1/* Intel(R) Gigabit Ethernet Linux driver 2 * Copyright(c) 2007-2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * You should have received a copy of the GNU General Public License along with 14 * this program; if not, see <http://www.gnu.org/licenses/>. 15 * 16 * The full GNU General Public License is included in this distribution in 17 * the file called "COPYING". 18 * 19 * Contact Information: 20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 22 */ 23 24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 25 26#include <linux/module.h> 27#include <linux/types.h> 28#include <linux/init.h> 29#include <linux/bitops.h> 30#include <linux/vmalloc.h> 31#include <linux/pagemap.h> 32#include <linux/netdevice.h> 33#include <linux/ipv6.h> 34#include <linux/slab.h> 35#include <net/checksum.h> 36#include <net/ip6_checksum.h> 37#include <linux/net_tstamp.h> 38#include <linux/mii.h> 39#include <linux/ethtool.h> 40#include <linux/if.h> 41#include <linux/if_vlan.h> 42#include <linux/pci.h> 43#include <linux/pci-aspm.h> 44#include <linux/delay.h> 45#include <linux/interrupt.h> 46#include <linux/ip.h> 47#include <linux/tcp.h> 48#include <linux/sctp.h> 49#include <linux/if_ether.h> 50#include <linux/aer.h> 51#include <linux/prefetch.h> 52#include <linux/pm_runtime.h> 53#ifdef CONFIG_IGB_DCA 54#include <linux/dca.h> 55#endif 56#include <linux/i2c.h> 57#include "igb.h" 58 59#define MAJ 5 60#define MIN 2 61#define BUILD 15 62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \ 63__stringify(BUILD) "-k" 64char igb_driver_name[] = "igb"; 65char igb_driver_version[] = DRV_VERSION; 66static const char igb_driver_string[] = 67 "Intel(R) Gigabit Ethernet Network Driver"; 68static const char igb_copyright[] = 69 "Copyright (c) 2007-2014 Intel Corporation."; 70 71static const struct e1000_info *igb_info_tbl[] = { 72 [board_82575] = &e1000_82575_info, 73}; 74 75static const struct pci_device_id igb_pci_tbl[] = { 76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) }, 77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) }, 78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) }, 79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 }, 80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 }, 81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 }, 82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 }, 83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 }, 84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 }, 85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 }, 86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 }, 87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 }, 88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 }, 89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 }, 90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 }, 91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 }, 92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 }, 93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 }, 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 }, 95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 }, 96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 }, 97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 }, 98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 }, 99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 }, 100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 }, 101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 }, 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 }, 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 }, 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 }, 105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 }, 106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 }, 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 }, 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 }, 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 }, 110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 }, 111 /* required last entry */ 112 {0, } 113}; 114 115MODULE_DEVICE_TABLE(pci, igb_pci_tbl); 116 117static int igb_setup_all_tx_resources(struct igb_adapter *); 118static int igb_setup_all_rx_resources(struct igb_adapter *); 119static void igb_free_all_tx_resources(struct igb_adapter *); 120static void igb_free_all_rx_resources(struct igb_adapter *); 121static void igb_setup_mrqc(struct igb_adapter *); 122static int igb_probe(struct pci_dev *, const struct pci_device_id *); 123static void igb_remove(struct pci_dev *pdev); 124static int igb_sw_init(struct igb_adapter *); 125static int igb_open(struct net_device *); 126static int igb_close(struct net_device *); 127static void igb_configure(struct igb_adapter *); 128static void igb_configure_tx(struct igb_adapter *); 129static void igb_configure_rx(struct igb_adapter *); 130static void igb_clean_all_tx_rings(struct igb_adapter *); 131static void igb_clean_all_rx_rings(struct igb_adapter *); 132static void igb_clean_tx_ring(struct igb_ring *); 133static void igb_clean_rx_ring(struct igb_ring *); 134static void igb_set_rx_mode(struct net_device *); 135static void igb_update_phy_info(unsigned long); 136static void igb_watchdog(unsigned long); 137static void igb_watchdog_task(struct work_struct *); 138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *); 139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev, 140 struct rtnl_link_stats64 *stats); 141static int igb_change_mtu(struct net_device *, int); 142static int igb_set_mac(struct net_device *, void *); 143static void igb_set_uta(struct igb_adapter *adapter); 144static irqreturn_t igb_intr(int irq, void *); 145static irqreturn_t igb_intr_msi(int irq, void *); 146static irqreturn_t igb_msix_other(int irq, void *); 147static irqreturn_t igb_msix_ring(int irq, void *); 148#ifdef CONFIG_IGB_DCA 149static void igb_update_dca(struct igb_q_vector *); 150static void igb_setup_dca(struct igb_adapter *); 151#endif /* CONFIG_IGB_DCA */ 152static int igb_poll(struct napi_struct *, int); 153static bool igb_clean_tx_irq(struct igb_q_vector *); 154static bool igb_clean_rx_irq(struct igb_q_vector *, int); 155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd); 156static void igb_tx_timeout(struct net_device *); 157static void igb_reset_task(struct work_struct *); 158static void igb_vlan_mode(struct net_device *netdev, 159 netdev_features_t features); 160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16); 161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16); 162static void igb_restore_vlan(struct igb_adapter *); 163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8); 164static void