1/*******************************************************************************
2
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2006 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 */
28
29/* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
33#include "e1000.h"
34
35static s32 e1000_check_downshift(struct e1000_hw *hw);
36static s32 e1000_check_polarity(struct e1000_hw *hw,
37				e1000_rev_polarity *polarity);
38static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39static void e1000_clear_vfta(struct e1000_hw *hw);
40static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
41					      bool link_up);
42static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
44static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
45static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46				  u16 *max_length);
47static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
48static s32 e1000_id_led_init(struct e1000_hw *hw);
49static void e1000_init_rx_addrs(struct e1000_hw *hw);
50static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51				  struct e1000_phy_info *phy_info);
52static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53				  struct e1000_phy_info *phy_info);
54static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
55static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57static s32 e1000_set_phy_type(struct e1000_hw *hw);
58static void e1000_phy_init_script(struct e1000_hw *hw);
59static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
66static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
67static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
70				  u16 words, u16 *data);
71static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72					u16 words, u16 *data);
73static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
76static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
77static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
78				  u16 phy_data);
79static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
80				 u16 *phy_data);
81static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
83static void e1000_release_eeprom(struct e1000_hw *hw);
84static void e1000_standby_eeprom(struct e1000_hw *hw);
85static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87static s32 e1000_set_phy_mode(struct e1000_hw *hw);
88static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89				u16 *data);
90static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91				 u16 *data);
92
93/* IGP cable length table */
94static const
95u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97	5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98	25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99	40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100	60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101	90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102	    100,
103	100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104	    110, 110,
105	110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106	    120, 120
107};
108
109static DEFINE_SPINLOCK(e1000_eeprom_lock);
110static DEFINE_SPINLOCK(e1000_phy_lock);
111
112/**
113 * e1000_set_phy_type - Set the phy type member in the hw struct.
114 * @hw: Struct containing variables accessed by shared code
115 */
116static s32 e1000_set_phy_type(struct e1000_hw *hw)
117{
118	if (hw->mac_type == e1000_undefined)
119		return -E1000_ERR_PHY_TYPE;
120
121	switch (hw->phy_id) {
122	case M88E1000_E_PHY_ID:
123	case M88E1000_I_PHY_ID:
124	case M88E1011_I_PHY_ID:
125	case M88E1111_I_PHY_ID:
126	case M88E1118_E_PHY_ID:
127		hw->phy_type = e1000_phy_m88;
128		break;
129	case IGP01E1000_I_PHY_ID:
130		if (hw->mac_type == e1000_82541 ||
131		    hw->mac_type == e1000_82541_rev_2 ||
132		    hw->mac_type == e1000_82547 ||
133		    hw->mac_type == e1000_82547_rev_2)
134			hw->phy_type = e1000_phy_igp;
135		break;
136	case RTL8211B_PHY_ID:
137		hw->phy_type = e1000_phy_8211;
138		break;
139	case RTL8201N_PHY_ID:
140		hw->phy_type = e1000_phy_8201;
141		break;
142	default:
143		/* Should never have loaded on this device */
144		hw->phy_type = e1000_phy_undefined;
145		return -E1000_ERR_PHY_TYPE;
146	}
147
148	return E1000_SUCCESS;
149}
150
151/**
152 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
153 * @hw: Struct containing variables accessed by shared code
154 */
155static void e1000_phy_init_script(struct e1000_hw *hw)
156{
157	u32 ret_val;
158	u16 phy_saved_data;
159
160	if (hw->phy_init_script) {
161		msleep(20);
162
163		/* Save off the current value of register 0x2F5B to be restored
164		 * at the end of this routine.
165		 */
166		ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
167
168		/* Disabled the PHY transmitter */
169		e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
170		msleep(20);
171
172		e1000_write_phy_reg(hw, 0x0000, 0x0140);
173		msleep(5);
174
175		switch (hw->mac_type) {
176		case e1000_82541:
177		case e1000_82547:
178			e1000_write_phy_reg(hw, 0x1F95, 0x0001);
179			e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
180			e1000_write_phy_reg(hw, 0x1F79, 0x0018);
181			e1000_write_phy_reg(hw, 0x1F30, 0x1600);
182			e1000_write_phy_reg(hw, 0x1F31, 0x0014);
183			e1000_write_phy_reg(hw, 0x1F32, 0x161C);
184			e1000_write_phy_reg(hw, 0x1F94, 0x0003);
185			e1000_write_phy_reg(hw, 0x1F96, 0x003F);
186			e1000_write_phy_reg(hw, 0x2010, 0x0008);
187			break;
188
189		case e1000_82541_rev_2:
190		case e1000_82547_rev_2:
191			e1000_write_phy_reg(hw, 0x1F73, 0x0099);
192			break;
193		default:
194			break;
195		}
196
197		e1000_write_phy_reg(hw, 0x0000, 0x3300);
198		msleep(20);
199
200		/* Now enable the transmitter */
201		e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
202
203		if (hw->mac_type == e1000_82547) {
204			u16 fused, fine, coarse;
205
206			/* Move to analog registers page */
207			e1000_read_phy_reg(hw,
208					   IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
209					   &fused);
210
211			if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
212				e1000_read_phy_reg(hw,
213						   IGP01E1000_ANALOG_FUSE_STATUS,
214						   &fused);
215
216				fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
217				coarse =
218				    fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
219
220				if (coarse >
221				    IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
222					coarse -=
223					    IGP01E1000_ANALOG_FUSE_COARSE_10;
224					fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
225				} else if (coarse ==
226					   IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
227					fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
228
229				fused =
230				    (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
231				    (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
232				    (coarse &
233				     IGP01E1000_ANALOG_FUSE_COARSE_MASK);
234
235				e1000_write_phy_reg(hw,
236						    IGP01E1000_ANALOG_FUSE_CONTROL,
237						    fused);
238				e1000_write_phy_reg(hw,
239						    IGP01E1000_ANALOG_FUSE_BYPASS,
240						    IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
241			}
242		}
243	}
244}
245
246/**
247 * e1000_set_mac_type - Set the mac type member in the hw struct.
248 * @hw: Struct containing variables accessed by shared code
249 */
250s32 e1000_set_mac_type(struct e1000_hw *hw)
251{
252	switch (hw->device_id) {
253	case E1000_DEV_ID_82542:
254		switch (hw->revision_id) {
255		case E1000_82542_2_0_REV_ID:
256			hw->mac_type = e1000_82542_rev2_0;
257			break;
258		case E1000_82542_2_1_REV_ID:
259			hw->mac_type = e1000_82542_rev2_1;
260			break;
261		default:
262			/* Invalid 82542 revision ID */
263			return -E1000_ERR_MAC_TYPE;
264		}
265		break;
266	case E1000_DEV_ID_82543GC_FIBER:
267	case E1000_DEV_ID_82543GC_COPPER:
268		hw->mac_type = e1000_82543;
269		break;
270	case E1000_DEV_ID_82544EI_COPPER:
271	case E1000_DEV_ID_82544EI_FIBER:
272	case E1000_DEV_ID_82544GC_COPPER:
273	case E1000_DEV_ID_82544GC_LOM:
274		hw->mac_type = e1000_82544;
275		break;
276	case E1000_DEV_ID_82540EM:
277	case E1000_DEV_ID_82540EM_LOM:
278	case E1000_DEV_ID_82540EP:
279	case E1000_DEV_ID_82540EP_LOM:
280	case E1000_DEV_ID_82540EP_LP:
281		hw->mac_type = e1000_82540;
282		break;
283	case E1000_DEV_ID_82545EM_COPPER:
284	case E1000_DEV_ID_82545EM_FIBER:
285		hw->mac_type = e1000_82545;
286		break;
287	case E1000_DEV_ID_82545GM_COPPER:
288	case E1000_DEV_ID_82545GM_FIBER:
289	case E1000_DEV_ID_82545GM_SERDES:
290		hw->mac_type = e1000_82545_rev_3;
291		break;
292	case E1000_DEV_ID_82546EB_COPPER:
293	case E1000_DEV_ID_82546EB_FIBER:
294	case E1000_DEV_ID_82546EB_QUAD_COPPER:
295		hw->mac_type = e1000_82546;
296		break;
297	case E1000_DEV_ID_82546GB_COPPER:
298	case E1000_DEV_ID_82546GB_FIBER:
299	case E1000_DEV_ID_82546GB_SERDES:
300	case E1000_DEV_ID_82546GB_PCIE:
301	case E1000_DEV_ID_82546GB_QUAD_COPPER:
302	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
303		hw->mac_type = e1000_82546_rev_3;
304		break;
305	case E1000_DEV_ID_82541EI:
306	case E1000_DEV_ID_82541EI_MOBILE:
307	case E1000_DEV_ID_82541ER_LOM:
308		hw->mac_type = e1000_82541;
309		break;
310	case E1000_DEV_ID_82541ER:
311	case E1000_DEV_ID_82541GI:
312	case E1000_DEV_ID_82541GI_LF:
313	case E1000_DEV_ID_82541GI_MOBILE:
314		hw->mac_type = e1000_82541_rev_2;
315		break;
316	case E1000_DEV_ID_82547EI:
317	case E1000_DEV_ID_82547EI_MOBILE:
318		hw->mac_type = e1000_82547;
319		break;
320	case E1000_DEV_ID_82547GI:
321		hw->mac_type = e1000_82547_rev_2;
322		break;
323	case E1000_DEV_ID_INTEL_CE4100_GBE:
324		hw->mac_type = e1000_ce4100;
325		break;
326	default:
327		/* Should never have loaded on this device */
328		return -E1000_ERR_MAC_TYPE;
329	}
330
331	switch (hw->mac_type) {
332	case e1000_82541:
333	case e1000_82547:
334	case e1000_82541_rev_2:
335	case e1000_82547_rev_2:
336		hw->asf_firmware_present = true;
337		break;
338	default:
339		break;
340	}
341
342	/* The 82543 chip does not count tx_carrier_errors properly in
343	 * FD mode
344	 */
345	if (hw->mac_type == e1000_82543)
346		hw->bad_tx_carr_stats_fd = true;
347
348	if (hw->mac_type > e1000_82544)
349		hw->has_smbus = true;
350
351	return E1000_SUCCESS;
352}
353
354/**
355 * e1000_set_media_type - Set media type and TBI compatibility.
356 * @hw: Struct containing variables accessed by shared code
357 */
358void e1000_set_media_type(struct e1000_hw *hw)
359{
360	u32 status;
361
362	if (hw->mac_type != e1000_82543) {
363		/* tbi_compatibility is only valid on 82543 */
364		hw->tbi_compatibility_en = false;
365	}
366
367	switch (hw->device_id) {
368	case E1000_DEV_ID_82545GM_SERDES:
369	case E1000_DEV_ID_82546GB_SERDES:
370		hw->media_type = e1000_media_type_internal_serdes;
371		break;
372	default:
373		switch (hw->mac_type) {
374		case e1000_82542_rev2_0:
375		case e1000_82542_rev2_1:
376			hw->media_type = e1000_media_type_fiber;
377			break;
378		case e1000_ce4100:
379			hw->media_type = e1000_media_type_copper;
380			break;
381		default:
382			status = er32(STATUS);
383			if (status & E1000_STATUS_TBIMODE) {
384				hw->media_type = e1000_media_type_fiber;
385				/* tbi_compatibility not valid on fiber */
386				hw->tbi_compatibility_en = false;
387			} else {
388				hw->media_type = e1000_media_type_copper;
389			}
390			break;
391		}
392	}
393}
394
395/**
396 * e1000_reset_hw - reset the hardware completely
397 * @hw: Struct containing variables accessed by shared code
398 *
399 * Reset the transmit and receive units; mask and clear all interrupts.
400 */
401s32 e1000_reset_hw(struct e1000_hw *hw)
402{
403	u32 ctrl;
404	u32 ctrl_ext;
405	u32 icr;
406	u32 manc;
407	u32 led_ctrl;
408	s32 ret_val;
409
410	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
411	if (hw->mac_type == e1000_82542_rev2_0) {
412		e_dbg("Disabling MWI on 82542 rev 2.0\n");
413		e1000_pci_clear_mwi(hw);
414	}
415
416	/* Clear interrupt mask to stop board from generating interrupts */
417	e_dbg("Masking off all interrupts\n");
418	ew32(IMC, 0xffffffff);
419
420	/* Disable the Transmit and Receive units.  Then delay to allow
421	 * any pending transactions to complete before we hit the MAC with
422	 * the global reset.
423	 */
424	ew32(RCTL, 0);
425	ew32(TCTL, E1000_TCTL_PSP);
426	E1000_WRITE_FLUSH();
427
428	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
429	hw->tbi_compatibility_on = false;
430
431	/* Delay to allow any outstanding PCI transactions to complete before
432	 * resetting the device
433	 */
434	msleep(10);
435
436	ctrl = er32(CTRL);
437
438	/* Must reset the PHY before resetting the MAC */
439	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
440		ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
441		E1000_WRITE_FLUSH();
442		msleep(5);
443	}
444
445	/* Issue a global reset to the MAC.  This will reset the chip's
446	 * transmit, receive, DMA, and link units.  It will not effect
447	 * the current PCI configuration.  The global reset bit is self-
448	 * clearing, and should clear within a microsecond.
449	 */
450	e_dbg("Issuing a global reset to MAC\n");
451
452	switch (hw->mac_type) {
453	case e1000_82544:
454	case e1000_82540:
455	case e1000_82545:
456	case e1000_82546:
457	case e1000_82541:
458	case e1000_82541_rev_2:
459		/* These controllers can't ack the 64-bit write when issuing the
460		 * reset, so use IO-mapping as a workaround to issue the reset
461		 */
462		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
463		break;
464	case e1000_82545_rev_3:
465	case e1000_82546_rev_3:
466		/* Reset is performed on a shadow of the control register */
467		ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
468		break;
469	case e1000_ce4100:
470	default:
471		ew32(CTRL, (ctrl | E1000_CTRL_RST));
472		break;
473	}
474
475	/* After MAC reset, force reload of EEPROM to restore power-on settings
476	 * to device.  Later controllers reload the EEPROM automatically, so
477	 * just wait for reload to complete.
478	 */
479	switch (hw->mac_type) {
480	case e1000_82542_rev2_0:
481	case e1000_82542_rev2_1:
482	case e1000_82543:
483	case e1000_82544:
484		/* Wait for reset to complete */
485		udelay(10);
486		ctrl_ext = er32(CTRL_EXT);
487		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
488		ew32(CTRL_EXT, ctrl_ext);
489		E1000_WRITE_FLUSH();
490		/* Wait for EEPROM reload */
491		msleep(2);
492		break;
493	case e1000_82541:
494	case e1000_82541_rev_2:
495	case e1000_82547:
496	case e1000_82547_rev_2:
497		/* Wait for EEPROM reload */
498		msleep(20);
499		break;
500	default:
501		/* Auto read done will delay 5ms or poll based on mac type */
502		ret_val = e1000_get_auto_rd_done(hw);
503		if (ret_val)
504			return ret_val;
505		break;
506	}
507
508	/* Disable HW ARPs on ASF enabled adapters */
509	if (hw->mac_type >= e1000_82540) {
510		manc = er32(MANC);
511		manc &= ~(E1000_MANC_ARP_EN);
512		ew32(MANC, manc);
513	}
514
515	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
516		e1000_phy_init_script(hw);
517
518		/* Configure activity LED after PHY reset */
519		led_ctrl = er32(LEDCTL);
520		led_ctrl &= IGP_ACTIVITY_LED_MASK;
521		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
522		ew32(LEDCTL, led_ctrl);
523	}
524
525	/* Clear interrupt mask to stop board from generating interrupts */
526	e_dbg("Masking off all interrupts\n");
527	ew32(IMC, 0xffffffff);
528
529	/* Clear any pending interrupt events. */
530	icr = er32(ICR);
531
532	/* If MWI was previously enabled, reenable it. */
533	if (hw->mac_type == e1000_82542_rev2_0) {
534		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
535			e1000_pci_set_mwi(hw);
536	}
537
538	return E1000_SUCCESS;
539}
540
541/**
542 * e1000_init_hw - Performs basic configuration of the adapter.
543 * @hw: Struct containing variables accessed by shared code
544 *
545 * Assumes that the controller has previously been reset and is in a
546 * post-reset uninitialized state. Initializes the receive address registers,
547 * multicast table, and VLAN filter table. Calls routines to setup link
548 * configuration and flow control settings. Clears all on-chip counters. Leaves
549 * the transmit and receive units disabled and uninitialized.
550 */
551s32 e1000_init_hw(struct e1000_hw *hw)
552{
553	u32 ctrl;
554	u32 i;
555	s32 ret_val;
556	u32 mta_size;
557	u32 ctrl_ext;
558
559	/* Initialize Identification LED */
560	ret_val = e1000_id_led_init(hw);
561	if (ret_val) {
562		e_dbg("Error Initializing Identification LED\n");
563		return ret_val;
564	}
565
566	/* Set the media type and TBI compatibility */
567	e1000_set_media_type(hw);
568
569	/* Disabling VLAN filtering. */
570	e_dbg("Initializing the IEEE VLAN\n");
571	if (hw->mac_type < e1000_82545_rev_3)
572		ew32(VET, 0);
573	e1000_clear_vfta(hw);
574
575	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
576	if (hw->mac_type == e1000_82542_rev2_0) {
577		e_dbg("Disabling MWI on 82542 rev 2.0\n");
578		e1000_pci_clear_mwi(hw);
579		ew32(RCTL, E1000_RCTL_RST);
580		E1000_WRITE_FLUSH();
581		msleep(5);
582	}
583
584	/* Setup the receive address. This involves initializing all of the
585	 * Receive Address Registers (RARs 0 - 15).
586	 */
587	e1000_init_rx_addrs(hw);
588
589	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
590	if (hw->mac_type == e1000_82542_rev2_0) {
591		ew32(RCTL, 0);
592		E1000_WRITE_FLUSH();
593		msleep(1);
594		if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
595			e1000_pci_set_mwi(hw);
596	}
597
598	/* Zero out the Multicast HASH table */
599	e_dbg("Zeroing the MTA\n");
600	mta_size = E1000_MC_TBL_SIZE;
601	for (i = 0; i < mta_size; i++) {
602		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
603		/* use write flush to prevent Memory Write Block (MWB) from
604		 * occurring when accessing our register space
605		 */
606		E1000_WRITE_FLUSH();
607	}
608
609	/* Set the PCI priority bit correctly in the CTRL register.  This
610	 * determines if the adapter gives priority to receives, or if it
611	 * gives equal priority to transmits and receives.  Valid only on
612	 * 82542 and 82543 silicon.
613	 */
614	if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
615		ctrl = er32(CTRL);
616		ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
617	}
618
619	switch (hw->mac_type) {
620	case e1000_82545_rev_3:
621	case e1000_82546_rev_3:
622		break;
623	default:
624		/* Workaround for PCI-X problem when BIOS sets MMRBC
625		 * incorrectly.
626		 */
627		if (hw->bus_type == e1000_bus_type_pcix
628		    && e1000_pcix_get_mmrbc(hw) > 2048)
629			e1000_pcix_set_mmrbc(hw, 2048);
630		break;
631	}
632
633	/* Call a subroutine to configure the link and setup flow control. */
634	ret_val = e1000_setup_link(hw);
635
636	/* Set the transmit descriptor write-back policy */
637	if (hw->mac_type > e1000_82544) {
638		ctrl = er32(TXDCTL);
639		ctrl =
640		    (ctrl & ~E1000_TXDCTL_WTHRESH) |
641		    E1000_TXDCTL_FULL_TX_DESC_WB;
642		ew32(TXDCTL, ctrl);
643	}
644
645	/* Clear all of the statistics registers (clear on read).  It is
646	 * important that we do this after we have tried to establish link
647	 * because the symbol error count will increment wildly if there
648	 * is no link.
649	 */
650	e1000_clear_hw_cntrs(hw);
651
652	if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
653	    hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
654		ctrl_ext = er32(CTRL_EXT);
655		/* Relaxed ordering must be disabled to avoid a parity
656		 * error crash in a PCI slot.
657		 */
658		ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
659		ew32(CTRL_EXT, ctrl_ext);
660	}
661
662	return ret_val;
663}
664
665/**
666 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
667 * @hw: Struct containing variables accessed by shared code.
668 */
669static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
670{
671	u16 eeprom_data;
672	s32 ret_val;
673
674	if (hw->media_type != e1000_media_type_internal_serdes)
675		return E1000_SUCCESS;
676
677	switch (hw->mac_type) {
678	case e1000_82545_rev_3:
679	case e1000_82546_rev_3:
680		break;
681	default:
682		return E1000_SUCCESS;
683	}
684
685	ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
686	                            &eeprom_data);
687	if (ret_val) {
688		return ret_val;
689	}
690
691	if (eeprom_data != EEPROM_RESERVED_WORD) {
692		/* Adjust SERDES output amplitude only. */
693		eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
694		ret_val =
695		    e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
696		if (ret_val)
697			return ret_val;
698	}
699
700	return E1000_SUCCESS;
701}
702
703/**
704 * e1000_setup_link - Configures flow control and link settings.
705 * @hw: Struct containing variables accessed by shared code
706 *
707 * Determines which flow control settings to use. Calls the appropriate media-
708 * specific link configuration function. Configures the flow control settings.
709 * Assuming the adapter has a valid link partner, a valid link should be
710 * established. Assumes the hardware has previously been reset and the
711 * transmitter and receiver are not enabled.
712 */
713s32 e1000_setup_link(struct e1000_hw *hw)
714{
715	u32 ctrl_ext;
716	s32 ret_val;
717	u16 eeprom_data;
718
719	/* Read and store word 0x0F of the EEPROM. This word contains bits
720	 * that determine the hardware's default PAUSE (flow control) mode,
721	 * a bit that determines whether the HW defaults to enabling or
722	 * disabling auto-negotiation, and the direction of the
723	 * SW defined pins. If there is no SW over-ride of the flow
724	 * control setting, then the variable hw->fc will
725	 * be initialized based on a value in the EEPROM.
726	 */
727	if (hw->fc == E1000_FC_DEFAULT) {
728		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
729					    1, &eeprom_data);
730		if (ret_val) {
731			e_dbg("EEPROM Read Error\n");
732			return -E1000_ERR_EEPROM;
733		}
734		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
735			hw->fc = E1000_FC_NONE;
736		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
737			 EEPROM_WORD0F_ASM_DIR)
738			hw->fc = E1000_FC_TX_PAUSE;
739		else
740			hw->fc = E1000_FC_FULL;
741	}
742
743	/* We want to save off the original Flow Control configuration just
744	 * in case we get disconnected and then reconnected into a different
745	 * hub or switch with different Flow Control capabilities.
