLE */
247	};
248	unsigned int i, j;
249	u8 polarity, data;
250
251	polarity  = ipg_r8(PHY_CTRL);
252	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
253
254	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
255	for (j = 0; j < 5; j++) {
256		for (i = 0; i < p[j].len; i++) {
257			/* For each variable length field, the MSB must be
258			 * transmitted first. Rotate through the field bits,
259			 * starting with the MSB, and move each bit into the
260			 * the 1st (2^1) bit position (this is the bit position
261			 * corresponding to the MgmtData bit of the PhyCtrl
262			 * register for the IPG).
263			 *
264			 * Example: ST = 01;
265			 *
266			 *          First write a '0' to bit 1 of the PhyCtrl
267			 *          register, then write a '1' to bit 1 of the
268			 *          PhyCtrl register.
269			 *
270			 * To do this, right shift the MSB of ST by the value:
271			 * [field length - 1 - #ST bits already written]
272			 * then left shift this result by 1.
273			 */
274			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
275			data &= IPG_PC_MGMTDATA;
276			data |= polarity | IPG_PC_MGMTDIR;
277
278			ipg_drive_phy_ctl_low_high(ioaddr, data);
279		}
280	}
281
282	send_three_state(ioaddr, polarity);
283
284	read_phy_bit(ioaddr, polarity);
285
286	/*
287	 * For a read cycle, the bits for the next two fields (TA and
288	 * DATA) are driven by the PHY (the IPG reads these bits).
289	 */
290	for (i = 0; i < p[6].len; i++) {
291		p[6].field |=
292		    (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
293	}
294
295	send_three_state(ioaddr, polarity);
296	send_three_state(ioaddr, polarity);
297	send_three_state(ioaddr, polarity);
298	send_end(ioaddr, polarity);
299
300	/* Return the value of the DATA field. */
301	return p[6].field;
302}
303
304/*
305 * Write to a register from the Physical Layer device located
306 * on the IPG NIC, using the IPG PHYCTRL register.
307 */
308static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
309{
310	void __iomem *ioaddr = ipg_ioaddr(dev);
311	/*
312	 * The GMII mangement frame structure for a read is as follows:
313	 *
314	 * |Preamble|st|op|phyad|regad|ta|      data      |idle|
315	 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
316	 *
317	 * <32 1s> = 32 consecutive logic 1 values
318	 * A = bit of Physical Layer device address (MSB first)
319	 * R = bit of register address (MSB first)
320	 * z = High impedance state
321	 * D = bit of write data (MSB first)
322	 *
323	 * Transmission order is 'Preamble' field first, bits transmitted
324	 * left to right (first to last).
325	 */
326	struct {
327		u32 field;
328		unsigned int len;
329	} p[] = {
330		{ GMII_PREAMBLE,	32 },	/* Preamble */
331		{ GMII_ST,		2  },	/* ST */
332		{ GMII_WRITE,		2  },	/* OP */
333		{ phy_id,		5  },	/* PHYAD */
334		{ phy_reg,		5  },	/* REGAD */
335		{ 0x0002,		2  },	/* TA */
336		{ val & 0xffff,		16 },	/* DATA */
337		{ 0x0000,		1  }	/* IDLE */
338	};
339	unsigned int i, j;
340	u8 polarity, data;
341
342	polarity  = ipg_r8(PHY_CTRL);
343	polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
344
345	/* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
346	for (j = 0; j < 7; j++) {
347		for (i = 0; i < p[j].len; i++) {
348			/* For each variable length field, the MSB must be
349			 * transmitted first. Rotate through the field bits,
350			 * starting with the MSB, and move each bit into the
351			 * the 1st (2^1) bit position (this is the bit position
352			 * corresponding to the MgmtData bit of the PhyCtrl
353			 * register for the IPG).
354			 *
355			 * Example: ST = 01;
356			 *
357			 *          First write a '0' to bit 1 of the PhyCtrl
358			 *          register, then write a '1' to bit 1 of the
359			 *          PhyCtrl register.
360			 *
361			 * To do this, right shift the MSB of ST by the value:
362			 * [field length - 1 - #ST bits already written]
363			 * then left shift this result by 1.
364			 */
365			data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
366			data &= IPG_PC_MGMTDATA;
367			data |= polarity | IPG_PC_MGMTDIR;
368
369			ipg_drive_phy_ctl_low_high(ioaddr, data);
370		}
371	}
372
373	/* The last cycle is a tri-state, so read from the PHY. */
374	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
375	ipg_r8(PHY_CTRL);
376	ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
377}
378
379static void ipg_set_led_mode(struct net_device *dev)
380{
381	struct ipg_nic_private *sp = netdev_priv(dev);
382	void __iomem *ioaddr = sp->ioaddr;
383	u32 mode;
384
385	mode = ipg_r32(ASIC_CTRL);
386	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
387
388	if ((sp->led_mode & 0x03) > 1)
389		mode |= IPG_AC_LED_MODE_BIT_1;	/* Write Asic Control Bit 29 */
390
391	if ((sp->led_mode & 0x01) == 1)
392		mode |= IPG_AC_LED_MODE;	/* Write Asic Control Bit 14 */
393
394	if ((sp->led_mode & 0x08) == 8)
395		mode |= IPG_AC_LED_SPEED;	/* Write Asic Control Bit 27 */
396
397	ipg_w32(mode, ASIC_CTRL);
398}
399
400static void ipg_set_phy_set(struct net_device *dev)
401{
402	struct ipg_nic_private *sp = netdev_priv(dev);
403	void __iomem *ioaddr = sp->ioaddr;
404	int physet;
405
406	physet = ipg_r8(PHY_SET);
407	physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
408	physet |= ((sp->led_mode & 0x70) >> 4);
409	ipg_w8(physet, PHY_SET);
410}
411
412static int ipg_reset(struct net_device *dev, u32 resetflags)
413{
414	/* Assert functional resets via the IPG AsicCtrl
415	 * register as specified by the 'resetflags' input
416	 * parameter.
417	 */
418	void __iomem *ioaddr = ipg_ioaddr(dev);
419	unsigned int timeout_count = 0;
420
421	IPG_DEBUG_MSG("_reset\n");
422
423	ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
424
425	/* Delay added to account for problem with 10Mbps reset. */
426	mdelay(IPG_AC_RESETWAIT);
427
428	while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
429		mdelay(IPG_AC_RESETWAIT);
430		if (++timeout_count > IPG_AC_RESET_TIMEOUT)
431			return -ETIME;
432	}
433	/* Set LED Mode in Asic Control */
434	ipg_set_led_mode(dev);
435
436	/* Set PHYSet Register Value */
437	ipg_set_phy_set(dev);
438	return 0;
439}
440
441/* Find the GMII PHY address. */
442static int ipg_find_phyaddr(struct net_device *dev)
443{
444	unsigned int phyaddr, i;
445
446	for (i = 0; i < 32; i++) {
447		u32 status;
448
449		/* Search for the correct PHY address among 32 possible. */
450		phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
451
452		/* 10/22/03 Grace change verify from GMII_PHY_STATUS to
453		   GMII_PHY_ID1
454		 */
455
456		status = mdio_read(dev, phyaddr, MII_BMSR);
457
458		if ((status != 0xFFFF) && (status != 0))
459			return phyaddr;
460	}
461
462	return 0x1f;
463}
464
465/*
466 * Configure IPG based on result of IEEE 802.3 PHY
467 * auto-negotiation.
468 */
469static int ipg_config_autoneg(struct net_device *dev)
470{
471	struct ipg_nic_private *sp = netdev_priv(dev);
472	void __iomem *ioaddr = sp->ioaddr;
473	unsigned int txflowcontrol;
474	unsigned int rxflowcontrol;
475	unsigned int fullduplex;
476	u32 mac_ctrl_val;
477	u32 asicctrl;
478	u8 phyctrl;
479	const char *speed;
480	const char *duplex;
481	const char *tx_desc;
482	const char *rx_desc;
483
484	IPG_DEBUG_MSG("_config_autoneg\n");
485
486	asicctrl = ipg_r32(ASIC_CTRL);
487	phyctrl = ipg_r8(PHY_CTRL);
488	mac_ctrl_val = ipg_r32(MAC_CTRL);
489
490	/* Set flags for use in resolving auto-negotiation, assuming
491	 * non-1000Mbps, half duplex, no flow control.