igb_ping_all_vfs(struct igb_adapter *); 165static void igb_msg_task(struct igb_adapter *); 166static void igb_vmm_control(struct igb_adapter *); 167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *); 168static void igb_restore_vf_multicasts(struct igb_adapter *adapter); 169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac); 170static int igb_ndo_set_vf_vlan(struct net_device *netdev, 171 int vf, u16 vlan, u8 qos); 172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int); 173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 174 bool setting); 175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf, 176 struct ifla_vf_info *ivi); 177static void igb_check_vf_rate_limit(struct igb_adapter *); 178 179#ifdef CONFIG_PCI_IOV 180static int igb_vf_configure(struct igb_adapter *adapter, int vf); 181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs); 182#endif 183 184#ifdef CONFIG_PM 185#ifdef CONFIG_PM_SLEEP 186static int igb_suspend(struct device *); 187#endif 188static int igb_resume(struct device *); 189static int igb_runtime_suspend(struct device *dev); 190static int igb_runtime_resume(struct device *dev); 191static int igb_runtime_idle(struct device *dev); 192static const struct dev_pm_ops igb_pm_ops = { 193 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume) 194 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume, 195 igb_runtime_idle) 196}; 197#endif 198static void igb_shutdown(struct pci_dev *); 199static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs); 200#ifdef CONFIG_IGB_DCA 201static int igb_notify_dca(struct notifier_block *, unsigned long, void *); 202static struct notifier_block dca_notifier = { 203 .notifier_call = igb_notify_dca, 204 .next = NULL, 205 .priority = 0 206}; 207#endif 208#ifdef CONFIG_NET_POLL_CONTROLLER 209/* for netdump / net console */ 210static void igb_netpoll(struct net_device *); 211#endif 212#ifdef CONFIG_PCI_IOV 213static unsigned int max_vfs; 214module_param(max_vfs, uint, 0); 215MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function"); 216#endif /* CONFIG_PCI_IOV */ 217 218static pci_ers_result_t igb_io_error_detected(struct pci_dev *, 219 pci_channel_state_t); 220static pci_ers_result_t igb_io_slot_reset(struct pci_dev *); 221static void igb_io_resume(struct pci_dev *); 222 223static const struct pci_error_handlers igb_err_handler = { 224 .error_detected = igb_io_error_detected, 225 .slot_reset = igb_io_slot_reset, 226 .resume = igb_io_resume, 227}; 228 229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba); 230 231static struct pci_driver igb_driver = { 232 .name = igb_driver_name, 233 .id_table = igb_pci_tbl, 234 .probe = igb_probe, 235 .remove = igb_remove, 236#ifdef CONFIG_PM 237 .driver.pm = &igb_pm_ops, 238#endif 239 .shutdown = igb_shutdown, 240 .sriov_configure = igb_pci_sriov_configure, 241 .err_handler = &igb_err_handler 242}; 243 244MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>"); 245MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver"); 246MODULE_LICENSE("GPL"); 247MODULE_VERSION(DRV_VERSION); 248 249#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 250static int debug = -1; 251module_param(debug, int, 0); 252MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 253 254struct igb_reg_info { 255 u32 ofs; 256 char *name; 257}; 258 259static const struct igb_reg_info igb_reg_info_tbl[] = { 260 261 /* General Registers */ 262 {E1000_CTRL, "CTRL"}, 263 {E1000_STATUS, "STATUS"}, 264 {E1000_CTRL_EXT, "CTRL_EXT"}, 265 266 /* Interrupt Registers */ 267 {E1000_ICR, "ICR"}, 268 269 /* RX Registers */ 270 {E1000_RCTL, "RCTL"}, 271 {E1000_RDLEN(0), "RDLEN"}, 272 {E1000_RDH(0), "RDH"}, 273 {E1000_RDT(0), "RDT"}, 274 {E1000_RXDCTL(0), "RXDCTL"}, 275 {E1000_RDBAL(0), "RDBAL"}, 276 {E1000_RDBAH(0), "RDBAH"}, 277 278 /* TX Registers */ 279 {E1000_TCTL, "TCTL"}, 280 {E1000_TDBAL(0), "TDBAL"}, 281 {E1000_TDBAH(0), "TDBAH"}, 282 {E1000_TDLEN(0), "TDLEN"}, 283 {E1000_TDH(0), "TDH"}, 284 {E1000_TDT(0), "TDT"}, 285 {E1000_TXDCTL(0), "TXDCTL"}, 286 {E1000_TDFH, "TDFH"}, 287 {E1000_TDFT, "TDFT"}, 288 {E1000_TDFHS, "TDFHS"}, 289 {E1000_TDFPC, "TDFPC"}, 290 291 /* List Terminator */ 292 {} 293}; 294 295/* igb_regdump - register printout routine */ 296static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo) 297{ 298 int n = 0; 299 char rname[16]; 300 u32 regs[8]; 301 302 switch (reginfo->ofs) { 303 case E1000_RDLEN(0): 304 for (n = 0; n < 4; n++) 305 regs[n] = rd32(E1000_RDLEN(n)); 306 break; 307 case E1000_RDH(0): 308 for (n = 0; n < 4; n++) 309 regs[n] = rd32(E1000_RDH(n)); 310 break; 311 case E1000_RDT(0): 312 for (n = 0; n < 4; n++) 313 regs[n] = rd32(E1000_RDT(n)); 314 break; 315 case E1000_RXDCTL(0): 316 for (n = 0; n < 4; n++) 317 regs[n] = rd32(E1000_RXDCTL(n)); 318 break; 319 case E1000_RDBAL(0): 320 for (n = 0; n < 4; n++) 321 regs[n] = rd32(E1000_RDBAL(n)); 322 break; 323 case E1000_RDBAH(0): 324 for (n = 0; n < 4; n++) 325 regs[n] = rd32(E1000_RDBAH(n)); 326 break; 327 case E1000_TDBAL(0): 328 for (n = 0; n < 4; n++) 329 regs[n] = rd32(E1000_RDBAL(n)); 330 break; 331 case E1000_TDBAH(0): 332 for (n = 0; n < 4; n++) 333 regs[n] = rd32(E1000_TDBAH(n)); 334 break; 335 case E1000_TDLEN(0): 336 for (n = 0; n < 4; n++) 337 regs[n] = rd32(E1000_TDLEN(n)); 338 break; 339 case E1000_TDH(0): 340 for (n = 0; n < 4; n++) 341 regs[n] = rd32(E1000_TDH(n)); 342 break; 343 case E1000_TDT(0): 344 for (n = 0; n < 4; n++) 345 regs[n] = rd32(E1000_TDT(n)); 346 break; 347 case E1000_TXDCTL(0): 348 for (n = 0; n < 4; n++) 349 regs[n] = rd32(E1000_TXDCTL(n)); 350 break; 351 default: 352 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs)); 353 return; 354 } 355 356 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]"); 357 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1], 358 regs[2], regs[3]); 359} 360 361/* igb_dump - Print registers, Tx-rings and Rx-rings */ 362static void igb_dump(struct igb_adapter *adapter) 363{ 364 struct net_device *netdev = adapter->netdev; 365 struct e1000_hw *hw = &adapter->hw; 366 struct igb_reg_info *reginfo; 367 struct igb_ring *tx_ring; 368 union e1000_adv_tx_desc *tx_desc; 369 struct my_u0 { u64 a; u64 b; } *u0; 370 struct igb_ring *rx_ring; 371 union e1000_adv_rx_desc *rx_desc; 372 u32 staterr; 373 u16 i, n; 374 375 if (!netif_msg_hw(adapter)) 376 return; 377 378 /* Print netdevice Info */ 379 if (netdev) { 380 dev_info(&adapter->pdev->dev, "Net device Info\n"); 381 pr_info("Device Name state trans_start last_rx\n"); 382 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 383 netdev->state, netdev->trans_start, netdev->last_rx); 384 } 385 386 /* Print Registers */ 