746	 */
747	if (hw->mac_type == e1000_82542_rev2_0)
748		hw->fc &= (~E1000_FC_TX_PAUSE);
749
750	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
751		hw->fc &= (~E1000_FC_RX_PAUSE);
752
753	hw->original_fc = hw->fc;
754
755	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
756
757	/* Take the 4 bits from EEPROM word 0x0F that determine the initial
758	 * polarity value for the SW controlled pins, and setup the
759	 * Extended Device Control reg with that info.
760	 * This is needed because one of the SW controlled pins is used for
761	 * signal detection.  So this should be done before e1000_setup_pcs_link()
762	 * or e1000_phy_setup() is called.
763	 */
764	if (hw->mac_type == e1000_82543) {
765		ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
766					    1, &eeprom_data);
767		if (ret_val) {
768			e_dbg("EEPROM Read Error\n");
769			return -E1000_ERR_EEPROM;
770		}
771		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
772			    SWDPIO__EXT_SHIFT);
773		ew32(CTRL_EXT, ctrl_ext);
774	}
775
776	/* Call the necessary subroutine to configure the link. */
777	ret_val = (hw->media_type == e1000_media_type_copper) ?
778	    e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
779
780	/* Initialize the flow control address, type, and PAUSE timer
781	 * registers to their default values.  This is done even if flow
782	 * control is disabled, because it does not hurt anything to
783	 * initialize these registers.
784	 */
785	e_dbg("Initializing the Flow Control address, type and timer regs\n");
786
787	ew32(FCT, FLOW_CONTROL_TYPE);
788	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
789	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
790
791	ew32(FCTTV, hw->fc_pause_time);
792
793	/* Set the flow control receive threshold registers.  Normally,
794	 * these registers will be set to a default threshold that may be
795	 * adjusted later by the driver's runtime code.  However, if the
796	 * ability to transmit pause frames in not enabled, then these
797	 * registers will be set to 0.
798	 */
799	if (!(hw->fc & E1000_FC_TX_PAUSE)) {
800		ew32(FCRTL, 0);
801		ew32(FCRTH, 0);
802	} else {
803		/* We need to set up the Receive Threshold high and low water
804		 * marks as well as (optionally) enabling the transmission of
805		 * XON frames.
806		 */
807		if (hw->fc_send_xon) {
808			ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
809			ew32(FCRTH, hw->fc_high_water);
810		} else {
811			ew32(FCRTL, hw->fc_low_water);
812			ew32(FCRTH, hw->fc_high_water);
813		}
814	}
815	return ret_val;
816}
817
818/**
819 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
820 * @hw: Struct containing variables accessed by shared code
821 *
822 * Manipulates Physical Coding Sublayer functions in order to configure
823 * link. Assumes the hardware has been previously reset and the transmitter
824 * and receiver are not enabled.
825 */
826static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
827{
828	u32 ctrl;
829	u32 status;
830	u32 txcw = 0;
831	u32 i;
832	u32 signal = 0;
833	s32 ret_val;
834
835	/* On adapters with a MAC newer than 82544, SWDP 1 will be
836	 * set when the optics detect a signal. On older adapters, it will be
837	 * cleared when there is a signal.  This applies to fiber media only.
838	 * If we're on serdes media, adjust the output amplitude to value
839	 * set in the EEPROM.
840	 */
841	ctrl = er32(CTRL);
842	if (hw->media_type == e1000_media_type_fiber)
843		signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
844
845	ret_val = e1000_adjust_serdes_amplitude(hw);
846	if (ret_val)
847		return ret_val;
848
849	/* Take the link out of reset */
850	ctrl &= ~(E1000_CTRL_LRST);
851
852	/* Adjust VCO speed to improve BER performance */
853	ret_val = e1000_set_vco_speed(hw);
854	if (ret_val)
855		return ret_val;
856
857	e1000_config_collision_dist(hw);
858
859	/* Check for a software override of the flow control settings, and setup
860	 * the device accordingly.  If auto-negotiation is enabled, then
861	 * software will have to set the "PAUSE" bits to the correct value in
862	 * the Tranmsit Config Word Register (TXCW) and re-start
863	 * auto-negotiation.  However, if auto-negotiation is disabled, then
864	 * software will have to manually configure the two flow control enable
865	 * bits in the CTRL register.
866	 *
867	 * The possible values of the "fc" parameter are:
868	 *  0:  Flow control is completely disabled
869	 *  1:  Rx flow control is enabled (we can receive pause frames, but
870	 *      not send pause frames).
871	 *  2:  Tx flow control is enabled (we can send pause frames but we do
872	 *      not support receiving pause frames).
873	 *  3:  Both Rx and TX flow control (symmetric) are enabled.
874	 */
875	switch (hw->fc) {
876	case E1000_FC_NONE:
877		/* Flow ctrl is completely disabled by a software over-ride */
878		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
879		break;
880	case E1000_FC_RX_PAUSE:
881		/* Rx Flow control is enabled and Tx Flow control is disabled by
882		 * a software over-ride. Since there really isn't a way to
883		 * advertise that we are capable of Rx Pause ONLY, we will
884		 * advertise that we support both symmetric and asymmetric Rx
885		 * PAUSE. Later, we will disable the adapter's ability to send
886		 * PAUSE frames.
887		 */
888		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
889		break;
890	case E1000_FC_TX_PAUSE:
891		/* Tx Flow control is enabled, and Rx Flow control is disabled,
892		 * by a software over-ride.
893		 */
894		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
895		break;
896	case E1000_FC_FULL:
897		/* Flow control (both Rx and Tx) is enabled by a software
898		 * over-ride.
899		 */
900		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
901		break;
902	default:
903		e_dbg("Flow control param set incorrectly\n");
904		return -E1000_ERR_CONFIG;
905	}
906
907	/* Since auto-negotiation is enabled, take the link out of reset (the
908	 * link will be in reset, because we previously reset the chip). This
909	 * will restart auto-negotiation.  If auto-negotiation is successful
910	 * then the link-up status bit will be set and the flow control enable
911	 * bits (RFCE and TFCE) will be set according to their negotiated value.
912	 */
913	e_dbg("Auto-negotiation enabled\n");
914
915	ew32(TXCW, txcw);
916	ew32(CTRL, ctrl);
917	E1000_WRITE_FLUSH();
918
919	hw->txcw = txcw;
920	msleep(1);
921
922	/* If we have a signal (the cable is plugged in) then poll for a
923	 * "Link-Up" indication in the Device Status Register.  Time-out if a
924	 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
925	 * complete in less than 500 milliseconds even if the other end is doing
926	 * it in SW). For internal serdes, we just assume a signal is present,
927	 * then poll.
928	 */
929	if (hw->media_type == e1000_media_type_internal_serdes ||
930	    (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
931		e_dbg("Looking for Link\n");
932		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
933			msleep(10);
934			status = er32(STATUS);
935			if (status & E1000_STATUS_LU)
936				break;
937		}
938		if (i == (LINK_UP_TIMEOUT / 10)) {
939			e_dbg("Never got a valid link from auto-neg!!!\n");
940			hw->autoneg_failed = 1;
941			/* AutoNeg failed to achieve a link, so we'll call
942			 * e1000_check_for_link. This routine will force the
943			 * link up if we detect a signal. This will allow us to
944			 * communicate with non-autonegotiating link partners.
945			 */
946			ret_val = e1000_check_for_link(hw);
947			if (ret_val) {
948				e_dbg("Error while checking for link\n");
949				return ret_val;
950			}
951			hw->autoneg_failed = 0;
952		} else {
953			hw->autoneg_failed = 0;
954			e_dbg("Valid Link Found\n");
955		}
956	} else {
957		e_dbg("No Signal Detected\n");
958	}
959	return E1000_SUCCESS;
960}
961
962/**
963 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
964 * @hw: Struct containing variables accessed by shared code
965 *
966 * Commits changes to PHY configuration by calling e1000_phy_reset().
967 */
968static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
969{
970	s32 ret_val;
971
972	/* SW reset the PHY so all changes take effect */
973	ret_val = e1000_phy_reset(hw);
974	if (ret_val) {
975		e_dbg("Error Resetting the PHY\n");
976		return ret_val;
977	}
978
979	return E1000_SUCCESS;
980}
981
982static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
983{
984	s32 ret_val;
985	u32 ctrl_aux;
986
987	switch (hw->phy_type) {
988	case e1000_phy_8211:
989		ret_val = e1000_copper_link_rtl_setup(hw);
990		if (ret_val) {
991			e_dbg("e1000_copper_link_rtl_setup failed!\n");
992			return ret_val;
993		}
994		break;
995	case e1000_phy_8201:
996		/* Set RMII mode */
997		ctrl_aux = er32(CTL_AUX);
998		ctrl_aux |= E1000_CTL_AUX_RMII;
999		ew32(CTL_AUX, ctrl_aux);
1000		E1000_WRITE_FLUSH();
1001
1002		/* Disable the J/K bits required for receive */
1003		ctrl_aux = er32(CTL_AUX);
1004		ctrl_aux |= 0x4;
1005		ctrl_aux &= ~0x2;
1006		ew32(CTL_AUX, ctrl_aux);
1007		E1000_WRITE_FLUSH();
1008		ret_val = e1000_copper_link_rtl_setup(hw);
1009
1010		if (ret_val) {
1011			e_dbg("e1000_copper_link_rtl_setup failed!\n");
1012			return ret_val;
1013		}
1014		break;
1015	default:
1016		e_dbg("Error Resetting the PHY\n");
1017		return E1000_ERR_PHY_TYPE;
1018	}
1019
1020	return E1000_SUCCESS;
1021}
1022
1023/**
1024 * e1000_copper_link_preconfig - early configuration for copper
1025 * @hw: Struct containing variables accessed by shared code
1026 *
1027 * Make sure we have a valid PHY and change PHY mode before link setup.
1028 */
1029static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1030{
1031	u32 ctrl;
1032	s32 ret_val;
1033	u16 phy_data;
1034
1035	ctrl = er32(CTRL);
1036	/* With 82543, we need to force speed and duplex on the MAC equal to
1037	 * what the PHY speed and duplex configuration is. In addition, we need
1038	 * to perform a hardware reset on the PHY to take it out of reset.
1039	 */
1040	if (hw->mac_type > e1000_82543) {
1041		ctrl |= E1000_CTRL_SLU;
1042		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1043		ew32(CTRL, ctrl);
1044	} else {
1045		ctrl |=
1046		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1047		ew32(CTRL, ctrl);
1048		ret_val = e1000_phy_hw_reset(hw);
1049		if (ret_val)
1050			return ret_val;
1051	}
1052
1053	/* Make sure we have a valid PHY */
1054	ret_val = e1000_detect_gig_phy(hw);
1055	if (ret_val) {
1056		e_dbg("Error, did not detect valid phy.\n");
1057		return ret_val;
1058	}
1059	e_dbg("Phy ID = %x\n", hw->phy_id);
1060
1061	/* Set PHY to class A mode (if necessary) */
1062	ret_val = e1000_set_phy_mode(hw);
1063	if (ret_val)
1064		return ret_val;
1065
1066	if ((hw->mac_type == e1000_82545_rev_3) ||
1067	    (hw->mac_type == e1000_82546_rev_3)) {
1068		ret_val =
1069		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1070		phy_data |= 0x00000008;
1071		ret_val =
1072		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1073	}
1074
1075	if (hw->mac_type <= e1000_82543 ||
1076	    hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1077	    hw->mac_type == e1000_82541_rev_2
1078	    || hw->mac_type == e1000_82547_rev_2)
1079		hw->phy_reset_disable = false;
1080
1081	return E1000_SUCCESS;
1082}
1083
1084/**
1085 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1086 * @hw: Struct containing variables accessed by shared code
1087 */
1088static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1089{
1090	u32 led_ctrl;
1091	s32 ret_val;
1092	u16 phy_data;
1093
1094	if (hw->phy_reset_disable)
1095		return E1000_SUCCESS;
1096
1097	ret_val = e1000_phy_reset(hw);
1098	if (ret_val) {
1099		e_dbg("Error Resetting the PHY\n");
1100		return ret_val;
1101	}
1102
1103	/* Wait 15ms for MAC to configure PHY from eeprom settings */
1104	msleep(15);
1105	/* Configure activity LED after PHY reset */
1106	led_ctrl = er32(LEDCTL);
1107	led_ctrl &= IGP_ACTIVITY_LED_MASK;
1108	led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1109	ew32(LEDCTL, led_ctrl);
1110
1111	/* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1112	if (hw->phy_type == e1000_phy_igp) {
1113		/* disable lplu d3 during driver init */
1114		ret_val = e1000_set_d3_lplu_state(hw, false);
1115		if (ret_val) {
1116			e_dbg("Error Disabling LPLU D3\n");
1117			return ret_val;
1118		}
1119	}
1120
1121	/* Configure mdi-mdix settings */
1122	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1123	if (ret_val)
1124		return ret_val;
1125
1126	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1127		hw->dsp_config_state = e1000_dsp_config_disabled;
1128		/* Force MDI for earlier revs of the IGP PHY */
1129		phy_data &=
1130		    ~(IGP01E1000_PSCR_AUTO_MDIX |
1131		      IGP01E1000_PSCR_FORCE_MDI_MDIX);
1132		hw->mdix = 1;
1133
1134	} else {
1135		hw->dsp_config_state = e1000_dsp_config_enabled;
1136		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1137
1138		switch (hw->mdix) {
1139		case 1:
1140			phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1141			break;
1142		case 2:
1143			phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1144			break;
1145		case 0:
1146		default:
1147			phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1148			break;
1149		}
1150	}
1151	ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1152	if (ret_val)
1153		return ret_val;
1154
1155	/* set auto-master slave resolution settings */
1156	if (hw->autoneg) {
1157		e1000_ms_type phy_ms_setting = hw->master_slave;
1158
1159		if (hw->ffe_config_state == e1000_ffe_config_active)
1160			hw->ffe_config_state = e1000_ffe_config_enabled;
1161
1162		if (hw->dsp_config_state == e1000_dsp_config_activated)
1163			hw->dsp_config_state = e1000_dsp_config_enabled;
1164
1165		/* when autonegotiation advertisement is only 1000Mbps then we
1166		 * should disable SmartSpeed and enable Auto MasterSlave
1167		 * resolution as hardware default.
1168		 */
1169		if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1170			/* Disable SmartSpeed */
1171			ret_val =
1172			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1173					       &phy_data);
1174			if (ret_val)
1175				return ret_val;
1176			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1177			ret_val =
1178			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1179						phy_data);
1180			if (ret_val)
1181				return ret_val;
1182			/* Set auto Master/Slave resolution process */
1183			ret_val =
1184			    e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1185			if (ret_val)
1186				return ret_val;
1187			phy_data &= ~CR_1000T_MS_ENABLE;
1188			ret_val =
1189			    e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1190			if (ret_val)
1191				return ret_val;
1192		}
1193
1194		ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1195		if (ret_val)
1196			return ret_val;
1197
1198		/* load defaults for future use */
1199		hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1200		    ((phy_data & CR_1000T_MS_VALUE) ?
1201		     e1000_ms_force_master :
1202		     e1000_ms_force_slave) : e1000_ms_auto;
1203
1204		switch (phy_ms_setting) {
1205		case e1000_ms_force_master:
1206			phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1207			break;
1208		case e1000_ms_force_slave:
1209			phy_data |= CR_1000T_MS_ENABLE;
1210			phy_data &= ~(CR_1000T_MS_VALUE);
1211			break;
1212		case e1000_ms_auto:
1213			phy_data &= ~CR_1000T_MS_ENABLE;
1214		default:
1215			break;
1216		}
1217		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1218		if (ret_val)
1219			return ret_val;
1220	}
1221
1222	return E1000_SUCCESS;
1223}
1224
1225/**
1226 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1227 * @hw: Struct containing variables accessed by shared code
1228 */
1229static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1230{
1231	s32 ret_val;
1232	u16 phy_data;
1233
1234	if (hw->phy_reset_disable)
1235		return E1000_SUCCESS;
1236
1237	/* Enable CRS on TX. This must be set for half-duplex operation. */
1238	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1239	if (ret_val)
1240		return ret_val;
1241
1242	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1243
1244	/* Options:
1245	 *   MDI/MDI-X = 0 (default)
1246	 *   0 - Auto for all speeds
1247	 *   1 - MDI mode
1248	 *   2 - MDI-X mode
1249	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1250	 */
1251	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1252
1253	switch (hw->mdix) {
1254	case 1:
1255		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1256		break;
1257	case 2:
1258		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1259		break;
1260	case 3:
1261		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1262		break;
1263	case 0:
1264	default:
1265		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1266		break;
1267	}
1268
1269	/* Options:
1270	 *   disable_polarity_correction = 0 (default)
1271	 *       Automatic Correction for Reversed Cable Polarity
1272	 *   0 - Disabled
1273	 *   1 - Enabled
1274	 */
1275	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1276	if (hw->disable_polarity_correction == 1)
1277		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1278	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279	if (ret_val)
1280		return ret_val;
1281
1282	if (hw->phy_revision < M88E1011_I_REV_4) {
1283		/* Force TX_CLK in the Extended PHY Specific Control Register
1284		 * to 25MHz clock.
1285		 */
1286		ret_val =
1287		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1288				       &phy_data);
1289		if (ret_val)
1290			return ret_val;
1291
1292		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1293
1294		if ((hw->phy_revision == E1000_REVISION_2) &&
1295		    (hw->phy_id == M88E1111_I_PHY_ID)) {
1296			/* Vidalia Phy, set the downshift counter to 5x */
1297			phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1298			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1299			ret_val = e1000_write_phy_reg(hw,
1300						      M88E1000_EXT_PHY_SPEC_CTRL,
1301						      phy_data);
1302			if (ret_val)
1303				return ret_val;
1304		} else {
1305			/* Configure Master and Slave downshift values */
1306			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1307				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1308			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1309				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1310			ret_val = e1000_write_phy_reg(hw,
1311						      M88E1000_EXT_PHY_SPEC_CTRL,
1312						      phy_data);
1313			if (ret_val)
1314				return ret_val;
1315		}
1316	}
1317
1318	/* SW Reset the PHY so all changes take effect */
1319	ret_val = e1000_phy_reset(hw);
1320	if (ret_val) {
1321		e_dbg("Error Resetting the PHY\n");
1322		return ret_val;
1323	}
1324
1325	return E1000_SUCCESS;
1326}
1327
1328/**
1329 * e1000_copper_link_autoneg - setup auto-neg
1330 * @hw: Struct containing variables accessed by shared code
1331 *
1332 * Setup auto-negotiation and flow control advertisements,
1333 * and then perform auto-negotiation.
1334 */
1335static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1336{
1337	s32 ret_val;
1338	u16 phy_data;
1339
1340	/* Perform some bounds checking on the hw->autoneg_advertised
1341	 * parameter.  If this variable is zero, then set it to the default.
1342	 */
1343	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1344
1345	/* If autoneg_advertised is zero, we assume it was not defaulted
1346	 * by the calling code so we set to advertise full capability.
1347	 */
1348	if (hw->autoneg_advertised == 0)
1349		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1350
1351	/* IFE/RTL8201N PHY only supports 10/100 */
1352	if (hw->phy_type == e1000_phy_8201)
1353		hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1354
1355	e_dbg("Reconfiguring auto-neg advertisement params\n");
1356	ret_val = e1000_phy_setup_autoneg(hw);
1357	if (ret_val) {
1358		e_dbg("Error Setting up Auto-Negotiation\n");
1359		return ret_val;
1360	}
1361	e_dbg("Restarting Auto-Neg\n");
1362
1363	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1364	 * the Auto Neg Restart bit in the PHY control register.
1365	 */
1366	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1367	if (ret_val)
1368		return ret_val;
1369
1370	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1371	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1372	if (ret_val)
1373		return ret_val;
1374
1375	/* Does the user want to wait for Auto-Neg to complete here, or
1376	 * check at a later time (for example, callback routine).
1377	 */
1378	if (hw->wait_autoneg_complete) {
1379		ret_val = e1000_wait_autoneg(hw);
1380		if (ret_val) {
1381			e_dbg
1382			    ("Error while waiting for autoneg to complete\n");
1383			return ret_val;
1384		}
1385	}
1386
1387	hw->get_link_status = true;
1388
1389	return E1000_SUCCESS;
1390}
1391
1392/**
1393 * e1000_copper_link_postconfig - post link setup
1394 * @hw: Struct containing variables accessed by shared code
1395 *
1396 * Config the MAC and the PHY after link is up.
1397 *   1) Set up the MAC to the current PHY speed/duplex
1398 *      if we are on 82543.  If we
1399 *      are on newer silicon, we only need to configure
1400 *      collision distance in the Transmit Control Register.
1401 *   2) Set up flow control on the MAC to that established with
1402 *      the link partner.
1403 *   3) Config DSP to improve Gigabit link quality for some PHY revisions.