492	 */
493	fullduplex = 0;
494	txflowcontrol = 0;
495	rxflowcontrol = 0;
496
497	/* To accommodate a problem in 10Mbps operation,
498	 * set a global flag if PHY running in 10Mbps mode.
499	 */
500	sp->tenmbpsmode = 0;
501
502	/* Determine actual speed of operation. */
503	switch (phyctrl & IPG_PC_LINK_SPEED) {
504	case IPG_PC_LINK_SPEED_10MBPS:
505		speed = "10Mbps";
506		sp->tenmbpsmode = 1;
507		break;
508	case IPG_PC_LINK_SPEED_100MBPS:
509		speed = "100Mbps";
510		break;
511	case IPG_PC_LINK_SPEED_1000MBPS:
512		speed = "1000Mbps";
513		break;
514	default:
515		speed = "undefined!";
516		return 0;
517	}
518
519	netdev_info(dev, "Link speed = %s\n", speed);
520	if (sp->tenmbpsmode == 1)
521		netdev_info(dev, "10Mbps operational mode enabled\n");
522
523	if (phyctrl & IPG_PC_DUPLEX_STATUS) {
524		fullduplex = 1;
525		txflowcontrol = 1;
526		rxflowcontrol = 1;
527	}
528
529	/* Configure full duplex, and flow control. */
530	if (fullduplex == 1) {
531
532		/* Configure IPG for full duplex operation. */
533
534		duplex = "full";
535
536		mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
537
538		if (txflowcontrol == 1) {
539			tx_desc  = "";
540			mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
541		} else {
542			tx_desc = "no ";
543			mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
544		}
545
546		if (rxflowcontrol == 1) {
547			rx_desc = "";
548			mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
549		} else {
550			rx_desc = "no ";
551			mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
552		}
553	} else {
554		duplex = "half";
555		tx_desc = "no ";
556		rx_desc = "no ";
557		mac_ctrl_val &= (~IPG_MC_DUPLEX_SELECT_FD &
558				 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
559				 ~IPG_MC_RX_FLOW_CONTROL_ENABLE);
560	}
561
562	netdev_info(dev, "setting %s duplex, %sTX, %sRX flow control\n",
563		    duplex, tx_desc, rx_desc);
564	ipg_w32(mac_ctrl_val, MAC_CTRL);
565
566	return 0;
567}
568
569/* Determine and configure multicast operation and set
570 * receive mode for IPG.
571 */
572static void ipg_nic_set_multicast_list(struct net_device *dev)
573{
574	void __iomem *ioaddr = ipg_ioaddr(dev);
575	struct netdev_hw_addr *ha;
576	unsigned int hashindex;
577	u32 hashtable[2];
578	u8 receivemode;
579
580	IPG_DEBUG_MSG("_nic_set_multicast_list\n");
581
582	receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
583
584	if (dev->flags & IFF_PROMISC) {
585		/* NIC to be configured in promiscuous mode. */
586		receivemode = IPG_RM_RECEIVEALLFRAMES;
587	} else if ((dev->flags & IFF_ALLMULTI) ||
588		   ((dev->flags & IFF_MULTICAST) &&
589		    (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
590		/* NIC to be configured to receive all multicast
591		 * frames. */
592		receivemode |= IPG_RM_RECEIVEMULTICAST;
593	} else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
594		/* NIC to be configured to receive selected
595		 * multicast addresses. */
596		receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
597	}
598
599	/* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
600	 * The IPG applies a cyclic-redundancy-check (the same CRC
601	 * used to calculate the frame data FCS) to the destination
602	 * address all incoming multicast frames whose destination
603	 * address has the multicast bit set. The least significant
604	 * 6 bits of the CRC result are used as an addressing index
605	 * into the hash table. If the value of the bit addressed by
606	 * this index is a 1, the frame is passed to the host system.
607	 */
608
609	/* Clear hashtable. */
610	hashtable[0] = 0x00000000;
611	hashtable[1] = 0x00000000;
612
613	/* Cycle through all multicast addresses to filter. */
614	netdev_for_each_mc_addr(ha, dev) {
615		/* Calculate CRC result for each multicast address. */
616		hashindex = crc32_le(0xffffffff, ha->addr,
617				     ETH_ALEN);
618
619		/* Use only the least significant 6 bits. */
620		hashindex = hashindex & 0x3F;
621
622		/* Within "hashtable", set bit number "hashindex"
623		 * to a logic 1.
624		 */
625		set_bit(hashindex, (void *)hashtable);
626	}
627
628	/* Write the value of the hashtable, to the 4, 16 bit
629	 * HASHTABLE IPG registers.
630	 */
631	ipg_w32(hashtable[0], HASHTABLE_0);
632	ipg_w32(hashtable[1], HASHTABLE_1);
633
634	ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
635
636	IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
637}
638
639static int ipg_io_config(struct net_device *dev)
640{
641	struct ipg_nic_private *sp = netdev_priv(dev);
642	void __iomem *ioaddr = ipg_ioaddr(dev);
643	u32 origmacctrl;
644	u32 restoremacctrl;
645
646	IPG_DEBUG_MSG("_io_config\n");
647
648	origmacctrl = ipg_r32(MAC_CTRL);
649
650	restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
651
652	/* Based on compilation option, determine if FCS is to be
653	 * stripped on receive frames by IPG.
654	 */
655	if (!IPG_STRIP_FCS_ON_RX)
656		restoremacctrl |= IPG_MC_RCV_FCS;
657
658	/* Determine if transmitter and/or receiver are
659	 * enabled so we may restore MACCTRL correctly.
660	 */
661	if (origmacctrl & IPG_MC_TX_ENABLED)
662		restoremacctrl |= IPG_MC_TX_ENABLE;
663
664	if (origmacctrl & IPG_MC_RX_ENABLED)
665		restoremacctrl |= IPG_MC_RX_ENABLE;
666
667	/* Transmitter and receiver must be disabled before setting
668	 * IFSSelect.
669	 */
670	ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
671		IPG_MC_RSVD_MASK, MAC_CTRL);
672
673	/* Now that transmitter and receiver are disabled, write
674	 * to IFSSelect.
675	 */
676	ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
677
678	/* Set RECEIVEMODE register. */
679	ipg_nic_set_multicast_list(dev);
680
681	ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
682
683	ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
684	ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
685	ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
686	ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
687	ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
688	ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
689	ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
690		 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
691		 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
692		 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
693	ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
694	ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
695
696	/* IPG multi-frag frame bug workaround.
697	 * Per silicon revision B3 eratta.
698	 */
699	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
700
701	/* IPG TX poll now bug workaround.
702	 * Per silicon revision B3 eratta.
703	 */
704	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
705
706	/* IPG RX poll now bug workaround.
707	 * Per silicon revision B3 eratta.
708	 */
709	ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
710
711	/* Now restore MACCTRL to original setting. */
712	ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
713
714	/* Disable unused RMON statistics. */
715	ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
716
717	/* Disable unused MIB statistics. */
718	ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
719		IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
720		IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
721		IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
722		IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
723		IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
724
725	return 0;
726}
727
728/*
729 * Create a receive buffer within system memory and update
730 * NIC private structure appropriately.