387 dev_info(&adapter->pdev->dev, "Register Dump\n"); 388 pr_info(" Register Name Value\n"); 389 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl; 390 reginfo->name; reginfo++) { 391 igb_regdump(hw, reginfo); 392 } 393 394 /* Print TX Ring Summary */ 395 if (!netdev || !netif_running(netdev)) 396 goto exit; 397 398 dev_info(&adapter->pdev->dev, "TX Rings Summary\n"); 399 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 400 for (n = 0; n < adapter->num_tx_queues; n++) { 401 struct igb_tx_buffer *buffer_info; 402 tx_ring = adapter->tx_ring[n]; 403 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean]; 404 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n", 405 n, tx_ring->next_to_use, tx_ring->next_to_clean, 406 (u64)dma_unmap_addr(buffer_info, dma), 407 dma_unmap_len(buffer_info, len), 408 buffer_info->next_to_watch, 409 (u64)buffer_info->time_stamp); 410 } 411 412 /* Print TX Rings */ 413 if (!netif_msg_tx_done(adapter)) 414 goto rx_ring_summary; 415 416 dev_info(&adapter->pdev->dev, "TX Rings Dump\n"); 417 418 /* Transmit Descriptor Formats 419 * 420 * Advanced Transmit Descriptor 421 * +--------------------------------------------------------------+ 422 * 0 | Buffer Address [63:0] | 423 * +--------------------------------------------------------------+ 424 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN | 425 * +--------------------------------------------------------------+ 426 * 63 46 45 40 39 38 36 35 32 31 24 15 0 427 */ 428 429 for (n = 0; n < adapter->num_tx_queues; n++) { 430 tx_ring = adapter->tx_ring[n]; 431 pr_info("------------------------------------\n"); 432 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index); 433 pr_info("------------------------------------\n"); 434 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n"); 435 436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 437 const char *next_desc; 438 struct igb_tx_buffer *buffer_info; 439 tx_desc = IGB_TX_DESC(tx_ring, i); 440 buffer_info = &tx_ring->tx_buffer_info[i]; 441 u0 = (struct my_u0 *)tx_desc; 442 if (i == tx_ring->next_to_use && 443 i == tx_ring->next_to_clean) 444 next_desc = " NTC/U"; 445 else if (i == tx_ring->next_to_use) 446 next_desc = " NTU"; 447 else if (i == tx_ring->next_to_clean) 448 next_desc = " NTC"; 449 else 450 next_desc = ""; 451 452 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n", 453 i, le64_to_cpu(u0->a), 454 le64_to_cpu(u0->b), 455 (u64)dma_unmap_addr(buffer_info, dma), 456 dma_unmap_len(buffer_info, len), 457 buffer_info->next_to_watch, 458 (u64)buffer_info->time_stamp, 459 buffer_info->skb, next_desc); 460 461 if (netif_msg_pktdata(adapter) && buffer_info->skb) 462 print_hex_dump(KERN_INFO, "", 463 DUMP_PREFIX_ADDRESS, 464 16, 1, buffer_info->skb->data, 465 dma_unmap_len(buffer_info, len), 466 true); 467 } 468 } 469 470 /* Print RX Rings Summary */ 471rx_ring_summary: 472 dev_info(&adapter->pdev->dev, "RX Rings Summary\n"); 473 pr_info("Queue [NTU] [NTC]\n"); 474 for (n = 0; n < adapter->num_rx_queues; n++) { 475 rx_ring = adapter->rx_ring[n]; 476 pr_info(" %5d %5X %5X\n", 477 n, rx_ring->next_to_use, rx_ring->next_to_clean); 478 } 479 480 /* Print RX Rings */ 481 if (!netif_msg_rx_status(adapter)) 482 goto exit; 483 484 dev_info(&adapter->pdev->dev, "RX Rings Dump\n"); 485 486 /* Advanced Receive Descriptor (Read) Format 487 * 63 1 0 488 * +-----------------------------------------------------+ 489 * 0 | Packet Buffer Address [63:1] |A0/NSE| 490 * +----------------------------------------------+------+ 491 * 8 | Header Buffer Address [63:1] | DD | 492 * +-----------------------------------------------------+ 493 * 494 * 495 * Advanced Receive Descriptor (Write-Back) Format 496 * 497 * 63 48 47 32 31 30 21 20 17 16 4 3 0 498 * +------------------------------------------------------+ 499 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS | 500 * | Checksum Ident | | | | Type | Type | 501 * +------------------------------------------------------+ 502 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 503 * +------------------------------------------------------+ 504 * 63 48 47 32 31 20 19 0 505 */ 506 507 for (n = 0; n < adapter->num_rx_queues; n++) { 508 rx_ring = adapter->rx_ring[n]; 509 pr_info("------------------------------------\n"); 510 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index); 511 pr_info("------------------------------------\n"); 512 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n"); 513 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n"); 514 515 for (i = 0; i < rx_ring->count; i++) { 516 const char *next_desc; 517 struct igb_rx_buffer *buffer_info; 518 buffer_info = &rx_ring->rx_buffer_info[i]; 519 rx_desc = IGB_RX_DESC(rx_ring, i); 520 u0 = (struct my_u0 *)rx_desc; 521 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 522 523 if (i == rx_ring->next_to_use) 524 next_desc = " NTU"; 525 else if (i == rx_ring->next_to_clean) 526 next_desc = " NTC"; 527 else 528 next_desc = ""; 529 530 if (staterr & E1000_RXD_STAT_DD) { 531 /* Descriptor Done */ 532 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n", 533 "RWB", i, 534 le64_to_cpu(u0->a), 535 le64_to_cpu(u0->b), 536 next_desc); 537 } else { 538 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n", 539 "R ", i, 540 le64_to_cpu(u0->a), 541 le64_to_cpu(u0->b), 542 (u64)buffer_info->dma, 543 next_desc); 544 545 if (netif_msg_pktdata(adapter) && 546 buffer_info->dma && buffer_info->page) { 547 print_hex_dump(KERN_INFO, "", 548 DUMP_PREFIX_ADDRESS, 549 16, 1, 550 page_address(buffer_info->page) + 551 buffer_info->page_offset, 552 IGB_RX_BUFSZ, true); 553 } 554 } 555 } 556 } 557 558exit: 559 return; 560} 561 562/** 563 * igb_get_i2c_data - Reads the I2C SDA data bit 564 * @hw: pointer to hardware structure 565 * @i2cctl: Current value of I2CCTL register 566 * 567 * Returns the I2C data bit value 568 **/ 569static int igb_get_i2c_data(void *data) 570{ 571 struct igb_adapter *adapter = (struct igb_adapter *)data; 572 struct e1000_hw *hw = &adapter->hw; 573 s32 i2cctl = rd32(E1000_I2CPARAMS); 574 575 return !!