1404 */
1405static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1406{
1407	s32 ret_val;
1408
1409	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1410		e1000_config_collision_dist(hw);
1411	} else {
1412		ret_val = e1000_config_mac_to_phy(hw);
1413		if (ret_val) {
1414			e_dbg("Error configuring MAC to PHY settings\n");
1415			return ret_val;
1416		}
1417	}
1418	ret_val = e1000_config_fc_after_link_up(hw);
1419	if (ret_val) {
1420		e_dbg("Error Configuring Flow Control\n");
1421		return ret_val;
1422	}
1423
1424	/* Config DSP to improve Giga link quality */
1425	if (hw->phy_type == e1000_phy_igp) {
1426		ret_val = e1000_config_dsp_after_link_change(hw, true);
1427		if (ret_val) {
1428			e_dbg("Error Configuring DSP after link up\n");
1429			return ret_val;
1430		}
1431	}
1432
1433	return E1000_SUCCESS;
1434}
1435
1436/**
1437 * e1000_setup_copper_link - phy/speed/duplex setting
1438 * @hw: Struct containing variables accessed by shared code
1439 *
1440 * Detects which PHY is present and sets up the speed and duplex
1441 */
1442static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1443{
1444	s32 ret_val;
1445	u16 i;
1446	u16 phy_data;
1447
1448	/* Check if it is a valid PHY and set PHY mode if necessary. */
1449	ret_val = e1000_copper_link_preconfig(hw);
1450	if (ret_val)
1451		return ret_val;
1452
1453	if (hw->phy_type == e1000_phy_igp) {
1454		ret_val = e1000_copper_link_igp_setup(hw);
1455		if (ret_val)
1456			return ret_val;
1457	} else if (hw->phy_type == e1000_phy_m88) {
1458		ret_val = e1000_copper_link_mgp_setup(hw);
1459		if (ret_val)
1460			return ret_val;
1461	} else {
1462		ret_val = gbe_dhg_phy_setup(hw);
1463		if (ret_val) {
1464			e_dbg("gbe_dhg_phy_setup failed!\n");
1465			return ret_val;
1466		}
1467	}
1468
1469	if (hw->autoneg) {
1470		/* Setup autoneg and flow control advertisement
1471		 * and perform autonegotiation
1472		 */
1473		ret_val = e1000_copper_link_autoneg(hw);
1474		if (ret_val)
1475			return ret_val;
1476	} else {
1477		/* PHY will be set to 10H, 10F, 100H,or 100F
1478		 * depending on value from forced_speed_duplex.
1479		 */
1480		e_dbg("Forcing speed and duplex\n");
1481		ret_val = e1000_phy_force_speed_duplex(hw);
1482		if (ret_val) {
1483			e_dbg("Error Forcing Speed and Duplex\n");
1484			return ret_val;
1485		}
1486	}
1487
1488	/* Check link status. Wait up to 100 microseconds for link to become
1489	 * valid.
1490	 */
1491	for (i = 0; i < 10; i++) {
1492		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1493		if (ret_val)
1494			return ret_val;
1495		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1496		if (ret_val)
1497			return ret_val;
1498
1499		if (phy_data & MII_SR_LINK_STATUS) {
1500			/* Config the MAC and PHY after link is up */
1501			ret_val = e1000_copper_link_postconfig(hw);
1502			if (ret_val)
1503				return ret_val;
1504
1505			e_dbg("Valid link established!!!\n");
1506			return E1000_SUCCESS;
1507		}
1508		udelay(10);
1509	}
1510
1511	e_dbg("Unable to establish link!!!\n");
1512	return E1000_SUCCESS;
1513}
1514
1515/**
1516 * e1000_phy_setup_autoneg - phy settings
1517 * @hw: Struct containing variables accessed by shared code
1518 *
1519 * Configures PHY autoneg and flow control advertisement settings
1520 */
1521s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1522{
1523	s32 ret_val;
1524	u16 mii_autoneg_adv_reg;
1525	u16 mii_1000t_ctrl_reg;
1526
1527	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
1528	ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1529	if (ret_val)
1530		return ret_val;
1531
1532	/* Read the MII 1000Base-T Control Register (Address 9). */
1533	ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1534	if (ret_val)
1535		return ret_val;
1536	else if (hw->phy_type == e1000_phy_8201)
1537		mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1538
1539	/* Need to parse both autoneg_advertised and fc and set up
1540	 * the appropriate PHY registers.  First we will parse for
1541	 * autoneg_advertised software override.  Since we can advertise
1542	 * a plethora of combinations, we need to check each bit
1543	 * individually.
1544	 */
1545
1546	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
1547	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1548	 * the  1000Base-T Control Register (Address 9).
1549	 */
1550	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1551	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1552
1553	e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1554
1555	/* Do we want to advertise 10 Mb Half Duplex? */
1556	if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1557		e_dbg("Advertise 10mb Half duplex\n");
1558		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1559	}
1560
1561	/* Do we want to advertise 10 Mb Full Duplex? */
1562	if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1563		e_dbg("Advertise 10mb Full duplex\n");
1564		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1565	}
1566
1567	/* Do we want to advertise 100 Mb Half Duplex? */
1568	if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1569		e_dbg("Advertise 100mb Half duplex\n");
1570		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1571	}
1572
1573	/* Do we want to advertise 100 Mb Full Duplex? */
1574	if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1575		e_dbg("Advertise 100mb Full duplex\n");
1576		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1577	}
1578
1579	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1580	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1581		e_dbg
1582		    ("Advertise 1000mb Half duplex requested, request denied!\n");
1583	}
1584
1585	/* Do we want to advertise 1000 Mb Full Duplex? */
1586	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1587		e_dbg("Advertise 1000mb Full duplex\n");
1588		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1589	}
1590
1591	/* Check for a software override of the flow control settings, and
1592	 * setup the PHY advertisement registers accordingly.  If
1593	 * auto-negotiation is enabled, then software will have to set the
1594	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1595	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1596	 * auto-negotiation.
1597	 *
1598	 * The possible values of the "fc" parameter are:
1599	 *      0:  Flow control is completely disabled
1600	 *      1:  Rx flow control is enabled (we can receive pause frames
1601	 *          but not send pause frames).
1602	 *      2:  Tx flow control is enabled (we can send pause frames
1603	 *          but we do not support receiving pause frames).
1604	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1605	 *  other:  No software override.  The flow control configuration
1606	 *          in the EEPROM is used.
1607	 */
1608	switch (hw->fc) {
1609	case E1000_FC_NONE:	/* 0 */
1610		/* Flow control (RX & TX) is completely disabled by a
1611		 * software over-ride.
1612		 */
1613		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1614		break;
1615	case E1000_FC_RX_PAUSE:	/* 1 */
1616		/* RX Flow control is enabled, and TX Flow control is
1617		 * disabled, by a software over-ride.
1618		 */
1619		/* Since there really isn't a way to advertise that we are
1620		 * capable of RX Pause ONLY, we will advertise that we
1621		 * support both symmetric and asymmetric RX PAUSE.  Later
1622		 * (in e1000_config_fc_after_link_up) we will disable the
1623		 * hw's ability to send PAUSE frames.
1624		 */
1625		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1626		break;
1627	case E1000_FC_TX_PAUSE:	/* 2 */
1628		/* TX Flow control is enabled, and RX Flow control is
1629		 * disabled, by a software over-ride.
1630		 */
1631		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1632		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1633		break;
1634	case E1000_FC_FULL:	/* 3 */
1635		/* Flow control (both RX and TX) is enabled by a software
1636		 * over-ride.
1637		 */
1638		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1639		break;
1640	default:
1641		e_dbg("Flow control param set incorrectly\n");
1642		return -E1000_ERR_CONFIG;
1643	}
1644
1645	ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1646	if (ret_val)
1647		return ret_val;
1648
1649	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1650
1651	if (hw->phy_type == e1000_phy_8201) {
1652		mii_1000t_ctrl_reg = 0;
1653	} else {
1654		ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1655		                              mii_1000t_ctrl_reg);
1656		if (ret_val)
1657			return ret_val;
1658	}
1659
1660	return E1000_SUCCESS;
1661}
1662
1663/**
1664 * e1000_phy_force_speed_duplex - force link settings
1665 * @hw: Struct containing variables accessed by shared code
1666 *
1667 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1668 */
1669static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1670{
1671	u32 ctrl;
1672	s32 ret_val;
1673	u16 mii_ctrl_reg;
1674	u16 mii_status_reg;
1675	u16 phy_data;
1676	u16 i;
1677
1678	/* Turn off Flow control if we are forcing speed and duplex. */
1679	hw->fc = E1000_FC_NONE;
1680
1681	e_dbg("hw->fc = %d\n", hw->fc);
1682
1683	/* Read the Device Control Register. */
1684	ctrl = er32(CTRL);
1685
1686	/* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1687	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1688	ctrl &= ~(DEVICE_SPEED_MASK);
1689
1690	/* Clear the Auto Speed Detect Enable bit. */
1691	ctrl &= ~E1000_CTRL_ASDE;
1692
1693	/* Read the MII Control Register. */
1694	ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1695	if (ret_val)
1696		return ret_val;
1697
1698	/* We need to disable autoneg in order to force link and duplex. */
1699
1700	mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1701
1702	/* Are we forcing Full or Half Duplex? */
1703	if (hw->forced_speed_duplex == e1000_100_full ||
1704	    hw->forced_speed_duplex == e1000_10_full) {
1705		/* We want to force full duplex so we SET the full duplex bits
1706		 * in the Device and MII Control Registers.
1707		 */
1708		ctrl |= E1000_CTRL_FD;
1709		mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1710		e_dbg("Full Duplex\n");
1711	} else {
1712		/* We want to force half duplex so we CLEAR the full duplex bits
1713		 * in the Device and MII Control Registers.
1714		 */
1715		ctrl &= ~E1000_CTRL_FD;
1716		mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1717		e_dbg("Half Duplex\n");
1718	}
1719
1720	/* Are we forcing 100Mbps??? */
1721	if (hw->forced_speed_duplex == e1000_100_full ||
1722	    hw->forced_speed_duplex == e1000_100_half) {
1723		/* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1724		ctrl |= E1000_CTRL_SPD_100;
1725		mii_ctrl_reg |= MII_CR_SPEED_100;
1726		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1727		e_dbg("Forcing 100mb ");
1728	} else {
1729		/* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1730		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1731		mii_ctrl_reg |= MII_CR_SPEED_10;
1732		mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1733		e_dbg("Forcing 10mb ");
1734	}
1735
1736	e1000_config_collision_dist(hw);
1737
1738	/* Write the configured values back to the Device Control Reg. */
1739	ew32(CTRL, ctrl);
1740
1741	if (hw->phy_type == e1000_phy_m88) {
1742		ret_val =
1743		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1744		if (ret_val)
1745			return ret_val;
1746
1747		/* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1748		 * MDI forced whenever speed are duplex are forced.
1749		 */
1750		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1751		ret_val =
1752		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1753		if (ret_val)
1754			return ret_val;
1755
1756		e_dbg("M88E1000 PSCR: %x\n", phy_data);
1757
1758		/* Need to reset the PHY or these changes will be ignored */
1759		mii_ctrl_reg |= MII_CR_RESET;
1760
1761		/* Disable MDI-X support for 10/100 */
1762	} else {
1763		/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1764		 * forced whenever speed or duplex are forced.
1765		 */
1766		ret_val =
1767		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1768		if (ret_val)
1769			return ret_val;
1770
1771		phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1772		phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1773
1774		ret_val =
1775		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1776		if (ret_val)
1777			return ret_val;
1778	}
1779
1780	/* Write back the modified PHY MII control register. */
1781	ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1782	if (ret_val)
1783		return ret_val;
1784
1785	udelay(1);
1786
1787	/* The wait_autoneg_complete flag may be a little misleading here.
1788	 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1789	 * But we do want to delay for a period while forcing only so we
1790	 * don't generate false No Link messages.  So we will wait here
1791	 * only if the user has set wait_autoneg_complete to 1, which is
1792	 * the default.
1793	 */
1794	if (hw->wait_autoneg_complete) {
1795		/* We will wait for autoneg to complete. */
1796		e_dbg("Waiting for forced speed/duplex link.\n");
1797		mii_status_reg = 0;
1798
1799		/* Wait for autoneg to complete or 4.5 seconds to expire */
1800		for (i = PHY_FORCE_TIME; i > 0; i--) {
1801			/* Read the MII Status Register and wait for Auto-Neg
1802			 * Complete bit to be set.
1803			 */
1804			ret_val =
1805			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1806			if (ret_val)
1807				return ret_val;
1808
1809			ret_val =
1810			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1811			if (ret_val)
1812				return ret_val;
1813
1814			if (mii_status_reg & MII_SR_LINK_STATUS)
1815				break;
1816			msleep(100);
1817		}
1818		if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1819			/* We didn't get link.  Reset the DSP and wait again
1820			 * for link.
1821			 */
1822			ret_val = e1000_phy_reset_dsp(hw);
1823			if (ret_val) {
1824				e_dbg("Error Resetting PHY DSP\n");
1825				return ret_val;
1826			}
1827		}
1828		/* This loop will early-out if the link condition has been
1829		 * met
1830		 */
1831		for (i = PHY_FORCE_TIME; i > 0; i--) {
1832			if (mii_status_reg & MII_SR_LINK_STATUS)
1833				break;
1834			msleep(100);
1835			/* Read the MII Status Register and wait for Auto-Neg
1836			 * Complete bit to be set.
1837			 */
1838			ret_val =
1839			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1840			if (ret_val)
1841				return ret_val;
1842
1843			ret_val =
1844			    e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1845			if (ret_val)
1846				return ret_val;
1847		}
1848	}
1849
1850	if (hw->phy_type == e1000_phy_m88) {
1851		/* Because we reset the PHY above, we need to re-force TX_CLK in
1852		 * the Extended PHY Specific Control Register to 25MHz clock.
1853		 * This value defaults back to a 2.5MHz clock when the PHY is
1854		 * reset.
1855		 */
1856		ret_val =
1857		    e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1858				       &phy_data);
1859		if (ret_val)
1860			return ret_val;
1861
1862		phy_data |= M88E1000_EPSCR_TX_CLK_25;
1863		ret_val =
1864		    e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1865					phy_data);
1866		if (ret_val)
1867			return ret_val;
1868
1869		/* In addition, because of the s/w reset above, we need to
1870		 * enable CRS on Tx.  This must be set for both full and half
1871		 * duplex operation.
1872		 */
1873		ret_val =
1874		    e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1875		if (ret_val)
1876			return ret_val;
1877
1878		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1879		ret_val =
1880		    e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1881		if (ret_val)
1882			return ret_val;
1883
1884		if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1885		    && (!hw->autoneg)
1886		    && (hw->forced_speed_duplex == e1000_10_full
1887			|| hw->forced_speed_duplex == e1000_10_half)) {
1888			ret_val = e1000_polarity_reversal_workaround(hw);
1889			if (ret_val)
1890				return ret_val;
1891		}
1892	}
1893	return E1000_SUCCESS;
1894}
1895
1896/**
1897 * e1000_config_collision_dist - set collision distance register
1898 * @hw: Struct containing variables accessed by shared code
1899 *
1900 * Sets the collision distance in the Transmit Control register.
1901 * Link should have been established previously. Reads the speed and duplex
1902 * information from the Device Status register.
1903 */
1904void e1000_config_collision_dist(struct e1000_hw *hw)
1905{
1906	u32 tctl, coll_dist;
1907
1908	if (hw->mac_type < e1000_82543)
1909		coll_dist = E1000_COLLISION_DISTANCE_82542;
1910	else
1911		coll_dist = E1000_COLLISION_DISTANCE;
1912
1913	tctl = er32(TCTL);
1914
1915	tctl &= ~E1000_TCTL_COLD;
1916	tctl |= coll_dist << E1000_COLD_SHIFT;
1917
1918	ew32(TCTL, tctl);
1919	E1000_WRITE_FLUSH();
1920}
1921
1922/**
1923 * e1000_config_mac_to_phy - sync phy and mac settings
1924 * @hw: Struct containing variables accessed by shared code
1925 * @mii_reg: data to write to the MII control register
1926 *
1927 * Sets MAC speed and duplex settings to reflect the those in the PHY
1928 * The contents of the PHY register containing the needed information need to
1929 * be passed in.
1930 */
1931static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1932{
1933	u32 ctrl;
1934	s32 ret_val;
1935	u16 phy_data;
1936
1937	/* 82544 or newer MAC, Auto Speed Detection takes care of
1938	 * MAC speed/duplex configuration.
1939	 */
1940	if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1941		return E1000_SUCCESS;
1942
1943	/* Read the Device Control Register and set the bits to Force Speed
1944	 * and Duplex.
1945	 */
1946	ctrl = er32(CTRL);
1947	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1948	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1949
1950	switch (hw->phy_type) {
1951	case e1000_phy_8201:
1952		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1953		if (ret_val)
1954			return ret_val;
1955
1956		if (phy_data & RTL_PHY_CTRL_FD)
1957			ctrl |= E1000_CTRL_FD;
1958		else
1959			ctrl &= ~E1000_CTRL_FD;
1960
1961		if (phy_data & RTL_PHY_CTRL_SPD_100)
1962			ctrl |= E1000_CTRL_SPD_100;
1963		else
1964			ctrl |= E1000_CTRL_SPD_10;
1965
1966		e1000_config_collision_dist(hw);
1967		break;
1968	default:
1969		/* Set up duplex in the Device Control and Transmit Control
1970		 * registers depending on negotiated values.
1971		 */
1972		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
1973					     &phy_data);
1974		if (ret_val)
1975			return ret_val;
1976
1977		if (phy_data & M88E1000_PSSR_DPLX)
1978			ctrl |= E1000_CTRL_FD;
1979		else
1980			ctrl &= ~E1000_CTRL_FD;
1981
1982		e1000_config_collision_dist(hw);
1983
1984		/* Set up speed in the Device Control register depending on
1985		 * negotiated values.
1986		 */
1987		if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
1988			ctrl |= E1000_CTRL_SPD_1000;
1989		else if ((phy_data & M88E1000_PSSR_SPEED) ==
1990			 M88E1000_PSSR_100MBS)
1991			ctrl |= E1000_CTRL_SPD_100;
1992	}
1993
1994	/* Write the configured values back to the Device Control Reg. */
1995	ew32(CTRL, ctrl);
1996	return E1000_SUCCESS;
1997}
1998
1999/**
2000 * e1000_force_mac_fc - force flow control settings
2001 * @hw: Struct containing variables accessed by shared code
2002 *
2003 * Forces the MAC's flow control settings.
2004 * Sets the TFCE and RFCE bits in the device control register to reflect
2005 * the adapter settings. TFCE and RFCE need to be explicitly set by
2006 * software when a Copper PHY is used because autonegotiation is managed
2007 * by the PHY rather than the MAC. Software must also configure these
2008 * bits when link is forced on a fiber connection.
2009 */
2010s32 e1000_force_mac_fc(struct e1000_hw *hw)
2011{
2012	u32 ctrl;
2013
2014	/* Get the current configuration of the Device Control Register */
2015	ctrl = er32(CTRL);
2016
2017	/* Because we didn't get link via the internal auto-negotiation
2018	 * mechanism (we either forced link or we got link via PHY
2019	 * auto-neg), we have to manually enable/disable transmit an
2020	 * receive flow control.
2021	 *
2022	 * The "Case" statement below enables/disable flow control
2023	 * according to the "hw->fc" parameter.
2024	 *
2025	 * The possible values of the "fc" parameter are:
2026	 *      0:  Flow control is completely disabled
2027	 *      1:  Rx flow control is enabled (we can receive pause
2028	 *          frames but not send pause frames).
2029	 *      2:  Tx flow control is enabled (we can send pause frames
2030	 *          frames but we do not receive pause frames).
2031	 *      3:  Both Rx and TX flow control (symmetric) is enabled.
2032	 *  other:  No other values should be possible at this point.
2033	 */
2034
2035	switch (hw->fc) {
2036	case E1000_FC_NONE:
2037		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2038		break;
2039	case E1000_FC_RX_PAUSE:
2040		ctrl &= (~E1000_CTRL_TFCE);
2041		ctrl |= E1000_CTRL_RFCE;
2042		break;
2043	case E1000_FC_TX_PAUSE:
2044		ctrl &= (~E1000_CTRL_RFCE);
2045		ctrl |= E1000_CTRL_TFCE;
2046		break;
2047	case E1000_FC_FULL:
2048		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2049		break;
2050	default:
2051		e_dbg("Flow control param set incorrectly\n");
2052		return -E1000_ERR_CONFIG;
2053	}
2054
2055	/* Disable TX Flow Control for 82542 (rev 2.0) */
2056	if (hw->mac_type == e1000_82542_rev2_0)
2057		ctrl &= (~E1000_CTRL_TFCE);
2058
2059	ew32(CTRL, ctrl);
2060	return E1000_SUCCESS;
2061}
2062
2063/**
2064 * e1000_config_fc_after_link_up - configure flow control after autoneg
2065 * @hw: Struct containing variables accessed by shared code
2066 *
2067 * Configures flow control settings after link is established
2068 * Should be called immediately after a valid link has been established.
2069 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2070 * and autonegotiation is enabled, the MAC flow control settings will be set
2071 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2072 * and RFCE bits will be automatically set to the negotiated flow control mode.
2073 */
2074static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2075{
2076	s32 ret_val;
2077	u16 mii_status_reg;
2078	u16 mii_nway_adv_reg;
2079	u16 mii_nway_lp_ability_reg;
2080	u16 speed;
2081	u16 duplex;
2082
2083	/* Check for the case where we have fiber media and auto-neg failed
2084	 * so we had to force link.  In this case, we need to force the
2085	 * configuration of the MAC to match the "fc" parameter.
2086	 */
2087	if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2088	    || ((hw->media_type == e1000_media_type_internal_serdes)
2089		&& (hw->autoneg_failed))
2090	    || ((hw->media_type == e1000_media_type_copper)
2091		&& (!hw->autoneg))) {
2092		ret_val = e1000_force_mac_fc(hw);
2093		if (ret_val) {
2094			e_dbg("Error forcing flow control settings\n");
2095			return ret_val;
2096		}
2097	}
2098
2099	/* Check for the case where we have copper media and auto-neg is
2100	 * enabled.  In this case, we need to check and see if Auto-Neg
2101	 * has completed, and if so, how the PHY and link partner has
2102	 * flow control configured.
2103	 */
2104	if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2105		/* Read the MII Status Register and check to see if AutoNeg
2106		 * has completed.  We read this twice because this reg has
2107		 * some "sticky" (latched) bits.
2108		 */
2109		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2110		if (ret_val)
2111			return ret_val;
2112		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2113		if (ret_val)
2114			return ret_val;
2115
2116		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2117			/* The AutoNeg process has completed, so we now need to
2118			 * read both the Auto Negotiation Advertisement Register
2119			 * (Address 4) and the Auto_Negotiation Base Page
2120			 * Ability Register (Address 5) to determine how flow
2121			 * control was negotiated.
2122			 */
2123			ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2124						     &mii_nway_adv_reg);
2125			if (ret_val)
2126				return ret_val;
2127			ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2128						     &mii_nway_lp_ability_reg);
2129			if (ret_val)
2130				return ret_val;
2131
2132			/* Two bits in the Auto Negotiation Advertisement
2133			 * Register (Address 4) and two bits in the Auto
2134			 * Negotiation Base Page Ability Register (Address 5)
2135			 * determine flow control for both the PHY and the link
2136			 * partner.  The following table, taken out of the IEEE
2137			 * 802.3ab/D6.0 dated March 25, 1999, describes these
2138			 * PAUSE resolution bits and how flow control is
2139			 * determined based upon these settings.
