1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include "fm10k_pf.h"
22#include "fm10k_vf.h"
23
24/**
25 *  fm10k_reset_hw_pf - PF hardware reset
26 *  @hw: pointer to hardware structure
27 *
28 *  This function should return the hardware to a state similar to the
29 *  one it is in after being powered on.
30 **/
31static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32{
33	s32 err;
34	u32 reg;
35	u16 i;
36
37	/* Disable interrupts */
38	fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39
40	/* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43
44	/* We assume here Tx and Rx queue 0 are owned by the PF */
45
46	/* Shut off VF access to their queues forcing them to queue 0 */
47	for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50	}
51
52	/* shut down all rings */
53	err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54	if (err)
55		return err;
56
57	/* Verify that DMA is no longer active */
58	reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
59	if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
60		return FM10K_ERR_DMA_PENDING;
61
62	/* Inititate data path reset */
63	reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
64	fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
65
66	/* Flush write and allow 100us for reset to complete */
67	fm10k_write_flush(hw);
68	udelay(FM10K_RESET_TIMEOUT);
69
70	/* Verify we made it out of reset */
71	reg = fm10k_read_reg(hw, FM10K_IP);
72	if (!(reg & FM10K_IP_NOTINRESET))
73		err = FM10K_ERR_RESET_FAILED;
74
75	return err;
76}
77
78/**
79 *  fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
80 *  @hw: pointer to hardware structure
81 *
82 *  Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
83 **/
84static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
85{
86	u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
87
88	return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
89}
90
91/**
92 *  fm10k_init_hw_pf - PF hardware initialization
93 *  @hw: pointer to hardware structure
94 *
95 **/
96static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
97{
98	u32 dma_ctrl, txqctl;
99	u16 i;
100
101	/* Establish default VSI as valid */
102	fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
103	fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
104			FM10K_DGLORTMAP_ANY);
105
106	/* Invalidate all other GLORT entries */
107	for (i = 1; i < FM10K_DGLORT_COUNT; i++)
108		fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
109
110	/* reset ITR2(0) to point to itself */
111	fm10k_write_reg(hw, FM10K_ITR2(0), 0);
112
113	/* reset VF ITR2(0) to point to 0 avoid PF registers */
114	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
115
116	/* loop through all PF ITR2 registers pointing them to the previous */
117	for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
118		fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
119
120	/* Enable interrupt moderator if not already enabled */
121	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
122
123	/* compute the default txqctl configuration */
124	txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
125		 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
126
127	for (i = 0; i < FM10K_MAX_QUEUES; i++) {
128		/* configure rings for 256 Queue / 32 Descriptor cache mode */
129		fm10k_write_reg(hw, FM10K_TQDLOC(i),
130				(i * FM10K_TQDLOC_BASE_32_DESC) |
131				FM10K_TQDLOC_SIZE_32_DESC);
132		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
133
134		/* configure rings to provide TPH processing hints */
135		fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
136				FM10K_TPH_TXCTRL_DESC_TPHEN |
137				FM10K_TPH_TXCTRL_DESC_RROEN |
138				FM10K_TPH_TXCTRL_DESC_WROEN |
139				FM10K_TPH_TXCTRL_DATA_RROEN);
140		fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
141				FM10K_TPH_RXCTRL_DESC_TPHEN |
142				FM10K_TPH_RXCTRL_DESC_RROEN |
143				FM10K_TPH_RXCTRL_DATA_WROEN |
144				FM10K_TPH_RXCTRL_HDR_WROEN);
145	}
146
147	/* set max hold interval to align with 1.024 usec in all modes */
148	switch (hw->bus.speed) {
149	case fm10k_bus_speed_2500:
150		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
151		break;
152	case fm10k_bus_speed_5000:
153		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
154		break;
155	case fm10k_bus_speed_8000:
156		dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
157		break;
158	default:
159		dma_ctrl = 0;
160		break;
161	}
162
163	/* Configure TSO flags */
164	fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
165	fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
166
167	/* Enable DMA engine
168	 * Set Rx Descriptor size to 32
169	 * Set Minimum MSS to 64
170	 * Set Maximum number of Rx queues to 256 / 32 Descriptor
171	 */
172	dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
173		    FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
174		    FM10K_DMA_CTRL_32_DESC;
175
176	fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
177
178	/* record maximum queue count, we limit ourselves to 128 */
179	hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
180
181	/* We support either 64 VFs or 7 VFs depending on if we have ARI */
182	hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
183
184	return 0;
185}
186
187/**
188 *  fm10k_is_slot_appropriate_pf - Indicate appropriate slot for this SKU
189 *  @hw: pointer to hardware structure
190 *
191 *  Looks at the PCIe bus info to confirm whether or not this slot can support
192 *  the necessary bandwidth for this device.
193 **/
194static bool fm10k_is_slot_appropriate_pf(struct fm10k_hw *hw)
195{
196	return (hw->bus.speed == hw->bus_caps.speed) &&
197	       (hw->bus.width == hw->bus_caps.width);
198}
199
200/**
201 *  fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
202 *  @hw: pointer to hardware structure
203 *  @vid: VLAN ID to add to table
204 *  @vsi: Index indicating VF ID or PF ID in table
205 *  @set: Indicates if this is a set or clear operation
206 *
207 *  This function adds or removes the corresponding VLAN ID from the VLAN
208 *  filter table for the corresponding function.  In addition to the
209 *  standard set/clear that supports one bit a multi-bit write is
210 *  supported to set 64 bits at a time.
211 **/
212static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
213{
214	u32 vlan_table, reg, mask, bit, len;
215
216	/* verify the VSI index is valid */
217	if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
218		return FM10K_ERR_PARAM;
219
220	/* VLAN multi-bit write:
221	 * The multi-bit write has several parts to it.
222	 *    3			  2		      1			  0
223	 *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
224	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
225	 * | RSVD0 |         Length        |C|RSVD0|        VLAN ID        |
226	 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
227	 *
228	 * VLAN ID: Vlan Starting value
229	 * RSVD0: Reserved section, must be 0
230	 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
231	 * Length: Number of times to repeat the bit being set
232	 */
233	len = vid >> 16;
234	vid = (vid << 17) >> 17;
235
236	/* verify the reserved 0 fields are 0 */
237	if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
238		return FM10K_ERR_PARAM;
239
240	/* Loop through the table updating all required VLANs */
241	for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
242	     len < FM10K_VLAN_TABLE_VID_MAX;
243	     len -= 32 - bit, reg++, bit = 0) {
244		/* record the initial state of the register */
245		vlan_table = fm10k_read_reg(hw, reg);
246
247		/* truncate mask if we are at the start or end of the run */
248		mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
249
250		/* make necessary modifications to the register */
251		mask &= set ? ~vlan_table : vlan_table;
252		if (mask)
253			fm10k_write_reg(hw, reg, vlan_table ^ mask);
254	}
255
256	return 0;
257}
258
259/**
260 *  fm10k_read_mac_addr_pf - Read device MAC address
261 *  @hw: pointer to the HW structure
262 *
263 *  Reads the device MAC address from the SM_AREA and stores the value.