731 */
732static int ipg_get_rxbuff(struct net_device *dev, int entry)
733{
734	struct ipg_nic_private *sp = netdev_priv(dev);
735	struct ipg_rx *rxfd = sp->rxd + entry;
736	struct sk_buff *skb;
737	u64 rxfragsize;
738
739	IPG_DEBUG_MSG("_get_rxbuff\n");
740
741	skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
742	if (!skb) {
743		sp->rx_buff[entry] = NULL;
744		return -ENOMEM;
745	}
746
747	/* Save the address of the sk_buff structure. */
748	sp->rx_buff[entry] = skb;
749
750	rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
751		sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
752
753	/* Set the RFD fragment length. */
754	rxfragsize = sp->rxfrag_size;
755	rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
756
757	return 0;
758}
759
760static int init_rfdlist(struct net_device *dev)
761{
762	struct ipg_nic_private *sp = netdev_priv(dev);
763	void __iomem *ioaddr = sp->ioaddr;
764	unsigned int i;
765
766	IPG_DEBUG_MSG("_init_rfdlist\n");
767
768	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
769		struct ipg_rx *rxfd = sp->rxd + i;
770
771		if (sp->rx_buff[i]) {
772			pci_unmap_single(sp->pdev,
773				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
774				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
775			dev_kfree_skb_irq(sp->rx_buff[i]);
776			sp->rx_buff[i] = NULL;
777		}
778
779		/* Clear out the RFS field. */
780		rxfd->rfs = 0x0000000000000000;
781
782		if (ipg_get_rxbuff(dev, i) < 0) {
783			/*
784			 * A receive buffer was not ready, break the
785			 * RFD list here.
786			 */
787			IPG_DEBUG_MSG("Cannot allocate Rx buffer\n");
788
789			/* Just in case we cannot allocate a single RFD.
790			 * Should not occur.
791			 */
792			if (i == 0) {
793				netdev_err(dev, "No memory available for RFD list\n");
794				return -ENOMEM;
795			}
796		}
797
798		rxfd->next_desc = cpu_to_le64(sp->rxd_map +
799			sizeof(struct ipg_rx)*(i + 1));
800	}
801	sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
802
803	sp->rx_current = 0;
804	sp->rx_dirty = 0;
805
806	/* Write the location of the RFDList to the IPG. */
807	ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
808	ipg_w32(0x00000000, RFD_LIST_PTR_1);
809
810	return 0;
811}
812
813static void init_tfdlist(struct net_device *dev)
814{
815	struct ipg_nic_private *sp = netdev_priv(dev);
816	void __iomem *ioaddr = sp->ioaddr;
817	unsigned int i;
818
819	IPG_DEBUG_MSG("_init_tfdlist\n");
820
821	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
822		struct ipg_tx *txfd = sp->txd + i;
823
824		txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
825
826		if (sp->tx_buff[i]) {
827			dev_kfree_skb_irq(sp->tx_buff[i]);
828			sp->tx_buff[i] = NULL;
829		}
830
831		txfd->next_desc = cpu_to_le64(sp->txd_map +
832			sizeof(struct ipg_tx)*(i + 1));
833	}
834	sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
835
836	sp->tx_current = 0;
837	sp->tx_dirty = 0;
838
839	/* Write the location of the TFDList to the IPG. */
840	IPG_DDEBUG_MSG("Starting TFDListPtr = %08x\n",
841		       (u32) sp->txd_map);
842	ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
843	ipg_w32(0x00000000, TFD_LIST_PTR_1);
844
845	sp->reset_current_tfd = 1;
846}
847
848/*
849 * Free all transmit buffers which have already been transferred
850 * via DMA to the IPG.
851 */
852static void ipg_nic_txfree(struct net_device *dev)
853{
854	struct ipg_nic_private *sp = netdev_priv(dev);
855	unsigned int released, pending, dirty;
856
857	IPG_DEBUG_MSG("_nic_txfree\n");
858
859	pending = sp->tx_current - sp->tx_dirty;
860	dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
861
862	for (released = 0; released < pending; released++) {
863		struct sk_buff *skb = sp->tx_buff[dirty];
864		struct ipg_tx *txfd = sp->txd + dirty;
865
866		IPG_DEBUG_MSG("TFC = %016lx\n", (unsigned long) txfd->tfc);
867
868		/* Look at each TFD's TFC field beginning
869		 * at the last freed TFD up to the current TFD.
870		 * If the TFDDone bit is set, free the associated
871		 * buffer.
872		 */
873		if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
874                        break;
875
876		/* Free the transmit buffer. */
877		if (skb) {
878			pci_unmap_single(sp->pdev,
879				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
880				skb->len, PCI_DMA_TODEVICE);
881
882			dev_kfree_skb_irq(skb);
883
884			sp->tx_buff[dirty] = NULL;
885		}
886		dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
887	}
888
889	sp->tx_dirty += released;
890
891	if (netif_queue_stopped(dev) &&
892	    (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
893		netif_wake_queue(dev);
894	}
895}
896
897static void ipg_tx_timeout(struct net_device *dev)
898{
899	struct ipg_nic_private *sp = netdev_priv(dev);
900	void __iomem *ioaddr = sp->ioaddr;
901
902	ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
903		  IPG_AC_FIFO);
904
905	spin_lock_irq(&sp->lock);
906
907	/* Re-configure after DMA reset. */
908	if (ipg_io_config(dev) < 0)
909		netdev_info(dev, "Error during re-configuration\n");
910
911	init_tfdlist(dev);
912
913	spin_unlock_irq(&sp->lock);
914
915	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
916		MAC_CTRL);
917}
918
919/*
920 * For TxComplete interrupts, free all transmit
921 * buffers which have already been transferred via DMA
922 * to the IPG.
923 */
924static void ipg_nic_txcleanup(struct net_device *dev)
925{
926	struct ipg_nic_private *sp = netdev_priv(dev);
927	void __iomem *ioaddr = sp->ioaddr;
928	unsigned int i;
929
930	IPG_DEBUG_MSG("_nic_txcleanup\n");
931
932	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
933		/* Reading the TXSTATUS register clears the
934		 * TX_COMPLETE interrupt.
935		 */
936		u32 txstatusdword = ipg_r32(TX_STATUS);
937
938		IPG_DEBUG_MSG("TxStatus = %08x\n", txstatusdword);
939
940		/* Check for Transmit errors. Error bits only valid if
941		 * TX_COMPLETE bit in the TXSTATUS register is a 1.
942		 */
943		if (!(txstatusdword & IPG_TS_TX_COMPLETE))
944			break;
945
946		/* If in 10Mbps mode, indicate transmit is ready. */
947		if (sp->tenmbpsmode) {
948			netif_wake_queue(dev);
949		}
950
951		/* Transmit error, increment stat counters. */
952		if (txstatusdword & IPG_TS_TX_ERROR) {
953			IPG_DEBUG_MSG("Transmit error\n");
954			sp->stats.tx_errors++;
955		}
956
957		/* Late collision, re-enable transmitter. */
958		if (txstatusdword & IPG_TS_LATE_COLLISION) {
959			IPG_DEBUG_MSG("Late collision on transmit\n");
960			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
961				IPG_MC_RSVD_MASK, MAC_CTRL);
962		}
963
964		/* Maximum collisions, re-enable transmitter. */
965		if (txstatusdword & IPG_TS_TX_MAX_COLL) {
966			IPG_DEBUG_MSG("Maximum collisions on transmit\n");
967			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
968				IPG_MC_RSVD_MASK, MAC_CTRL);
969		}
970
971		/* Transmit underrun, reset and re-enable
972		 * transmitter.
973		 */
974		if (txstatusdword & IPG_TS_TX_UNDERRUN) {
975			IPG_DEBUG_MSG("Transmitter underrun\n");
976			sp->stats.tx_fifo_errors++;
977			ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
978				  IPG_AC_NETWORK | IPG_AC_FIFO);
979
980			/* Re-configure after DMA reset. */
981			if (ipg_io_config(dev) < 0) {
982				netdev_info(dev, "Error during re-configuration\n");
983			}
984			init_tfdlist(dev);
985
986			ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
987				IPG_MC_RSVD_MASK, MAC_CTRL);
988		}
989	}
990
991	ipg_nic_txfree(dev);
992}
993
994/* Provides statistical information about the IPG NIC. */
995static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
996{
997	struct ipg_nic_private *sp = netdev_priv(dev);
998	void __iomem *ioaddr = sp->ioaddr;
999	u16 temp1;
1000	u16 temp2;
1001
1002	IPG_DEBUG_MSG("_nic_get_stats\n");
1003
1004	/* Check to see if the NIC has been initialized via nic_open,
1005	 * before trying to read statistic registers.
