1/* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22/* Linux PRO/1000 Ethernet Driver main header file */
23
24#ifndef _E1000_H_
25#define _E1000_H_
26
27#include <linux/bitops.h>
28#include <linux/types.h>
29#include <linux/timer.h>
30#include <linux/workqueue.h>
31#include <linux/io.h>
32#include <linux/netdevice.h>
33#include <linux/pci.h>
34#include <linux/pci-aspm.h>
35#include <linux/crc32.h>
36#include <linux/if_vlan.h>
37#include <linux/timecounter.h>
38#include <linux/net_tstamp.h>
39#include <linux/ptp_clock_kernel.h>
40#include <linux/ptp_classify.h>
41#include <linux/mii.h>
42#include <linux/mdio.h>
43#include <linux/pm_qos.h>
44#include "hw.h"
45
46struct e1000_info;
47
48#define e_dbg(format, arg...) \
49	netdev_dbg(hw->adapter->netdev, format, ## arg)
50#define e_err(format, arg...) \
51	netdev_err(adapter->netdev, format, ## arg)
52#define e_info(format, arg...) \
53	netdev_info(adapter->netdev, format, ## arg)
54#define e_warn(format, arg...) \
55	netdev_warn(adapter->netdev, format, ## arg)
56#define e_notice(format, arg...) \
57	netdev_notice(adapter->netdev, format, ## arg)
58
59/* Interrupt modes, as used by the IntMode parameter */
60#define E1000E_INT_MODE_LEGACY		0
61#define E1000E_INT_MODE_MSI		1
62#define E1000E_INT_MODE_MSIX		2
63
64/* Tx/Rx descriptor defines */
65#define E1000_DEFAULT_TXD		256
66#define E1000_MAX_TXD			4096
67#define E1000_MIN_TXD			64
68
69#define E1000_DEFAULT_RXD		256
70#define E1000_MAX_RXD			4096
71#define E1000_MIN_RXD			64
72
73#define E1000_MIN_ITR_USECS		10 /* 100000 irq/sec */
74#define E1000_MAX_ITR_USECS		10000 /* 100    irq/sec */
75
76#define E1000_FC_PAUSE_TIME		0x0680 /* 858 usec */
77
78/* How many Tx Descriptors do we need to call netif_wake_queue ? */
79/* How many Rx Buffers do we bundle into one write to the hardware ? */
80#define E1000_RX_BUFFER_WRITE		16 /* Must be power of 2 */
81
82#define AUTO_ALL_MODES			0
83#define E1000_EEPROM_APME		0x0400
84
85#define E1000_MNG_VLAN_NONE		(-1)
86
87#define DEFAULT_JUMBO			9234
88
89/* Time to wait before putting the device into D3 if there's no link (in ms). */
90#define LINK_TIMEOUT		100
91
92/* Count for polling __E1000_RESET condition every 10-20msec.
93 * Experimentation has shown the reset can take approximately 210msec.
94 */
95#define E1000_CHECK_RESET_COUNT		25
96
97#define DEFAULT_RDTR			0
98#define DEFAULT_RADV			8
99#define BURST_RDTR			0x20
100#define BURST_RADV			0x20
101
102/* in the case of WTHRESH, it appears at least the 82571/2 hardware
103 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
104 * WTHRESH=4, so a setting of 5 gives the most efficient bus
105 * utilization but to avoid possible Tx stalls, set it to 1
106 */
107#define E1000_TXDCTL_DMA_BURST_ENABLE                          \
108	(E1000_TXDCTL_GRAN | /* set descriptor granularity */  \
109	 E1000_TXDCTL_COUNT_DESC |                             \
110	 (1 << 16) | /* wthresh must be +1 more than desired */\
111	 (1 << 8)  | /* hthresh */                             \
112	 0x1f)       /* pthresh */
113
114#define E1000_RXDCTL_DMA_BURST_ENABLE                          \
115	(0x01000000 | /* set descriptor granularity */         \
116	 (4 << 16)  | /* set writeback threshold    */         \
117	 (4 << 8)   | /* set prefetch threshold     */         \
118	 0x20)        /* set hthresh                */
119
120#define E1000_TIDV_FPD (1 << 31)
121#define E1000_RDTR_FPD (1 << 31)
122
123enum e1000_boards {
124	board_82571,
125	board_82572,
126	board_82573,
127	board_82574,
128	board_82583,
129	board_80003es2lan,