264 **/
265static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
266{
267	u8 perm_addr[ETH_ALEN];
268	u32 serial_num;
269	int i;
270
271	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
272
273	/* last byte should be all 1's */
274	if ((~serial_num) << 24)
275		return  FM10K_ERR_INVALID_MAC_ADDR;
276
277	perm_addr[0] = (u8)(serial_num >> 24);
278	perm_addr[1] = (u8)(serial_num >> 16);
279	perm_addr[2] = (u8)(serial_num >> 8);
280
281	serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
282
283	/* first byte should be all 1's */
284	if ((~serial_num) >> 24)
285		return  FM10K_ERR_INVALID_MAC_ADDR;
286
287	perm_addr[3] = (u8)(serial_num >> 16);
288	perm_addr[4] = (u8)(serial_num >> 8);
289	perm_addr[5] = (u8)(serial_num);
290
291	for (i = 0; i < ETH_ALEN; i++) {
292		hw->mac.perm_addr[i] = perm_addr[i];
293		hw->mac.addr[i] = perm_addr[i];
294	}
295
296	return 0;
297}
298
299/**
300 *  fm10k_glort_valid_pf - Validate that the provided glort is valid
301 *  @hw: pointer to the HW structure
302 *  @glort: base glort to be validated
303 *
304 *  This function will return an error if the provided glort is invalid
305 **/
306bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
307{
308	glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
309
310	return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
311}
312
313/**
314 *  fm10k_update_xc_addr_pf - Update device addresses
315 *  @hw: pointer to the HW structure
316 *  @glort: base resource tag for this request
317 *  @mac: MAC address to add/remove from table
318 *  @vid: VLAN ID to add/remove from table
319 *  @add: Indicates if this is an add or remove operation
320 *  @flags: flags field to indicate add and secure
321 *
322 *  This function generates a message to the Switch API requesting
323 *  that the given logical port add/remove the given L2 MAC/VLAN address.
324 **/
325static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
326				   const u8 *mac, u16 vid, bool add, u8 flags)
327{
328	struct fm10k_mbx_info *mbx = &hw->mbx;
329	struct fm10k_mac_update mac_update;
330	u32 msg[5];
331
332	/* clear set bit from VLAN ID */
333	vid &= ~FM10K_VLAN_CLEAR;
334
335	/* if glort or vlan are not valid return error */
336	if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
337		return FM10K_ERR_PARAM;
338
339	/* record fields */
340	mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
341						 ((u32)mac[3] << 16) |
342						 ((u32)mac[4] << 8) |
343						 ((u32)mac[5]));
344	mac_update.mac_upper = cpu_to_le16(((u32)mac[0] << 8) |
345						 ((u32)mac[1]));
346	mac_update.vlan = cpu_to_le16(vid);
347	mac_update.glort = cpu_to_le16(glort);
348	mac_update.action = add ? 0 : 1;
349	mac_update.flags = flags;
350
351	/* populate mac_update fields */
352	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
353	fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
354				     &mac_update, sizeof(mac_update));
355
356	/* load onto outgoing mailbox */
357	return mbx->ops.enqueue_tx(hw, mbx, msg);
358}
359
360/**
361 *  fm10k_update_uc_addr_pf - Update device unicast addresses
362 *  @hw: pointer to the HW structure
363 *  @glort: base resource tag for this request
364 *  @mac: MAC address to add/remove from table
365 *  @vid: VLAN ID to add/remove from table
366 *  @add: Indicates if this is an add or remove operation
367 *  @flags: flags field to indicate add and secure
368 *
369 *  This function is used to add or remove unicast addresses for
370 *  the PF.
371 **/
372static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
373				   const u8 *mac, u16 vid, bool add, u8 flags)
374{
375	/* verify MAC address is valid */
376	if (!is_valid_ether_addr(mac))
377		return FM10K_ERR_PARAM;
378
379	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
380}
381
382/**
383 *  fm10k_update_mc_addr_pf - Update device multicast addresses
384 *  @hw: pointer to the HW structure
385 *  @glort: base resource tag for this request
386 *  @mac: MAC address to add/remove from table
387 *  @vid: VLAN ID to add/remove from table
388 *  @add: Indicates if this is an add or remove operation
389 *
390 *  This function is used to add or remove multicast MAC addresses for
391 *  the PF.
392 **/
393static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
394				   const u8 *mac, u16 vid, bool add)
395{
396	/* verify multicast address is valid */
397	if (!is_multicast_ether_addr(mac))
398		return FM10K_ERR_PARAM;
399
400	return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
401}
402
403/**
404 *  fm10k_update_xcast_mode_pf - Request update of multicast mode
405 *  @hw: pointer to hardware structure
406 *  @glort: base resource tag for this request
407 *  @mode: integer value indicating mode being requested
408 *
409 *  This function will attempt to request a higher mode for the port
410 *  so that it can enable either multicast, multicast promiscuous, or
411 *  promiscuous mode of operation.
412 **/
413static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
414{
415	struct fm10k_mbx_info *mbx = &hw->mbx;
416	u32 msg[3], xcast_mode;
417
418	if (mode > FM10K_XCAST_MODE_NONE)
419		return FM10K_ERR_PARAM;
420	/* if glort is not valid return error */
421	if (!fm10k_glort_valid_pf(hw, glort))
422		return FM10K_ERR_PARAM;
423
424	/* write xcast mode as a single u32 value,
425	 * lower 16 bits: glort
426	 * upper 16 bits: mode
427	 */
428	xcast_mode = ((u32)mode << 16) | glort;
429
430	/* generate message requesting to change xcast mode */
431	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
432	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
433
434	/* load onto outgoing mailbox */
435	return mbx->ops.enqueue_tx(hw, mbx, msg);
436}
437
438/**
439 *  fm10k_update_int_moderator_pf - Update interrupt moderator linked list
440 *  @hw: pointer to hardware structure
441 *
442 *  This function walks through the MSI-X vector table to determine the
443 *  number of active interrupts and based on that information updates the
444 *  interrupt moderator linked list.
445 **/
446static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
447{
448	u32 i;
449
450	/* Disable interrupt moderator */
451	fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
452
453	/* loop through PF from last to first looking enabled vectors */
454	for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
455		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
456			break;
457	}
458
459	/* always reset VFITR2[0] to point to last enabled PF vector */
460	fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
461
462	/* reset ITR2[0] to point to last enabled PF vector */
463	if (!hw->iov.num_vfs)
464		fm10k_write_reg(hw, FM10K_ITR2(0), i);
465
466	/* Enable interrupt moderator */
467	fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
468}
469
470/**
471 *  fm10k_update_lport_state_pf - Notify the switch of a change in port state
472 *  @hw: pointer to the HW structure
473 *  @glort: base resource tag for this request
474 *  @count: number of logical ports being updated
475 *  @enable: boolean value indicating enable or disable
476 *
477 *  This function is used to add/remove a logical port from the switch.