(i2cctl & E1000_I2C_DATA_IN); 576} 577 578/** 579 * igb_set_i2c_data - Sets the I2C data bit 580 * @data: pointer to hardware structure 581 * @state: I2C data value (0 or 1) to set 582 * 583 * Sets the I2C data bit 584 **/ 585static void igb_set_i2c_data(void *data, int state) 586{ 587 struct igb_adapter *adapter = (struct igb_adapter *)data; 588 struct e1000_hw *hw = &adapter->hw; 589 s32 i2cctl = rd32(E1000_I2CPARAMS); 590 591 if (state) 592 i2cctl |= E1000_I2C_DATA_OUT; 593 else 594 i2cctl &= ~E1000_I2C_DATA_OUT; 595 596 i2cctl &= ~E1000_I2C_DATA_OE_N; 597 i2cctl |= E1000_I2C_CLK_OE_N; 598 wr32(E1000_I2CPARAMS, i2cctl); 599 wrfl(); 600 601} 602 603/** 604 * igb_set_i2c_clk - Sets the I2C SCL clock 605 * @data: pointer to hardware structure 606 * @state: state to set clock 607 * 608 * Sets the I2C clock line to state 609 **/ 610static void igb_set_i2c_clk(void *data, int state) 611{ 612 struct igb_adapter *adapter = (struct igb_adapter *)data; 613 struct e1000_hw *hw = &adapter->hw; 614 s32 i2cctl = rd32(E1000_I2CPARAMS); 615 616 if (state) { 617 i2cctl |= E1000_I2C_CLK_OUT; 618 i2cctl &= ~E1000_I2C_CLK_OE_N; 619 } else { 620 i2cctl &= ~E1000_I2C_CLK_OUT; 621 i2cctl &= ~E1000_I2C_CLK_OE_N; 622 } 623 wr32(E1000_I2CPARAMS, i2cctl); 624 wrfl(); 625} 626 627/** 628 * igb_get_i2c_clk - Gets the I2C SCL clock state 629 * @data: pointer to hardware structure 630 * 631 * Gets the I2C clock state 632 **/ 633static int igb_get_i2c_clk(void *data) 634{ 635 struct igb_adapter *adapter = (struct igb_adapter *)data; 636 struct e1000_hw *hw = &adapter->hw; 637 s32 i2cctl = rd32(E1000_I2CPARAMS); 638 639 return !!(i2cctl & E1000_I2C_CLK_IN); 640} 641 642static const struct i2c_algo_bit_data igb_i2c_algo = { 643 .setsda = igb_set_i2c_data, 644 .setscl = igb_set_i2c_clk, 645 .getsda = igb_get_i2c_data, 646 .getscl = igb_get_i2c_clk, 647 .udelay = 5, 648 .timeout = 20, 649}; 650 651/** 652 * igb_get_hw_dev - return device 653 * @hw: pointer to hardware structure 654 * 655 * used by hardware layer to print debugging information 656 **/ 657struct net_device *igb_get_hw_dev(struct e1000_hw *hw) 658{ 659 struct igb_adapter *adapter = hw->back; 660 return adapter->netdev; 661} 662 663/** 664 * igb_init_module - Driver Registration Routine 665 * 666 * igb_init_module is the first routine called when the driver is 667 * loaded. All it does is register with the PCI subsystem. 668 **/ 669static int __init igb_init_module(void) 670{ 671 int ret; 672 673 pr_info("%s - version %s\n", 674 igb_driver_string, igb_driver_version); 675 pr_info("%s\n", igb_copyright); 676 677#ifdef CONFIG_IGB_DCA 678 dca_register_notify(&dca_notifier); 679#endif 680 ret = pci_register_driver(&igb_driver); 681 return ret; 682} 683 684module_init(igb_init_module); 685 686/** 687 * igb_exit_module - Driver Exit Cleanup Routine 688 * 689 * igb_exit_module is called just before the driver is removed 690 * from memory. 691 **/ 692static void __exit igb_exit_module(void) 693{ 694#ifdef CONFIG_IGB_DCA 695 dca_unregister_notify(&dca_notifier); 696#endif 697 pci_unregister_driver(&igb_driver); 698} 699 700module_exit(igb_exit_module); 701 702#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1)) 703/** 704 * igb_cache_ring_register - Descriptor ring to register mapping 705 * @adapter: board private structure to initialize 706 * 707 * Once we know the feature-set enabled for the device, we'll cache 708 * the register offset the descriptor ring is assigned to. 709 **/ 710static void igb_cache_ring_register(struct igb_adapter *adapter) 711{ 712 int i = 0, j = 0; 713 u32 rbase_offset = adapter->vfs_allocated_count; 714 715 switch (adapter->hw.mac.type) { 716 case e1000_82576: 717 /* The queues are allocated for virtualization such that VF 0 718 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc. 719 * In order to avoid collision we start at the first free queue 720 * and continue consuming queues in the same sequence 721 */ 722 if (adapter->vfs_allocated_count) { 723 for (; i < adapter->rss_queues; i++) 724 adapter->rx_ring[i]->reg_idx = rbase_offset + 725 Q_IDX_82576(i); 726 } 727 /* Fall through */ 728 case e1000_82575: 729 case e1000_82580: 730 case e1000_i350: 731 case e1000_i354: 732 case e1000_i210: 733 case e1000_i211: 734 /* Fall through */ 735 default: 736 for (; i < adapter->num_rx_queues; i++) 737 adapter->rx_ring[i]->reg_idx = rbase_offset + i; 738 for (; j < adapter->num_tx_queues; j++) 739 adapter->tx_ring[j]->reg_idx = rbase_offset + j; 740 break; 741 } 742} 743 744u32 igb_rd32(struct e1000_hw *hw, u32 reg) 745{ 746 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw); 747 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr); 748 u32 value = 0; 749 750 if (E1000_REMOVED(hw_addr)) 751 return ~value; 752 753 value = readl(&hw_addr[reg]); 754 755 /* reads should not return all F's */ 756 if (!(~value) && (!reg || !(~readl(hw_addr)))) { 757 struct net_device *netdev = igb->netdev; 758 hw->hw_addr = NULL; 759 netif_device_detach(netdev); 760 netdev_err(netdev, "PCIe link lost, device now detached\n"); 761 } 762 763 return value; 764} 765 766/** 767 * igb_write_ivar - configure ivar for given MSI-X vector 768 * @hw: pointer to the HW structure 769 * @msix_vector: vector number we are allocating to a given ring 770 * @index: row index of IVAR register to write within IVAR table 771 * @offset: column offset of in IVAR, should be multiple of 8 772 * 773 * This function is intended to handle the writing of the IVAR register 774 * for adapters 82576 and newer. The IVAR table consists of 2 columns, 775 * each containing an cause allocation for an Rx and Tx ring, and a 776 * variable number of rows depending on the number of queues supported. 777 **/ 778static void igb_write_ivar(struct e1000_hw *hw, int msix_vector, 779 int index, int offset) 780{ 781 u32 ivar = array_rd32(E1000_IVAR0, index); 782 783 /* clear any bits that are currently set */ 784 ivar &= ~((u32)0xFF << offset); 785 786 /* write vector and valid bit */ 787 ivar |= (msix_vector | E1000_IVAR_VALID) << offset; 788 789 array_wr32(E1000_IVAR0, index, ivar); 790} 791 792#define IGB_N0_QUEUE -1 793static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector) 794{ 795 struct igb_adapter *adapter = q_vector->adapter; 796 struct e1000_hw *hw = &adapter->hw; 797 int rx_queue = IGB_N0_QUEUE; 798 int tx_queue = IGB_N0_QUEUE; 799 u32 msixbm = 0; 800 801 if (q_vector->rx.ring) 802 rx_queue = q_vector->rx.ring->reg_idx; 803 if (q_vector->tx.ring) 804 tx_queue = q_vector->tx.ring->reg_idx; 805 806 switch (hw->mac.type) { 807 case e1000_82575: 808 /* The 82575 assigns vectors using a bitmask, which matches the 809 * bitmask for the EICR/EIMS/EIMC registers. To assign one 810 * or more queues to a vector, we write the appropriate bits 811 * into the MSIXBM register for that vector. 812 */ 813 if (rx_queue > IGB_N0_QUEUE) 814 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue; 815 if (tx_queue > IGB_N0_QUEUE) 816 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue; 817 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0) 818 msixbm |= E1000_EIMS_OTHER; 819 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm); 820 q_vector->eims_value = msixbm; 821 break; 822 case e1000_82576: 823 /* 82576 uses a table that essentially consists of 2 columns 824 * with 8 rows. The ordering is column-major so we use the 825 * lower 3 bits as the row index, and the 4th bit as the 826 * column offset. 