2140			 * NOTE:  DC = Don't Care
2141			 *
2142			 *   LOCAL DEVICE  |   LINK PARTNER
2143			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2144			 *-------|---------|-------|---------|------------------
2145			 *   0   |    0    |  DC   |   DC    | E1000_FC_NONE
2146			 *   0   |    1    |   0   |   DC    | E1000_FC_NONE
2147			 *   0   |    1    |   1   |    0    | E1000_FC_NONE
2148			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2149			 *   1   |    0    |   0   |   DC    | E1000_FC_NONE
2150			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2151			 *   1   |    1    |   0   |    0    | E1000_FC_NONE
2152			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2153			 *
2154			 */
2155			/* Are both PAUSE bits set to 1?  If so, this implies
2156			 * Symmetric Flow Control is enabled at both ends.  The
2157			 * ASM_DIR bits are irrelevant per the spec.
2158			 *
2159			 * For Symmetric Flow Control:
2160			 *
2161			 *   LOCAL DEVICE  |   LINK PARTNER
2162			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2163			 *-------|---------|-------|---------|------------------
2164			 *   1   |   DC    |   1   |   DC    | E1000_FC_FULL
2165			 *
2166			 */
2167			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2168			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2169				/* Now we need to check if the user selected Rx
2170				 * ONLY of pause frames.  In this case, we had
2171				 * to advertise FULL flow control because we
2172				 * could not advertise Rx ONLY. Hence, we must
2173				 * now check to see if we need to turn OFF the
2174				 * TRANSMISSION of PAUSE frames.
2175				 */
2176				if (hw->original_fc == E1000_FC_FULL) {
2177					hw->fc = E1000_FC_FULL;
2178					e_dbg("Flow Control = FULL.\n");
2179				} else {
2180					hw->fc = E1000_FC_RX_PAUSE;
2181					e_dbg
2182					    ("Flow Control = RX PAUSE frames only.\n");
2183				}
2184			}
2185			/* For receiving PAUSE frames ONLY.
2186			 *
2187			 *   LOCAL DEVICE  |   LINK PARTNER
2188			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2189			 *-------|---------|-------|---------|------------------
2190			 *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE
2191			 *
2192			 */
2193			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2194				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2195				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2196				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2197			{
2198				hw->fc = E1000_FC_TX_PAUSE;
2199				e_dbg
2200				    ("Flow Control = TX PAUSE frames only.\n");
2201			}
2202			/* For transmitting PAUSE frames ONLY.
2203			 *
2204			 *   LOCAL DEVICE  |   LINK PARTNER
2205			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2206			 *-------|---------|-------|---------|------------------
2207			 *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE
2208			 *
2209			 */
2210			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2211				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2212				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2213				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2214			{
2215				hw->fc = E1000_FC_RX_PAUSE;
2216				e_dbg
2217				    ("Flow Control = RX PAUSE frames only.\n");
2218			}
2219			/* Per the IEEE spec, at this point flow control should
2220			 * be disabled.  However, we want to consider that we
2221			 * could be connected to a legacy switch that doesn't
2222			 * advertise desired flow control, but can be forced on
2223			 * the link partner.  So if we advertised no flow
2224			 * control, that is what we will resolve to.  If we
2225			 * advertised some kind of receive capability (Rx Pause
2226			 * Only or Full Flow Control) and the link partner
2227			 * advertised none, we will configure ourselves to
2228			 * enable Rx Flow Control only.  We can do this safely
2229			 * for two reasons:  If the link partner really
2230			 * didn't want flow control enabled, and we enable Rx,
2231			 * no harm done since we won't be receiving any PAUSE
2232			 * frames anyway.  If the intent on the link partner was
2233			 * to have flow control enabled, then by us enabling Rx
2234			 * only, we can at least receive pause frames and
2235			 * process them. This is a good idea because in most
2236			 * cases, since we are predominantly a server NIC, more
2237			 * times than not we will be asked to delay transmission
2238			 * of packets than asking our link partner to pause
2239			 * transmission of frames.
2240			 */
2241			else if ((hw->original_fc == E1000_FC_NONE ||
2242				  hw->original_fc == E1000_FC_TX_PAUSE) ||
2243				 hw->fc_strict_ieee) {
2244				hw->fc = E1000_FC_NONE;
2245				e_dbg("Flow Control = NONE.\n");
2246			} else {
2247				hw->fc = E1000_FC_RX_PAUSE;
2248				e_dbg
2249				    ("Flow Control = RX PAUSE frames only.\n");
2250			}
2251
2252			/* Now we need to do one last check...  If we auto-
2253			 * negotiated to HALF DUPLEX, flow control should not be
2254			 * enabled per IEEE 802.3 spec.
2255			 */
2256			ret_val =
2257			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2258			if (ret_val) {
2259				e_dbg
2260				    ("Error getting link speed and duplex\n");
2261				return ret_val;
2262			}
2263
2264			if (duplex == HALF_DUPLEX)
2265				hw->fc = E1000_FC_NONE;
2266
2267			/* Now we call a subroutine to actually force the MAC
2268			 * controller to use the correct flow control settings.
2269			 */
2270			ret_val = e1000_force_mac_fc(hw);
2271			if (ret_val) {
2272				e_dbg
2273				    ("Error forcing flow control settings\n");
2274				return ret_val;
2275			}
2276		} else {
2277			e_dbg
2278			    ("Copper PHY and Auto Neg has not completed.\n");
2279		}
2280	}
2281	return E1000_SUCCESS;
2282}
2283
2284/**
2285 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2286 * @hw: pointer to the HW structure
2287 *
2288 * Checks for link up on the hardware.  If link is not up and we have
2289 * a signal, then we need to force link up.
2290 */
2291static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2292{
2293	u32 rxcw;
2294	u32 ctrl;
2295	u32 status;
2296	s32 ret_val = E1000_SUCCESS;
2297
2298	ctrl = er32(CTRL);
2299	status = er32(STATUS);
2300	rxcw = er32(RXCW);
2301
2302	/* If we don't have link (auto-negotiation failed or link partner
2303	 * cannot auto-negotiate), and our link partner is not trying to
2304	 * auto-negotiate with us (we are receiving idles or data),
2305	 * we need to force link up. We also need to give auto-negotiation
2306	 * time to complete.
2307	 */
2308	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2309	if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2310		if (hw->autoneg_failed == 0) {
2311			hw->autoneg_failed = 1;
2312			goto out;
2313		}
2314		e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2315
2316		/* Disable auto-negotiation in the TXCW register */
2317		ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2318
2319		/* Force link-up and also force full-duplex. */
2320		ctrl = er32(CTRL);
2321		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2322		ew32(CTRL, ctrl);
2323
2324		/* Configure Flow Control after forcing link up. */
2325		ret_val = e1000_config_fc_after_link_up(hw);
2326		if (ret_val) {
2327			e_dbg("Error configuring flow control\n");
2328			goto out;
2329		}
2330	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2331		/* If we are forcing link and we are receiving /C/ ordered
2332		 * sets, re-enable auto-negotiation in the TXCW register
2333		 * and disable forced link in the Device Control register
2334		 * in an attempt to auto-negotiate with our link partner.
2335		 */
2336		e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2337		ew32(TXCW, hw->txcw);
2338		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2339
2340		hw->serdes_has_link = true;
2341	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2342		/* If we force link for non-auto-negotiation switch, check
2343		 * link status based on MAC synchronization for internal
2344		 * serdes media type.
2345		 */
2346		/* SYNCH bit and IV bit are sticky. */
2347		udelay(10);
2348		rxcw = er32(RXCW);
2349		if (rxcw & E1000_RXCW_SYNCH) {
2350			if (!(rxcw & E1000_RXCW_IV)) {
2351				hw->serdes_has_link = true;
2352				e_dbg("SERDES: Link up - forced.\n");
2353			}
2354		} else {
2355			hw->serdes_has_link = false;
2356			e_dbg("SERDES: Link down - force failed.\n");
2357		}
2358	}
2359
2360	if (E1000_TXCW_ANE & er32(TXCW)) {
2361		status = er32(STATUS);
2362		if (status & E1000_STATUS_LU) {
2363			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
2364			udelay(10);
2365			rxcw = er32(RXCW);
2366			if (rxcw & E1000_RXCW_SYNCH) {
2367				if (!(rxcw & E1000_RXCW_IV)) {
2368					hw->serdes_has_link = true;
2369					e_dbg("SERDES: Link up - autoneg "
2370						 "completed successfully.\n");
2371				} else {
2372					hw->serdes_has_link = false;
2373					e_dbg("SERDES: Link down - invalid"
2374						 "codewords detected in autoneg.\n");
2375				}
2376			} else {
2377				hw->serdes_has_link = false;
2378				e_dbg("SERDES: Link down - no sync.\n");
2379			}
2380		} else {
2381			hw->serdes_has_link = false;
2382			e_dbg("SERDES: Link down - autoneg failed\n");
2383		}
2384	}
2385
2386      out:
2387	return ret_val;
2388}
2389
2390/**
2391 * e1000_check_for_link
2392 * @hw: Struct containing variables accessed by shared code
2393 *
2394 * Checks to see if the link status of the hardware has changed.
2395 * Called by any function that needs to check the link status of the adapter.
2396 */
2397s32 e1000_check_for_link(struct e1000_hw *hw)
2398{
2399	u32 rxcw = 0;
2400	u32 ctrl;
2401	u32 status;
2402	u32 rctl;
2403	u32 icr;
2404	u32 signal = 0;
2405	s32 ret_val;
2406	u16 phy_data;
2407
2408	ctrl = er32(CTRL);
2409	status = er32(STATUS);
2410
2411	/* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2412	 * set when the optics detect a signal. On older adapters, it will be
2413	 * cleared when there is a signal.  This applies to fiber media only.
2414	 */
2415	if ((hw->media_type == e1000_media_type_fiber) ||
2416	    (hw->media_type == e1000_media_type_internal_serdes)) {
2417		rxcw = er32(RXCW);
2418
2419		if (hw->media_type == e1000_media_type_fiber) {
2420			signal =
2421			    (hw->mac_type >
2422			     e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2423			if (status & E1000_STATUS_LU)
2424				hw->get_link_status = false;
2425		}
2426	}
2427
2428	/* If we have a copper PHY then we only want to go out to the PHY
2429	 * registers to see if Auto-Neg has completed and/or if our link
2430	 * status has changed.  The get_link_status flag will be set if we
2431	 * receive a Link Status Change interrupt or we have Rx Sequence
2432	 * Errors.
2433	 */
2434	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2435		/* First we want to see if the MII Status Register reports
2436		 * link.  If so, then we want to get the current speed/duplex
2437		 * of the PHY.
2438		 * Read the register twice since the link bit is sticky.
2439		 */
2440		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2441		if (ret_val)
2442			return ret_val;
2443		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2444		if (ret_val)
2445			return ret_val;
2446
2447		if (phy_data & MII_SR_LINK_STATUS) {
2448			hw->get_link_status = false;
2449			/* Check if there was DownShift, must be checked
2450			 * immediately after link-up
2451			 */
2452			e1000_check_downshift(hw);
2453
2454			/* If we are on 82544 or 82543 silicon and speed/duplex
2455			 * are forced to 10H or 10F, then we will implement the
2456			 * polarity reversal workaround.  We disable interrupts
2457			 * first, and upon returning, place the devices
2458			 * interrupt state to its previous value except for the
2459			 * link status change interrupt which will
2460			 * happen due to the execution of this workaround.
2461			 */
2462
2463			if ((hw->mac_type == e1000_82544
2464			     || hw->mac_type == e1000_82543) && (!hw->autoneg)
2465			    && (hw->forced_speed_duplex == e1000_10_full
2466				|| hw->forced_speed_duplex == e1000_10_half)) {
2467				ew32(IMC, 0xffffffff);
2468				ret_val =
2469				    e1000_polarity_reversal_workaround(hw);
2470				icr = er32(ICR);
2471				ew32(ICS, (icr & ~E1000_ICS_LSC));
2472				ew32(IMS, IMS_ENABLE_MASK);
2473			}
2474
2475		} else {
2476			/* No link detected */
2477			e1000_config_dsp_after_link_change(hw, false);
2478			return 0;
2479		}
2480
2481		/* If we are forcing speed/duplex, then we simply return since
2482		 * we have already determined whether we have link or not.
2483		 */
2484		if (!hw->autoneg)
2485			return -E1000_ERR_CONFIG;
2486
2487		/* optimize the dsp settings for the igp phy */
2488		e1000_config_dsp_after_link_change(hw, true);
2489
2490		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we
2491		 * have Si on board that is 82544 or newer, Auto
2492		 * Speed Detection takes care of MAC speed/duplex
2493		 * configuration.  So we only need to configure Collision
2494		 * Distance in the MAC.  Otherwise, we need to force
2495		 * speed/duplex on the MAC to the current PHY speed/duplex
2496		 * settings.
2497		 */
2498		if ((hw->mac_type >= e1000_82544) &&
2499		    (hw->mac_type != e1000_ce4100))
2500			e1000_config_collision_dist(hw);
2501		else {
2502			ret_val = e1000_config_mac_to_phy(hw);
2503			if (ret_val) {
2504				e_dbg
2505				    ("Error configuring MAC to PHY settings\n");
2506				return ret_val;
2507			}
2508		}
2509
2510		/* Configure Flow Control now that Auto-Neg has completed.
2511		 * First, we need to restore the desired flow control settings
2512		 * because we may have had to re-autoneg with a different link
2513		 * partner.
2514		 */
2515		ret_val = e1000_config_fc_after_link_up(hw);
2516		if (ret_val) {
2517			e_dbg("Error configuring flow control\n");
2518			return ret_val;
2519		}
2520
2521		/* At this point we know that we are on copper and we have
2522		 * auto-negotiated link.  These are conditions for checking the
2523		 * link partner capability register.  We use the link speed to
2524		 * determine if TBI compatibility needs to be turned on or off.
2525		 * If the link is not at gigabit speed, then TBI compatibility
2526		 * is not needed.  If we are at gigabit speed, we turn on TBI
2527		 * compatibility.
2528		 */
2529		if (hw->tbi_compatibility_en) {
2530			u16 speed, duplex;
2531			ret_val =
2532			    e1000_get_speed_and_duplex(hw, &speed, &duplex);
2533			if (ret_val) {
2534				e_dbg
2535				    ("Error getting link speed and duplex\n");
2536				return ret_val;
2537			}
2538			if (speed != SPEED_1000) {
2539				/* If link speed is not set to gigabit speed, we
2540				 * do not need to enable TBI compatibility.
2541				 */
2542				if (hw->tbi_compatibility_on) {
2543					/* If we previously were in the mode,
2544					 * turn it off.
2545					 */
2546					rctl = er32(RCTL);
2547					rctl &= ~E1000_RCTL_SBP;
2548					ew32(RCTL, rctl);
2549					hw->tbi_compatibility_on = false;
2550				}
2551			} else {
2552				/* If TBI compatibility is was previously off,
2553				 * turn it on. For compatibility with a TBI link
2554				 * partner, we will store bad packets. Some
2555				 * frames have an additional byte on the end and
2556				 * will look like CRC errors to to the hardware.
2557				 */
2558				if (!hw->tbi_compatibility_on) {
2559					hw->tbi_compatibility_on = true;
2560					rctl = er32(RCTL);
2561					rctl |= E1000_RCTL_SBP;
2562					ew32(RCTL, rctl);
2563				}
2564			}
2565		}
2566	}
2567
2568	if ((hw->media_type == e1000_media_type_fiber) ||
2569	    (hw->media_type == e1000_media_type_internal_serdes))
2570		e1000_check_for_serdes_link_generic(hw);
2571
2572	return E1000_SUCCESS;
2573}
2574
2575/**
2576 * e1000_get_speed_and_duplex
2577 * @hw: Struct containing variables accessed by shared code
2578 * @speed: Speed of the connection
2579 * @duplex: Duplex setting of the connection
2580 *
2581 * Detects the current speed and duplex settings of the hardware.
2582 */
2583s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2584{
2585	u32 status;
2586	s32 ret_val;
2587	u16 phy_data;
2588
2589	if (hw->mac_type >= e1000_82543) {
2590		status = er32(STATUS);
2591		if (status & E1000_STATUS_SPEED_1000) {
2592			*speed = SPEED_1000;
2593			e_dbg("1000 Mbs, ");
2594		} else if (status & E1000_STATUS_SPEED_100) {
2595			*speed = SPEED_100;
2596			e_dbg("100 Mbs, ");
2597		} else {
2598			*speed = SPEED_10;
2599			e_dbg("10 Mbs, ");
2600		}
2601
2602		if (status & E1000_STATUS_FD) {
2603			*duplex = FULL_DUPLEX;
2604			e_dbg("Full Duplex\n");
2605		} else {
2606			*duplex = HALF_DUPLEX;
2607			e_dbg(" Half Duplex\n");
2608		}
2609	} else {
2610		e_dbg("1000 Mbs, Full Duplex\n");
2611		*speed = SPEED_1000;
2612		*duplex = FULL_DUPLEX;
2613	}
2614
2615	/* IGP01 PHY may advertise full duplex operation after speed downgrade
2616	 * even if it is operating at half duplex.  Here we set the duplex
2617	 * settings to match the duplex in the link partner's capabilities.
2618	 */
2619	if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2620		ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2621		if (ret_val)
2622			return ret_val;
2623
2624		if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2625			*duplex = HALF_DUPLEX;
2626		else {
2627			ret_val =
2628			    e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2629			if (ret_val)
2630				return ret_val;
2631			if ((*speed == SPEED_100
2632			     && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2633			    || (*speed == SPEED_10
2634				&& !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2635				*duplex = HALF_DUPLEX;
2636		}
2637	}
2638
2639	return E1000_SUCCESS;
2640}
2641
2642/**
2643 * e1000_wait_autoneg
2644 * @hw: Struct containing variables accessed by shared code
2645 *
2646 * Blocks until autoneg completes or times out (~4.5 seconds)
2647 */
2648static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2649{
2650	s32 ret_val;
2651	u16 i;
2652	u16 phy_data;
2653
2654	e_dbg("Waiting for Auto-Neg to complete.\n");
2655
2656	/* We will wait for autoneg to complete or 4.5 seconds to expire. */
2657	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2658		/* Read the MII Status Register and wait for Auto-Neg
2659		 * Complete bit to be set.
2660		 */
2661		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2662		if (ret_val)
2663			return ret_val;
2664		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2665		if (ret_val)
2666			return ret_val;
2667		if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2668			return E1000_SUCCESS;
2669		}
2670		msleep(100);
2671	}
2672	return E1000_SUCCESS;
2673}
2674
2675/**
2676 * e1000_raise_mdi_clk - Raises the Management Data Clock
2677 * @hw: Struct containing variables accessed by shared code
2678 * @ctrl: Device control register's current value
2679 */
2680static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2681{
2682	/* Raise the clock input to the Management Data Clock (by setting the
2683	 * MDC bit), and then delay 10 microseconds.
2684	 */
2685	ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2686	E1000_WRITE_FLUSH();
2687	udelay(10);
2688}
2689
2690/**
2691 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2692 * @hw: Struct containing variables accessed by shared code
2693 * @ctrl: Device control register's current value
2694 */
2695static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2696{
2697	/* Lower the clock input to the Management Data Clock (by clearing the
2698	 * MDC bit), and then delay 10 microseconds.
2699	 */
2700	ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2701	E1000_WRITE_FLUSH();
2702	udelay(10);
2703}
2704
2705/**
2706 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2707 * @hw: Struct containing variables accessed by shared code
2708 * @data: Data to send out to the PHY
2709 * @count: Number of bits to shift out
2710 *
2711 * Bits are shifted out in MSB to LSB order.
2712 */
2713static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2714{
2715	u32 ctrl;
2716	u32 mask;
2717
2718	/* We need to shift "count" number of bits out to the PHY. So, the value
2719	 * in the "data" parameter will be shifted out to the PHY one bit at a
2720	 * time. In order to do this, "data" must be broken down into bits.
2721	 */
2722	mask = 0x01;
2723	mask <<= (count - 1);
2724
2725	ctrl = er32(CTRL);
2726
2727	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2728	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2729
2730	while (mask) {
2731		/* A "1" is shifted out to the PHY by setting the MDIO bit to
2732		 * "1" and then raising and lowering the Management Data Clock.
2733		 * A "0" is shifted out to the PHY by setting the MDIO bit to
2734		 * "0" and then raising and lowering the clock.
2735		 */
2736		if (data & mask)
2737			ctrl |= E1000_CTRL_MDIO;
2738		else
2739			ctrl &= ~E1000_CTRL_MDIO;
2740
2741		ew32(CTRL, ctrl);
2742		E1000_WRITE_FLUSH();
2743
2744		udelay(10);
2745
2746		e1000_raise_mdi_clk(hw, &ctrl);
2747		e1000_lower_mdi_clk(hw, &ctrl);
2748
2749		mask = mask >> 1;
2750	}
2751}
2752
2753/**
2754 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2755 * @hw: Struct containing variables accessed by shared code
2756 *
2757 * Bits are shifted in in MSB to LSB order.
2758 */
2759static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2760{
2761	u32 ctrl;
2762	u16 data = 0;
2763	u8 i;
2764
2765	/* In order to read a register from the PHY, we need to shift in a total
2766	 * of 18 bits from the PHY. The first two bit (turnaround) times are
2767	 * used to avoid contention on the MDIO pin when a read operation is
2768	 * performed. These two bits are ignored by us and thrown away. Bits are
2769	 * "shifted in" by raising the input to the Management Data Clock
2770	 * (setting the MDC bit), and then reading the value of the MDIO bit.
2771	 */
2772	ctrl = er32(CTRL);
2773
2774	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2775	 * input.
2776	 */
2777	ctrl &= ~E1000_CTRL_MDIO_DIR;
2778	ctrl &= ~E1000_CTRL_MDIO;
2779
2780	ew32(CTRL, ctrl);
2781	E1000_WRITE_FLUSH();
2782
2783	/* Raise and Lower the clock before reading in the data. This accounts
2784	 * for the turnaround bits. The first clock occurred when we clocked out
2785	 * the last bit of the Register Address.