1006	 */
1007	if (!netif_running(dev))
1008		return &sp->stats;
1009
1010	sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1011	sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1012	sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1013	sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1014	temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1015	sp->stats.rx_errors += temp1;
1016	sp->stats.rx_missed_errors += temp1;
1017	temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1018		ipg_r32(IPG_LATECOLLISIONS);
1019	temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1020	sp->stats.collisions += temp1;
1021	sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1022	sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1023		ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1024	sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1025
1026	/* detailed tx_errors */
1027	sp->stats.tx_carrier_errors += temp2;
1028
1029	/* detailed rx_errors */
1030	sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1031		ipg_r16(IPG_FRAMETOOLONGERRRORS);
1032	sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1033
1034	/* Unutilized IPG statistic registers. */
1035	ipg_r32(IPG_MCSTFRAMESRCVDOK);
1036
1037	return &sp->stats;
1038}
1039
1040/* Restore used receive buffers. */
1041static int ipg_nic_rxrestore(struct net_device *dev)
1042{
1043	struct ipg_nic_private *sp = netdev_priv(dev);
1044	const unsigned int curr = sp->rx_current;
1045	unsigned int dirty = sp->rx_dirty;
1046
1047	IPG_DEBUG_MSG("_nic_rxrestore\n");
1048
1049	for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1050		unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1051
1052		/* rx_copybreak may poke hole here and there. */
1053		if (sp->rx_buff[entry])
1054			continue;
1055
1056		/* Generate a new receive buffer to replace the
1057		 * current buffer (which will be released by the
1058		 * Linux system).
1059		 */
1060		if (ipg_get_rxbuff(dev, entry) < 0) {
1061			IPG_DEBUG_MSG("Cannot allocate new Rx buffer\n");
1062
1063			break;
1064		}
1065
1066		/* Reset the RFS field. */
1067		sp->rxd[entry].rfs = 0x0000000000000000;
1068	}
1069	sp->rx_dirty = dirty;
1070
1071	return 0;
1072}
1073
1074/* use jumboindex and jumbosize to control jumbo frame status
1075 * initial status is jumboindex=-1 and jumbosize=0
1076 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1077 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1078 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1079 *               previous receiving and need to continue dumping the current one
1080 */
1081enum {
1082	NORMAL_PACKET,
1083	ERROR_PACKET
1084};
1085
1086enum {
1087	FRAME_NO_START_NO_END	= 0,
1088	FRAME_WITH_START		= 1,
1089	FRAME_WITH_END		= 10,
1090	FRAME_WITH_START_WITH_END = 11
1091};
1092
1093static void ipg_nic_rx_free_skb(struct net_device *dev)
1094{
1095	struct ipg_nic_private *sp = netdev_priv(dev);
1096	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1097
1098	if (sp->rx_buff[entry]) {
1099		struct ipg_rx *rxfd = sp->rxd + entry;
1100
1101		pci_unmap_single(sp->pdev,
1102			le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1103			sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1104		dev_kfree_skb_irq(sp->rx_buff[entry]);
1105		sp->rx_buff[entry] = NULL;
1106	}
1107}
1108
1109static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1110{
1111	struct ipg_nic_private *sp = netdev_priv(dev);
1112	struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1113	int type = FRAME_NO_START_NO_END;
1114
1115	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1116		type += FRAME_WITH_START;
1117	if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1118		type += FRAME_WITH_END;
1119	return type;
1120}
1121
1122static int ipg_nic_rx_check_error(struct net_device *dev)
1123{
1124	struct ipg_nic_private *sp = netdev_priv(dev);
1125	unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1126	struct ipg_rx *rxfd = sp->rxd + entry;
1127
1128	if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1129	     (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1130	      IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1131	      IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1132		IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1133			      (unsigned long) rxfd->rfs);
1134
1135		/* Increment general receive error statistic. */
1136		sp->stats.rx_errors++;
1137
1138		/* Increment detailed receive error statistics. */
1139		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1140			IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1141
1142			sp->stats.rx_fifo_errors++;
1143		}
1144
1145		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1146			IPG_DEBUG_MSG("RX runt occurred\n");
1147			sp->stats.rx_length_errors++;
1148		}
1149
1150		/* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1151		 * error count handled by a IPG statistic register.
1152		 */
1153
1154		if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1155			IPG_DEBUG_MSG("RX alignment error occurred\n");
1156			sp->stats.rx_frame_errors++;
1157		}
1158
1159		/* Do nothing for IPG_RFS_RXFCSERROR, error count
1160		 * handled by a IPG statistic register.
1161		 */
1162
1163		/* Free the memory associated with the RX
1164		 * buffer since it is erroneous and we will
1165		 * not pass it to higher layer processes.
1166		 */
1167		if (sp->rx_buff[entry]) {
1168			pci_unmap_single(sp->pdev,
1169				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1170				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1171
1172			dev_kfree_skb_irq(sp->rx_buff[entry]);
1173			sp->rx_buff[entry] = NULL;
1174		}
1175		return ERROR_PACKET;
1176	}
1177	return NORMAL_PACKET;
1178}
1179
1180static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1181					  struct ipg_nic_private *sp,
1182					  struct ipg_rx *rxfd, unsigned entry)
1183{
1184	struct ipg_jumbo *jumbo = &sp->jumbo;
1185	struct sk_buff *skb;
1186	int framelen;
1187
1188	if (jumbo->found_start) {
1189		dev_kfree_skb_irq(jumbo->skb);
1190		jumbo->found_start = 0;
1191		jumbo->current_size = 0;
1192		jumbo->skb = NULL;
1193	}
1194
1195	/* 1: found error, 0 no error */
1196	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1197		return;
1198
1199	skb = sp->rx_buff[entry];
1200	if (!skb)
1201		return;
1202
1203	/* accept this frame and send to upper layer */
1204	framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1205	if (framelen > sp->rxfrag_size)
1206		framelen = sp->rxfrag_size;
1207
1208	skb_put(skb, framelen);
1209	skb->protocol = eth_type_trans(skb, dev);
1210	skb_checksum_none_assert(skb);
1211	netif_rx(skb);
1212	sp->rx_buff[entry] = NULL;
1213}
1214
1215static void ipg_nic_rx_with_start(struct net_device *dev,
1216				  struct ipg_nic_private *sp,
1217				  struct ipg_rx *rxfd, unsigned entry)
1218{
1219	struct ipg_jumbo *jumbo = &sp->jumbo;
1220	struct pci_dev *pdev = sp->pdev;
1221	struct sk_buff *skb;
1222
1223	/* 1: found error, 0 no error */
1224	if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1225		return;
1226
1227	/* accept this frame and send to upper layer */
1228	skb = sp->rx_buff[entry];
1229	if (!skb)
1230		return;
1231
1232	if (jumbo->found_start)
1233		dev_kfree_skb_irq(jumbo->skb);
1234
1235	pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1236			 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1237
1238	skb_put(skb, sp->rxfrag_size);
1239
1240	jumbo->found_start = 1;
1241	jumbo->current_size = sp->rxfrag_size;
1242	jumbo->skb = skb;
1243
1244	sp->rx_buff[entry] = NULL;
1245}
1246
1247static void ipg_nic_rx_with_end(struct net_device *dev,
1248				struct ipg_nic_private *sp,
1249				struct ipg_rx *rxfd, unsigned entry)
1250{
1251	struct ipg_jumbo *jumbo = &sp->jumbo;
1252
1253	/* 1: found error, 0 no error */
1254	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1255		struct sk_buff *skb = sp->rx_buff[entry];
1256
1257		if (!skb)
1258			return;
1259
1260		if (jumbo->found_start) {
1261			int framelen, endframelen;
1262
1263			framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1264
1265			endframelen = framelen - jumbo->current_size;
1266			if (framelen > sp->rxsupport_size)
1267				dev_kfree_skb_irq(jumbo->skb);
1268			else {
1269				memcpy(skb_put(jumbo->skb, endframelen),
1270				       skb->data, endframelen);
1271
1272				jumbo->skb->protocol =
1273				    eth_type_trans(jumbo->skb, dev);