130	board_ich8lan,
131	board_ich9lan,
132	board_ich10lan,
133	board_pchlan,
134	board_pch2lan,
135	board_pch_lpt,
136	board_pch_spt
137};
138
139struct e1000_ps_page {
140	struct page *page;
141	u64 dma; /* must be u64 - written to hw */
142};
143
144/* wrappers around a pointer to a socket buffer,
145 * so a DMA handle can be stored along with the buffer
146 */
147struct e1000_buffer {
148	dma_addr_t dma;
149	struct sk_buff *skb;
150	union {
151		/* Tx */
152		struct {
153			unsigned long time_stamp;
154			u16 length;
155			u16 next_to_watch;
156			unsigned int segs;
157			unsigned int bytecount;
158			u16 mapped_as_page;
159		};
160		/* Rx */
161		struct {
162			/* arrays of page information for packet split */
163			struct e1000_ps_page *ps_pages;
164			struct page *page;
165		};
166	};
167};
168
169struct e1000_ring {
170	struct e1000_adapter *adapter;	/* back pointer to adapter */
171	void *desc;			/* pointer to ring memory  */
172	dma_addr_t dma;			/* phys address of ring    */
173	unsigned int size;		/* length of ring in bytes */
174	unsigned int count;		/* number of desc. in ring */
175
176	u16 next_to_use;
177	u16 next_to_clean;
178
179	void __iomem *head;
180	void __iomem *tail;
181
182	/* array of buffer information structs */
183	struct e1000_buffer *buffer_info;
184
185	char name[IFNAMSIZ + 5];
186	u32 ims_val;
187	u32 itr_val;
188	void __iomem *itr_register;
189	int set_itr;
190
191	struct sk_buff *rx_skb_top;
192};
193
194/* PHY register snapshot values */
195struct e1000_phy_regs {
196	u16 bmcr;		/* basic mode control register    */
197	u16 bmsr;		/* basic mode status register     */
198	u16 advertise;		/* auto-negotiation advertisement */
199	u16 lpa;		/* link partner ability register  */
200	u16 expansion;		/* auto-negotiation expansion reg */
201	u16 ctrl1000;		/* 1000BASE-T control register    */
202	u16 stat1000;		/* 1000BASE-T status register     */
203	u16 estatus;		/* extended status register       */
204};
205
206/* board specific private data structure */
207struct e1000_adapter {
208	struct timer_list watchdog_timer;
209	struct timer_list phy_info_timer;
210	struct timer_list blink_timer;
211
212	struct work_struct reset_task;
213	struct work_struct watchdog_task;
214
215	const struct e1000_info *ei;
216
217	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
218	u32 bd_number;
219	u32 rx_buffer_len;
220	u16 mng_vlan_id;
221	u16 link_speed;
222	u16 link_duplex;
223	u16 eeprom_vers;
224
225	/* track device up/down/testing state */
226	unsigned long state;
227
228	/* Interrupt Throttle Rate */
229	u32 itr;
230	u32 itr_setting;
231	u16 tx_itr;
232	u16 rx_itr;
233
234	/* Tx - one ring per active queue */
235	struct e1000_ring *tx_ring ____cacheline_aligned_in_smp;
236	u32 tx_fifo_limit;
237
238	struct napi_struct napi;
239
240	unsigned int uncorr_errors;	/* uncorrectable ECC errors */
241	unsigned int corr_errors;	/* correctable ECC errors */
242	unsigned int restart_queue;
243	u32 txd_cmd;
244
245	bool detect_tx_hung;
246	bool tx_hang_recheck;
247	u8 tx_timeout_factor;
248
249	u32 tx_int_delay;
250	u32 tx_abs_int_delay;
251
252	unsigned int total_tx_bytes;
253	unsigned int total_tx_packets;
254	unsigned int total_rx_bytes;
255	unsigned int total_rx_packets;
256
257	/* Tx stats */
258	u64 tpt_old;
259	u64 colc_old;
260	u32 gotc;
261	u64 gotc_old;
262	u32 tx_timeout_count;
263	u32 tx_fifo_head;
264	u32 tx_head_addr;
265	u32 tx_fifo_size;
266	u32 tx_dma_failed;
267	u32 tx_hwtstamp_timeouts;
268
269	/* Rx */
270	bool (*clean_rx)(struct e1000_ring *ring, int *work_done,
271			 int work_to_do) ____cacheline_aligned_in_smp;