2786	 */
2787	e1000_raise_mdi_clk(hw, &ctrl);
2788	e1000_lower_mdi_clk(hw, &ctrl);
2789
2790	for (data = 0, i = 0; i < 16; i++) {
2791		data = data << 1;
2792		e1000_raise_mdi_clk(hw, &ctrl);
2793		ctrl = er32(CTRL);
2794		/* Check to see if we shifted in a "1". */
2795		if (ctrl & E1000_CTRL_MDIO)
2796			data |= 1;
2797		e1000_lower_mdi_clk(hw, &ctrl);
2798	}
2799
2800	e1000_raise_mdi_clk(hw, &ctrl);
2801	e1000_lower_mdi_clk(hw, &ctrl);
2802
2803	return data;
2804}
2805
2806
2807/**
2808 * e1000_read_phy_reg - read a phy register
2809 * @hw: Struct containing variables accessed by shared code
2810 * @reg_addr: address of the PHY register to read
2811 *
2812 * Reads the value from a PHY register, if the value is on a specific non zero
2813 * page, sets the page first.
2814 */
2815s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2816{
2817	u32 ret_val;
2818	unsigned long flags;
2819
2820	spin_lock_irqsave(&e1000_phy_lock, flags);
2821
2822	if ((hw->phy_type == e1000_phy_igp) &&
2823	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2824		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2825						 (u16) reg_addr);
2826		if (ret_val) {
2827			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2828			return ret_val;
2829		}
2830	}
2831
2832	ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2833					phy_data);
2834	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2835
2836	return ret_val;
2837}
2838
2839static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2840				 u16 *phy_data)
2841{
2842	u32 i;
2843	u32 mdic = 0;
2844	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2845
2846	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2847		e_dbg("PHY Address %d is out of range\n", reg_addr);
2848		return -E1000_ERR_PARAM;
2849	}
2850
2851	if (hw->mac_type > e1000_82543) {
2852		/* Set up Op-code, Phy Address, and register address in the MDI
2853		 * Control register.  The MAC will take care of interfacing with
2854		 * the PHY to retrieve the desired data.
2855		 */
2856		if (hw->mac_type == e1000_ce4100) {
2857			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2858				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2859				(INTEL_CE_GBE_MDIC_OP_READ) |
2860				(INTEL_CE_GBE_MDIC_GO));
2861
2862			writel(mdic, E1000_MDIO_CMD);
2863
2864			/* Poll the ready bit to see if the MDI read
2865			 * completed
2866			 */
2867			for (i = 0; i < 64; i++) {
2868				udelay(50);
2869				mdic = readl(E1000_MDIO_CMD);
2870				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2871					break;
2872			}
2873
2874			if (mdic & INTEL_CE_GBE_MDIC_GO) {
2875				e_dbg("MDI Read did not complete\n");
2876				return -E1000_ERR_PHY;
2877			}
2878
2879			mdic = readl(E1000_MDIO_STS);
2880			if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2881				e_dbg("MDI Read Error\n");
2882				return -E1000_ERR_PHY;
2883			}
2884			*phy_data = (u16) mdic;
2885		} else {
2886			mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2887				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2888				(E1000_MDIC_OP_READ));
2889
2890			ew32(MDIC, mdic);
2891
2892			/* Poll the ready bit to see if the MDI read
2893			 * completed
2894			 */
2895			for (i = 0; i < 64; i++) {
2896				udelay(50);
2897				mdic = er32(MDIC);
2898				if (mdic & E1000_MDIC_READY)
2899					break;
2900			}
2901			if (!(mdic & E1000_MDIC_READY)) {
2902				e_dbg("MDI Read did not complete\n");
2903				return -E1000_ERR_PHY;
2904			}
2905			if (mdic & E1000_MDIC_ERROR) {
2906				e_dbg("MDI Error\n");
2907				return -E1000_ERR_PHY;
2908			}
2909			*phy_data = (u16) mdic;
2910		}
2911	} else {
2912		/* We must first send a preamble through the MDIO pin to signal
2913		 * the beginning of an MII instruction.  This is done by sending
2914		 * 32 consecutive "1" bits.
2915		 */
2916		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2917
2918		/* Now combine the next few fields that are required for a read
2919		 * operation.  We use this method instead of calling the
2920		 * e1000_shift_out_mdi_bits routine five different times. The
2921		 * format of a MII read instruction consists of a shift out of
2922		 * 14 bits and is defined as follows:
2923		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2924		 * followed by a shift in of 18 bits.  This first two bits
2925		 * shifted in are TurnAround bits used to avoid contention on
2926		 * the MDIO pin when a READ operation is performed.  These two
2927		 * bits are thrown away followed by a shift in of 16 bits which
2928		 * contains the desired data.
2929		 */
2930		mdic = ((reg_addr) | (phy_addr << 5) |
2931			(PHY_OP_READ << 10) | (PHY_SOF << 12));
2932
2933		e1000_shift_out_mdi_bits(hw, mdic, 14);
2934
2935		/* Now that we've shifted out the read command to the MII, we
2936		 * need to "shift in" the 16-bit value (18 total bits) of the
2937		 * requested PHY register address.
2938		 */
2939		*phy_data = e1000_shift_in_mdi_bits(hw);
2940	}
2941	return E1000_SUCCESS;
2942}
2943
2944/**
2945 * e1000_write_phy_reg - write a phy register
2946 *
2947 * @hw: Struct containing variables accessed by shared code
2948 * @reg_addr: address of the PHY register to write
2949 * @data: data to write to the PHY
2950 *
2951 * Writes a value to a PHY register
2952 */
2953s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
2954{
2955	u32 ret_val;
2956	unsigned long flags;
2957
2958	spin_lock_irqsave(&e1000_phy_lock, flags);
2959
2960	if ((hw->phy_type == e1000_phy_igp) &&
2961	    (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2962		ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2963						 (u16) reg_addr);
2964		if (ret_val) {
2965			spin_unlock_irqrestore(&e1000_phy_lock, flags);
2966			return ret_val;
2967		}
2968	}
2969
2970	ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2971					 phy_data);
2972	spin_unlock_irqrestore(&e1000_phy_lock, flags);
2973
2974	return ret_val;
2975}
2976
2977static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2978				  u16 phy_data)
2979{
2980	u32 i;
2981	u32 mdic = 0;
2982	const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2983
2984	if (reg_addr > MAX_PHY_REG_ADDRESS) {
2985		e_dbg("PHY Address %d is out of range\n", reg_addr);
2986		return -E1000_ERR_PARAM;
2987	}
2988
2989	if (hw->mac_type > e1000_82543) {
2990		/* Set up Op-code, Phy Address, register address, and data
2991		 * intended for the PHY register in the MDI Control register.
2992		 * The MAC will take care of interfacing with the PHY to send
2993		 * the desired data.
2994		 */
2995		if (hw->mac_type == e1000_ce4100) {
2996			mdic = (((u32) phy_data) |
2997				(reg_addr << E1000_MDIC_REG_SHIFT) |
2998				(phy_addr << E1000_MDIC_PHY_SHIFT) |
2999				(INTEL_CE_GBE_MDIC_OP_WRITE) |
3000				(INTEL_CE_GBE_MDIC_GO));
3001
3002			writel(mdic, E1000_MDIO_CMD);
3003
3004			/* Poll the ready bit to see if the MDI read
3005			 * completed
3006			 */
3007			for (i = 0; i < 640; i++) {
3008				udelay(5);
3009				mdic = readl(E1000_MDIO_CMD);
3010				if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3011					break;
3012			}
3013			if (mdic & INTEL_CE_GBE_MDIC_GO) {
3014				e_dbg("MDI Write did not complete\n");
3015				return -E1000_ERR_PHY;
3016			}
3017		} else {
3018			mdic = (((u32) phy_data) |
3019				(reg_addr << E1000_MDIC_REG_SHIFT) |
3020				(phy_addr << E1000_MDIC_PHY_SHIFT) |
3021				(E1000_MDIC_OP_WRITE));
3022
3023			ew32(MDIC, mdic);
3024
3025			/* Poll the ready bit to see if the MDI read
3026			 * completed
3027			 */
3028			for (i = 0; i < 641; i++) {
3029				udelay(5);
3030				mdic = er32(MDIC);
3031				if (mdic & E1000_MDIC_READY)
3032					break;
3033			}
3034			if (!(mdic & E1000_MDIC_READY)) {
3035				e_dbg("MDI Write did not complete\n");
3036				return -E1000_ERR_PHY;
3037			}
3038		}
3039	} else {
3040		/* We'll need to use the SW defined pins to shift the write
3041		 * command out to the PHY. We first send a preamble to the PHY
3042		 * to signal the beginning of the MII instruction.  This is done
3043		 * by sending 32 consecutive "1" bits.
3044		 */
3045		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3046
3047		/* Now combine the remaining required fields that will indicate
3048		 * a write operation. We use this method instead of calling the
3049		 * e1000_shift_out_mdi_bits routine for each field in the
3050		 * command. The format of a MII write instruction is as follows:
3051		 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3052		 */
3053		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3054			(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3055		mdic <<= 16;
3056		mdic |= (u32) phy_data;
3057
3058		e1000_shift_out_mdi_bits(hw, mdic, 32);
3059	}
3060
3061	return E1000_SUCCESS;
3062}
3063
3064/**
3065 * e1000_phy_hw_reset - reset the phy, hardware style
3066 * @hw: Struct containing variables accessed by shared code
3067 *
3068 * Returns the PHY to the power-on reset state
3069 */
3070s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3071{
3072	u32 ctrl, ctrl_ext;
3073	u32 led_ctrl;
3074
3075	e_dbg("Resetting Phy...\n");
3076
3077	if (hw->mac_type > e1000_82543) {
3078		/* Read the device control register and assert the
3079		 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3080		 * For e1000 hardware, we delay for 10ms between the assert
3081		 * and de-assert.
3082		 */
3083		ctrl = er32(CTRL);
3084		ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3085		E1000_WRITE_FLUSH();
3086
3087		msleep(10);
3088
3089		ew32(CTRL, ctrl);
3090		E1000_WRITE_FLUSH();
3091
3092	} else {
3093		/* Read the Extended Device Control Register, assert the
3094		 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3095		 * out of reset.
3096		 */
3097		ctrl_ext = er32(CTRL_EXT);
3098		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3099		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3100		ew32(CTRL_EXT, ctrl_ext);
3101		E1000_WRITE_FLUSH();
3102		msleep(10);
3103		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3104		ew32(CTRL_EXT, ctrl_ext);
3105		E1000_WRITE_FLUSH();
3106	}
3107	udelay(150);
3108
3109	if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3110		/* Configure activity LED after PHY reset */
3111		led_ctrl = er32(LEDCTL);
3112		led_ctrl &= IGP_ACTIVITY_LED_MASK;
3113		led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3114		ew32(LEDCTL, led_ctrl);
3115	}
3116
3117	/* Wait for FW to finish PHY configuration. */
3118	return e1000_get_phy_cfg_done(hw);
3119}
3120
3121/**
3122 * e1000_phy_reset - reset the phy to commit settings
3123 * @hw: Struct containing variables accessed by shared code
3124 *
3125 * Resets the PHY
3126 * Sets bit 15 of the MII Control register
3127 */
3128s32 e1000_phy_reset(struct e1000_hw *hw)
3129{
3130	s32 ret_val;
3131	u16 phy_data;
3132
3133	switch (hw->phy_type) {
3134	case e1000_phy_igp:
3135		ret_val = e1000_phy_hw_reset(hw);
3136		if (ret_val)
3137			return ret_val;
3138		break;
3139	default:
3140		ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3141		if (ret_val)
3142			return ret_val;
3143
3144		phy_data |= MII_CR_RESET;
3145		ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3146		if (ret_val)
3147			return ret_val;
3148
3149		udelay(1);
3150		break;
3151	}
3152
3153	if (hw->phy_type == e1000_phy_igp)
3154		e1000_phy_init_script(hw);
3155
3156	return E1000_SUCCESS;
3157}
3158
3159/**
3160 * e1000_detect_gig_phy - check the phy type
3161 * @hw: Struct containing variables accessed by shared code
3162 *
3163 * Probes the expected PHY address for known PHY IDs
3164 */
3165static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3166{
3167	s32 phy_init_status, ret_val;
3168	u16 phy_id_high, phy_id_low;
3169	bool match = false;
3170
3171	if (hw->phy_id != 0)
3172		return E1000_SUCCESS;
3173
3174	/* Read the PHY ID Registers to identify which PHY is onboard. */
3175	ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3176	if (ret_val)
3177		return ret_val;
3178
3179	hw->phy_id = (u32) (phy_id_high << 16);
3180	udelay(20);
3181	ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3182	if (ret_val)
3183		return ret_val;
3184
3185	hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3186	hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3187
3188	switch (hw->mac_type) {
3189	case e1000_82543:
3190		if (hw->phy_id == M88E1000_E_PHY_ID)
3191			match = true;
3192		break;
3193	case e1000_82544:
3194		if (hw->phy_id == M88E1000_I_PHY_ID)
3195			match = true;
3196		break;
3197	case e1000_82540:
3198	case e1000_82545:
3199	case e1000_82545_rev_3:
3200	case e1000_82546:
3201	case e1000_82546_rev_3:
3202		if (hw->phy_id == M88E1011_I_PHY_ID)
3203			match = true;
3204		break;
3205	case e1000_ce4100:
3206		if ((hw->phy_id == RTL8211B_PHY_ID) ||
3207		    (hw->phy_id == RTL8201N_PHY_ID) ||
3208		    (hw->phy_id == M88E1118_E_PHY_ID))
3209			match = true;
3210		break;
3211	case e1000_82541:
3212	case e1000_82541_rev_2:
3213	case e1000_82547:
3214	case e1000_82547_rev_2:
3215		if (hw->phy_id == IGP01E1000_I_PHY_ID)
3216			match = true;
3217		break;
3218	default:
3219		e_dbg("Invalid MAC type %d\n", hw->mac_type);
3220		return -E1000_ERR_CONFIG;
3221	}
3222	phy_init_status = e1000_set_phy_type(hw);
3223
3224	if ((match) && (phy_init_status == E1000_SUCCESS)) {
3225		e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3226		return E1000_SUCCESS;
3227	}
3228	e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3229	return -E1000_ERR_PHY;
3230}
3231
3232/**
3233 * e1000_phy_reset_dsp - reset DSP
3234 * @hw: Struct containing variables accessed by shared code
3235 *
3236 * Resets the PHY's DSP
3237 */
3238static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3239{
3240	s32 ret_val;
3241
3242	do {
3243		ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3244		if (ret_val)
3245			break;
3246		ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3247		if (ret_val)
3248			break;
3249		ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3250		if (ret_val)
3251			break;
3252		ret_val = E1000_SUCCESS;
3253	} while (0);
3254
3255	return ret_val;
3256}
3257
3258/**
3259 * e1000_phy_igp_get_info - get igp specific registers
3260 * @hw: Struct containing variables accessed by shared code
3261 * @phy_info: PHY information structure
3262 *
3263 * Get PHY information from various PHY registers for igp PHY only.
3264 */
3265static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3266				  struct e1000_phy_info *phy_info)
3267{
3268	s32 ret_val;
3269	u16 phy_data, min_length, max_length, average;
3270	e1000_rev_polarity polarity;
3271
3272	/* The downshift status is checked only once, after link is established,
3273	 * and it stored in the hw->speed_downgraded parameter.
3274	 */
3275	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3276
3277	/* IGP01E1000 does not need to support it. */
3278	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3279
3280	/* IGP01E1000 always correct polarity reversal */
3281	phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3282
3283	/* Check polarity status */
3284	ret_val = e1000_check_polarity(hw, &polarity);
3285	if (ret_val)
3286		return ret_val;
3287
3288	phy_info->cable_polarity = polarity;
3289
3290	ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3291	if (ret_val)
3292		return ret_val;
3293
3294	phy_info->mdix_mode =
3295	    (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3296				 IGP01E1000_PSSR_MDIX_SHIFT);
3297
3298	if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3299	    IGP01E1000_PSSR_SPEED_1000MBPS) {
3300		/* Local/Remote Receiver Information are only valid @ 1000
3301		 * Mbps
3302		 */
3303		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3304		if (ret_val)
3305			return ret_val;
3306
3307		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3308				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3309		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3310		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3311				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3312		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3313
3314		/* Get cable length */
3315		ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3316		if (ret_val)
3317			return ret_val;
3318
3319		/* Translate to old method */
3320		average = (max_length + min_length) / 2;
3321
3322		if (average <= e1000_igp_cable_length_50)
3323			phy_info->cable_length = e1000_cable_length_50;
3324		else if (average <= e1000_igp_cable_length_80)
3325			phy_info->cable_length = e1000_cable_length_50_80;
3326		else if (average <= e1000_igp_cable_length_110)
3327			phy_info->cable_length = e1000_cable_length_80_110;
3328		else if (average <= e1000_igp_cable_length_140)
3329			phy_info->cable_length = e1000_cable_length_110_140;
3330		else
3331			phy_info->cable_length = e1000_cable_length_140;
3332	}
3333
3334	return E1000_SUCCESS;
3335}
3336
3337/**
3338 * e1000_phy_m88_get_info - get m88 specific registers
3339 * @hw: Struct containing variables accessed by shared code
3340 * @phy_info: PHY information structure
3341 *
3342 * Get PHY information from various PHY registers for m88 PHY only.
3343 */
3344static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3345				  struct e1000_phy_info *phy_info)
3346{
3347	s32 ret_val;
3348	u16 phy_data;
3349	e1000_rev_polarity polarity;
3350
3351	/* The downshift status is checked only once, after link is established,
3352	 * and it stored in the hw->speed_downgraded parameter.
3353	 */
3354	phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3355
3356	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3357	if (ret_val)
3358		return ret_val;
3359
3360	phy_info->extended_10bt_distance =
3361	    ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3362	     M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3363	    e1000_10bt_ext_dist_enable_lower :
3364	    e1000_10bt_ext_dist_enable_normal;
3365
3366	phy_info->polarity_correction =
3367	    ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3368	     M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3369	    e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3370
3371	/* Check polarity status */
3372	ret_val = e1000_check_polarity(hw, &polarity);
3373	if (ret_val)
3374		return ret_val;
3375	phy_info->cable_polarity = polarity;
3376
3377	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3378	if (ret_val)
3379		return ret_val;
3380
3381	phy_info->mdix_mode =
3382	    (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3383				 M88E1000_PSSR_MDIX_SHIFT);
3384
3385	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3386		/* Cable Length Estimation and Local/Remote Receiver Information
3387		 * are only valid at 1000 Mbps.
3388		 */
3389		phy_info->cable_length =
3390		    (e1000_cable_length) ((phy_data &
3391					   M88E1000_PSSR_CABLE_LENGTH) >>
3392					  M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3393
3394		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3395		if (ret_val)
3396			return ret_val;
3397
3398		phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3399				      SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3400		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3401		phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3402				       SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3403		    e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3404
3405	}
3406
3407	return E1000_SUCCESS;
3408}
3409
3410/**
3411 * e1000_phy_get_info - request phy info
3412 * @hw: Struct containing variables accessed by shared code
3413 * @phy_info: PHY information structure
3414 *
3415 * Get PHY information from various PHY registers
3416 */
3417s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3418{
3419	s32 ret_val;
3420	u16 phy_data;
3421
3422	phy_info->cable_length = e1000_cable_length_undefined;
3423	phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3424	phy_info->cable_polarity = e1000_rev_polarity_undefined;
3425	phy_info->downshift = e1000_downshift_undefined;
3426	phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3427	phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3428	phy_info->local_rx = e1000_1000t_rx_status_undefined;
3429	phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3430
3431	if (hw->media_type != e1000_media_type_copper) {
3432		e_dbg("PHY info is only valid for copper media\n");
3433		return -E1000_ERR_CONFIG;
3434	}
3435
3436	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3437	if (ret_val)
3438		return ret_val;
3439
3440	ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3441	if (ret_val)
3442		return ret_val;
3443
3444	if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3445		e_dbg("PHY info is only valid if link is up\n");
3446		return -E1000_ERR_CONFIG;
3447	}
3448
3449	if (hw->phy_type == e1000_phy_igp)
3450		return e1000_phy_igp_get_info(hw, phy_info);
3451	else if ((hw->phy_type == e1000_phy_8211) ||
3452	         (hw->phy_type == e1000_phy_8201))
3453		return E1000_SUCCESS;
3454	else
3455		return e1000_phy_m88_get_info(hw, phy_info);
3456}
3457
3458s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3459{
3460	if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3461		e_dbg("Invalid MDI setting detected\n");
3462		hw->mdix = 1;
3463		return -E1000_ERR_CONFIG;
3464	}
3465	return E1000_SUCCESS;
3466}
3467
3468/**
3469 * e1000_init_eeprom_params - initialize sw eeprom vars
3470 * @hw: Struct containing variables accessed by shared code
3471 *
3472 * Sets up eeprom variables in the hw struct.  Must be called after mac_type
3473 * is configured.
3474 */
3475s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3476{
3477	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3478	u32 eecd = er32(EECD);
3479	s32 ret_val = E1000_SUCCESS;
3480	u16 eeprom_size;
3481
3482	switch (hw->mac_type) {
3483	case e1000_82542_rev2_0:
3484	case e1000_82542_rev2_1:
3485	case e1000_82543:
3486	case e1000_82544:
3487		eeprom->type = e1000_eeprom_microwire;
3488		eeprom->word_size = 64;
3489		eeprom->opcode_bits = 3;
3490		eeprom->address_bits = 6;
3491		eeprom->delay_usec = 50;
3492		break;
3493	case e1000_82540:
3494	case e1000_82545:
3495	case e1000_82545_rev_3:
3496	case e1000_82546:
3497	case e1000_82546_rev_3:
3498		eeprom->type = e1000_eeprom_microwire;
3499		eeprom->opcode_bits = 3;
3500		eeprom->delay_usec = 50;
3501		if (eecd & E1000_EECD_SIZE) {
3502			eeprom->word_size = 256;
3503			eeprom->address_bits = 8;
3504		} else {
3505			eeprom->word_size = 64;
3506			eeprom->address_bits = 6;
3507		}
3508		break;
3509	case e1000_82541:
3510	case e1000_82541_rev_2:
3511	case e1000_82547:
3512	case e1000_82547_rev_2:
3513		if (eecd & E1000_EECD_TYPE) {
3514			eeprom->type = e1000_eeprom_spi;
3515			eeprom->opcode_bits = 8;
3516			eeprom->delay_usec = 1;
3517			if (eecd & E1000_EECD_ADDR_BITS) {
3518				eeprom->page_size = 32;
3519				eeprom->address_bits = 16;
3520			} else {
3521				eeprom->page_size = 8;
3522				eeprom->address_bits = 8;
3523			}
3524		} else {
3525			eeprom->type = e1000_eeprom_microwire;
3526			eeprom->opcode_bits = 3;
3527			eeprom->delay_usec = 50;
3528			if (eecd & E1000_EECD_ADDR_BITS) {
3529				eeprom->word_size = 256;
3530				eeprom->address_bits = 8;
3531			} else {
3532				eeprom->word_size = 64;
3533				eeprom->address_bits = 6;
3534			}
3535		}
3536		break;
3537	default:
3538		break;
3539	}
3540
3541	if (eeprom->type == e1000_eeprom_spi) {
3542		/* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3543		 * 128B to 32KB (incremented by powers of 2).