1274
1275				skb_checksum_none_assert(jumbo->skb);
1276				netif_rx(jumbo->skb);
1277			}
1278		}
1279
1280		jumbo->found_start = 0;
1281		jumbo->current_size = 0;
1282		jumbo->skb = NULL;
1283
1284		ipg_nic_rx_free_skb(dev);
1285	} else {
1286		dev_kfree_skb_irq(jumbo->skb);
1287		jumbo->found_start = 0;
1288		jumbo->current_size = 0;
1289		jumbo->skb = NULL;
1290	}
1291}
1292
1293static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1294				       struct ipg_nic_private *sp,
1295				       struct ipg_rx *rxfd, unsigned entry)
1296{
1297	struct ipg_jumbo *jumbo = &sp->jumbo;
1298
1299	/* 1: found error, 0 no error */
1300	if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1301		struct sk_buff *skb = sp->rx_buff[entry];
1302
1303		if (skb) {
1304			if (jumbo->found_start) {
1305				jumbo->current_size += sp->rxfrag_size;
1306				if (jumbo->current_size <= sp->rxsupport_size) {
1307					memcpy(skb_put(jumbo->skb,
1308						       sp->rxfrag_size),
1309					       skb->data, sp->rxfrag_size);
1310				}
1311			}
1312			ipg_nic_rx_free_skb(dev);
1313		}
1314	} else {
1315		dev_kfree_skb_irq(jumbo->skb);
1316		jumbo->found_start = 0;
1317		jumbo->current_size = 0;
1318		jumbo->skb = NULL;
1319	}
1320}
1321
1322static int ipg_nic_rx_jumbo(struct net_device *dev)
1323{
1324	struct ipg_nic_private *sp = netdev_priv(dev);
1325	unsigned int curr = sp->rx_current;
1326	void __iomem *ioaddr = sp->ioaddr;
1327	unsigned int i;
1328
1329	IPG_DEBUG_MSG("_nic_rx\n");
1330
1331	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1332		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1333		struct ipg_rx *rxfd = sp->rxd + entry;
1334
1335		if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1336			break;
1337
1338		switch (ipg_nic_rx_check_frame_type(dev)) {
1339		case FRAME_WITH_START_WITH_END:
1340			ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1341			break;
1342		case FRAME_WITH_START:
1343			ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1344			break;
1345		case FRAME_WITH_END:
1346			ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1347			break;
1348		case FRAME_NO_START_NO_END:
1349			ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1350			break;
1351		}
1352	}
1353
1354	sp->rx_current = curr;
1355
1356	if (i == IPG_MAXRFDPROCESS_COUNT) {
1357		/* There are more RFDs to process, however the
1358		 * allocated amount of RFD processing time has
1359		 * expired. Assert Interrupt Requested to make
1360		 * sure we come back to process the remaining RFDs.
1361		 */
1362		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1363	}
1364
1365	ipg_nic_rxrestore(dev);
1366
1367	return 0;
1368}
1369
1370static int ipg_nic_rx(struct net_device *dev)
1371{
1372	/* Transfer received Ethernet frames to higher network layers. */
1373	struct ipg_nic_private *sp = netdev_priv(dev);
1374	unsigned int curr = sp->rx_current;
1375	void __iomem *ioaddr = sp->ioaddr;
1376	struct ipg_rx *rxfd;
1377	unsigned int i;
1378
1379	IPG_DEBUG_MSG("_nic_rx\n");
1380
1381#define __RFS_MASK \
1382	cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1383
1384	for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1385		unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1386		struct sk_buff *skb = sp->rx_buff[entry];
1387		unsigned int framelen;
1388
1389		rxfd = sp->rxd + entry;
1390
1391		if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1392			break;
1393
1394		/* Get received frame length. */
1395		framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1396
1397		/* Check for jumbo frame arrival with too small
1398		 * RXFRAG_SIZE.
1399		 */
1400		if (framelen > sp->rxfrag_size) {
1401			IPG_DEBUG_MSG
1402			    ("RFS FrameLen > allocated fragment size\n");
1403
1404			framelen = sp->rxfrag_size;
1405		}
1406
1407		if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1408		       (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1409			IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1410			IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1411
1412			IPG_DEBUG_MSG("Rx error, RFS = %016lx\n",
1413				      (unsigned long int) rxfd->rfs);
1414
1415			/* Increment general receive error statistic. */
1416			sp->stats.rx_errors++;
1417
1418			/* Increment detailed receive error statistics. */
1419			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1420				IPG_DEBUG_MSG("RX FIFO overrun occurred\n");
1421				sp->stats.rx_fifo_errors++;
1422			}
1423
1424			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1425				IPG_DEBUG_MSG("RX runt occurred\n");
1426				sp->stats.rx_length_errors++;
1427			}
1428
1429			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1430			/* Do nothing, error count handled by a IPG
1431			 * statistic register.
1432			 */
1433
1434			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1435				IPG_DEBUG_MSG("RX alignment error occurred\n");
1436				sp->stats.rx_frame_errors++;
1437			}
1438
1439			if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1440			/* Do nothing, error count handled by a IPG
1441			 * statistic register.
1442			 */
1443
1444			/* Free the memory associated with the RX
1445			 * buffer since it is erroneous and we will
1446			 * not pass it to higher layer processes.
1447			 */
1448			if (skb) {
1449				__le64 info = rxfd->frag_info;
1450
1451				pci_unmap_single(sp->pdev,
1452					le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1453					sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1454
1455				dev_kfree_skb_irq(skb);
1456			}
1457		} else {
1458
1459			/* Adjust the new buffer length to accommodate the size
1460			 * of the received frame.
1461			 */
1462			skb_put(skb, framelen);
1463
1464			/* Set the buffer's protocol field to Ethernet. */
1465			skb->protocol = eth_type_trans(skb, dev);
1466
1467			/* The IPG encountered an error with (or
1468			 * there were no) IP/TCP/UDP checksums.
1469			 * This may or may not indicate an invalid
1470			 * IP/TCP/UDP frame was received. Let the
1471			 * upper layer decide.
1472			 */
1473			skb_checksum_none_assert(skb);
1474
1475			/* Hand off frame for higher layer processing.
1476			 * The function netif_rx() releases the sk_buff
1477			 * when processing completes.
1478			 */
1479			netif_rx(skb);
1480		}
1481
1482		/* Assure RX buffer is not reused by IPG. */
1483		sp->rx_buff[entry] = NULL;
1484	}
1485
1486	/*
1487	 * If there are more RFDs to process and the allocated amount of RFD
1488	 * processing time has expired, assert Interrupt Requested to make
1489	 * sure we come back to process the remaining RFDs.
1490	 */
1491	if (i == IPG_MAXRFDPROCESS_COUNT)
1492		ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1493
1494#ifdef IPG_DEBUG
1495	/* Check if the RFD list contained no receive frame data. */
1496	if (!i)
1497		sp->EmptyRFDListCount++;
1498#endif
1499	while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1500	       !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1501		 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1502		unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1503
1504		rxfd = sp->rxd + entry;
1505
1506		IPG_DEBUG_MSG("Frame requires multiple RFDs\n");
1507
1508		/* An unexpected event, additional code needed to handle
1509		 * properly. So for the time being, just disregard the
1510		 * frame.
1511		 */
1512
1513		/* Free the memory associated with the RX
1514		 * buffer since it is erroneous and we will
1515		 * not pass it to higher layer processes.
1516		 */
1517		if (sp->rx_buff[entry]) {
1518			pci_unmap_single(sp->pdev,
1519				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1520				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1521			dev_kfree_skb_irq(sp->rx_buff[entry]);
1522		}
1523
1524		/* Assure RX buffer is not reused by IPG. */
1525		sp->rx_buff[entry] = NULL;
1526	}
1527
1528	sp->rx_current = curr;
1529
1530	/* Check to see if there are a minimum number of used
1531	 * RFDs before restoring any (should improve performance.)
1532	 */
1533	if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1534		ipg_nic_rxrestore(dev);
1535
1536	return 0;
1537}
1538
1539static void ipg_reset_after_host_error(struct work_struct *work)
1540{
1541	struct ipg_nic_private *sp =
1542		container_of(work, struct ipg_nic_private, task.work);
1543	struct net_device *dev = sp->dev;
1544
1545	/*
1546	 * Acknowledge HostError interrupt by resetting
1547	 * IPG DMA and HOST.