827 */ 828 if (rx_queue > IGB_N0_QUEUE) 829 igb_write_ivar(hw, msix_vector, 830 rx_queue & 0x7, 831 (rx_queue & 0x8) << 1); 832 if (tx_queue > IGB_N0_QUEUE) 833 igb_write_ivar(hw, msix_vector, 834 tx_queue & 0x7, 835 ((tx_queue & 0x8) << 1) + 8); 836 q_vector->eims_value = 1 << msix_vector; 837 break; 838 case e1000_82580: 839 case e1000_i350: 840 case e1000_i354: 841 case e1000_i210: 842 case e1000_i211: 843 /* On 82580 and newer adapters the scheme is similar to 82576 844 * however instead of ordering column-major we have things 845 * ordered row-major. So we traverse the table by using 846 * bit 0 as the column offset, and the remaining bits as the 847 * row index. 848 */ 849 if (rx_queue > IGB_N0_QUEUE) 850 igb_write_ivar(hw, msix_vector, 851 rx_queue >> 1, 852 (rx_queue & 0x1) << 4); 853 if (tx_queue > IGB_N0_QUEUE) 854 igb_write_ivar(hw, msix_vector, 855 tx_queue >> 1, 856 ((tx_queue & 0x1) << 4) + 8); 857 q_vector->eims_value = 1 << msix_vector; 858 break; 859 default: 860 BUG(); 861 break; 862 } 863 864 /* add q_vector eims value to global eims_enable_mask */ 865 adapter->eims_enable_mask |= q_vector->eims_value; 866 867 /* configure q_vector to set itr on first interrupt */ 868 q_vector->set_itr = 1; 869} 870 871/** 872 * igb_configure_msix - Configure MSI-X hardware 873 * @adapter: board private structure to initialize 874 * 875 * igb_configure_msix sets up the hardware to properly 876 * generate MSI-X interrupts. 877 **/ 878static void igb_configure_msix(struct igb_adapter *adapter) 879{ 880 u32 tmp; 881 int i, vector = 0; 882 struct e1000_hw *hw = &adapter->hw; 883 884 adapter->eims_enable_mask = 0; 885 886 /* set vector for other causes, i.e. link changes */ 887 switch (hw->mac.type) { 888 case e1000_82575: 889 tmp = rd32(E1000_CTRL_EXT); 890 /* enable MSI-X PBA support*/ 891 tmp |= E1000_CTRL_EXT_PBA_CLR; 892 893 /* Auto-Mask interrupts upon ICR read. */ 894 tmp |= E1000_CTRL_EXT_EIAME; 895 tmp |= E1000_CTRL_EXT_IRCA; 896 897 wr32(E1000_CTRL_EXT, tmp); 898 899 /* enable msix_other interrupt */ 900 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER); 901 adapter->eims_other = E1000_EIMS_OTHER; 902 903 break; 904 905 case e1000_82576: 906 case e1000_82580: 907 case e1000_i350: 908 case e1000_i354: 909 case e1000_i210: 910 case e1000_i211: 911 /* Turn on MSI-X capability first, or our settings 912 * won't stick. And it will take days to debug. 913 */ 914 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE | 915 E1000_GPIE_PBA | E1000_GPIE_EIAME | 916 E1000_GPIE_NSICR); 917 918 /* enable msix_other interrupt */ 919 adapter->eims_other = 1 << vector; 920 tmp = (vector++ | E1000_IVAR_VALID) << 8; 921 922 wr32(E1000_IVAR_MISC, tmp); 923 break; 924 default: 925 /* do nothing, since nothing else supports MSI-X */ 926 break; 927 } /* switch (hw->mac.type) */ 928 929 adapter->eims_enable_mask |= adapter->eims_other; 930 931 for (i = 0; i < adapter->num_q_vectors; i++) 932 igb_assign_vector(adapter->q_vector[i], vector++); 933 934 wrfl(); 935} 936 937/** 938 * igb_request_msix - Initialize MSI-X interrupts 939 * @adapter: board private structure to initialize 940 * 941 * igb_request_msix allocates MSI-X vectors and requests interrupts from the 942 * kernel. 943 **/ 944static int igb_request_msix(struct igb_adapter *adapter) 945{ 946 struct net_device *netdev = adapter->netdev; 947 struct e1000_hw *hw = &adapter->hw; 948 int i, err = 0, vector = 0, free_vector = 0; 949 950 err = request_irq(adapter->msix_entries[vector].vector, 951 igb_msix_other, 0, netdev->name, adapter); 952 if (err) 953 goto err_out; 954 955 for (i = 0; i < adapter->num_q_vectors; i++) { 956 struct igb_q_vector *q_vector = adapter->q_vector[i]; 957 958 vector++; 959 960 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector); 961 962 if (q_vector->rx.ring && q_vector->tx.ring) 963 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name, 964 q_vector->rx.ring->queue_index); 965 else if (q_vector->tx.ring) 966 sprintf(q_vector->name, "%s-tx-%u", netdev->name, 967 q_vector->tx.ring->queue_index); 968 else if (q_vector->rx.ring) 969 sprintf(q_vector->name, "%s-rx-%u", netdev->name, 970 q_vector->rx.ring->queue_index); 971 else 972 sprintf(q_vector->name, "%s-unused", netdev->name); 973 974 err = request_irq(adapter->msix_entries[vector].vector, 975 igb_msix_ring, 0, q_vector->name, 976 q_vector); 977 if (err) 978 goto err_free; 979 } 980 981 igb_configure_msix(adapter); 982 return 0; 983 984err_free: 985 /* free already assigned IRQs */ 986 free_irq(adapter->msix_entries[free_vector++].vector, adapter); 987 988 vector--; 989 for (i = 0; i < vector; i++) { 990 free_irq(adapter->msix_entries[free_vector++].vector, 991 adapter->q_vector[i]); 992 } 993err_out: 994 return err; 995} 996 997/** 998 * igb_free_q_vector - Free memory allocated for specific interrupt vector 999 * @adapter: board private structure to initialize 1000 * @v_idx: Index of vector to be freed 1001 * 1002 * This function frees the memory allocated to the q_vector. 1003 **/ 1004static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx) 1005{ 1006 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1007 1008 adapter->q_vector[v_idx] = NULL; 1009 1010 /* igb_get_stats64() might access the rings on this vector, 1011 * we must wait a grace period before freeing it. 1012 */ 1013 if (q_vector) 1014 kfree_rcu(q_vector, rcu); 1015} 1016 1017/** 1018 * igb_reset_q_vector - Reset config for interrupt vector 1019 * @adapter: board private structure to initialize 1020 * @v_idx: Index of vector to be reset 1021 * 1022 * If NAPI is enabled it will delete any references to the 1023 * NAPI struct. This is preparation for igb_free_q_vector. 1024 **/ 1025static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx) 1026{ 1027 struct igb_q_vector *q_vector = adapter->q_vector[v_idx]; 1028 1029 /* Coming from igb_set_interrupt_capability, the vectors are not yet 1030 * allocated. So, q_vector is NULL so we should stop here. 1031 */ 1032 if (!q_vector) 1033 return; 1034 1035 if (q_vector->tx.ring) 1036 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL; 1037 1038 if (q_vector->rx.ring) 1039 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL; 1040 1041 netif_napi_del(&q_vector->napi); 1042 1043} 1044 1045static void igb_reset_interrupt_capability(struct igb_adapter *adapter) 1046{ 1047 int v_idx = adapter->num_q_vectors; 1048 1049 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1050 pci_disable_msix(adapter->pdev); 1051 else if (adapter->flags & IGB_FLAG_HAS_MSI) 1052 pci_disable_msi(adapter->pdev); 1053 1054 while (v_idx--) 1055 igb_reset_q_vector(adapter, v_idx); 1056} 1057 1058/** 1059 * igb_free_q_vectors - Free memory allocated for interrupt vectors 1060 * @adapter: board private structure to initialize 1061 * 1062 * This function frees the memory allocated to the q_vectors. In addition if 1063 * NAPI is enabled it will delete any references to the NAPI struct prior 1064 * to freeing the q_vector. 