272	void (*alloc_rx_buf)(struct e1000_ring *ring, int cleaned_count,
273			     gfp_t gfp);
274	struct e1000_ring *rx_ring;
275
276	u32 rx_int_delay;
277	u32 rx_abs_int_delay;
278
279	/* Rx stats */
280	u64 hw_csum_err;
281	u64 hw_csum_good;
282	u64 rx_hdr_split;
283	u32 gorc;
284	u64 gorc_old;
285	u32 alloc_rx_buff_failed;
286	u32 rx_dma_failed;
287	u32 rx_hwtstamp_cleared;
288
289	unsigned int rx_ps_pages;
290	u16 rx_ps_bsize0;
291	u32 max_frame_size;
292	u32 min_frame_size;
293
294	/* OS defined structs */
295	struct net_device *netdev;
296	struct pci_dev *pdev;
297
298	/* structs defined in e1000_hw.h */
299	struct e1000_hw hw;
300
301	spinlock_t stats64_lock;	/* protects statistics counters */
302	struct e1000_hw_stats stats;
303	struct e1000_phy_info phy_info;
304	struct e1000_phy_stats phy_stats;
305
306	/* Snapshot of PHY registers */
307	struct e1000_phy_regs phy_regs;
308
309	struct e1000_ring test_tx_ring;
310	struct e1000_ring test_rx_ring;
311	u32 test_icr;
312
313	u32 msg_enable;
314	unsigned int num_vectors;
315	struct msix_entry *msix_entries;
316	int int_mode;
317	u32 eiac_mask;
318
319	u32 eeprom_wol;
320	u32 wol;
321	u32 pba;
322	u32 max_hw_frame_size;
323
324	bool fc_autoneg;
325
326	unsigned int flags;
327	unsigned int flags2;
328	struct work_struct downshift_task;
329	struct work_struct update_phy_task;
330	struct work_struct print_hang_task;
331
332	int phy_hang_count;
333
334	u16 tx_ring_count;
335	u16 rx_ring_count;
336
337	struct hwtstamp_config hwtstamp_config;
338	struct delayed_work systim_overflow_work;
339	struct sk_buff *tx_hwtstamp_skb;
340	unsigned long tx_hwtstamp_start;
341	struct work_struct tx_hwtstamp_work;
342	spinlock_t systim_lock;	/* protects SYSTIML/H regsters */
343	struct cyclecounter cc;
344	struct timecounter tc;
345	struct ptp_clock *ptp_clock;
346	struct ptp_clock_info ptp_clock_info;
347	struct pm_qos_request pm_qos_req;
348
349	u16 eee_advert;
350};
351
352struct e1000_info {
353	enum e1000_mac_type	mac;
354	unsigned int		flags;
355	unsigned int		flags2;
356	u32			pba;
357	u32			max_hw_frame_size;
358	s32			(*get_variants)(struct e1000_adapter *);
359	const struct e1000_mac_operations *mac_ops;
360	const struct e1000_phy_operations *phy_ops;
361	const struct e1000_nvm_operations *nvm_ops;
362};
363
364s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
365
366/* The system time is maintained by a 64-bit counter comprised of the 32-bit
367 * SYSTIMH and SYSTIML registers.  How the counter increments (and therefore
368 * its resolution) is based on the contents of the TIMINCA register - it
369 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
370 * For the best accuracy, the incperiod should be as small as possible.  The
371 * incvalue is scaled by a factor as large as possible (while still fitting
372 * in bits 23:0) so that relatively small clock corrections can be made.
373 *
374 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
375 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
376 * bits to count nanoseconds leaving the rest for fractional nonseconds.
377 */
378#define INCVALUE_96MHz		125
379#define INCVALUE_SHIFT_96MHz	17
380#define INCPERIOD_SHIFT_96MHz	2
381#define INCPERIOD_96MHz		(12 >> INCPERIOD_SHIFT_96MHz)
382
383#define INCVALUE_25MHz		40
384#define INCVALUE_SHIFT_25MHz	18
385#define INCPERIOD_25MHz		1
386
387/* Another drawback of scaling the incvalue by a large factor is the
388 * 64-bit SYSTIM register overflows more quickly.  This is dealt with
389 * by simply reading the clock before it overflows.