1548	 */
1549	ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1550
1551	init_rfdlist(dev);
1552	init_tfdlist(dev);
1553
1554	if (ipg_io_config(dev) < 0) {
1555		netdev_info(dev, "Cannot recover from PCI error\n");
1556		schedule_delayed_work(&sp->task, HZ);
1557	}
1558}
1559
1560static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1561{
1562	struct net_device *dev = dev_inst;
1563	struct ipg_nic_private *sp = netdev_priv(dev);
1564	void __iomem *ioaddr = sp->ioaddr;
1565	unsigned int handled = 0;
1566	u16 status;
1567
1568	IPG_DEBUG_MSG("_interrupt_handler\n");
1569
1570	if (sp->is_jumbo)
1571		ipg_nic_rxrestore(dev);
1572
1573	spin_lock(&sp->lock);
1574
1575	/* Get interrupt source information, and acknowledge
1576	 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1577	 * IntRequested, MacControlFrame, LinkEvent) interrupts
1578	 * if issued. Also, all IPG interrupts are disabled by
1579	 * reading IntStatusAck.
1580	 */
1581	status = ipg_r16(INT_STATUS_ACK);
1582
1583	IPG_DEBUG_MSG("IntStatusAck = %04x\n", status);
1584
1585	/* Shared IRQ of remove event. */
1586	if (!(status & IPG_IS_RSVD_MASK))
1587		goto out_enable;
1588
1589	handled = 1;
1590
1591	if (unlikely(!netif_running(dev)))
1592		goto out_unlock;
1593
1594	/* If RFDListEnd interrupt, restore all used RFDs. */
1595	if (status & IPG_IS_RFD_LIST_END) {
1596		IPG_DEBUG_MSG("RFDListEnd Interrupt\n");
1597
1598		/* The RFD list end indicates an RFD was encountered
1599		 * with a 0 NextPtr, or with an RFDDone bit set to 1
1600		 * (indicating the RFD is not read for use by the
1601		 * IPG.) Try to restore all RFDs.
1602		 */
1603		ipg_nic_rxrestore(dev);
1604
1605#ifdef IPG_DEBUG
1606		/* Increment the RFDlistendCount counter. */
1607		sp->RFDlistendCount++;
1608#endif
1609	}
1610
1611	/* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1612	 * IntRequested interrupt, process received frames. */
1613	if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1614	    (status & IPG_IS_RFD_LIST_END) ||
1615	    (status & IPG_IS_RX_DMA_COMPLETE) ||
1616	    (status & IPG_IS_INT_REQUESTED)) {
1617#ifdef IPG_DEBUG
1618		/* Increment the RFD list checked counter if interrupted
1619		 * only to check the RFD list. */
1620		if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1621				IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1622			       (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1623				IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1624				IPG_IS_UPDATE_STATS)))
1625			sp->RFDListCheckedCount++;
1626#endif
1627
1628		if (sp->is_jumbo)
1629			ipg_nic_rx_jumbo(dev);
1630		else
1631			ipg_nic_rx(dev);
1632	}
1633
1634	/* If TxDMAComplete interrupt, free used TFDs. */
1635	if (status & IPG_IS_TX_DMA_COMPLETE)
1636		ipg_nic_txfree(dev);
1637
1638	/* TxComplete interrupts indicate one of numerous actions.
1639	 * Determine what action to take based on TXSTATUS register.
1640	 */
1641	if (status & IPG_IS_TX_COMPLETE)
1642		ipg_nic_txcleanup(dev);
1643
1644	/* If UpdateStats interrupt, update Linux Ethernet statistics */
1645	if (status & IPG_IS_UPDATE_STATS)
1646		ipg_nic_get_stats(dev);
1647
1648	/* If HostError interrupt, reset IPG. */
1649	if (status & IPG_IS_HOST_ERROR) {
1650		IPG_DDEBUG_MSG("HostError Interrupt\n");
1651
1652		schedule_delayed_work(&sp->task, 0);
1653	}
1654
1655	/* If LinkEvent interrupt, resolve autonegotiation. */
1656	if (status & IPG_IS_LINK_EVENT) {
1657		if (ipg_config_autoneg(dev) < 0)
1658			netdev_info(dev, "Auto-negotiation error\n");
1659	}
1660
1661	/* If MACCtrlFrame interrupt, do nothing. */
1662	if (status & IPG_IS_MAC_CTRL_FRAME)
1663		IPG_DEBUG_MSG("MACCtrlFrame interrupt\n");
1664
1665	/* If RxComplete interrupt, do nothing. */
1666	if (status & IPG_IS_RX_COMPLETE)
1667		IPG_DEBUG_MSG("RxComplete interrupt\n");
1668
1669	/* If RxEarly interrupt, do nothing. */
1670	if (status & IPG_IS_RX_EARLY)
1671		IPG_DEBUG_MSG("RxEarly interrupt\n");
1672
1673out_enable:
1674	/* Re-enable IPG interrupts. */
1675	ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1676		IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1677		IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1678out_unlock:
1679	spin_unlock(&sp->lock);
1680
1681	return IRQ_RETVAL(handled);
1682}
1683
1684static void ipg_rx_clear(struct ipg_nic_private *sp)
1685{
1686	unsigned int i;
1687
1688	for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1689		if (sp->rx_buff[i]) {
1690			struct ipg_rx *rxfd = sp->rxd + i;
1691
1692			dev_kfree_skb_irq(sp->rx_buff[i]);
1693			sp->rx_buff[i] = NULL;
1694			pci_unmap_single(sp->pdev,
1695				le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1696				sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1697		}
1698	}
1699}
1700
1701static void ipg_tx_clear(struct ipg_nic_private *sp)
1702{
1703	unsigned int i;
1704
1705	for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1706		if (sp->tx_buff[i]) {
1707			struct ipg_tx *txfd = sp->txd + i;
1708
1709			pci_unmap_single(sp->pdev,
1710				le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1711				sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1712
1713			dev_kfree_skb_irq(sp->tx_buff[i]);
1714
1715			sp->tx_buff[i] = NULL;
1716		}
1717	}
1718}
1719
1720static int ipg_nic_open(struct net_device *dev)
1721{
1722	struct ipg_nic_private *sp = netdev_priv(dev);
1723	void __iomem *ioaddr = sp->ioaddr;
1724	struct pci_dev *pdev = sp->pdev;
1725	int rc;
1726
1727	IPG_DEBUG_MSG("_nic_open\n");
1728
1729	sp->rx_buf_sz = sp->rxsupport_size;
1730
1731	/* Check for interrupt line conflicts, and request interrupt
1732	 * line for IPG.
1733	 *
1734	 * IMPORTANT: Disable IPG interrupts prior to registering
1735	 *            IRQ.
1736	 */
1737	ipg_w16(0x0000, INT_ENABLE);
1738
1739	/* Register the interrupt line to be used by the IPG within
1740	 * the Linux system.