1065 **/ 1066static void igb_free_q_vectors(struct igb_adapter *adapter) 1067{ 1068 int v_idx = adapter->num_q_vectors; 1069 1070 adapter->num_tx_queues = 0; 1071 adapter->num_rx_queues = 0; 1072 adapter->num_q_vectors = 0; 1073 1074 while (v_idx--) { 1075 igb_reset_q_vector(adapter, v_idx); 1076 igb_free_q_vector(adapter, v_idx); 1077 } 1078} 1079 1080/** 1081 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts 1082 * @adapter: board private structure to initialize 1083 * 1084 * This function resets the device so that it has 0 Rx queues, Tx queues, and 1085 * MSI-X interrupts allocated. 1086 */ 1087static void igb_clear_interrupt_scheme(struct igb_adapter *adapter) 1088{ 1089 igb_free_q_vectors(adapter); 1090 igb_reset_interrupt_capability(adapter); 1091} 1092 1093/** 1094 * igb_set_interrupt_capability - set MSI or MSI-X if supported 1095 * @adapter: board private structure to initialize 1096 * @msix: boolean value of MSIX capability 1097 * 1098 * Attempt to configure interrupts using the best available 1099 * capabilities of the hardware and kernel. 1100 **/ 1101static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix) 1102{ 1103 int err; 1104 int numvecs, i; 1105 1106 if (!msix) 1107 goto msi_only; 1108 adapter->flags |= IGB_FLAG_HAS_MSIX; 1109 1110 /* Number of supported queues. */ 1111 adapter->num_rx_queues = adapter->rss_queues; 1112 if (adapter->vfs_allocated_count) 1113 adapter->num_tx_queues = 1; 1114 else 1115 adapter->num_tx_queues = adapter->rss_queues; 1116 1117 /* start with one vector for every Rx queue */ 1118 numvecs = adapter->num_rx_queues; 1119 1120 /* if Tx handler is separate add 1 for every Tx queue */ 1121 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) 1122 numvecs += adapter->num_tx_queues; 1123 1124 /* store the number of vectors reserved for queues */ 1125 adapter->num_q_vectors = numvecs; 1126 1127 /* add 1 vector for link status interrupts */ 1128 numvecs++; 1129 for (i = 0; i < numvecs; i++) 1130 adapter->msix_entries[i].entry = i; 1131 1132 err = pci_enable_msix_range(adapter->pdev, 1133 adapter->msix_entries, 1134 numvecs, 1135 numvecs); 1136 if (err > 0) 1137 return; 1138 1139 igb_reset_interrupt_capability(adapter); 1140 1141 /* If we can't do MSI-X, try MSI */ 1142msi_only: 1143 adapter->flags &= ~IGB_FLAG_HAS_MSIX; 1144#ifdef CONFIG_PCI_IOV 1145 /* disable SR-IOV for non MSI-X configurations */ 1146 if (adapter->vf_data) { 1147 struct e1000_hw *hw = &adapter->hw; 1148 /* disable iov and allow time for transactions to clear */ 1149 pci_disable_sriov(adapter->pdev); 1150 msleep(500); 1151 1152 kfree(adapter->vf_data); 1153 adapter->vf_data = NULL; 1154 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 1155 wrfl(); 1156 msleep(100); 1157 dev_info(&adapter->pdev->dev, "IOV Disabled\n"); 1158 } 1159#endif 1160 adapter->vfs_allocated_count = 0; 1161 adapter->rss_queues = 1; 1162 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 1163 adapter->num_rx_queues = 1; 1164 adapter->num_tx_queues = 1; 1165 adapter->num_q_vectors = 1; 1166 if (!pci_enable_msi(adapter->pdev)) 1167 adapter->flags |= IGB_FLAG_HAS_MSI; 1168} 1169 1170static void igb_add_ring(struct igb_ring *ring, 1171 struct igb_ring_container *head) 1172{ 1173 head->ring = ring; 1174 head->count++; 1175} 1176 1177/** 1178 * igb_alloc_q_vector - Allocate memory for a single interrupt vector 1179 * @adapter: board private structure to initialize 1180 * @v_count: q_vectors allocated on adapter, used for ring interleaving 1181 * @v_idx: index of vector in adapter struct 1182 * @txr_count: total number of Tx rings to allocate 1183 * @txr_idx: index of first Tx ring to allocate 1184 * @rxr_count: total number of Rx rings to allocate 1185 * @rxr_idx: index of first Rx ring to allocate 1186 * 1187 * We allocate one q_vector. If allocation fails we return -ENOMEM. 1188 **/ 1189static int igb_alloc_q_vector(struct igb_adapter *adapter, 1190 int v_count, int v_idx, 1191 int txr_count, int txr_idx, 1192 int rxr_count, int rxr_idx) 1193{ 1194 struct igb_q_vector *q_vector; 1195 struct igb_ring *ring; 1196 int ring_count, size; 1197 1198 /* igb only supports 1 Tx and/or 1 Rx queue per vector */ 1199 if (txr_count > 1 || rxr_count > 1) 1200 return -ENOMEM; 1201 1202 ring_count = txr_count + rxr_count; 1203 size = sizeof(struct igb_q_vector) + 1204 (sizeof(struct igb_ring) * ring_count); 1205 1206 /* allocate q_vector and rings */ 1207 q_vector = adapter->q_vector[v_idx]; 1208 if (!q_vector) { 1209 q_vector = kzalloc(size, GFP_KERNEL); 1210 } else if (size > ksize(q_vector)) { 1211 kfree_rcu(q_vector, rcu); 1212 q_vector = kzalloc(size, GFP_KERNEL); 1213 } else { 1214 memset(q_vector, 0, size); 1215 } 1216 if (!q_vector) 1217 return -ENOMEM; 1218 1219 /* initialize NAPI */ 1220 netif_napi_add(adapter->netdev, &q_vector->napi, 1221 igb_poll, 64); 1222 1223 /* tie q_vector and adapter together */ 1224 adapter->q_vector[v_idx] = q_vector; 1225 q_vector->adapter = adapter; 1226 1227 /* initialize work limits */ 1228 q_vector->tx.work_limit = adapter->tx_work_limit; 1229 1230 /* initialize ITR configuration */ 1231 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0); 1232 q_vector->itr_val = IGB_START_ITR; 1233 1234 /* initialize pointer to rings */ 1235 ring = q_vector->ring; 1236 1237 /* intialize ITR */ 1238 if (rxr_count) { 1239 /* rx or rx/tx vector */ 1240 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3) 1241 q_vector->itr_val = adapter->rx_itr_setting; 1242 } else { 1243 /* tx only vector */ 1244 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3) 1245 q_vector->itr_val = adapter->tx_itr_setting; 1246 } 1247 1248 if (txr_count) { 1249 /* assign generic ring traits */ 1250 ring->dev = &adapter->pdev->dev; 1251 ring->netdev = adapter->netdev; 1252 1253 /* configure backlink on ring */ 1254 ring->q_vector = q_vector; 1255 1256 /* update q_vector Tx values */ 1257 igb_add_ring(ring, &q_vector->tx); 1258 1259 /* For 82575, context index must be unique per ring. */ 1260 if (adapter->hw.mac.type == e1000_82575) 1261 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags); 1262 1263 /* apply Tx specific ring traits */ 1264 ring->count = adapter->tx_ring_count; 1265 ring->queue_index = txr_idx; 1266 1267 u64_stats_init(&ring->tx_syncp); 1268 u64_stats_init(&ring->tx_syncp2); 1269 1270 /* assign ring to adapter */ 1271 adapter->tx_ring[txr_idx] = ring; 1272 1273 /* push pointer to next ring */ 1274 ring++; 1275 } 1276 1277 if (rxr_count) { 1278 /* assign generic ring traits */ 1279 ring->dev = &adapter->pdev->dev; 1280 ring->netdev = adapter->netdev; 1281 1282 /* configure backlink on ring */ 1283 ring->q_vector = q_vector; 1284 1285 /* update q_vector Rx values */ 1286 igb_add_ring(ring, &q_vector->rx); 1287 1288 /* set flag indicating ring supports SCTP checksum offload */ 1289 if (adapter->hw.mac.type >= e1000_82576) 1290 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags); 1291 1292 /* On i350, i354, i210, and i211, loopback VLAN packets 1293 * have the tag byte-swapped. 1294 */ 1295 if (adapter->hw.mac.type >= e1000_i350) 1296 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags); 1297 1298 /* apply Rx specific ring traits */ 1299 ring->count = adapter->rx_ring_count; 1300 ring->queue_index = rxr_idx; 1301 1302 u64_stats_init(&ring->rx_syncp); 1303 1304 /* assign ring to adapter */ 1305 adapter->rx_ring[rxr_idx] = ring; 1306 } 1307 1308 return 0; 1309} 1310 1311 1312/** 1313 * igb_alloc_q_vectors - Allocate memory for interrupt vectors 1314 * @adapter: board private structure to initialize 1315 * 1316 * We allocate one q_vector per queue interrupt. If allocation fails we 1317 * return -ENOMEM. 1318 **/ 1319static int igb_alloc_q_vectors(struct igb_adapter *adapter) 1320{ 1321 int q_vectors = adapter->num_q_vectors; 1322 int rxr_remaining = adapter->num_rx_queues; 1323 int txr_remaining = adapter->num_tx_queues; 1324 int rxr_idx = 0, txr_idx = 0, v_idx = 0; 1325 int err; 1326 1327 if (q_vectors >= (rxr_remaining + txr_remaining)) { 1328 for (; rxr_remaining; v_idx++) { 1329 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1330 0, 0, 1, rxr_idx); 1331 1332 if (err) 1333 goto err_out; 1334 1335 /* update counts and index */ 1336 rxr_remaining--; 1337 rxr_idx++; 1338 } 1339 } 1340 1341 for (; v_idx < q_vectors; v_idx++) { 1342 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx); 1343 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx); 1344 1345 err = igb_alloc_q_vector(adapter, q_vectors, v_idx, 1346 tqpv, txr_idx, rqpv, rxr_idx); 1347 1348 if (err) 1349 goto err_out; 1350 1351 /* update counts and index */ 1352 rxr_remaining -= rqpv; 1353 txr_remaining -= tqpv; 1354 rxr_idx++; 1355 txr_idx++; 1356 } 1357 1358 return 0; 1359 1360err_out: 1361 adapter->num_tx_queues = 0; 1362 adapter->num_rx_queues = 0; 1363 adapter->num_q_vectors = 0; 1364 1365 while (v_idx--) 1366 igb_free_q_vector(adapter, v_idx); 1367 1368 return -ENOMEM; 1369} 1370 1371/** 1372 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors 1373 * @adapter: board private structure to initialize 1374 * @msix: boolean value of MSIX capability 1375 * 1376 * This function initializes the interrupts and allocates all of the queues. 1377 **/ 1378static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix) 1379{ 1380 struct pci_dev *pdev = adapter->pdev; 1381 int err; 1382 1383 igb_set_interrupt_capability(adapter, msix); 1384 1385 err = igb_alloc_q_vectors(adapter); 1386 if (err) { 1387 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n"); 1388 goto err_alloc_q_vectors; 1389 } 1390 1391 igb_cache_ring_register(adapter); 1392 1393 return 0; 1394 1395err_alloc_q_vectors: 1396 igb_reset_interrupt_capability(adapter); 1397 return err; 1398} 1399 1400/** 1401 * igb_request_irq - initialize interrupts 1402 * @adapter: board private structure to initialize 1403 * 1404 * Attempts to configure interrupts using the best available 1405 * capabilities of the hardware and kernel. 1406 **/ 1407static int igb_request_irq(struct igb_adapter *adapter) 1408{ 1409 struct net_device *netdev = adapter->netdev; 1410 struct pci_dev *pdev = adapter->pdev; 1411 int err = 0; 1412 1413 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1414 err = igb_request_msix(adapter); 1415 if (!err) 1416 goto request_done; 1417 /* fall back to MSI */ 1418 igb_free_all_tx_resources(adapter); 1419 igb_free_all_rx_resources(adapter); 1420 1421 igb_clear_interrupt_scheme(adapter); 1422 err = igb_init_interrupt_scheme(adapter, false); 1423 if (err) 1424 goto request_done; 1425 1426 igb_setup_all_tx_resources(adapter); 1427 igb_setup_all_rx_resources(adapter); 1428 igb_configure(adapter); 1429 } 1430 1431 igb_assign_vector(adapter->q_vector[0], 0); 1432 1433 if (adapter->flags & IGB_FLAG_HAS_MSI) { 1434 err = request_irq(pdev->irq, igb_intr_msi, 0, 1435 netdev->name, adapter); 1436 if (!err) 1437 goto request_done; 1438 1439 /* fall back to legacy interrupts */ 1440 igb_reset_interrupt_capability(adapter); 1441 adapter->flags &= ~IGB_FLAG_HAS_MSI; 1442 } 1443 1444 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED, 1445 netdev->name, adapter); 1446 1447 if (err) 1448 dev_err(&pdev->dev, "Error %d getting interrupt\n", 1449 err); 1450 1451request_done: 1452 return err; 1453} 1454 1455static void igb_free_irq(struct igb_adapter *adapter) 1456{ 1457 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1458 int vector = 0, i; 1459 1460 free_irq(adapter->msix_entries[vector++].vector, adapter); 1461 1462 for (i = 0; i < adapter->num_q_vectors; i++) 1463 free_irq(adapter->msix_entries[vector++].vector, 1464 adapter->q_vector[i]); 1465 } else { 1466 free_irq(adapter->pdev->irq, adapter); 1467 } 1468} 1469 1470/** 1471 * igb_irq_disable - Mask off interrupt generation on the NIC 1472 * @adapter: board private structure 1473 **/ 1474static void igb_irq_disable(struct igb_adapter *adapter) 1475{ 1476 struct e1000_hw *hw = &adapter->hw; 1477 1478 /* we need to be careful when disabling interrupts. The VFs are also 1479 * mapped into these registers and so clearing the bits can cause 1480 * issues on the VF drivers so we only need to clear what we set 1481 */ 1482 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1483 u32 regval = rd32(E1000_EIAM); 1484 1485 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask); 1486 wr32(E1000_EIMC, adapter->eims_enable_mask); 1487 regval = rd32(E1000_EIAC); 1488 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask); 1489 } 1490 1491 wr32(E1000_IAM, 0); 1492 wr32(E1000_IMC, ~0); 1493 wrfl(); 1494 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1495 int i; 1496 1497 for (i = 0; i < adapter->num_q_vectors; i++) 