390 *
391 * Clock	ns bits	Overflows after
392 * ~~~~~~	~~~~~~~	~~~~~~~~~~~~~~~
393 * 96MHz	47-bit	2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
394 * 25MHz	46-bit	2^46 / 10^9 / 3600 = 19.55 hours
395 */
396#define E1000_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 60 * 4)
397#define E1000_MAX_82574_SYSTIM_REREADS	50
398#define E1000_82574_SYSTIM_EPSILON	(1ULL << 35ULL)
399
400/* hardware capability, feature, and workaround flags */
401#define FLAG_HAS_AMT                      (1 << 0)
402#define FLAG_HAS_FLASH                    (1 << 1)
403#define FLAG_HAS_HW_VLAN_FILTER           (1 << 2)
404#define FLAG_HAS_WOL                      (1 << 3)
405/* reserved bit4 */
406#define FLAG_HAS_CTRLEXT_ON_LOAD          (1 << 5)
407#define FLAG_HAS_SWSM_ON_LOAD             (1 << 6)
408#define FLAG_HAS_JUMBO_FRAMES             (1 << 7)
409#define FLAG_READ_ONLY_NVM                (1 << 8)
410#define FLAG_IS_ICH                       (1 << 9)
411#define FLAG_HAS_MSIX                     (1 << 10)
412#define FLAG_HAS_SMART_POWER_DOWN         (1 << 11)
413#define FLAG_IS_QUAD_PORT_A               (1 << 12)
414#define FLAG_IS_QUAD_PORT                 (1 << 13)
415#define FLAG_HAS_HW_TIMESTAMP             (1 << 14)
416#define FLAG_APME_IN_WUC                  (1 << 15)
417#define FLAG_APME_IN_CTRL3                (1 << 16)
418#define FLAG_APME_CHECK_PORT_B            (1 << 17)
419#define FLAG_DISABLE_FC_PAUSE_TIME        (1 << 18)
420#define FLAG_NO_WAKE_UCAST                (1 << 19)
421#define FLAG_MNG_PT_ENABLED               (1 << 20)
422#define FLAG_RESET_OVERWRITES_LAA         (1 << 21)
423#define FLAG_TARC_SPEED_MODE_BIT          (1 << 22)
424#define FLAG_TARC_SET_BIT_ZERO            (1 << 23)
425#define FLAG_RX_NEEDS_RESTART             (1 << 24)
426#define FLAG_LSC_GIG_SPEED_DROP           (1 << 25)
427#define FLAG_SMART_POWER_DOWN             (1 << 26)
428#define FLAG_MSI_ENABLED                  (1 << 27)
429/* reserved (1 << 28) */
430#define FLAG_TSO_FORCE                    (1 << 29)
431#define FLAG_RESTART_NOW                  (1 << 30)
432#define FLAG_MSI_TEST_FAILED              (1 << 31)
433
434#define FLAG2_CRC_STRIPPING               (1 << 0)
435#define FLAG2_HAS_PHY_WAKEUP              (1 << 1)
436#define FLAG2_IS_DISCARDING               (1 << 2)
437#define FLAG2_DISABLE_ASPM_L1             (1 << 3)
438#define FLAG2_HAS_PHY_STATS               (1 << 4)
439#define FLAG2_HAS_EEE                     (1 << 5)
440#define FLAG2_DMA_BURST                   (1 << 6)
441#define FLAG2_DISABLE_ASPM_L0S            (1 << 7)
442#define FLAG2_DISABLE_AIM                 (1 << 8)
443#define FLAG2_CHECK_PHY_HANG              (1 << 9)
444#define FLAG2_NO_DISABLE_RX               (1 << 10)
445#define FLAG2_PCIM2PCI_ARBITER_WA         (1 << 11)
446#define FLAG2_DFLT_CRC_STRIPPING          (1 << 12)
447#define FLAG2_CHECK_RX_HWTSTAMP           (1 << 13)
448
449#define E1000_RX_DESC_PS(R, i)	    \
450	(&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
451#define E1000_RX_DESC_EXT(R, i)	    \
452	(&(((union e1000_rx_desc_extended *)((R).desc))[i]))
453#define E1000_GET_DESC(R, i, type)	(&(((struct type *)((R).desc))[i]))
454#define E1000_TX_DESC(R, i)		E1000_GET_DESC(R, i, e1000_tx_desc)
455#define E1000_CONTEXT_DESC(R, i)	E1000_GET_DESC(R, i, e1000_context_desc)
456
457enum e1000_state_t {
458	__E1000_TESTING,
459	__E1000_RESETTING,
460	__E1000_ACCESS_SHARED_RESOURCE,
461	__E1000_DOWN
462};
463
464enum latency_range {
465	lowest_latency = 0,
466	low_latency = 1,
467	bulk_latency = 2,
468	latency_invalid = 255
469};
470
471extern char e1000e_driver_name[];
472extern const char e1000e_driver_version[];
473
474void e1000e_check_options(struct e1000_adapter *adapter);
475void e1000e_set_ethtool_ops(struct net_device *netdev);
476
477int e1000e_up(struct e1000_adapter *adapter);