3544		 */
3545		/* Set to default value for initial eeprom read. */
3546		eeprom->word_size = 64;
3547		ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3548		if (ret_val)
3549			return ret_val;
3550		eeprom_size =
3551		    (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3552		/* 256B eeprom size was not supported in earlier hardware, so we
3553		 * bump eeprom_size up one to ensure that "1" (which maps to
3554		 * 256B) is never the result used in the shifting logic below.
3555		 */
3556		if (eeprom_size)
3557			eeprom_size++;
3558
3559		eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3560	}
3561	return ret_val;
3562}
3563
3564/**
3565 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3566 * @hw: Struct containing variables accessed by shared code
3567 * @eecd: EECD's current value
3568 */
3569static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3570{
3571	/* Raise the clock input to the EEPROM (by setting the SK bit), and then
3572	 * wait <delay> microseconds.
3573	 */
3574	*eecd = *eecd | E1000_EECD_SK;
3575	ew32(EECD, *eecd);
3576	E1000_WRITE_FLUSH();
3577	udelay(hw->eeprom.delay_usec);
3578}
3579
3580/**
3581 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3582 * @hw: Struct containing variables accessed by shared code
3583 * @eecd: EECD's current value
3584 */
3585static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3586{
3587	/* Lower the clock input to the EEPROM (by clearing the SK bit), and
3588	 * then wait 50 microseconds.
3589	 */
3590	*eecd = *eecd & ~E1000_EECD_SK;
3591	ew32(EECD, *eecd);
3592	E1000_WRITE_FLUSH();
3593	udelay(hw->eeprom.delay_usec);
3594}
3595
3596/**
3597 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3598 * @hw: Struct containing variables accessed by shared code
3599 * @data: data to send to the EEPROM
3600 * @count: number of bits to shift out
3601 */
3602static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3603{
3604	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3605	u32 eecd;
3606	u32 mask;
3607
3608	/* We need to shift "count" bits out to the EEPROM. So, value in the
3609	 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3610	 * In order to do this, "data" must be broken down into bits.
3611	 */
3612	mask = 0x01 << (count - 1);
3613	eecd = er32(EECD);
3614	if (eeprom->type == e1000_eeprom_microwire) {
3615		eecd &= ~E1000_EECD_DO;
3616	} else if (eeprom->type == e1000_eeprom_spi) {
3617		eecd |= E1000_EECD_DO;
3618	}
3619	do {
3620		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3621		 * "1", and then raising and then lowering the clock (the SK bit
3622		 * controls the clock input to the EEPROM).  A "0" is shifted
3623		 * out to the EEPROM by setting "DI" to "0" and then raising and
3624		 * then lowering the clock.
3625		 */
3626		eecd &= ~E1000_EECD_DI;
3627
3628		if (data & mask)
3629			eecd |= E1000_EECD_DI;
3630
3631		ew32(EECD, eecd);
3632		E1000_WRITE_FLUSH();
3633
3634		udelay(eeprom->delay_usec);
3635
3636		e1000_raise_ee_clk(hw, &eecd);
3637		e1000_lower_ee_clk(hw, &eecd);
3638
3639		mask = mask >> 1;
3640
3641	} while (mask);
3642
3643	/* We leave the "DI" bit set to "0" when we leave this routine. */
3644	eecd &= ~E1000_EECD_DI;
3645	ew32(EECD, eecd);
3646}
3647
3648/**
3649 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3650 * @hw: Struct containing variables accessed by shared code
3651 * @count: number of bits to shift in
3652 */
3653static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3654{
3655	u32 eecd;
3656	u32 i;
3657	u16 data;
3658
3659	/* In order to read a register from the EEPROM, we need to shift 'count'
3660	 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3661	 * input to the EEPROM (setting the SK bit), and then reading the value
3662	 * of the "DO" bit.  During this "shifting in" process the "DI" bit
3663	 * should always be clear.
3664	 */
3665
3666	eecd = er32(EECD);
3667
3668	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3669	data = 0;
3670
3671	for (i = 0; i < count; i++) {
3672		data = data << 1;
3673		e1000_raise_ee_clk(hw, &eecd);
3674
3675		eecd = er32(EECD);
3676
3677		eecd &= ~(E1000_EECD_DI);
3678		if (eecd & E1000_EECD_DO)
3679			data |= 1;
3680
3681		e1000_lower_ee_clk(hw, &eecd);
3682	}
3683
3684	return data;
3685}
3686
3687/**
3688 * e1000_acquire_eeprom - Prepares EEPROM for access
3689 * @hw: Struct containing variables accessed by shared code
3690 *
3691 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3692 * function should be called before issuing a command to the EEPROM.
3693 */
3694static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3695{
3696	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3697	u32 eecd, i = 0;
3698
3699	eecd = er32(EECD);
3700
3701	/* Request EEPROM Access */
3702	if (hw->mac_type > e1000_82544) {
3703		eecd |= E1000_EECD_REQ;
3704		ew32(EECD, eecd);
3705		eecd = er32(EECD);
3706		while ((!(eecd & E1000_EECD_GNT)) &&
3707		       (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3708			i++;
3709			udelay(5);
3710			eecd = er32(EECD);
3711		}
3712		if (!(eecd & E1000_EECD_GNT)) {
3713			eecd &= ~E1000_EECD_REQ;
3714			ew32(EECD, eecd);
3715			e_dbg("Could not acquire EEPROM grant\n");
3716			return -E1000_ERR_EEPROM;
3717		}
3718	}
3719
3720	/* Setup EEPROM for Read/Write */
3721
3722	if (eeprom->type == e1000_eeprom_microwire) {
3723		/* Clear SK and DI */
3724		eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3725		ew32(EECD, eecd);
3726
3727		/* Set CS */
3728		eecd |= E1000_EECD_CS;
3729		ew32(EECD, eecd);
3730	} else if (eeprom->type == e1000_eeprom_spi) {
3731		/* Clear SK and CS */
3732		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3733		ew32(EECD, eecd);
3734		E1000_WRITE_FLUSH();
3735		udelay(1);
3736	}
3737
3738	return E1000_SUCCESS;
3739}
3740
3741/**
3742 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3743 * @hw: Struct containing variables accessed by shared code
3744 */
3745static void e1000_standby_eeprom(struct e1000_hw *hw)
3746{
3747	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3748	u32 eecd;
3749
3750	eecd = er32(EECD);
3751
3752	if (eeprom->type == e1000_eeprom_microwire) {
3753		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3754		ew32(EECD, eecd);
3755		E1000_WRITE_FLUSH();
3756		udelay(eeprom->delay_usec);
3757
3758		/* Clock high */
3759		eecd |= E1000_EECD_SK;
3760		ew32(EECD, eecd);
3761		E1000_WRITE_FLUSH();
3762		udelay(eeprom->delay_usec);
3763
3764		/* Select EEPROM */
3765		eecd |= E1000_EECD_CS;
3766		ew32(EECD, eecd);
3767		E1000_WRITE_FLUSH();
3768		udelay(eeprom->delay_usec);
3769
3770		/* Clock low */
3771		eecd &= ~E1000_EECD_SK;
3772		ew32(EECD, eecd);
3773		E1000_WRITE_FLUSH();
3774		udelay(eeprom->delay_usec);
3775	} else if (eeprom->type == e1000_eeprom_spi) {
3776		/* Toggle CS to flush commands */
3777		eecd |= E1000_EECD_CS;
3778		ew32(EECD, eecd);
3779		E1000_WRITE_FLUSH();
3780		udelay(eeprom->delay_usec);
3781		eecd &= ~E1000_EECD_CS;
3782		ew32(EECD, eecd);
3783		E1000_WRITE_FLUSH();
3784		udelay(eeprom->delay_usec);
3785	}
3786}
3787
3788/**
3789 * e1000_release_eeprom - drop chip select
3790 * @hw: Struct containing variables accessed by shared code
3791 *
3792 * Terminates a command by inverting the EEPROM's chip select pin
3793 */
3794static void e1000_release_eeprom(struct e1000_hw *hw)
3795{
3796	u32 eecd;
3797
3798	eecd = er32(EECD);
3799
3800	if (hw->eeprom.type == e1000_eeprom_spi) {
3801		eecd |= E1000_EECD_CS;	/* Pull CS high */
3802		eecd &= ~E1000_EECD_SK;	/* Lower SCK */
3803
3804		ew32(EECD, eecd);
3805		E1000_WRITE_FLUSH();
3806
3807		udelay(hw->eeprom.delay_usec);
3808	} else if (hw->eeprom.type == e1000_eeprom_microwire) {
3809		/* cleanup eeprom */
3810
3811		/* CS on Microwire is active-high */
3812		eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3813
3814		ew32(EECD, eecd);
3815
3816		/* Rising edge of clock */
3817		eecd |= E1000_EECD_SK;
3818		ew32(EECD, eecd);
3819		E1000_WRITE_FLUSH();
3820		udelay(hw->eeprom.delay_usec);
3821
3822		/* Falling edge of clock */
3823		eecd &= ~E1000_EECD_SK;
3824		ew32(EECD, eecd);
3825		E1000_WRITE_FLUSH();
3826		udelay(hw->eeprom.delay_usec);
3827	}
3828
3829	/* Stop requesting EEPROM access */
3830	if (hw->mac_type > e1000_82544) {
3831		eecd &= ~E1000_EECD_REQ;
3832		ew32(EECD, eecd);
3833	}
3834}
3835
3836/**
3837 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3838 * @hw: Struct containing variables accessed by shared code
3839 */
3840static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3841{
3842	u16 retry_count = 0;
3843	u8 spi_stat_reg;
3844
3845	/* Read "Status Register" repeatedly until the LSB is cleared.  The
3846	 * EEPROM will signal that the command has been completed by clearing
3847	 * bit 0 of the internal status register.  If it's not cleared within
3848	 * 5 milliseconds, then error out.
3849	 */
3850	retry_count = 0;
3851	do {
3852		e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3853					hw->eeprom.opcode_bits);
3854		spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3855		if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3856			break;
3857
3858		udelay(5);
3859		retry_count += 5;
3860
3861		e1000_standby_eeprom(hw);
3862	} while (retry_count < EEPROM_MAX_RETRY_SPI);
3863
3864	/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3865	 * only 0-5mSec on 5V devices)
3866	 */
3867	if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3868		e_dbg("SPI EEPROM Status error\n");
3869		return -E1000_ERR_EEPROM;
3870	}
3871
3872	return E1000_SUCCESS;
3873}
3874
3875/**
3876 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3877 * @hw: Struct containing variables accessed by shared code
3878 * @offset: offset of  word in the EEPROM to read
3879 * @data: word read from the EEPROM
3880 * @words: number of words to read
3881 */
3882s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3883{
3884	s32 ret;
3885	spin_lock(&e1000_eeprom_lock);
3886	ret = e1000_do_read_eeprom(hw, offset, words, data);
3887	spin_unlock(&e1000_eeprom_lock);
3888	return ret;
3889}
3890
3891static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3892				u16 *data)
3893{
3894	struct e1000_eeprom_info *eeprom = &hw->eeprom;
3895	u32 i = 0;
3896
3897	if (hw->mac_type == e1000_ce4100) {
3898		GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3899		                      data);
3900		return E1000_SUCCESS;
3901	}
3902
3903	/* If eeprom is not yet detected, do so now */
3904	if (eeprom->word_size == 0)
3905		e1000_init_eeprom_params(hw);
3906
3907	/* A check for invalid values:  offset too large, too many words, and
3908	 * not enough words.
3909	 */
3910	if ((offset >= eeprom->word_size)
3911	    || (words > eeprom->word_size - offset) || (words == 0)) {
3912		e_dbg("\"words\" parameter out of bounds. Words = %d,"
3913		      "size = %d\n", offset, eeprom->word_size);
3914		return -E1000_ERR_EEPROM;
3915	}
3916
3917	/* EEPROM's that don't use EERD to read require us to bit-bang the SPI
3918	 * directly. In this case, we need to acquire the EEPROM so that
3919	 * FW or other port software does not interrupt.
3920	 */
3921	/* Prepare the EEPROM for bit-bang reading */
3922	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
3923		return -E1000_ERR_EEPROM;
3924
3925	/* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have
3926	 * acquired the EEPROM at this point, so any returns should release it
3927	 */
3928	if (eeprom->type == e1000_eeprom_spi) {
3929		u16 word_in;
3930		u8 read_opcode = EEPROM_READ_OPCODE_SPI;
3931
3932		if (e1000_spi_eeprom_ready(hw)) {
3933			e1000_release_eeprom(hw);
3934			return -E1000_ERR_EEPROM;
3935		}
3936
3937		e1000_standby_eeprom(hw);
3938
3939		/* Some SPI eeproms use the 8th address bit embedded in the
3940		 * opcode
3941		 */
3942		if ((eeprom->address_bits == 8) && (offset >= 128))
3943			read_opcode |= EEPROM_A8_OPCODE_SPI;
3944
3945		/* Send the READ command (opcode + addr)  */
3946		e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
3947		e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
3948					eeprom->address_bits);
3949
3950		/* Read the data.  The address of the eeprom internally
3951		 * increments with each byte (spi) being read, saving on the
3952		 * overhead of eeprom setup and tear-down.  The address counter
3953		 * will roll over if reading beyond the size of the eeprom, thus
3954		 * allowing the entire memory to be read starting from any
3955		 * offset.
3956		 */
3957		for (i = 0; i < words; i++) {
3958			word_in = e1000_shift_in_ee_bits(hw, 16);
3959			data[i] = (word_in >> 8) | (word_in << 8);
3960		}
3961	} else if (eeprom->type == e1000_eeprom_microwire) {
3962		for (i = 0; i < words; i++) {
3963			/* Send the READ command (opcode + addr)  */
3964			e1000_shift_out_ee_bits(hw,
3965						EEPROM_READ_OPCODE_MICROWIRE,
3966						eeprom->opcode_bits);
3967			e1000_shift_out_ee_bits(hw, (u16) (offset + i),
3968						eeprom->address_bits);
3969
3970			/* Read the data.  For microwire, each word requires the
3971			 * overhead of eeprom setup and tear-down.
3972			 */
3973			data[i] = e1000_shift_in_ee_bits(hw, 16);
3974			e1000_standby_eeprom(hw);
3975		}
3976	}
3977
3978	/* End this read operation */
3979	e1000_release_eeprom(hw);
3980
3981	return E1000_SUCCESS;
3982}
3983
3984/**
3985 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
3986 * @hw: Struct containing variables accessed by shared code
3987 *
3988 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
3989 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
3990 * valid.
3991 */
3992s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
3993{
3994	u16 checksum = 0;
3995	u16 i, eeprom_data;
3996
3997	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
3998		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
3999			e_dbg("EEPROM Read Error\n");
4000			return -E1000_ERR_EEPROM;
4001		}
4002		checksum += eeprom_data;
4003	}
4004
4005#ifdef CONFIG_PARISC
4006	/* This is a signature and not a checksum on HP c8000 */
4007	if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4008		return E1000_SUCCESS;
4009
4010#endif
4011	if (checksum == (u16) EEPROM_SUM)
4012		return E1000_SUCCESS;
4013	else {
4014		e_dbg("EEPROM Checksum Invalid\n");
4015		return -E1000_ERR_EEPROM;
4016	}
4017}
4018
4019/**
4020 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4021 * @hw: Struct containing variables accessed by shared code
4022 *
4023 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4024 * Writes the difference to word offset 63 of the EEPROM.
4025 */
4026s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4027{
4028	u16 checksum = 0;
4029	u16 i, eeprom_data;
4030
4031	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4032		if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4033			e_dbg("EEPROM Read Error\n");
4034			return -E1000_ERR_EEPROM;
4035		}
4036		checksum += eeprom_data;
4037	}
4038	checksum = (u16) EEPROM_SUM - checksum;
4039	if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4040		e_dbg("EEPROM Write Error\n");
4041		return -E1000_ERR_EEPROM;
4042	}
4043	return E1000_SUCCESS;
4044}
4045
4046/**
4047 * e1000_write_eeprom - write words to the different EEPROM types.
4048 * @hw: Struct containing variables accessed by shared code
4049 * @offset: offset within the EEPROM to be written to
4050 * @words: number of words to write
4051 * @data: 16 bit word to be written to the EEPROM
4052 *
4053 * If e1000_update_eeprom_checksum is not called after this function, the
4054 * EEPROM will most likely contain an invalid checksum.
4055 */
4056s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4057{
4058	s32 ret;
4059	spin_lock(&e1000_eeprom_lock);
4060	ret = e1000_do_write_eeprom(hw, offset, words, data);
4061	spin_unlock(&e1000_eeprom_lock);
4062	return ret;
4063}
4064
4065static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4066				 u16 *data)
4067{
4068	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4069	s32 status = 0;
4070
4071	if (hw->mac_type == e1000_ce4100) {
4072		GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4073		                       data);
4074		return E1000_SUCCESS;
4075	}
4076
4077	/* If eeprom is not yet detected, do so now */
4078	if (eeprom->word_size == 0)
4079		e1000_init_eeprom_params(hw);
4080
4081	/* A check for invalid values:  offset too large, too many words, and
4082	 * not enough words.
4083	 */
4084	if ((offset >= eeprom->word_size)
4085	    || (words > eeprom->word_size - offset) || (words == 0)) {
4086		e_dbg("\"words\" parameter out of bounds\n");
4087		return -E1000_ERR_EEPROM;
4088	}
4089
4090	/* Prepare the EEPROM for writing  */
4091	if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4092		return -E1000_ERR_EEPROM;
4093
4094	if (eeprom->type == e1000_eeprom_microwire) {
4095		status = e1000_write_eeprom_microwire(hw, offset, words, data);
4096	} else {
4097		status = e1000_write_eeprom_spi(hw, offset, words, data);
4098		msleep(10);
4099	}
4100
4101	/* Done with writing */
4102	e1000_release_eeprom(hw);
4103
4104	return status;
4105}
4106
4107/**
4108 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4109 * @hw: Struct containing variables accessed by shared code
4110 * @offset: offset within the EEPROM to be written to
4111 * @words: number of words to write
4112 * @data: pointer to array of 8 bit words to be written to the EEPROM
4113 */
4114static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4115				  u16 *data)
4116{
4117	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4118	u16 widx = 0;
4119
4120	while (widx < words) {
4121		u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4122
4123		if (e1000_spi_eeprom_ready(hw))
4124			return -E1000_ERR_EEPROM;
4125
4126		e1000_standby_eeprom(hw);
4127
4128		/*  Send the WRITE ENABLE command (8 bit opcode )  */
4129		e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4130					eeprom->opcode_bits);
4131
4132		e1000_standby_eeprom(hw);
4133
4134		/* Some SPI eeproms use the 8th address bit embedded in the
4135		 * opcode
4136		 */
4137		if ((eeprom->address_bits == 8) && (offset >= 128))
4138			write_opcode |= EEPROM_A8_OPCODE_SPI;
4139
4140		/* Send the Write command (8-bit opcode + addr) */
4141		e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4142
4143		e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4144					eeprom->address_bits);
4145
4146		/* Send the data */
4147
4148		/* Loop to allow for up to whole page write (32 bytes) of
4149		 * eeprom
4150		 */
4151		while (widx < words) {
4152			u16 word_out = data[widx];
4153			word_out = (word_out >> 8) | (word_out << 8);
4154			e1000_shift_out_ee_bits(hw, word_out, 16);
4155			widx++;
4156
4157			/* Some larger eeprom sizes are capable of a 32-byte
4158			 * PAGE WRITE operation, while the smaller eeproms are
4159			 * capable of an 8-byte PAGE WRITE operation.  Break the
4160			 * inner loop to pass new address
4161			 */
4162			if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4163				e1000_standby_eeprom(hw);
4164				break;
4165			}
4166		}
4167	}
4168
4169	return E1000_SUCCESS;
4170}
4171
4172/**
4173 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4174 * @hw: Struct containing variables accessed by shared code
4175 * @offset: offset within the EEPROM to be written to
4176 * @words: number of words to write
4177 * @data: pointer to array of 8 bit words to be written to the EEPROM
4178 */
4179static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4180					u16 words, u16 *data)
4181{
4182	struct e1000_eeprom_info *eeprom = &hw->eeprom;
4183	u32 eecd;
4184	u16 words_written = 0;
4185	u16 i = 0;
4186
4187	/* Send the write enable command to the EEPROM (3-bit opcode plus
4188	 * 6/8-bit dummy address beginning with 11).  It's less work to include
4189	 * the 11 of the dummy address as part of the opcode than it is to shift
4190	 * it over the correct number of bits for the address.  This puts the
4191	 * EEPROM into write/erase mode.
4192	 */
4193	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4194				(u16) (eeprom->opcode_bits + 2));
4195
4196	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4197
4198	/* Prepare the EEPROM */
4199	e1000_standby_eeprom(hw);
4200
4201	while (words_written < words) {
4202		/* Send the Write command (3-bit opcode + addr) */
4203		e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4204					eeprom->opcode_bits);
4205
4206		e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4207					eeprom->address_bits);
4208
4209		/* Send the data */
4210		e1000_shift_out_ee_bits(hw, data[words_written], 16);
4211
4212		/* Toggle the CS line.  This in effect tells the EEPROM to
4213		 * execute the previous command.
4214		 */
4215		e1000_standby_eeprom(hw);
4216
4217		/* Read DO repeatedly until it is high (equal to '1').  The
4218		 * EEPROM will signal that the command has been completed by
4219		 * raising the DO signal. If DO does not go high in 10
4220		 * milliseconds, then error out.