1741	 */
1742	rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1743			 dev->name, dev);
1744	if (rc < 0) {
1745		netdev_info(dev, "Error when requesting interrupt\n");
1746		goto out;
1747	}
1748
1749	dev->irq = pdev->irq;
1750
1751	rc = -ENOMEM;
1752
1753	sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1754				     &sp->rxd_map, GFP_KERNEL);
1755	if (!sp->rxd)
1756		goto err_free_irq_0;
1757
1758	sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1759				     &sp->txd_map, GFP_KERNEL);
1760	if (!sp->txd)
1761		goto err_free_rx_1;
1762
1763	rc = init_rfdlist(dev);
1764	if (rc < 0) {
1765		netdev_info(dev, "Error during configuration\n");
1766		goto err_free_tx_2;
1767	}
1768
1769	init_tfdlist(dev);
1770
1771	rc = ipg_io_config(dev);
1772	if (rc < 0) {
1773		netdev_info(dev, "Error during configuration\n");
1774		goto err_release_tfdlist_3;
1775	}
1776
1777	/* Resolve autonegotiation. */
1778	if (ipg_config_autoneg(dev) < 0)
1779		netdev_info(dev, "Auto-negotiation error\n");
1780
1781	/* initialize JUMBO Frame control variable */
1782	sp->jumbo.found_start = 0;
1783	sp->jumbo.current_size = 0;
1784	sp->jumbo.skb = NULL;
1785
1786	/* Enable transmit and receive operation of the IPG. */
1787	ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1788		 IPG_MC_RSVD_MASK, MAC_CTRL);
1789
1790	netif_start_queue(dev);
1791out:
1792	return rc;
1793
1794err_release_tfdlist_3:
1795	ipg_tx_clear(sp);
1796	ipg_rx_clear(sp);
1797err_free_tx_2:
1798	dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1799err_free_rx_1:
1800	dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1801err_free_irq_0:
1802	free_irq(pdev->irq, dev);
1803	goto out;
1804}
1805
1806static int ipg_nic_stop(struct net_device *dev)
1807{
1808	struct ipg_nic_private *sp = netdev_priv(dev);
1809	void __iomem *ioaddr = sp->ioaddr;
1810	struct pci_dev *pdev = sp->pdev;
1811
1812	IPG_DEBUG_MSG("_nic_stop\n");
1813
1814	netif_stop_queue(dev);
1815
1816	IPG_DUMPTFDLIST(dev);
1817
1818	do {
1819		(void) ipg_r16(INT_STATUS_ACK);
1820
1821		ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1822
1823		synchronize_irq(pdev->irq);
1824	} while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1825
1826	ipg_rx_clear(sp);
1827
1828	ipg_tx_clear(sp);
1829
1830	pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1831	pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1832
1833	free_irq(pdev->irq, dev);
1834
1835	return 0;
1836}
1837
1838static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1839					   struct net_device *dev)
1840{
1841	struct ipg_nic_private *sp = netdev_priv(dev);
1842	void __iomem *ioaddr = sp->ioaddr;
1843	unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1844	unsigned long flags;
1845	struct ipg_tx *txfd;
1846
1847	IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1848
1849	/* If in 10Mbps mode, stop the transmit queue so
1850	 * no more transmit frames are accepted.
1851	 */
1852	if (sp->tenmbpsmode)
1853		netif_stop_queue(dev);
1854
1855	if (sp->reset_current_tfd) {
1856		sp->reset_current_tfd = 0;
1857		entry = 0;
1858	}
1859
1860	txfd = sp->txd + entry;
1861
1862	sp->tx_buff[entry] = skb;
1863
1864	/* Clear all TFC fields, except TFDDONE. */
1865	txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1866
1867	/* Specify the TFC field within the TFD. */
1868	txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1869		(IPG_TFC_FRAMEID & sp->tx_current) |
1870		(IPG_TFC_FRAGCOUNT & (1 << 24)));
1871	/*
1872	 * 16--17 (WordAlign) <- 3 (disable),
1873	 * 0--15 (FrameId) <- sp->tx_current,
1874	 * 24--27 (FragCount) <- 1
1875	 */
1876
1877	/* Request TxComplete interrupts at an interval defined
1878	 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1879	 * Request TxComplete interrupt for every frame
1880	 * if in 10Mbps mode to accommodate problem with 10Mbps
1881	 * processing.
1882	 */
1883	if (sp->tenmbpsmode)
1884		txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1885	txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1886	/* Based on compilation option, determine if FCS is to be
1887	 * appended to transmit frame by IPG.
1888	 */
1889	if (!(IPG_APPEND_FCS_ON_TX))
1890		txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1891
1892	/* Based on compilation option, determine if IP, TCP and/or
1893	 * UDP checksums are to be added to transmit frame by IPG.
1894	 */
1895	if (IPG_ADD_IPCHECKSUM_ON_TX)
1896		txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1897
1898	if (IPG_ADD_TCPCHECKSUM_ON_TX)
1899		txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1900
1901	if (IPG_ADD_UDPCHECKSUM_ON_TX)
1902		txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1903
1904	/* Based on compilation option, determine if VLAN tag info is to be
1905	 * inserted into transmit frame by IPG.
1906	 */
1907	if (IPG_INSERT_MANUAL_VLAN_TAG) {
1908		txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1909			((u64) IPG_MANUAL_VLAN_VID << 32) |
1910			((u64) IPG_MANUAL_VLAN_CFI << 44) |
1911			((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1912	}
1913
1914	/* The fragment start location within system memory is defined
1915	 * by the sk_buff structure's data field. The physical address
1916	 * of this location within the system's virtual memory space
1917	 * is determined using the IPG_HOST2BUS_MAP function.
1918	 */
1919	txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1920		skb->len, PCI_DMA_TODEVICE));
1921
1922	/* The length of the fragment within system memory is defined by
1923	 * the sk_buff structure's len field.
1924	 */
1925	txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1926		((u64) (skb->len & 0xffff) << 48));
1927
1928	/* Clear the TFDDone bit last to indicate the TFD is ready
1929	 * for transfer to the IPG.
1930	 */
1931	txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1932
1933	spin_lock_irqsave(&sp->lock, flags);
1934
1935	sp->tx_current++;
1936
1937	mmiowb();
1938
1939	ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1940
1941	if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1942		netif_stop_queue(dev);
1943
1944	spin_unlock_irqrestore(&sp->lock, flags);
1945
1946	return NETDEV_TX_OK;
1947}
1948
1949static void ipg_set_phy_default_param(unsigned char rev,
1950				      struct net_device *dev, int phy_address)
1951{
1952	unsigned short length;
1953	unsigned char revision;
1954	const unsigned short *phy_param;
1955	unsigned short address, value;
1956
1957	phy_param = &DefaultPhyParam[0];
1958	length = *phy_param & 0x00FF;
1959	revision = (unsigned char)((*phy_param) >> 8);
1960	phy_param++;
1961	while (length != 0) {
1962		if (rev == revision) {
1963			while (length > 1) {
1964				address = *phy_param;
1965				value = *(phy_param + 1);
1966				phy_param += 2;
1967				mdio_write(dev, phy_address, address, value);
1968				length -= 4;
1969			}
1970			break;
1971		} else {
1972			phy_param += length / 2;
1973			length = *phy_param & 0x00FF;
1974			revision = (unsigned char)((*phy_param) >> 8);
1975			phy_param++;
1976		}
1977	}
1978}
1979
1980static int read_eeprom(struct net_device *dev, int eep_addr)
1981{
1982	void __iomem *ioaddr = ipg_ioaddr(dev);
1983	unsigned int i;
1984	int ret = 0;
1985	u16 value;
1986
1987	value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1988	ipg_w16(value, EEPROM_CTRL);
1989
1990	for (i = 0; i < 1000; i++) {
1991		u16 data;
1992
1993		mdelay(10);
1994		data = ipg_r16(EEPROM_CTRL);
1995		if (!(data & IPG_EC_EEPROM_BUSY)) {
1996			ret = ipg_r16(EEPROM_DATA);
1997			break;
1998		}
1999	}
2000	return ret;
2001}
2002
2003static void ipg_init_mii(struct net_device *dev)
2004{
2005	struct ipg_nic_private *sp = netdev_priv(dev);
2006	struct mii_if_info *mii_if = &sp->mii_if;
2007	int phyaddr;
2008
2009	mii_if->dev          = dev;
2010	mii_if->mdio_read    = mdio_read;
2011	mii_if->mdio_write   = mdio_write;
2012	mii_if->phy_id_mask  = 0x1f;
2013	mii_if->reg_num_mask = 0x1f;
2014
2015	mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2016
2017	if (phyaddr != 0x1f) {
2018		u16 mii_phyctrl, mii_1000cr;
2019
2020		mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2021		mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2022			GMII_PHY_1000BASETCONTROL_PreferMaster;
2023		mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2024
2025		mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2026
2027		/* Set default phyparam */
2028		ipg_set_phy_default_param(sp->pdev->revision, dev, phyaddr);
2029
2030		/* Reset PHY */
2031		mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2032		mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2033
2034	}
2035}
2036
2037static int ipg_hw_init(struct net_device *dev)
2038{
2039	struct ipg_nic_private *sp = netdev_priv(dev);
2040	void __iomem *ioaddr = sp->ioaddr;
2041	unsigned int i;
2042	int rc;
2043
2044	/* Read/Write and Reset EEPROM Value */
2045	/* Read LED Mode Configuration from EEPROM */
2046	sp->led_mode = read_eeprom(dev, 6);
2047
2048	/* Reset all functions within the IPG. Do not assert
2049	 * RST_OUT as not compatible with some PHYs.