478void e1000e_down(struct e1000_adapter *adapter, bool reset);
479void e1000e_reinit_locked(struct e1000_adapter *adapter);
480void e1000e_reset(struct e1000_adapter *adapter);
481void e1000e_power_up_phy(struct e1000_adapter *adapter);
482int e1000e_setup_rx_resources(struct e1000_ring *ring);
483int e1000e_setup_tx_resources(struct e1000_ring *ring);
484void e1000e_free_rx_resources(struct e1000_ring *ring);
485void e1000e_free_tx_resources(struct e1000_ring *ring);
486struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
487					     struct rtnl_link_stats64 *stats);
488void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
489void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
490void e1000e_get_hw_control(struct e1000_adapter *adapter);
491void e1000e_release_hw_control(struct e1000_adapter *adapter);
492void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
493
494extern unsigned int copybreak;
495
496extern const struct e1000_info e1000_82571_info;
497extern const struct e1000_info e1000_82572_info;
498extern const struct e1000_info e1000_82573_info;
499extern const struct e1000_info e1000_82574_info;
500extern const struct e1000_info e1000_82583_info;
501extern const struct e1000_info e1000_ich8_info;
502extern const struct e1000_info e1000_ich9_info;
503extern const struct e1000_info e1000_ich10_info;
504extern const struct e1000_info e1000_pch_info;
505extern const struct e1000_info e1000_pch2_info;
506extern const struct e1000_info e1000_pch_lpt_info;
507extern const struct e1000_info e1000_pch_spt_info;
508extern const struct e1000_info e1000_es2_info;
509
510void e1000e_ptp_init(struct e1000_adapter *adapter);
511void e1000e_ptp_remove(struct e1000_adapter *adapter);
512
513static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
514{
515	return hw->phy.ops.reset(hw);
516}
517
518static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
519{
520	return hw->phy.ops.read_reg(hw, offset, data);
521}
522
523static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
524{
525	return hw->phy.ops.read_reg_locked(hw, offset, data);
526}
527
528static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
529{
530	return hw->phy.ops.write_reg(hw, offset, data);
531}
532
533static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
534{
535	return hw->phy.ops.write_reg_locked(hw, offset, data);
536}
537
538void e1000e_reload_nvm_generic(struct e1000_hw *hw);
539
540static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
541{
542	if (hw->mac.ops.read_mac_addr)
543		return hw->mac.ops.read_mac_addr(hw);
544
545	return e1000_read_mac_addr_generic(hw);
546}
547
548static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
549{
550	return hw->nvm.ops.validate(hw);
551}
552
553static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
554{
555	return hw->nvm.ops.update(hw);
556}
557
558static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
559				 u16 *data)
560{
561	return hw->nvm.ops.read(hw, offset, words, data);
562}
563
564static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
565				  u16 *data)
566{
567	return hw->nvm.ops.write(hw, offset, words, data);
568}
569
570static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
571{
572	return hw->phy.ops.get_info(hw);
573}
574
575static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
576{
577	return readl(hw->hw_addr + reg);
578}
579
580#define er32(reg)	__er32(hw, E1000_##reg)
581
582s32 __ew32_prepare(struct e1000_hw *hw);
583void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val);
584
585#define ew32(reg, val)	__ew32(hw, E1000_##reg, (val))
586
587#define e1e_flush()	er32(STATUS)
588
589#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
590	(__ew32((a), (reg + ((offset) << 2)), (value)))
591
592#define E1000_READ_REG_ARRAY(a, reg, offset) \
593	(readl((a)->hw_addr + reg + ((offset) << 2)))
594
595#endif /* _E1000_H_ */
596