478 **/
479static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
480				       u16 count, bool enable)
481{
482	struct fm10k_mbx_info *mbx = &hw->mbx;
483	u32 msg[3], lport_msg;
484
485	/* do nothing if we are being asked to create or destroy 0 ports */
486	if (!count)
487		return 0;
488
489	/* if glort is not valid return error */
490	if (!fm10k_glort_valid_pf(hw, glort))
491		return FM10K_ERR_PARAM;
492
493	/* construct the lport message from the 2 pieces of data we have */
494	lport_msg = ((u32)count << 16) | glort;
495
496	/* generate lport create/delete message */
497	fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
498					 FM10K_PF_MSG_ID_LPORT_DELETE);
499	fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
500
501	/* load onto outgoing mailbox */
502	return mbx->ops.enqueue_tx(hw, mbx, msg);
503}
504
505/**
506 *  fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
507 *  @hw: pointer to hardware structure
508 *  @dglort: pointer to dglort configuration structure
509 *
510 *  Reads the configuration structure contained in dglort_cfg and uses
511 *  that information to then populate a DGLORTMAP/DEC entry and the queues
512 *  to which it has been assigned.
513 **/
514static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
515					 struct fm10k_dglort_cfg *dglort)
516{
517	u16 glort, queue_count, vsi_count, pc_count;
518	u16 vsi, queue, pc, q_idx;
519	u32 txqctl, dglortdec, dglortmap;
520
521	/* verify the dglort pointer */
522	if (!dglort)
523		return FM10K_ERR_PARAM;
524
525	/* verify the dglort values */
526	if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
527	    (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
528	    (dglort->queue_l > 8) || (dglort->queue_b >= 256))
529		return FM10K_ERR_PARAM;
530
531	/* determine count of VSIs and queues */
532	queue_count = 1 << (dglort->rss_l + dglort->pc_l);
533	vsi_count = 1 << (dglort->vsi_l + dglort->queue_l);
534	glort = dglort->glort;
535	q_idx = dglort->queue_b;
536
537	/* configure SGLORT for queues */
538	for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
539		for (queue = 0; queue < queue_count; queue++, q_idx++) {
540			if (q_idx >= FM10K_MAX_QUEUES)
541				break;
542
543			fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
544			fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
545		}
546	}
547
548	/* determine count of PCs and queues */
549	queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l);
550	pc_count = 1 << dglort->pc_l;
551
552	/* configure PC for Tx queues */
553	for (pc = 0; pc < pc_count; pc++) {
554		q_idx = pc + dglort->queue_b;
555		for (queue = 0; queue < queue_count; queue++) {
556			if (q_idx >= FM10K_MAX_QUEUES)
557				break;
558
559			txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
560			txqctl &= ~FM10K_TXQCTL_PC_MASK;
561			txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
562			fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
563
564			q_idx += pc_count;
565		}
566	}
567
568	/* configure DGLORTDEC */
569	dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
570		    ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
571		    ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
572		    ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
573		    ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
574		    ((u32)(dglort->queue_l));
575	if (dglort->inner_rss)
576		dglortdec |=  FM10K_DGLORTDEC_INNERRSS_ENABLE;
577
578	/* configure DGLORTMAP */
579	dglortmap = (dglort->idx == fm10k_dglort_default) ?
580			FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
581	dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
582	dglortmap |= dglort->glort;
583
584	/* write values to hardware */
585	fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
586	fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
587
588	return 0;
589}
590
591u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
592{
593	u16 num_pools = hw->iov.num_pools;
594
595	return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
596	       8 : FM10K_MAX_QUEUES_POOL;
597}
598
599u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
600{
601	u16 num_vfs = hw->iov.num_vfs;
602	u16 vf_q_idx = FM10K_MAX_QUEUES;
603
604	vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
605
606	return vf_q_idx;
607}
608
609static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
610{
611	u16 num_pools = hw->iov.num_pools;
612
613	return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
614	       FM10K_MAX_VECTORS_POOL;
615}
616
617static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
618{
619	u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
620
621	vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
622
623	return vf_v_idx;
624}
625
626/**
627 *  fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
628 *  @hw: pointer to the HW structure
629 *  @num_vfs: number of VFs to be allocated
630 *  @num_pools: number of virtualization pools to be allocated
631 *
632 *  Allocates queues and traffic classes to virtualization entities to prepare
633 *  the PF for SR-IOV and VMDq
634 **/
635static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
636					 u16 num_pools)
637{
638	u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
639	u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
640	int i, j;
641
642	/* hardware only supports up to 64 pools */
643	if (num_pools > 64)
644		return FM10K_ERR_PARAM;
645
646	/* the number of VFs cannot exceed the number of pools */
647	if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
648		return FM10K_ERR_PARAM;
649
650	/* record number of virtualization entities */
651	hw->iov.num_vfs = num_vfs;
652	hw->iov.num_pools = num_pools;
653
654	/* determine qmap offsets and counts */
655	qmap_stride = (num_vfs > 8) ? 32 : 256;
656	qpp = fm10k_queues_per_pool(hw);
657	vpp = fm10k_vectors_per_pool(hw);
658
659	/* calculate starting index for queues */
660	vf_q_idx = fm10k_vf_queue_index(hw, 0);
661	qmap_idx = 0;
662
663	/* establish TCs with -1 credits and no quanta to prevent transmit */
664	for (i = 0; i < num_vfs; i++) {
665		fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
666		fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
667		fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
668				FM10K_TC_CREDIT_CREDIT_MASK);
669	}
670
671	/* zero out all mbmem registers */
672	for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
673		fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
674
675	/* clear event notification of VF FLR */
676	fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
677	fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
678
679	/* loop through unallocated rings assigning them back to PF */
680	for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
681		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
682		fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
683				FM10K_TXQCTL_UNLIMITED_BW | vid);
684		fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
685	}
686
687	/* PF should have already updated VFITR2[0] */
688
689	/* update all ITR registers to flow to VFITR2[0] */
690	for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
691		if (!(i & (vpp - 1)))
692			fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
693		else
694			fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
695	}
696
697	/* update PF ITR2[0] to reference the last vector */
698	fm10k_write_reg(hw, FM10K_ITR2(0),
699			fm10k_vf_vector_index(hw, num_vfs - 1));
700
701	/* loop through rings populating rings and TCs */
702	for (i = 0; i < num_vfs; i++) {
703		/* record index for VF queue 0 for use in end of loop */
704		vf_q_idx0 = vf_q_idx;
705
706		for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
707			/* assign VF and locked TC to queues */
708			fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
709			fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
710					(i << FM10K_TXQCTL_TC_SHIFT) | i |
711					FM10K_TXQCTL_VF | vid);
712			fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
713					FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
714					FM10K_RXDCTL_DROP_ON_EMPTY);
715			fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
716					FM10K_RXQCTL_VF |
717					(i << FM10K_RXQCTL_VF_SHIFT));
718
719			/* map queue pair to VF */
720			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
721			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
722		}
723
724		/* repeat the first ring for all of the remaining VF rings */
725		for (; j < qmap_stride; j++, qmap_idx++) {
726			fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
727			fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
728		}
729	}
730
731	/* loop through remaining indexes assigning all to queue 0 */
732	while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
733		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
734		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
735		qmap_idx++;
736	}
737
738	return 0;
739}
740
741/**
742 *  fm10k_iov_configure_tc_pf - Configure the shaping group for VF
743 *  @hw: pointer to the HW structure
744 *  @vf_idx: index of VF receiving GLORT
745 *  @rate: Rate indicated in Mb/s
746 *
747 *  Configured the TC for a given VF to allow only up to a given number
748 *  of Mb/s of outgoing Tx throughput.