4221		 */
4222		for (i = 0; i < 200; i++) {
4223			eecd = er32(EECD);
4224			if (eecd & E1000_EECD_DO)
4225				break;
4226			udelay(50);
4227		}
4228		if (i == 200) {
4229			e_dbg("EEPROM Write did not complete\n");
4230			return -E1000_ERR_EEPROM;
4231		}
4232
4233		/* Recover from write */
4234		e1000_standby_eeprom(hw);
4235
4236		words_written++;
4237	}
4238
4239	/* Send the write disable command to the EEPROM (3-bit opcode plus
4240	 * 6/8-bit dummy address beginning with 10).  It's less work to include
4241	 * the 10 of the dummy address as part of the opcode than it is to shift
4242	 * it over the correct number of bits for the address.  This takes the
4243	 * EEPROM out of write/erase mode.
4244	 */
4245	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4246				(u16) (eeprom->opcode_bits + 2));
4247
4248	e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4249
4250	return E1000_SUCCESS;
4251}
4252
4253/**
4254 * e1000_read_mac_addr - read the adapters MAC from eeprom
4255 * @hw: Struct containing variables accessed by shared code
4256 *
4257 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4258 * second function of dual function devices
4259 */
4260s32 e1000_read_mac_addr(struct e1000_hw *hw)
4261{
4262	u16 offset;
4263	u16 eeprom_data, i;
4264
4265	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4266		offset = i >> 1;
4267		if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4268			e_dbg("EEPROM Read Error\n");
4269			return -E1000_ERR_EEPROM;
4270		}
4271		hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4272		hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4273	}
4274
4275	switch (hw->mac_type) {
4276	default:
4277		break;
4278	case e1000_82546:
4279	case e1000_82546_rev_3:
4280		if (er32(STATUS) & E1000_STATUS_FUNC_1)
4281			hw->perm_mac_addr[5] ^= 0x01;
4282		break;
4283	}
4284
4285	for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4286		hw->mac_addr[i] = hw->perm_mac_addr[i];
4287	return E1000_SUCCESS;
4288}
4289
4290/**
4291 * e1000_init_rx_addrs - Initializes receive address filters.
4292 * @hw: Struct containing variables accessed by shared code
4293 *
4294 * Places the MAC address in receive address register 0 and clears the rest
4295 * of the receive address registers. Clears the multicast table. Assumes
4296 * the receiver is in reset when the routine is called.
4297 */
4298static void e1000_init_rx_addrs(struct e1000_hw *hw)
4299{
4300	u32 i;
4301	u32 rar_num;
4302
4303	/* Setup the receive address. */
4304	e_dbg("Programming MAC Address into RAR[0]\n");
4305
4306	e1000_rar_set(hw, hw->mac_addr, 0);
4307
4308	rar_num = E1000_RAR_ENTRIES;
4309
4310	/* Zero out the other 15 receive addresses. */
4311	e_dbg("Clearing RAR[1-15]\n");
4312	for (i = 1; i < rar_num; i++) {
4313		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4314		E1000_WRITE_FLUSH();
4315		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4316		E1000_WRITE_FLUSH();
4317	}
4318}
4319
4320/**
4321 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4322 * @hw: Struct containing variables accessed by shared code
4323 * @mc_addr: the multicast address to hash
4324 */
4325u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4326{
4327	u32 hash_value = 0;
4328
4329	/* The portion of the address that is used for the hash table is
4330	 * determined by the mc_filter_type setting.
4331	 */
4332	switch (hw->mc_filter_type) {
4333		/* [0] [1] [2] [3] [4] [5]
4334		 * 01  AA  00  12  34  56
4335		 * LSB                 MSB
4336		 */
4337	case 0:
4338		/* [47:36] i.e. 0x563 for above example address */
4339		hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4340		break;
4341	case 1:
4342		/* [46:35] i.e. 0xAC6 for above example address */
4343		hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4344		break;
4345	case 2:
4346		/* [45:34] i.e. 0x5D8 for above example address */
4347		hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4348		break;
4349	case 3:
4350		/* [43:32] i.e. 0x634 for above example address */
4351		hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4352		break;
4353	}
4354
4355	hash_value &= 0xFFF;
4356	return hash_value;
4357}
4358
4359/**
4360 * e1000_rar_set - Puts an ethernet address into a receive address register.
4361 * @hw: Struct containing variables accessed by shared code
4362 * @addr: Address to put into receive address register
4363 * @index: Receive address register to write
4364 */
4365void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4366{
4367	u32 rar_low, rar_high;
4368
4369	/* HW expects these in little endian so we reverse the byte order
4370	 * from network order (big endian) to little endian
4371	 */
4372	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4373		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4374	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4375
4376	/* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4377	 * unit hang.
4378	 *
4379	 * Description:
4380	 * If there are any Rx frames queued up or otherwise present in the HW
4381	 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4382	 * hang.  To work around this issue, we have to disable receives and
4383	 * flush out all Rx frames before we enable RSS. To do so, we modify we
4384	 * redirect all Rx traffic to manageability and then reset the HW.
4385	 * This flushes away Rx frames, and (since the redirections to
4386	 * manageability persists across resets) keeps new ones from coming in
4387	 * while we work.  Then, we clear the Address Valid AV bit for all MAC
4388	 * addresses and undo the re-direction to manageability.
4389	 * Now, frames are coming in again, but the MAC won't accept them, so
4390	 * far so good.  We now proceed to initialize RSS (if necessary) and
4391	 * configure the Rx unit.  Last, we re-enable the AV bits and continue
4392	 * on our merry way.
4393	 */
4394	switch (hw->mac_type) {
4395	default:
4396		/* Indicate to hardware the Address is Valid. */
4397		rar_high |= E1000_RAH_AV;
4398		break;
4399	}
4400
4401	E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4402	E1000_WRITE_FLUSH();
4403	E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4404	E1000_WRITE_FLUSH();
4405}
4406
4407/**
4408 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4409 * @hw: Struct containing variables accessed by shared code
4410 * @offset: Offset in VLAN filer table to write
4411 * @value: Value to write into VLAN filter table
4412 */
4413void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4414{
4415	u32 temp;
4416
4417	if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4418		temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4419		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4420		E1000_WRITE_FLUSH();
4421		E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4422		E1000_WRITE_FLUSH();
4423	} else {
4424		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4425		E1000_WRITE_FLUSH();
4426	}
4427}
4428
4429/**
4430 * e1000_clear_vfta - Clears the VLAN filer table
4431 * @hw: Struct containing variables accessed by shared code
4432 */
4433static void e1000_clear_vfta(struct e1000_hw *hw)
4434{
4435	u32 offset;
4436	u32 vfta_value = 0;
4437	u32 vfta_offset = 0;
4438	u32 vfta_bit_in_reg = 0;
4439
4440	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4441		/* If the offset we want to clear is the same offset of the
4442		 * manageability VLAN ID, then clear all bits except that of the
4443		 * manageability unit
4444		 */
4445		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4446		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4447		E1000_WRITE_FLUSH();
4448	}
4449}
4450
4451static s32 e1000_id_led_init(struct e1000_hw *hw)
4452{
4453	u32 ledctl;
4454	const u32 ledctl_mask = 0x000000FF;
4455	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4456	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4457	u16 eeprom_data, i, temp;
4458	const u16 led_mask = 0x0F;
4459
4460	if (hw->mac_type < e1000_82540) {
4461		/* Nothing to do */
4462		return E1000_SUCCESS;
4463	}
4464
4465	ledctl = er32(LEDCTL);
4466	hw->ledctl_default = ledctl;
4467	hw->ledctl_mode1 = hw->ledctl_default;
4468	hw->ledctl_mode2 = hw->ledctl_default;
4469
4470	if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4471		e_dbg("EEPROM Read Error\n");
4472		return -E1000_ERR_EEPROM;
4473	}
4474
4475	if ((eeprom_data == ID_LED_RESERVED_0000) ||
4476	    (eeprom_data == ID_LED_RESERVED_FFFF)) {
4477		eeprom_data = ID_LED_DEFAULT;
4478	}
4479
4480	for (i = 0; i < 4; i++) {
4481		temp = (eeprom_data >> (i << 2)) & led_mask;
4482		switch (temp) {
4483		case ID_LED_ON1_DEF2:
4484		case ID_LED_ON1_ON2:
4485		case ID_LED_ON1_OFF2:
4486			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4487			hw->ledctl_mode1 |= ledctl_on << (i << 3);
4488			break;
4489		case ID_LED_OFF1_DEF2:
4490		case ID_LED_OFF1_ON2:
4491		case ID_LED_OFF1_OFF2:
4492			hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4493			hw->ledctl_mode1 |= ledctl_off << (i << 3);
4494			break;
4495		default:
4496			/* Do nothing */
4497			break;
4498		}
4499		switch (temp) {
4500		case ID_LED_DEF1_ON2:
4501		case ID_LED_ON1_ON2:
4502		case ID_LED_OFF1_ON2:
4503			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4504			hw->ledctl_mode2 |= ledctl_on << (i << 3);
4505			break;
4506		case ID_LED_DEF1_OFF2:
4507		case ID_LED_ON1_OFF2:
4508		case ID_LED_OFF1_OFF2:
4509			hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4510			hw->ledctl_mode2 |= ledctl_off << (i << 3);
4511			break;
4512		default:
4513			/* Do nothing */
4514			break;
4515		}
4516	}
4517	return E1000_SUCCESS;
4518}
4519
4520/**
4521 * e1000_setup_led
4522 * @hw: Struct containing variables accessed by shared code
4523 *
4524 * Prepares SW controlable LED for use and saves the current state of the LED.
4525 */
4526s32 e1000_setup_led(struct e1000_hw *hw)
4527{
4528	u32 ledctl;
4529	s32 ret_val = E1000_SUCCESS;
4530
4531	switch (hw->mac_type) {
4532	case e1000_82542_rev2_0:
4533	case e1000_82542_rev2_1:
4534	case e1000_82543:
4535	case e1000_82544:
4536		/* No setup necessary */
4537		break;
4538	case e1000_82541:
4539	case e1000_82547:
4540	case e1000_82541_rev_2:
4541	case e1000_82547_rev_2:
4542		/* Turn off PHY Smart Power Down (if enabled) */
4543		ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4544					     &hw->phy_spd_default);
4545		if (ret_val)
4546			return ret_val;
4547		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4548					      (u16) (hw->phy_spd_default &
4549						     ~IGP01E1000_GMII_SPD));
4550		if (ret_val)
4551			return ret_val;
4552		/* Fall Through */
4553	default:
4554		if (hw->media_type == e1000_media_type_fiber) {
4555			ledctl = er32(LEDCTL);
4556			/* Save current LEDCTL settings */
4557			hw->ledctl_default = ledctl;
4558			/* Turn off LED0 */
4559			ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4560				    E1000_LEDCTL_LED0_BLINK |
4561				    E1000_LEDCTL_LED0_MODE_MASK);
4562			ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4563				   E1000_LEDCTL_LED0_MODE_SHIFT);
4564			ew32(LEDCTL, ledctl);
4565		} else if (hw->media_type == e1000_media_type_copper)
4566			ew32(LEDCTL, hw->ledctl_mode1);
4567		break;
4568	}
4569
4570	return E1000_SUCCESS;
4571}
4572
4573/**
4574 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4575 * @hw: Struct containing variables accessed by shared code
4576 */
4577s32 e1000_cleanup_led(struct e1000_hw *hw)
4578{
4579	s32 ret_val = E1000_SUCCESS;
4580
4581	switch (hw->mac_type) {
4582	case e1000_82542_rev2_0:
4583	case e1000_82542_rev2_1:
4584	case e1000_82543:
4585	case e1000_82544:
4586		/* No cleanup necessary */
4587		break;
4588	case e1000_82541:
4589	case e1000_82547:
4590	case e1000_82541_rev_2:
4591	case e1000_82547_rev_2:
4592		/* Turn on PHY Smart Power Down (if previously enabled) */
4593		ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4594					      hw->phy_spd_default);
4595		if (ret_val)
4596			return ret_val;
4597		/* Fall Through */
4598	default:
4599		/* Restore LEDCTL settings */
4600		ew32(LEDCTL, hw->ledctl_default);
4601		break;
4602	}
4603
4604	return E1000_SUCCESS;
4605}
4606
4607/**
4608 * e1000_led_on - Turns on the software controllable LED
4609 * @hw: Struct containing variables accessed by shared code
4610 */
4611s32 e1000_led_on(struct e1000_hw *hw)
4612{
4613	u32 ctrl = er32(CTRL);
4614
4615	switch (hw->mac_type) {
4616	case e1000_82542_rev2_0:
4617	case e1000_82542_rev2_1:
4618	case e1000_82543:
4619		/* Set SW Defineable Pin 0 to turn on the LED */
4620		ctrl |= E1000_CTRL_SWDPIN0;
4621		ctrl |= E1000_CTRL_SWDPIO0;
4622		break;
4623	case e1000_82544:
4624		if (hw->media_type == e1000_media_type_fiber) {
4625			/* Set SW Defineable Pin 0 to turn on the LED */
4626			ctrl |= E1000_CTRL_SWDPIN0;
4627			ctrl |= E1000_CTRL_SWDPIO0;
4628		} else {
4629			/* Clear SW Defineable Pin 0 to turn on the LED */
4630			ctrl &= ~E1000_CTRL_SWDPIN0;
4631			ctrl |= E1000_CTRL_SWDPIO0;
4632		}
4633		break;
4634	default:
4635		if (hw->media_type == e1000_media_type_fiber) {
4636			/* Clear SW Defineable Pin 0 to turn on the LED */
4637			ctrl &= ~E1000_CTRL_SWDPIN0;
4638			ctrl |= E1000_CTRL_SWDPIO0;
4639		} else if (hw->media_type == e1000_media_type_copper) {
4640			ew32(LEDCTL, hw->ledctl_mode2);
4641			return E1000_SUCCESS;
4642		}
4643		break;
4644	}
4645
4646	ew32(CTRL, ctrl);
4647
4648	return E1000_SUCCESS;
4649}
4650
4651/**
4652 * e1000_led_off - Turns off the software controllable LED
4653 * @hw: Struct containing variables accessed by shared code
4654 */
4655s32 e1000_led_off(struct e1000_hw *hw)
4656{
4657	u32 ctrl = er32(CTRL);
4658
4659	switch (hw->mac_type) {
4660	case e1000_82542_rev2_0:
4661	case e1000_82542_rev2_1:
4662	case e1000_82543:
4663		/* Clear SW Defineable Pin 0 to turn off the LED */
4664		ctrl &= ~E1000_CTRL_SWDPIN0;
4665		ctrl |= E1000_CTRL_SWDPIO0;
4666		break;
4667	case e1000_82544:
4668		if (hw->media_type == e1000_media_type_fiber) {
4669			/* Clear SW Defineable Pin 0 to turn off the LED */
4670			ctrl &= ~E1000_CTRL_SWDPIN0;
4671			ctrl |= E1000_CTRL_SWDPIO0;
4672		} else {
4673			/* Set SW Defineable Pin 0 to turn off the LED */
4674			ctrl |= E1000_CTRL_SWDPIN0;
4675			ctrl |= E1000_CTRL_SWDPIO0;
4676		}
4677		break;
4678	default:
4679		if (hw->media_type == e1000_media_type_fiber) {
4680			/* Set SW Defineable Pin 0 to turn off the LED */
4681			ctrl |= E1000_CTRL_SWDPIN0;
4682			ctrl |= E1000_CTRL_SWDPIO0;
4683		} else if (hw->media_type == e1000_media_type_copper) {
4684			ew32(LEDCTL, hw->ledctl_mode1);
4685			return E1000_SUCCESS;
4686		}
4687		break;
4688	}
4689
4690	ew32(CTRL, ctrl);
4691
4692	return E1000_SUCCESS;
4693}
4694
4695/**
4696 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4697 * @hw: Struct containing variables accessed by shared code
4698 */
4699static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4700{
4701	volatile u32 temp;
4702
4703	temp = er32(CRCERRS);
4704	temp = er32(SYMERRS);
4705	temp = er32(MPC);
4706	temp = er32(SCC);
4707	temp = er32(ECOL);
4708	temp = er32(MCC);
4709	temp = er32(LATECOL);
4710	temp = er32(COLC);
4711	temp = er32(DC);
4712	temp = er32(SEC);
4713	temp = er32(RLEC);
4714	temp = er32(XONRXC);
4715	temp = er32(XONTXC);
4716	temp = er32(XOFFRXC);
4717	temp = er32(XOFFTXC);
4718	temp = er32(FCRUC);
4719
4720	temp = er32(PRC64);
4721	temp = er32(PRC127);
4722	temp = er32(PRC255);
4723	temp = er32(PRC511);
4724	temp = er32(PRC1023);
4725	temp = er32(PRC1522);
4726
4727	temp = er32(GPRC);
4728	temp = er32(BPRC);
4729	temp = er32(MPRC);
4730	temp = er32(GPTC);
4731	temp = er32(GORCL);
4732	temp = er32(GORCH);
4733	temp = er32(GOTCL);
4734	temp = er32(GOTCH);
4735	temp = er32(RNBC);
4736	temp = er32(RUC);
4737	temp = er32(RFC);
4738	temp = er32(ROC);
4739	temp = er32(RJC);
4740	temp = er32(TORL);
4741	temp = er32(TORH);
4742	temp = er32(TOTL);
4743	temp = er32(TOTH);
4744	temp = er32(TPR);
4745	temp = er32(TPT);
4746
4747	temp = er32(PTC64);
4748	temp = er32(PTC127);
4749	temp = er32(PTC255);
4750	temp = er32(PTC511);
4751	temp = er32(PTC1023);
4752	temp = er32(PTC1522);
4753
4754	temp = er32(MPTC);
4755	temp = er32(BPTC);
4756
4757	if (hw->mac_type < e1000_82543)
4758		return;
4759
4760	temp = er32(ALGNERRC);
4761	temp = er32(RXERRC);
4762	temp = er32(TNCRS);
4763	temp = er32(CEXTERR);
4764	temp = er32(TSCTC);
4765	temp = er32(TSCTFC);
4766
4767	if (hw->mac_type <= e1000_82544)
4768		return;
4769
4770	temp = er32(MGTPRC);
4771	temp = er32(MGTPDC);
4772	temp = er32(MGTPTC);
4773}
4774
4775/**
4776 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4777 * @hw: Struct containing variables accessed by shared code
4778 *
4779 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4780 * hw->ifs_params_forced to true. However, you must initialize hw->
4781 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4782 * before calling this function.
4783 */
4784void e1000_reset_adaptive(struct e1000_hw *hw)
4785{
4786	if (hw->adaptive_ifs) {
4787		if (!hw->ifs_params_forced) {
4788			hw->current_ifs_val = 0;
4789			hw->ifs_min_val = IFS_MIN;
4790			hw->ifs_max_val = IFS_MAX;
4791			hw->ifs_step_size = IFS_STEP;
4792			hw->ifs_ratio = IFS_RATIO;
4793		}
4794		hw->in_ifs_mode = false;
4795		ew32(AIT, 0);
4796	} else {
4797		e_dbg("Not in Adaptive IFS mode!\n");
4798	}
4799}
4800
4801/**
4802 * e1000_update_adaptive - update adaptive IFS
4803 * @hw: Struct containing variables accessed by shared code
4804 * @tx_packets: Number of transmits since last callback
4805 * @total_collisions: Number of collisions since last callback
4806 *
4807 * Called during the callback/watchdog routine to update IFS value based on
4808 * the ratio of transmits to collisions.
4809 */
4810void e1000_update_adaptive(struct e1000_hw *hw)
4811{
4812	if (hw->adaptive_ifs) {
4813		if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4814			if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4815				hw->in_ifs_mode = true;
4816				if (hw->current_ifs_val < hw->ifs_max_val) {
4817					if (hw->current_ifs_val == 0)
4818						hw->current_ifs_val =
4819						    hw->ifs_min_val;
4820					else
4821						hw->current_ifs_val +=
4822						    hw->ifs_step_size;
4823					ew32(AIT, hw->current_ifs_val);
4824				}
4825			}
4826		} else {
4827			if (hw->in_ifs_mode
4828			    && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4829				hw->current_ifs_val = 0;
4830				hw->in_ifs_mode = false;
4831				ew32(AIT, 0);
4832			}
4833		}
4834	} else {
4835		e_dbg("Not in Adaptive IFS mode!\n");
4836	}
4837}
4838
4839/**
4840 * e1000_get_bus_info
4841 * @hw: Struct containing variables accessed by shared code
4842 *
4843 * Gets the current PCI bus type, speed, and width of the hardware
4844 */
4845void e1000_get_bus_info(struct e1000_hw *hw)
4846{
4847	u32 status;
4848
4849	switch (hw->mac_type) {
4850	case e1000_82542_rev2_0:
4851	case e1000_82542_rev2_1:
4852		hw->bus_type = e1000_bus_type_pci;
4853		hw->bus_speed = e1000_bus_speed_unknown;
4854		hw->bus_width = e1000_bus_width_unknown;
4855		break;
4856	default:
4857		status = er32(STATUS);
4858		hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
4859		    e1000_bus_type_pcix : e1000_bus_type_pci;
4860
4861		if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
4862			hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
4863			    e1000_bus_speed_66 : e1000_bus_speed_120;
4864		} else if (hw->bus_type == e1000_bus_type_pci) {
4865			hw->bus_speed = (status & E1000_STATUS_PCI66) ?
4866			    e1000_bus_speed_66 : e1000_bus_speed_33;
4867		} else {
4868			switch (status & E1000_STATUS_PCIX_SPEED) {
4869			case E1000_STATUS_PCIX_SPEED_66:
4870				hw->bus_speed = e1000_bus_speed_66;
4871				break;
4872			case E1000_STATUS_PCIX_SPEED_100:
4873				hw->bus_speed = e1000_bus_speed_100;
4874				break;
4875			case E1000_STATUS_PCIX_SPEED_133:
4876				hw->bus_speed = e1000_bus_speed_133;
4877				break;
4878			default:
4879				hw->bus_speed = e1000_bus_speed_reserved;
4880				break;
4881			}
4882		}
4883		hw->bus_width = (status & E1000_STATUS_BUS64) ?