2050	 */
2051	rc = ipg_reset(dev, IPG_RESET_MASK);
2052	if (rc < 0)
2053		goto out;
2054
2055	ipg_init_mii(dev);
2056
2057	/* Read MAC Address from EEPROM */
2058	for (i = 0; i < 3; i++)
2059		sp->station_addr[i] = read_eeprom(dev, 16 + i);
2060
2061	for (i = 0; i < 3; i++)
2062		ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2063
2064	/* Set station address in ethernet_device structure. */
2065	dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2066	dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2067	dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2068	dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2069	dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2070	dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2071out:
2072	return rc;
2073}
2074
2075static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2076{
2077	struct ipg_nic_private *sp = netdev_priv(dev);
2078	int rc;
2079
2080	mutex_lock(&sp->mii_mutex);
2081	rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2082	mutex_unlock(&sp->mii_mutex);
2083
2084	return rc;
2085}
2086
2087static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2088{
2089	struct ipg_nic_private *sp = netdev_priv(dev);
2090	int err;
2091
2092	/* Function to accommodate changes to Maximum Transfer Unit
2093	 * (or MTU) of IPG NIC. Cannot use default function since
2094	 * the default will not allow for MTU > 1500 bytes.
2095	 */
2096
2097	IPG_DEBUG_MSG("_nic_change_mtu\n");
2098
2099	/*
2100	 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2101	 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2102	 */
2103	if (new_mtu < 68 || new_mtu > 10240)
2104		return -EINVAL;
2105
2106	err = ipg_nic_stop(dev);
2107	if (err)
2108		return err;
2109
2110	dev->mtu = new_mtu;
2111
2112	sp->max_rxframe_size = new_mtu;
2113
2114	sp->rxfrag_size = new_mtu;
2115	if (sp->rxfrag_size > 4088)
2116		sp->rxfrag_size = 4088;
2117
2118	sp->rxsupport_size = sp->max_rxframe_size;
2119
2120	if (new_mtu > 0x0600)
2121		sp->is_jumbo = true;
2122	else
2123		sp->is_jumbo = false;
2124
2125	return ipg_nic_open(dev);
2126}
2127
2128static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2129{
2130	struct ipg_nic_private *sp = netdev_priv(dev);
2131	int rc;
2132
2133	mutex_lock(&sp->mii_mutex);
2134	rc = mii_ethtool_gset(&sp->mii_if, cmd);
2135	mutex_unlock(&sp->mii_mutex);
2136
2137	return rc;
2138}
2139
2140static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2141{
2142	struct ipg_nic_private *sp = netdev_priv(dev);
2143	int rc;
2144
2145	mutex_lock(&sp->mii_mutex);
2146	rc = mii_ethtool_sset(&sp->mii_if, cmd);
2147	mutex_unlock(&sp->mii_mutex);
2148
2149	return rc;
2150}
2151
2152static int ipg_nway_reset(struct net_device *dev)
2153{
2154	struct ipg_nic_private *sp = netdev_priv(dev);
2155	int rc;
2156
2157	mutex_lock(&sp->mii_mutex);
2158	rc = mii_nway_restart(&sp->mii_if);
2159	mutex_unlock(&sp->mii_mutex);
2160
2161	return rc;
2162}
2163
2164static const struct ethtool_ops ipg_ethtool_ops = {
2165	.get_settings = ipg_get_settings,
2166	.set_settings = ipg_set_settings,
2167	.nway_reset   = ipg_nway_reset,
2168};
2169
2170static void ipg_remove(struct pci_dev *pdev)
2171{
2172	struct net_device *dev = pci_get_drvdata(pdev);
2173	struct ipg_nic_private *sp = netdev_priv(dev);
2174
2175	IPG_DEBUG_MSG("_remove\n");
2176
2177	/* Un-register Ethernet device. */
2178	unregister_netdev(dev);
2179
2180	pci_iounmap(pdev, sp->ioaddr);
2181
2182	pci_release_regions(pdev);
2183
2184	free_netdev(dev);
2185	pci_disable_device(pdev);
2186}
2187
2188static const struct net_device_ops ipg_netdev_ops = {
2189	.ndo_open		= ipg_nic_open,
2190	.ndo_stop		= ipg_nic_stop,
2191	.ndo_start_xmit		= ipg_nic_hard_start_xmit,
2192	.ndo_get_stats		= ipg_nic_get_stats,
2193	.ndo_set_rx_mode	= ipg_nic_set_multicast_list,
2194	.ndo_do_ioctl		= ipg_ioctl,
2195	.ndo_tx_timeout 	= ipg_tx_timeout,
2196	.ndo_change_mtu 	= ipg_nic_change_mtu,
2197	.ndo_set_mac_address	= eth_mac_addr,
2198	.ndo_validate_addr	= eth_validate_addr,
2199};
2200
2201static int ipg_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2202{
2203	unsigned int i = id->driver_data;
2204	struct ipg_nic_private *sp;
2205	struct net_device *dev;
2206	void __iomem *ioaddr;
2207	int rc;
2208
2209	rc = pci_enable_device(pdev);
2210	if (rc < 0)
2211		goto out;
2212
2213	pr_info("%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2214
2215	pci_set_master(pdev);
2216
2217	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2218	if (rc < 0) {
2219		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2220		if (rc < 0) {
2221			pr_err("%s: DMA config failed\n", pci_name(pdev));
2222			goto err_disable_0;
2223		}
2224	}
2225
2226	/*
2227	 * Initialize net device.
2228	 */
2229	dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2230	if (!dev) {
2231		rc = -ENOMEM;
2232		goto err_disable_0;
2233	}
2234
2235	sp = netdev_priv(dev);
2236	spin_lock_init(&sp->lock);
2237	mutex_init(&sp->mii_mutex);
2238
2239	sp->is_jumbo = IPG_IS_JUMBO;
2240	sp->rxfrag_size = IPG_RXFRAG_SIZE;
2241	sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2242	sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2243
2244	/* Declare IPG NIC functions for Ethernet device methods.
2245	 */
2246	dev->netdev_ops = &ipg_netdev_ops;
2247	SET_NETDEV_DEV(dev, &pdev->dev);
2248	dev->ethtool_ops = &ipg_ethtool_ops;
2249
2250	rc = pci_request_regions(pdev, DRV_NAME);
2251	if (rc)
2252		goto err_free_dev_1;
2253
2254	ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2255	if (!ioaddr) {
2256		pr_err("%s: cannot map MMIO\n", pci_name(pdev));
2257		rc = -EIO;
2258		goto err_release_regions_2;
2259	}
2260
2261	/* Save the pointer to the PCI device information. */
2262	sp->ioaddr = ioaddr;
2263	sp->pdev = pdev;
2264	sp->dev = dev;
2265
2266	INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2267
2268	pci_set_drvdata(pdev, dev);
2269
2270	rc = ipg_hw_init(dev);
2271	if (rc < 0)
2272		goto err_unmap_3;
2273
2274	rc = register_netdev(dev);
2275	if (rc < 0)
2276		goto err_unmap_3;
2277
2278	netdev_info(dev, "Ethernet device registered\n");
2279out:
2280	return rc;
2281
2282err_unmap_3:
2283	pci_iounmap(pdev, ioaddr);
2284err_release_regions_2:
2285	pci_release_regions(pdev);
2286err_free_dev_1:
2287	free_netdev(dev);
2288err_disable_0:
2289	pci_disable_device(pdev);
2290	goto out;
2291}
2292
2293static struct pci_driver ipg_pci_driver = {
2294	.name		= IPG_DRIVER_NAME,
2295	.id_table	= ipg_pci_tbl,
2296	.probe		= ipg_probe,
2297	.remove		= ipg_remove,
2298};
2299
2300module_pci_driver(ipg_pci_driver);
2301