749 **/
750static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
751{
752	/* configure defaults */
753	u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
754	u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
755
756	/* verify vf is in range */
757	if (vf_idx >= hw->iov.num_vfs)
758		return FM10K_ERR_PARAM;
759
760	/* set interval to align with 4.096 usec in all modes */
761	switch (hw->bus.speed) {
762	case fm10k_bus_speed_2500:
763		interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
764		break;
765	case fm10k_bus_speed_5000:
766		interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
767		break;
768	default:
769		break;
770	}
771
772	if (rate) {
773		if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
774			return FM10K_ERR_PARAM;
775
776		/* The quanta is measured in Bytes per 4.096 or 8.192 usec
777		 * The rate is provided in Mbits per second
778		 * To tralslate from rate to quanta we need to multiply the
779		 * rate by 8.192 usec and divide by 8 bits/byte.  To avoid
780		 * dealing with floating point we can round the values up
781		 * to the nearest whole number ratio which gives us 128 / 125.
782		 */
783		tc_rate = (rate * 128) / 125;
784
785		/* try to keep the rate limiting accurate by increasing
786		 * the number of credits and interval for rates less than 4Gb/s
787		 */
788		if (rate < 4000)
789			interval <<= 1;
790		else
791			tc_rate >>= 1;
792	}
793
794	/* update rate limiter with new values */
795	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
796	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
797	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
798
799	return 0;
800}
801
802/**
803 *  fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
804 *  @hw: pointer to the HW structure
805 *  @vf_idx: index of VF receiving GLORT
806 *
807 *  Update the interrupt moderator linked list to include any MSI-X
808 *  interrupts which the VF has enabled in the MSI-X vector table.
809 **/
810static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
811{
812	u16 vf_v_idx, vf_v_limit, i;
813
814	/* verify vf is in range */
815	if (vf_idx >= hw->iov.num_vfs)
816		return FM10K_ERR_PARAM;
817
818	/* determine vector offset and count */
819	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
820	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
821
822	/* search for first vector that is not masked */
823	for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
824		if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
825			break;
826	}
827
828	/* reset linked list so it now includes our active vectors */
829	if (vf_idx == (hw->iov.num_vfs - 1))
830		fm10k_write_reg(hw, FM10K_ITR2(0), i);
831	else
832		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
833
834	return 0;
835}
836
837/**
838 *  fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
839 *  @hw: pointer to the HW structure
840 *  @vf_info: pointer to VF information structure
841 *
842 *  Assign a MAC address and default VLAN to a VF and notify it of the update
843 **/
844static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
845						struct fm10k_vf_info *vf_info)
846{
847	u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
848	u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
849	s32 err = 0;
850	u16 vf_idx, vf_vid;
851
852	/* verify vf is in range */
853	if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
854		return FM10K_ERR_PARAM;
855
856	/* determine qmap offsets and counts */
857	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
858	queues_per_pool = fm10k_queues_per_pool(hw);
859
860	/* calculate starting index for queues */
861	vf_idx = vf_info->vf_idx;
862	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
863	qmap_idx = qmap_stride * vf_idx;
864
865	/* MAP Tx queue back to 0 temporarily, and disable it */
866	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
867	fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
868
869	/* determine correct default VLAN ID */
870	if (vf_info->pf_vid)
871		vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
872	else
873		vf_vid = vf_info->sw_vid;
874
875	/* generate MAC_ADDR request */
876	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
877	fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
878				    vf_info->mac, vf_vid);
879
880	/* load onto outgoing mailbox, ignore any errors on enqueue */
881	if (vf_info->mbx.ops.enqueue_tx)
882		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
883
884	/* verify ring has disabled before modifying base address registers */
885	txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
886	for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
887		/* limit ourselves to a 1ms timeout */
888		if (timeout == 10) {
889			err = FM10K_ERR_DMA_PENDING;
890			goto err_out;
891		}
892
893		usleep_range(100, 200);
894		txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
895	}
896
897	/* Update base address registers to contain MAC address */
898	if (is_valid_ether_addr(vf_info->mac)) {
899		tdbal = (((u32)vf_info->mac[3]) << 24) |
900			(((u32)vf_info->mac[4]) << 16) |
901			(((u32)vf_info->mac[5]) << 8);
902
903		tdbah = (((u32)0xFF)	        << 24) |
904			(((u32)vf_info->mac[0]) << 16) |
905			(((u32)vf_info->mac[1]) << 8) |
906			((u32)vf_info->mac[2]);
907	}
908
909	/* Record the base address into queue 0 */
910	fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
911	fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
912
913err_out:
914	/* configure Queue control register */
915	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
916		 FM10K_TXQCTL_VID_MASK;
917	txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
918		  FM10K_TXQCTL_VF | vf_idx;
919
920	/* assign VID */
921	for (i = 0; i < queues_per_pool; i++)
922		fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
923
924	/* restore the queue back to VF ownership */
925	fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
926	return err;
927}
928
929/**
930 *  fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
931 *  @hw: pointer to the HW structure
932 *  @vf_info: pointer to VF information structure
933 *
934 *  Reassign the interrupts and queues to a VF following an FLR
935 **/
936static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
937					struct fm10k_vf_info *vf_info)
938{
939	u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
940	u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
941	u16 vf_v_idx, vf_v_limit, vf_vid;
942	u8 vf_idx = vf_info->vf_idx;
943	int i;
944
945	/* verify vf is in range */
946	if (vf_idx >= hw->iov.num_vfs)
947		return FM10K_ERR_PARAM;
948
949	/* clear event notification of VF FLR */
950	fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32));
951
952	/* force timeout and then disconnect the mailbox */
953	vf_info->mbx.timeout = 0;
954	if (vf_info->mbx.ops.disconnect)
955		vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
956
957	/* determine vector offset and count */
958	vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
959	vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
960
961	/* determine qmap offsets and counts */
962	qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
963	queues_per_pool = fm10k_queues_per_pool(hw);
964	qmap_idx = qmap_stride * vf_idx;
965
966	/* make all the queues inaccessible to the VF */
967	for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
968		fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