4884		    e1000_bus_width_64 : e1000_bus_width_32;
4885		break;
4886	}
4887}
4888
4889/**
4890 * e1000_write_reg_io
4891 * @hw: Struct containing variables accessed by shared code
4892 * @offset: offset to write to
4893 * @value: value to write
4894 *
4895 * Writes a value to one of the devices registers using port I/O (as opposed to
4896 * memory mapped I/O). Only 82544 and newer devices support port I/O.
4897 */
4898static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
4899{
4900	unsigned long io_addr = hw->io_base;
4901	unsigned long io_data = hw->io_base + 4;
4902
4903	e1000_io_write(hw, io_addr, offset);
4904	e1000_io_write(hw, io_data, value);
4905}
4906
4907/**
4908 * e1000_get_cable_length - Estimates the cable length.
4909 * @hw: Struct containing variables accessed by shared code
4910 * @min_length: The estimated minimum length
4911 * @max_length: The estimated maximum length
4912 *
4913 * returns: - E1000_ERR_XXX
4914 *            E1000_SUCCESS
4915 *
4916 * This function always returns a ranged length (minimum & maximum).
4917 * So for M88 phy's, this function interprets the one value returned from the
4918 * register to the minimum and maximum range.
4919 * For IGP phy's, the function calculates the range by the AGC registers.
4920 */
4921static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
4922				  u16 *max_length)
4923{
4924	s32 ret_val;
4925	u16 agc_value = 0;
4926	u16 i, phy_data;
4927	u16 cable_length;
4928
4929	*min_length = *max_length = 0;
4930
4931	/* Use old method for Phy older than IGP */
4932	if (hw->phy_type == e1000_phy_m88) {
4933
4934		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
4935					     &phy_data);
4936		if (ret_val)
4937			return ret_val;
4938		cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
4939		    M88E1000_PSSR_CABLE_LENGTH_SHIFT;
4940
4941		/* Convert the enum value to ranged values */
4942		switch (cable_length) {
4943		case e1000_cable_length_50:
4944			*min_length = 0;
4945			*max_length = e1000_igp_cable_length_50;
4946			break;
4947		case e1000_cable_length_50_80:
4948			*min_length = e1000_igp_cable_length_50;
4949			*max_length = e1000_igp_cable_length_80;
4950			break;
4951		case e1000_cable_length_80_110:
4952			*min_length = e1000_igp_cable_length_80;
4953			*max_length = e1000_igp_cable_length_110;
4954			break;
4955		case e1000_cable_length_110_140:
4956			*min_length = e1000_igp_cable_length_110;
4957			*max_length = e1000_igp_cable_length_140;
4958			break;
4959		case e1000_cable_length_140:
4960			*min_length = e1000_igp_cable_length_140;
4961			*max_length = e1000_igp_cable_length_170;
4962			break;
4963		default:
4964			return -E1000_ERR_PHY;
4965		}
4966	} else if (hw->phy_type == e1000_phy_igp) {	/* For IGP PHY */
4967		u16 cur_agc_value;
4968		u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
4969		static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
4970		       IGP01E1000_PHY_AGC_A,
4971		       IGP01E1000_PHY_AGC_B,
4972		       IGP01E1000_PHY_AGC_C,
4973		       IGP01E1000_PHY_AGC_D
4974		};
4975		/* Read the AGC registers for all channels */
4976		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
4977
4978			ret_val =
4979			    e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
4980			if (ret_val)
4981				return ret_val;
4982
4983			cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
4984
4985			/* Value bound check. */
4986			if ((cur_agc_value >=
4987			     IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
4988			    || (cur_agc_value == 0))
4989				return -E1000_ERR_PHY;
4990
4991			agc_value += cur_agc_value;
4992
4993			/* Update minimal AGC value. */
4994			if (min_agc_value > cur_agc_value)
4995				min_agc_value = cur_agc_value;
4996		}
4997
4998		/* Remove the minimal AGC result for length < 50m */
4999		if (agc_value <
5000		    IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5001			agc_value -= min_agc_value;
5002
5003			/* Get the average length of the remaining 3 channels */
5004			agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5005		} else {
5006			/* Get the average length of all the 4 channels. */
5007			agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5008		}
5009
5010		/* Set the range of the calculated length. */
5011		*min_length = ((e1000_igp_cable_length_table[agc_value] -
5012				IGP01E1000_AGC_RANGE) > 0) ?
5013		    (e1000_igp_cable_length_table[agc_value] -
5014		     IGP01E1000_AGC_RANGE) : 0;
5015		*max_length = e1000_igp_cable_length_table[agc_value] +
5016		    IGP01E1000_AGC_RANGE;
5017	}
5018
5019	return E1000_SUCCESS;
5020}
5021
5022/**
5023 * e1000_check_polarity - Check the cable polarity
5024 * @hw: Struct containing variables accessed by shared code
5025 * @polarity: output parameter : 0 - Polarity is not reversed
5026 *                               1 - Polarity is reversed.
5027 *
5028 * returns: - E1000_ERR_XXX
5029 *            E1000_SUCCESS
5030 *
5031 * For phy's older than IGP, this function simply reads the polarity bit in the
5032 * Phy Status register.  For IGP phy's, this bit is valid only if link speed is
5033 * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will
5034 * return 0.  If the link speed is 1000 Mbps the polarity status is in the
5035 * IGP01E1000_PHY_PCS_INIT_REG.
5036 */
5037static s32 e1000_check_polarity(struct e1000_hw *hw,
5038				e1000_rev_polarity *polarity)
5039{
5040	s32 ret_val;
5041	u16 phy_data;
5042
5043	if (hw->phy_type == e1000_phy_m88) {
5044		/* return the Polarity bit in the Status register. */
5045		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5046					     &phy_data);
5047		if (ret_val)
5048			return ret_val;
5049		*polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5050			     M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5051		    e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5052
5053	} else if (hw->phy_type == e1000_phy_igp) {
5054		/* Read the Status register to check the speed */
5055		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5056					     &phy_data);
5057		if (ret_val)
5058			return ret_val;
5059
5060		/* If speed is 1000 Mbps, must read the
5061		 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5062		 */
5063		if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5064		    IGP01E1000_PSSR_SPEED_1000MBPS) {
5065
5066			/* Read the GIG initialization PCS register (0x00B4) */
5067			ret_val =
5068			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5069					       &phy_data);
5070			if (ret_val)
5071				return ret_val;
5072
5073			/* Check the polarity bits */
5074			*polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5075			    e1000_rev_polarity_reversed :
5076			    e1000_rev_polarity_normal;
5077		} else {
5078			/* For 10 Mbps, read the polarity bit in the status
5079			 * register. (for 100 Mbps this bit is always 0)
5080			 */
5081			*polarity =
5082			    (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5083			    e1000_rev_polarity_reversed :
5084			    e1000_rev_polarity_normal;
5085		}
5086	}
5087	return E1000_SUCCESS;
5088}
5089
5090/**
5091 * e1000_check_downshift - Check if Downshift occurred
5092 * @hw: Struct containing variables accessed by shared code
5093 * @downshift: output parameter : 0 - No Downshift occurred.
5094 *                                1 - Downshift occurred.
5095 *
5096 * returns: - E1000_ERR_XXX
5097 *            E1000_SUCCESS
5098 *
5099 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5100 * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the
5101 * Link Health register.  In IGP this bit is latched high, so the driver must
5102 * read it immediately after link is established.
5103 */
5104static s32 e1000_check_downshift(struct e1000_hw *hw)
5105{
5106	s32 ret_val;
5107	u16 phy_data;
5108
5109	if (hw->phy_type == e1000_phy_igp) {
5110		ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5111					     &phy_data);
5112		if (ret_val)
5113			return ret_val;
5114
5115		hw->speed_downgraded =
5116		    (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5117	} else if (hw->phy_type == e1000_phy_m88) {
5118		ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5119					     &phy_data);
5120		if (ret_val)
5121			return ret_val;
5122
5123		hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5124		    M88E1000_PSSR_DOWNSHIFT_SHIFT;
5125	}
5126
5127	return E1000_SUCCESS;
5128}
5129
5130static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5131	IGP01E1000_PHY_AGC_PARAM_A,
5132	IGP01E1000_PHY_AGC_PARAM_B,
5133	IGP01E1000_PHY_AGC_PARAM_C,
5134	IGP01E1000_PHY_AGC_PARAM_D
5135};
5136
5137static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5138{
5139	u16 min_length, max_length;
5140	u16 phy_data, i;
5141	s32 ret_val;
5142
5143	ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5144	if (ret_val)
5145		return ret_val;
5146
5147	if (hw->dsp_config_state != e1000_dsp_config_enabled)
5148		return 0;
5149
5150	if (min_length >= e1000_igp_cable_length_50) {
5151		for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5152			ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5153						     &phy_data);
5154			if (ret_val)
5155				return ret_val;
5156
5157			phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5158
5159			ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5160						      phy_data);
5161			if (ret_val)
5162				return ret_val;
5163		}
5164		hw->dsp_config_state = e1000_dsp_config_activated;
5165	} else {
5166		u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5167		u32 idle_errs = 0;
5168
5169		/* clear previous idle error counts */
5170		ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5171		if (ret_val)
5172			return ret_val;
5173
5174		for (i = 0; i < ffe_idle_err_timeout; i++) {
5175			udelay(1000);
5176			ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5177						     &phy_data);
5178			if (ret_val)
5179				return ret_val;
5180
5181			idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5182			if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5183				hw->ffe_config_state = e1000_ffe_config_active;
5184
5185				ret_val = e1000_write_phy_reg(hw,
5186					      IGP01E1000_PHY_DSP_FFE,
5187					      IGP01E1000_PHY_DSP_FFE_CM_CP);
5188				if (ret_val)
5189					return ret_val;
5190				break;
5191			}
5192
5193			if (idle_errs)
5194				ffe_idle_err_timeout =
5195					    FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5196		}
5197	}
5198
5199	return 0;
5200}
5201
5202/**
5203 * e1000_config_dsp_after_link_change
5204 * @hw: Struct containing variables accessed by shared code
5205 * @link_up: was link up at the time this was called
5206 *
5207 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5208 *            E1000_SUCCESS at any other case.
5209 *
5210 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5211 * gigabit link is achieved to improve link quality.
5212 */
5213
5214static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5215{
5216	s32 ret_val;
5217	u16 phy_data, phy_saved_data, speed, duplex, i;
5218
5219	if (hw->phy_type != e1000_phy_igp)
5220		return E1000_SUCCESS;
5221
5222	if (link_up) {
5223		ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5224		if (ret_val) {
5225			e_dbg("Error getting link speed and duplex\n");
5226			return ret_val;
5227		}
5228
5229		if (speed == SPEED_1000) {
5230			ret_val = e1000_1000Mb_check_cable_length(hw);
5231			if (ret_val)
5232				return ret_val;
5233		}
5234	} else {
5235		if (hw->dsp_config_state == e1000_dsp_config_activated) {
5236			/* Save off the current value of register 0x2F5B to be
5237			 * restored at the end of the routines.
5238			 */
5239			ret_val =
5240			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5241
5242			if (ret_val)
5243				return ret_val;
5244
5245			/* Disable the PHY transmitter */
5246			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5247
5248			if (ret_val)
5249				return ret_val;
5250
5251			msleep(20);
5252
5253			ret_val = e1000_write_phy_reg(hw, 0x0000,
5254						    IGP01E1000_IEEE_FORCE_GIGA);
5255			if (ret_val)
5256				return ret_val;
5257			for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5258				ret_val =
5259				    e1000_read_phy_reg(hw, dsp_reg_array[i],
5260						       &phy_data);
5261				if (ret_val)
5262					return ret_val;
5263
5264				phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5265				phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5266
5267				ret_val =
5268				    e1000_write_phy_reg(hw, dsp_reg_array[i],
5269							phy_data);
5270				if (ret_val)
5271					return ret_val;
5272			}
5273
5274			ret_val = e1000_write_phy_reg(hw, 0x0000,
5275					IGP01E1000_IEEE_RESTART_AUTONEG);
5276			if (ret_val)
5277				return ret_val;
5278
5279			msleep(20);
5280
5281			/* Now enable the transmitter */
5282			ret_val =
5283			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5284
5285			if (ret_val)
5286				return ret_val;
5287
5288			hw->dsp_config_state = e1000_dsp_config_enabled;
5289		}
5290
5291		if (hw->ffe_config_state == e1000_ffe_config_active) {
5292			/* Save off the current value of register 0x2F5B to be
5293			 * restored at the end of the routines.
5294			 */
5295			ret_val =
5296			    e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5297
5298			if (ret_val)
5299				return ret_val;
5300
5301			/* Disable the PHY transmitter */
5302			ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5303
5304			if (ret_val)
5305				return ret_val;
5306
5307			msleep(20);
5308
5309			ret_val = e1000_write_phy_reg(hw, 0x0000,
5310						    IGP01E1000_IEEE_FORCE_GIGA);
5311			if (ret_val)
5312				return ret_val;
5313			ret_val =
5314			    e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5315						IGP01E1000_PHY_DSP_FFE_DEFAULT);
5316			if (ret_val)
5317				return ret_val;
5318
5319			ret_val = e1000_write_phy_reg(hw, 0x0000,
5320					IGP01E1000_IEEE_RESTART_AUTONEG);
5321			if (ret_val)
5322				return ret_val;
5323
5324			msleep(20);
5325
5326			/* Now enable the transmitter */
5327			ret_val =
5328			    e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5329
5330			if (ret_val)
5331				return ret_val;
5332
5333			hw->ffe_config_state = e1000_ffe_config_enabled;
5334		}
5335	}
5336	return E1000_SUCCESS;
5337}
5338
5339/**
5340 * e1000_set_phy_mode - Set PHY to class A mode
5341 * @hw: Struct containing variables accessed by shared code
5342 *
5343 * Assumes the following operations will follow to enable the new class mode.
5344 *  1. Do a PHY soft reset
5345 *  2. Restart auto-negotiation or force link.
5346 */
5347static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5348{
5349	s32 ret_val;
5350	u16 eeprom_data;
5351
5352	if ((hw->mac_type == e1000_82545_rev_3) &&
5353	    (hw->media_type == e1000_media_type_copper)) {
5354		ret_val =
5355		    e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5356				      &eeprom_data);
5357		if (ret_val) {
5358			return ret_val;
5359		}
5360
5361		if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5362		    (eeprom_data & EEPROM_PHY_CLASS_A)) {
5363			ret_val =
5364			    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5365						0x000B);
5366			if (ret_val)
5367				return ret_val;
5368			ret_val =
5369			    e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5370						0x8104);
5371			if (ret_val)
5372				return ret_val;
5373
5374			hw->phy_reset_disable = false;
5375		}
5376	}
5377
5378	return E1000_SUCCESS;
5379}
5380
5381/**
5382 * e1000_set_d3_lplu_state - set d3 link power state
5383 * @hw: Struct containing variables accessed by shared code
5384 * @active: true to enable lplu false to disable lplu.
5385 *
5386 * This function sets the lplu state according to the active flag.  When
5387 * activating lplu this function also disables smart speed and vise versa.
5388 * lplu will not be activated unless the device autonegotiation advertisement
5389 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5390 *
5391 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5392 *            E1000_SUCCESS at any other case.
5393 */
5394static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5395{
5396	s32 ret_val;
5397	u16 phy_data;
5398
5399	if (hw->phy_type != e1000_phy_igp)
5400		return E1000_SUCCESS;
5401
5402	/* During driver activity LPLU should not be used or it will attain link
5403	 * from the lowest speeds starting from 10Mbps. The capability is used
5404	 * for Dx transitions and states
5405	 */
5406	if (hw->mac_type == e1000_82541_rev_2
5407	    || hw->mac_type == e1000_82547_rev_2) {
5408		ret_val =
5409		    e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5410		if (ret_val)
5411			return ret_val;
5412	}
5413
5414	if (!active) {
5415		if (hw->mac_type == e1000_82541_rev_2 ||
5416		    hw->mac_type == e1000_82547_rev_2) {
5417			phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5418			ret_val =
5419			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5420						phy_data);
5421			if (ret_val)
5422				return ret_val;
5423		}
5424
5425		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
5426		 * during Dx states where the power conservation is most
5427		 * important.  During driver activity we should enable
5428		 * SmartSpeed, so performance is maintained.
5429		 */
5430		if (hw->smart_speed == e1000_smart_speed_on) {
5431			ret_val =
5432			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5433					       &phy_data);
5434			if (ret_val)
5435				return ret_val;
5436
5437			phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5438			ret_val =
5439			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5440						phy_data);
5441			if (ret_val)
5442				return ret_val;
5443		} else if (hw->smart_speed == e1000_smart_speed_off) {
5444			ret_val =
5445			    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5446					       &phy_data);
5447			if (ret_val)
5448				return ret_val;
5449
5450			phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5451			ret_val =
5452			    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5453						phy_data);
5454			if (ret_val)
5455				return ret_val;
5456		}
5457	} else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5458		   || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5459		   || (hw->autoneg_advertised ==
5460		       AUTONEG_ADVERTISE_10_100_ALL)) {
5461
5462		if (hw->mac_type == e1000_82541_rev_2 ||
5463		    hw->mac_type == e1000_82547_rev_2) {
5464			phy_data |= IGP01E1000_GMII_FLEX_SPD;
5465			ret_val =
5466			    e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5467						phy_data);
5468			if (ret_val)
5469				return ret_val;
5470		}
5471
5472		/* When LPLU is enabled we should disable SmartSpeed */
5473		ret_val =
5474		    e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5475				       &phy_data);
5476		if (ret_val)
5477			return ret_val;
5478
5479		phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5480		ret_val =
5481		    e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5482					phy_data);
5483		if (ret_val)
5484			return ret_val;
5485
5486	}
5487	return E1000_SUCCESS;
5488}
5489
5490/**
5491 * e1000_set_vco_speed
5492 * @hw: Struct containing variables accessed by shared code
5493 *
5494 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5495 */
5496static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5497{
5498	s32 ret_val;
5499	u16 default_page = 0;
5500	u16 phy_data;
5501
5502	switch (hw->mac_type) {
5503	case e1000_82545_rev_3:
5504	case e1000_82546_rev_3:
5505		break;
5506	default:
5507		return E1000_SUCCESS;
5508	}
5509
5510	/* Set PHY register 30, page 5, bit 8 to 0 */
5511
5512	ret_val =
5513	    e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5514	if (ret_val)
5515		return ret_val;
5516
5517	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5518	if (ret_val)
5519		return ret_val;
5520
5521	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5522	if (ret_val)
5523		return ret_val;
5524
5525	phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5526	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5527	if (ret_val)
5528		return ret_val;
5529
5530	/* Set PHY register 30, page 4, bit 11 to 1 */
5531
5532	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5533	if (ret_val)
5534		return ret_val;
5535
5536	ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5537	if (ret_val)
5538		return ret_val;
5539
5540	phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5541	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5542	if (ret_val)
5543		return ret_val;
5544
5545	ret_val =
5546	    e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5547	if (ret_val)
5548		return ret_val;
5549
5550	return E1000_SUCCESS;
5551}
5552
5553
5554/**
5555 * e1000_enable_mng_pass_thru - check for bmc pass through
5556 * @hw: Struct containing variables accessed by shared code
5557 *
5558 * Verifies the hardware needs to allow ARPs to be processed by the host
5559 * returns: - true/false
5560 */
5561u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5562{
5563	u32 manc;
5564
5565	if (hw->asf_firmware_present) {
5566		manc = er32(MANC);
5567
5568		if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5569		    !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5570			return false;
5571		if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5572			return true;
5573	}
5574	return false;
5575}
5576
5577static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5578{
5579	s32 ret_val;
5580	u16 mii_status_reg;
5581	u16 i;
5582
5583	/* Polarity reversal workaround for forced 10F/10H links. */
5584
5585	/* Disable the transmitter on the PHY */
5586
5587	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5588	if (ret_val)
5589		return ret_val;
5590	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5591	if (ret_val)
5592		return ret_val;
5593
5594	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5595	if (ret_val)
5596		return ret_val;
5597
5598	/* This loop will early-out if the NO link condition has been met. */
5599	for (i = PHY_FORCE_TIME; i > 0; i--) {
5600		/* Read the MII Status Register and wait for Link Status bit
5601		 * to be clear.
5602		 */
5603
5604		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5605		if (ret_val)
5606			return ret_val;
5607
5608		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5609		if (ret_val)
5610			return ret_val;
5611
5612		if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5613			break;
5614		msleep(100);
5615	}
5616
5617	/* Recommended delay time after link has been lost */
5618	msleep(1000);
5619
5620	/* Now we will re-enable th transmitter on the PHY */
5621
5622	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5623	if (ret_val)
5624		return ret_val;
5625	msleep(50);
5626	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5627	if (ret_val)
5628		return ret_val;
5629	msleep(50);
5630	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5631	if (ret_val)
5632		return ret_val;
5633	msleep(50);
5634	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5635	if (ret_val)
5636		return ret_val;
5637
5638	ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5639	if (ret_val)
5640		return ret_val;
5641
5642	/* This loop will early-out if the link condition has been met. */
5643	for (i = PHY_FORCE_TIME; i > 0; i--) {
5644		/* Read the MII Status Register and wait for Link Status bit
5645		 * to be set.
5646		 */
5647
5648		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5649		if (ret_val)
5650			return ret_val;
5651
5652		ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5653		if (ret_val)
5654			return ret_val;
5655
5656		if (mii_status_reg & MII_SR_LINK_STATUS)
5657			break;
5658		msleep(100);
5659	}
5660	return E1000_SUCCESS;
5661}
5662
5663/**
5664 * e1000_get_auto_rd_done
5665 * @hw: Struct containing variables accessed by shared code
5666 *
5667 * Check for EEPROM Auto Read bit done.
5668 * returns: - E1000_ERR_RESET if fail to reset MAC
5669 *            E1000_SUCCESS at any other case.
5670 */
5671static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5672{
5673	msleep(5);
5674	return E1000_SUCCESS;
5675}
5676
5677/**
5678 * e1000_get_phy_cfg_done
5679 * @hw: Struct containing variables accessed by shared code
5680 *
5681 * Checks if the PHY configuration is done
5682 * returns: - E1000_ERR_RESET if fail to reset MAC
5683 *            E1000_SUCCESS at any other case.
5684 */
5685static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5686{
5687	msleep(10);
5688	return E1000_SUCCESS;
5689}
5690