969		fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
970	}
971
972	/* calculate starting index for queues */
973	vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
974
975	/* determine correct default VLAN ID */
976	if (vf_info->pf_vid)
977		vf_vid = vf_info->pf_vid;
978	else
979		vf_vid = vf_info->sw_vid;
980
981	/* configure Queue control register */
982	txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
983		 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
984		 FM10K_TXQCTL_VF | vf_idx;
985	rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
986
987	/* stop further DMA and reset queue ownership back to VF */
988	for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
989		fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
990		fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
991		fm10k_write_reg(hw, FM10K_RXDCTL(i),
992				FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
993				FM10K_RXDCTL_DROP_ON_EMPTY);
994		fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
995	}
996
997	/* reset TC with -1 credits and no quanta to prevent transmit */
998	fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
999	fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
1000	fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
1001			FM10K_TC_CREDIT_CREDIT_MASK);
1002
1003	/* update our first entry in the table based on previous VF */
1004	if (!vf_idx)
1005		hw->mac.ops.update_int_moderator(hw);
1006	else
1007		hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
1008
1009	/* reset linked list so it now includes our active vectors */
1010	if (vf_idx == (hw->iov.num_vfs - 1))
1011		fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
1012	else
1013		fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1014
1015	/* link remaining vectors so that next points to previous */
1016	for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1017		fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1018
1019	/* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1020	for (i = FM10K_VFMBMEM_LEN; i--;)
1021		fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1022	for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1023		fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1024	for (i = FM10K_RETA_SIZE; i--;)
1025		fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1026	for (i = FM10K_RSSRK_SIZE; i--;)
1027		fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1028	fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1029
1030	/* Update base address registers to contain MAC address */
1031	if (is_valid_ether_addr(vf_info->mac)) {
1032		tdbal = (((u32)vf_info->mac[3]) << 24) |
1033			(((u32)vf_info->mac[4]) << 16) |
1034			(((u32)vf_info->mac[5]) << 8);
1035		tdbah = (((u32)0xFF)	   << 24) |
1036			(((u32)vf_info->mac[0]) << 16) |
1037			(((u32)vf_info->mac[1]) << 8) |
1038			((u32)vf_info->mac[2]);
1039	}
1040
1041	/* map queue pairs back to VF from last to first */
1042	for (i = queues_per_pool; i--;) {
1043		fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1044		fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1045		fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1046		fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1047	}
1048
1049	return 0;
1050}
1051
1052/**
1053 *  fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1054 *  @hw: pointer to hardware structure
1055 *  @vf_info: pointer to VF information structure
1056 *  @lport_idx: Logical port offset from the hardware glort
1057 *  @flags: Set of capability flags to extend port beyond basic functionality
1058 *
1059 *  This function allows enabling a VF port by assigning it a GLORT and
1060 *  setting the flags so that it can enable an Rx mode.
1061 **/
1062static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1063				  struct fm10k_vf_info *vf_info,
1064				  u16 lport_idx, u8 flags)
1065{
1066	u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1067
1068	/* if glort is not valid return error */
1069	if (!fm10k_glort_valid_pf(hw, glort))
1070		return FM10K_ERR_PARAM;
1071
1072	vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1073	vf_info->glort = glort;
1074
1075	return 0;
1076}
1077
1078/**
1079 *  fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1080 *  @hw: pointer to hardware structure
1081 *  @vf_info: pointer to VF information structure
1082 *
1083 *  This function disables a VF port by stripping it of a GLORT and
1084 *  setting the flags so that it cannot enable any Rx mode.
1085 **/
1086static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1087				     struct fm10k_vf_info *vf_info)
1088{
1089	u32 msg[1];
1090
1091	/* need to disable the port if it is already enabled */
1092	if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1093		/* notify switch that this port has been disabled */
1094		fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1095
1096		/* generate port state response to notify VF it is not ready */
1097		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1098		vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1099	}
1100
1101	/* clear flags and glort if it exists */
1102	vf_info->vf_flags = 0;
1103	vf_info->glort = 0;
1104}
1105
1106/**
1107 *  fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1108 *  @hw: pointer to hardware structure
1109 *  @q: stats for all queues of a VF
1110 *  @vf_idx: index of VF
1111 *
1112 *  This function collects queue stats for VFs.
1113 **/
1114static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1115				      struct fm10k_hw_stats_q *q,
1116				      u16 vf_idx)
1117{
1118	u32 idx, qpp;
1119
1120	/* get stats for all of the queues */
1121	qpp = fm10k_queues_per_pool(hw);
1122	idx = fm10k_vf_queue_index(hw, vf_idx);
1123	fm10k_update_hw_stats_q(hw, q, idx, qpp);
1124}
1125
1126static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw,
1127					 struct fm10k_vf_info *vf_info,
1128					 u64 timestamp)
1129{
1130	u32 msg[4];
1131
1132	/* generate port state response to notify VF it is not ready */
1133	fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1134	fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp);
1135
1136	return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1137}
1138
1139/**
1140 *  fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1141 *  @hw: Pointer to hardware structure
1142 *  @results: Pointer array to message, results[0] is pointer to message
1143 *  @mbx: Pointer to mailbox information structure
1144 *
1145 *  This function is a default handler for MSI-X requests from the VF.  The
1146 *  assumption is that in this case it is acceptable to just directly
1147 *  hand off the message from the VF to the underlying shared code.
1148 **/
1149s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1150			  struct fm10k_mbx_info *mbx)
1151{
1152	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1153	u8 vf_idx = vf_info->vf_idx;
1154
1155	return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1156}
1157
1158/**
1159 *  fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1160 *  @hw: Pointer to hardware structure
1161 *  @results: Pointer array to message, results[0] is pointer to message
1162 *  @mbx: Pointer to mailbox information structure
1163 *
1164 *  This function is a default handler for MAC/VLAN requests from the VF.
1165 *  The assumption is that in this case it is acceptable to just directly
1166 *  hand off the message from the VF to the underlying shared code.
1167 **/
1168s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1169			      struct fm10k_mbx_info *mbx)
1170{
1171	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1172	int err = 0;
1173	u8 mac[ETH_ALEN];
1174	u32 *result;
1175	u16 vlan;
1176	u32 vid;
1177
1178	/* we shouldn't be updating rules on a disabled interface */
1179	if (!FM10K_VF_FLAG_ENABLED(vf_info))
1180		err = FM10K_ERR_PARAM;
1181
1182	if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1183		result = results[FM10K_MAC_VLAN_MSG_VLAN];
1184
1185		/* record VLAN id requested */
1186		err = fm10k_tlv_attr_get_u32(result, &vid);
1187		if (err)
1188			return err;
1189
1190		/* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1191		if (!vid || (vid == FM10K_VLAN_CLEAR)) {
1192			if (vf_info->pf_vid)
1193				vid |= vf_info->pf_vid;
1194			else
1195				vid |= vf_info->sw_vid;
1196		} else if (vid != vf_info->pf_vid) {
1197			return FM10K_ERR_PARAM;
1198		}
1199
1200		/* update VSI info for VF in regards to VLAN table */
1201		err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi,
1202					      !(vid & FM10K_VLAN_CLEAR));
1203	}
1204
1205	if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1206		result = results[FM10K_MAC_VLAN_MSG_MAC];
1207
1208		/* record unicast MAC address requested */
1209		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1210		if (err)
1211			return err;
1212
1213		/* block attempts to set MAC for a locked device */
1214		if (is_valid_ether_addr(vf_info->mac) &&
1215		    memcmp(mac, vf_info->mac, ETH_ALEN))
1216			return FM10K_ERR_PARAM;
1217
1218		/* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1219		if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1220			if (vf_info->pf_vid)
1221				vlan |= vf_info->pf_vid;
1222			else
1223				vlan |= vf_info->sw_vid;
1224		} else if (vf_info->pf_vid) {
1225			return FM10K_ERR_PARAM;
1226		}
1227
1228		/* notify switch of request for new unicast address */
1229		err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, mac, vlan,
1230						 !(vlan & FM10K_VLAN_CLEAR), 0);
1231	}
1232
1233	if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1234		result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1235
1236		/* record multicast MAC address requested */
1237		err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1238		if (err)
1239			return err;
1240
1241		/* verify that the VF is allowed to request multicast */
1242		if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1243			return FM10K_ERR_PARAM;
1244
1245		/* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1246		if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1247			if (vf_info->pf_vid)
1248				vlan |= vf_info->pf_vid;
1249			else
1250				vlan |= vf_info->sw_vid;
1251		} else if (vf_info->pf_vid) {
1252			return FM10K_ERR_PARAM;
1253		}
1254
1255		/* notify switch of request for new multicast address */
1256		err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, mac, vlan,
1257						 !(vlan & FM10K_VLAN_CLEAR));
1258	}
1259
1260	return err;
1261}
1262
1263/**
1264 *  fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1265 *  @vf_info: VF info structure containing capability flags
1266 *  @mode: Requested xcast mode
1267 *
1268 *  This function outputs the mode that most closely matches the requested
1269 *  mode.  If not modes match it will request we disable the port
1270 **/
1271static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1272					    u8 mode)
1273{
1274	u8 vf_flags = vf_info->vf_flags;
1275
1276	/* match up mode to capabilities as best as possible */
1277	switch (mode) {
1278	case FM10K_XCAST_MODE_PROMISC:
1279		if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1280			return FM10K_XCAST_MODE_PROMISC;
1281		/* fallthough */
1282	case FM10K_XCAST_MODE_ALLMULTI:
1283		if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1284			return FM10K_XCAST_MODE_ALLMULTI;
1285		/* fallthough */
1286	case FM10K_XCAST_MODE_MULTI:
1287		if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1288			return FM10K_XCAST_MODE_MULTI;
1289		/* fallthough */
1290	case FM10K_XCAST_MODE_NONE:
1291		if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1292			return FM10K_XCAST_MODE_NONE;
1293		/* fallthough */
1294	default:
1295		break;
1296	}
1297
1298	/* disable interface as it should not be able to request any */
1299	return FM10K_XCAST_MODE_DISABLE;
1300}
1301
1302/**
1303 *  fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1304 *  @hw: Pointer to hardware structure
1305 *  @results: Pointer array to message, results[0] is pointer to message
1306 *  @mbx: Pointer to mailbox information structure
1307 *
1308 *  This function is a default handler for port state requests.  The port
1309 *  state requests for now are basic and consist of enabling or disabling
1310 *  the port.
1311 **/
1312s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1313				 struct fm10k_mbx_info *mbx)
1314{
1315	struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1316	u32 *result;
1317	s32 err = 0;
1318	u32 msg[2];
1319	u8 mode = 0;
1320
1321	/* verify VF is allowed to enable even minimal mode */
1322	if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1323		return FM10K_ERR_PARAM;
1324
1325	if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1326		result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1327
1328		/* XCAST mode update requested */
1329		err = fm10k_tlv_attr_get_u8(result, &mode);
1330		if (err)
1331			return FM10K_ERR_PARAM;
1332
1333		/* prep for possible demotion depending on capabilities */
1334		mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1335
1336		/* if mode is not currently enabled, enable it */
1337		if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode)))
1338			fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1339
1340		/* swap mode back to a bit flag */
1341		mode = FM10K_VF_FLAG_SET_MODE(mode);
1342	} else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1343		/* need to disable the port if it is already enabled */
1344		if (FM10K_VF_FLAG_ENABLED(vf_info))
1345			err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1346							  1, false);
1347
1348		/* when enabling the port we should reset the rate limiters */
1349		hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1350
1351		/* set mode for minimal functionality */
1352		mode = FM10K_VF_FLAG_SET_MODE_NONE;
1353
1354		/* generate port state response to notify VF it is ready */
1355		fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1356		fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1357		mbx->ops.enqueue_tx(hw, mbx, msg);
1358	}
1359
1360	/* if enable state toggled note the update */
1361	if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1362		err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1363						  !!mode);
1364
1365	/* if state change succeeded, then update our stored state */
1366	mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1367	if (!err)
1368		vf_info->vf_flags = mode;
1369
1370	return err;
1371}
1372
1373const struct fm10k_msg_data fm10k_iov_msg_data_pf[] = {
1374	FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1375	FM10K_VF_MSG_MSIX_HANDLER(fm10k_iov_msg_msix_pf),
1376	FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_iov_msg_mac_vlan_pf),
1377	FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_iov_msg_lport_state_pf),
1378	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1379};
1380
1381/**
1382 *  fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1383 *  @hw: pointer to hardware structure
1384 *  @stats: pointer to the stats structure to update
1385 *
1386 *  This function collects and aggregates global and per queue hardware
1387 *  statistics.
1388 **/
1389static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1390				     struct fm10k_hw_stats *stats)
1391{
1392	u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1393	u32 id, id_prev;
1394
1395	/* Use Tx queue 0 as a canary to detect a reset */
1396	id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1397
1398	/* Read Global Statistics */
1399	do {
1400		timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1401						  &stats->timeout);
1402		ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1403		ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1404		um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1405		xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1406		vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1407						    &stats->vlan_drop);
1408		loopback_drop = fm10k_read_hw_stats_32b(hw,
1409							FM10K_STATS_LOOPBACK_DROP,
1410							&stats->loopback_drop);
1411		nodesc_drop = fm10k_read_hw_stats_32b(hw,
1412						      FM10K_STATS_NODESC_DROP,
1413						      &stats->nodesc_drop);
1414
1415		/* if value has not changed then we have consistent data */
1416		id_prev = id;
1417		id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1418	} while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1419
1420	/* drop non-ID bits and set VALID ID bit */
1421	id &= FM10K_TXQCTL_ID_MASK;
1422	id |= FM10K_STAT_VALID;
1423
1424	/* Update Global Statistics */
1425	if (stats->stats_idx == id) {
1426		stats->timeout.count += timeout;
1427		stats->ur.count += ur;
1428		stats->ca.count += ca;
1429		stats->um.count += um;
1430		stats->xec.count += xec;
1431		stats->vlan_drop.count += vlan_drop;
1432		stats->loopback_drop.count += loopback_drop;
1433		stats->nodesc_drop.count += nodesc_drop;
1434	}
1435
1436	/* Update bases and record current PF id */
1437	fm10k_update_hw_base_32b(&stats->timeout, timeout);
1438	fm10k_update_hw_base_32b(&stats->ur, ur);
1439	fm10k_update_hw_base_32b(&stats->ca, ca);
1440	fm10k_update_hw_base_32b(&stats->um, um);
1441	fm10k_update_hw_base_32b(&stats->xec, xec);
1442	fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1443	fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1444	fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1445	stats->stats_idx = id;
1446
1447	/* Update Queue Statistics */
1448	fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1449}
1450
1451/**
1452 *  fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1453 *  @hw: pointer to hardware structure
1454 *  @stats: pointer to the stats structure to update
1455 *
1456 *  This function resets the base for global and per queue hardware
1457 *  statistics.
1458 **/
1459static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1460				     struct fm10k_hw_stats *stats)
1461{
1462	/* Unbind Global Statistics */
1463	fm10k_unbind_hw_stats_32b(&stats->timeout);
1464	fm10k_unbind_hw_stats_32b(&stats->ur);
1465	fm10k_unbind_hw_stats_32b(&stats->ca);
1466	fm10k_unbind_hw_stats_32b(&stats->um);
1467	fm10k_unbind_hw_stats_32b(&stats->xec);
1468	fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1469	fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1470	fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1471
1472	/* Unbind Queue Statistics */
1473	fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1474
1475	/* Reinitialize bases for all stats */
1476	fm10k_update_hw_stats_pf(hw, stats);
1477}
1478
1479/**
1480 *  fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1481 *  @hw: pointer to hardware structure
1482 *  @dma_mask: 64 bit DMA mask required for platform
1483 *
1484 *  This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1485 *  to limit the access to memory beyond what is physically in the system.
1486 **/
1487static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1488{
1489	/* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1490	u32 phyaddr = (u32)(dma_mask >> 32);
1491
1492	fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1493}
1494
1495/**
1496 *  fm10k_get_fault_pf - Record a fault in one of the interface units
1497 *  @hw: pointer to hardware structure
1498 *  @type: pointer to fault type register offset
1499 *  @fault: pointer to memory location to record the fault
1500 *
1501 *  Record the fault register contents to the fault data structure and
1502 *  clear the entry from the register.
1503 *
1504 *  Returns ERR_PARAM if invalid register is specified or no error is present.
1505 **/
1506static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1507			      struct fm10k_fault *fault)
1508{
1509	u32 func;
1510
1511	/* verify the fault register is in range and is aligned */
1512	switch (type) {
1513	case FM10K_PCA_FAULT:
1514	case FM10K_THI_FAULT:
1515	case FM10K_FUM_FAULT:
1516		break;
1517	default:
1518		return FM10K_ERR_PARAM;
1519	}
1520
1521	/* only service faults that are valid */
1522	func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1523	if (!(func & FM10K_FAULT_FUNC_VALID))
1524		return FM10K_ERR_PARAM;
1525
1526	/* read remaining fields */
1527	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1528	fault->address <<= 32;
1529	fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1530	fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1531
1532	/* clear valid bit to allow for next error */
1533	fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1534
1535	/* Record which function triggered the error */
1536	if (func & FM10K_FAULT_FUNC_PF)
1537		fault->func = 0;
1538	else
1539		fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1540				   FM10K_FAULT_FUNC_VF_SHIFT);
1541
1542	/* record fault type */
1543	fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1544
1545	return 0;
1546}
1547
1548/**
1549 *  fm10k_request_lport_map_pf - Request LPORT map from the switch API
1550 *  @hw: pointer to hardware structure
1551 *
1552 **/
1553static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1554{
1555	struct fm10k_mbx_info *mbx = &hw->mbx;
1556	u32 msg[1];
1557
1558	/* issue request asking for LPORT map */
1559	fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1560
1561	/* load onto outgoing mailbox */
1562	return mbx->ops.enqueue_tx(hw, mbx, msg);
1563}
1564
1565/**
1566 *  fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1567 *  @hw: pointer to hardware structure
1568 *  @switch_ready: pointer to boolean value that will record switch state
1569 *
1570 *  This funciton will check the DMA_CTRL2 register and mailbox in order
1571 *  to determine if the switch is ready for the PF to begin requesting
1572 *  addresses and mapping traffic to the local interface.
1573 **/
1574static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1575{
1576	s32 ret_val = 0;
1577	u32 dma_ctrl2;
1578
1579	/* verify the switch is ready for interaction */
1580	dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1581	if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1582		goto out;
1583
1584	/* retrieve generic host state info */
1585	ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1586	if (ret_val)
1587		goto out;
1588
1589	/* interface cannot receive traffic without logical ports */
1590	if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1591		ret_val = fm10k_request_lport_map_pf(hw);
1592
1593out:
1594	return ret_val;
1595}
1596
1597/* This structure defines the attibutes to be parsed below */
1598const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1599	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1600	FM10K_TLV_ATTR_LAST
1601};
1602
1603/**
1604 *  fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1605 *  @hw: Pointer to hardware structure
1606 *  @results: pointer array containing parsed data
1607 *  @mbx: Pointer to mailbox information structure
1608 *
1609 *  This handler configures the lport mapping based on the reply from the
1610 *  switch API.
1611 **/
1612s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1613			   struct fm10k_mbx_info *mbx)
1614{
1615	u16 glort, mask;
1616	u32 dglort_map;
1617	s32 err;
1618
1619	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1620				     &dglort_map);
1621	if (err)
1622		return err;
1623
1624	/* extract values out of the header */
1625	glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1626	mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1627
1628	/* verify mask is set and none of the masked bits in glort are set */
1629	if (!mask || (glort & ~mask))
1630		return FM10K_ERR_PARAM;
1631
1632	/* verify the mask is contiguous, and that it is 1's followed by 0's */
1633	if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1634		return FM10K_ERR_PARAM;
1635
1636	/* record the glort, mask, and port count */
1637	hw->mac.dglort_map = dglort_map;
1638
1639	return 0;
1640}
1641
1642const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1643	FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1644	FM10K_TLV_ATTR_LAST
1645};
1646
1647/**
1648 *  fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1649 *  @hw: Pointer to hardware structure
1650 *  @results: pointer array containing parsed data
1651 *  @mbx: Pointer to mailbox information structure
1652 *
1653 *  This handler configures the default VLAN for the PF
1654 **/
1655s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1656			     struct fm10k_mbx_info *mbx)
1657{
1658	u16 glort, pvid;
1659	u32 pvid_update;
1660	s32 err;
1661
1662	err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1663				     &pvid_update);
1664	if (err)
1665		return err;
1666
1667	/* extract values from the pvid update */
1668	glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1669	pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1670
1671	/* if glort is not valid return error */
1672	if (!fm10k_glort_valid_pf(hw, glort))
1673		return FM10K_ERR_PARAM;
1674
1675	/* verify VID is valid */
1676	if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1677		return FM10K_ERR_PARAM;
1678
1679	/* record the port VLAN ID value */
1680	hw->mac.default_vid = pvid;
1681
1682	return 0;
1683}
1684
1685/**
1686 *  fm10k_record_global_table_data - Move global table data to swapi table info
1687 *  @from: pointer to source table data structure
1688 *  @to: pointer to destination table info structure
1689 *
1690 *  This function is will copy table_data to the table_info contained in
1691 *  the hw struct.
1692 **/
1693static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1694					   struct fm10k_swapi_table_info *to)
1695{
1696	/* convert from le32 struct to CPU byte ordered values */
1697	to->used = le32_to_cpu(from->used);
1698	to->avail = le32_to_cpu(from->avail);
1699}
1700
1701const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1702	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1703				 sizeof(struct fm10k_swapi_error)),
1704	FM10K_TLV_ATTR_LAST
1705};
1706
1707/**
1708 *  fm10k_msg_err_pf - Message handler for error reply
1709 *  @hw: Pointer to hardware structure
1710 *  @results: pointer array containing parsed data
1711 *  @mbx: Pointer to mailbox information structure
1712 *
1713 *  This handler will capture the data for any error replies to previous
1714 *  messages that the PF has sent.
1715 **/
1716s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1717		     struct fm10k_mbx_info *mbx)
1718{
1719	struct fm10k_swapi_error err_msg;
1720	s32 err;
1721
1722	/* extract structure from message */
1723	err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1724					   &err_msg, sizeof(err_msg));
1725	if (err)
1726		return err;
1727
1728	/* record table status */
1729	fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1730	fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1731	fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1732
1733	/* record SW API status value */
1734	hw->swapi.status = le32_to_cpu(err_msg.status);
1735
1736	return 0;
1737}
1738
1739const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1740	FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1741				 sizeof(struct fm10k_swapi_1588_timestamp)),
1742	FM10K_TLV_ATTR_LAST
1743};
1744
1745/* currently there is no shared 1588 timestamp handler */
1746
1747/**
1748 *  fm10k_adjust_systime_pf - Adjust systime frequency
1749 *  @hw: pointer to hardware structure
1750 *  @ppb: adjustment rate in parts per billion
1751 *
1752 *  This function will adjust the SYSTIME_CFG register contained in BAR 4
1753 *  if this function is supported for BAR 4 access.  The adjustment amount
1754 *  is based on the parts per billion value provided and adjusted to a
1755 *  value based on parts per 2^48 clock cycles.
1756 *
1757 *  If adjustment is not supported or the requested value is too large
1758 *  we will return an error.
1759 **/
1760static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1761{
1762	u64 systime_adjust;
1763
1764	/* if sw_addr is not set we don't have switch register access */
1765	if (!hw->sw_addr)
1766		return ppb ? FM10K_ERR_PARAM : 0;
1767
1768	/* we must convert the value from parts per billion to parts per
1769	 * 2^48 cycles.  In addition I have opted to only use the 30 most
1770	 * significant bits of the adjustment value as the 8 least
1771	 * significant bits are located in another register and represent
1772	 * a value significantly less than a part per billion, the result
1773	 * of dropping the 8 least significant bits is that the adjustment
1774	 * value is effectively multiplied by 2^8 when we write it.
1775	 *
1776	 * As a result of all this the math for this breaks down as follows:
1777	 *	ppb / 10^9 == adjust * 2^8 / 2^48
1778	 * If we solve this for adjust, and simplify it comes out as:
1779	 *	ppb * 2^31 / 5^9 == adjust
1780	 */
1781	systime_adjust = (ppb < 0) ? -ppb : ppb;
1782	systime_adjust <<= 31;
1783	do_div(systime_adjust, 1953125);
1784
1785	/* verify the requested adjustment value is in range */
1786	if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1787		return FM10K_ERR_PARAM;
1788
1789	if (ppb < 0)
1790		systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_NEGATIVE;
1791
1792	fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1793
1794	return 0;
1795}
1796
1797/**
1798 *  fm10k_read_systime_pf - Reads value of systime registers
1799 *  @hw: pointer to the hardware structure
1800 *
1801 *  Function reads the content of 2 registers, combined to represent a 64 bit
1802 *  value measured in nanosecods.  In order to guarantee the value is accurate
1803 *  we check the 32 most significant bits both before and after reading the
1804 *  32 least significant bits to verify they didn't change as we were reading
1805 *  the registers.
1806 **/
1807static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
1808{
1809	u32 systime_l, systime_h, systime_tmp;
1810
1811	systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1812
1813	do {
1814		systime_tmp = systime_h;
1815		systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
1816		systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1817	} while (systime_tmp != systime_h);
1818
1819	return ((u64)systime_h << 32) | systime_l;
1820}
1821
1822static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1823	FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1824	FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1825	FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1826	FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1827	FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1828	FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1829	FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1830};
1831
1832static struct fm10k_mac_ops mac_ops_pf = {
1833	.get_bus_info		= &fm10k_get_bus_info_generic,
1834	.reset_hw		= &fm10k_reset_hw_pf,
1835	.init_hw		= &fm10k_init_hw_pf,
1836	.start_hw		= &fm10k_start_hw_generic,
1837	.stop_hw		= &fm10k_stop_hw_generic,
1838	.is_slot_appropriate	= &fm10k_is_slot_appropriate_pf,
1839	.update_vlan		= &fm10k_update_vlan_pf,
1840	.read_mac_addr		= &fm10k_read_mac_addr_pf,
1841	.update_uc_addr		= &fm10k_update_uc_addr_pf,
1842	.update_mc_addr		= &fm10k_update_mc_addr_pf,
1843	.update_xcast_mode	= &fm10k_update_xcast_mode_pf,
1844	.update_int_moderator	= &fm10k_update_int_moderator_pf,
1845	.update_lport_state	= &fm10k_update_lport_state_pf,
1846	.update_hw_stats	= &fm10k_update_hw_stats_pf,
1847	.rebind_hw_stats	= &fm10k_rebind_hw_stats_pf,
1848	.configure_dglort_map	= &fm10k_configure_dglort_map_pf,
1849	.set_dma_mask		= &fm10k_set_dma_mask_pf,
1850	.get_fault		= &fm10k_get_fault_pf,
1851	.get_host_state		= &fm10k_get_host_state_pf,
1852	.adjust_systime		= &fm10k_adjust_systime_pf,
1853	.read_systime		= &fm10k_read_systime_pf,
1854};
1855
1856static struct fm10k_iov_ops iov_ops_pf = {
1857	.assign_resources		= &fm10k_iov_assign_resources_pf,
1858	.configure_tc			= &fm10k_iov_configure_tc_pf,
1859	.assign_int_moderator		= &fm10k_iov_assign_int_moderator_pf,
1860	.assign_default_mac_vlan	= fm10k_iov_assign_default_mac_vlan_pf,
1861	.reset_resources		= &fm10k_iov_reset_resources_pf,
1862	.set_lport			= &fm10k_iov_set_lport_pf,
1863	.reset_lport			= &fm10k_iov_reset_lport_pf,
1864	.update_stats			= &fm10k_iov_update_stats_pf,
1865	.report_timestamp		= &fm10k_iov_report_timestamp_pf,
1866};
1867
1868static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1869{
1870	fm10k_get_invariants_generic(hw);
1871
1872	return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1873}
1874
1875struct fm10k_info fm10k_pf_info = {
1876	.mac		= fm10k_mac_pf,
1877	.get_invariants	= &fm10k_get_invariants_pf,
1878	.mac_ops	= &mac_ops_pf,
1879	.iov_ops	= &iov_ops_pf,
1880};
1881