1498 synchronize_irq(adapter->msix_entries[i].vector); 1499 } else { 1500 synchronize_irq(adapter->pdev->irq); 1501 } 1502} 1503 1504/** 1505 * igb_irq_enable - Enable default interrupt generation settings 1506 * @adapter: board private structure 1507 **/ 1508static void igb_irq_enable(struct igb_adapter *adapter) 1509{ 1510 struct e1000_hw *hw = &adapter->hw; 1511 1512 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 1513 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA; 1514 u32 regval = rd32(E1000_EIAC); 1515 1516 wr32(E1000_EIAC, regval | adapter->eims_enable_mask); 1517 regval = rd32(E1000_EIAM); 1518 wr32(E1000_EIAM, regval | adapter->eims_enable_mask); 1519 wr32(E1000_EIMS, adapter->eims_enable_mask); 1520 if (adapter->vfs_allocated_count) { 1521 wr32(E1000_MBVFIMR, 0xFF); 1522 ims |= E1000_IMS_VMMB; 1523 } 1524 wr32(E1000_IMS, ims); 1525 } else { 1526 wr32(E1000_IMS, IMS_ENABLE_MASK | 1527 E1000_IMS_DRSTA); 1528 wr32(E1000_IAM, IMS_ENABLE_MASK | 1529 E1000_IMS_DRSTA); 1530 } 1531} 1532 1533static void igb_update_mng_vlan(struct igb_adapter *adapter) 1534{ 1535 struct e1000_hw *hw = &adapter->hw; 1536 u16 vid = adapter->hw.mng_cookie.vlan_id; 1537 u16 old_vid = adapter->mng_vlan_id; 1538 1539 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 1540 /* add VID to filter table */ 1541 igb_vfta_set(hw, vid, true); 1542 adapter->mng_vlan_id = vid; 1543 } else { 1544 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE; 1545 } 1546 1547 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) && 1548 (vid != old_vid) && 1549 !test_bit(old_vid, adapter->active_vlans)) { 1550 /* remove VID from filter table */ 1551 igb_vfta_set(hw, old_vid, false); 1552 } 1553} 1554 1555/** 1556 * igb_release_hw_control - release control of the h/w to f/w 1557 * @adapter: address of board private structure 1558 * 1559 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit. 1560 * For ASF and Pass Through versions of f/w this means that the 1561 * driver is no longer loaded. 1562 **/ 1563static void igb_release_hw_control(struct igb_adapter *adapter) 1564{ 1565 struct e1000_hw *hw = &adapter->hw; 1566 u32 ctrl_ext; 1567 1568 /* Let firmware take over control of h/w */ 1569 ctrl_ext = rd32(E1000_CTRL_EXT); 1570 wr32(E1000_CTRL_EXT, 1571 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 1572} 1573 1574/** 1575 * igb_get_hw_control - get control of the h/w from f/w 1576 * @adapter: address of board private structure 1577 * 1578 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit. 1579 * For ASF and Pass Through versions of f/w this means that 1580 * the driver is loaded. 1581 **/ 1582static void igb_get_hw_control(struct igb_adapter *adapter) 1583{ 1584 struct e1000_hw *hw = &adapter->hw; 1585 u32 ctrl_ext; 1586 1587 /* Let firmware know the driver has taken over */ 1588 ctrl_ext = rd32(E1000_CTRL_EXT); 1589 wr32(E1000_CTRL_EXT, 1590 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 1591} 1592 1593/** 1594 * igb_configure - configure the hardware for RX and TX 1595 * @adapter: private board structure 1596 **/ 1597static void igb_configure(struct igb_adapter *adapter) 1598{ 1599 struct net_device *netdev = adapter->netdev; 1600 int i; 1601 1602 igb_get_hw_control(adapter); 1603 igb_set_rx_mode(netdev); 1604 1605 igb_restore_vlan(adapter); 1606 1607 igb_setup_tctl(adapter); 1608 igb_setup_mrqc(adapter); 1609 igb_setup_rctl(adapter); 1610 1611 igb_configure_tx(adapter); 1612 igb_configure_rx(adapter); 1613 1614 igb_rx_fifo_flush_82575(&adapter->hw); 1615 1616 /* call igb_desc_unused which always leaves 1617 * at least 1 descriptor unused to make sure 1618 * next_to_use != next_to_clean 1619 */ 1620 for (i = 0; i < adapter->num_rx_queues; i++) { 1621 struct igb_ring *ring = adapter->rx_ring[i]; 1622 igb_alloc_rx_buffers(ring, igb_desc_unused(ring)); 1623 } 1624} 1625 1626/** 1627 * igb_power_up_link - Power up the phy/serdes link 1628 * @adapter: address of board private structure 1629 **/ 1630void igb_power_up_link(struct igb_adapter *adapter) 1631{ 1632 igb_reset_phy(&adapter->hw); 1633 1634 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1635 igb_power_up_phy_copper(&adapter->hw); 1636 else 1637 igb_power_up_serdes_link_82575(&adapter->hw); 1638 1639 igb_setup_link(&adapter->hw); 1640} 1641 1642/** 1643 * igb_power_down_link - Power down the phy/serdes link 1644 * @adapter: address of board private structure 1645 */ 1646static void igb_power_down_link(struct igb_adapter *adapter) 1647{ 1648 if (adapter->hw.phy.media_type == e1000_media_type_copper) 1649 igb_power_down_phy_copper_82575(&adapter->hw); 1650 else 1651 igb_shutdown_serdes_link_82575(&adapter->hw); 1652} 1653 1654/** 1655 * Detect and switch function for Media Auto Sense 1656 * @adapter: address of the board private structure 1657 **/ 1658static void igb_check_swap_media(struct igb_adapter *adapter) 1659{ 1660 struct e1000_hw *hw = &adapter->hw; 1661 u32 ctrl_ext, connsw; 1662 bool swap_now = false; 1663 1664 ctrl_ext = rd32(E1000_CTRL_EXT); 1665 connsw = rd32(E1000_CONNSW); 1666 1667 /* need to live swap if current media is copper and we have fiber/serdes 1668 * to go to. 1669 */ 1670 1671 if ((hw->phy.media_type == e1000_media_type_copper) && 1672 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) { 1673 swap_now = true; 1674 } else if (!(connsw & E1000_CONNSW_SERDESD)) { 1675 /* copper signal takes time to appear */ 1676 if (adapter->copper_tries < 4) { 1677 adapter->copper_tries++; 1678 connsw |= E1000_CONNSW_AUTOSENSE_CONF; 1679 wr32(E1000_CONNSW, connsw); 1680 return; 1681 } else { 1682 adapter->copper_tries = 0; 1683 if ((connsw & E1000_CONNSW_PHYSD) && 1684 (!(connsw & E1000_CONNSW_PHY_PDN))) { 1685 swap_now = true; 1686 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF; 1687 wr32(E1000_CONNSW, connsw); 1688 } 1689 } 1690 } 1691 1692 if (!swap_now) 1693 return; 1694 1695 switch (hw->phy.media_type) { 1696 case e1000_media_type_copper: 1697 netdev_info(adapter->netdev, 1698 "MAS: changing media to fiber/serdes\n"); 1699 ctrl_ext |= 1700 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1701 adapter->flags |= IGB_FLAG_MEDIA_RESET; 1702 adapter->copper_tries = 0; 1703 break; 1704 case e1000_media_type_internal_serdes: 1705 case e1000_media_type_fiber: 1706 netdev_info(adapter->netdev, 1707 "MAS: changing media to copper\n"); 1708 ctrl_ext &= 1709 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES; 1710 adapter->flags |= IGB_FLAG_MEDIA_RESET; 1711 break; 1712 default: 1713 /* shouldn't get here during regular operation */ 1714 netdev_err(adapter->netdev, 1715 "AMS: Invalid media type found, returning\n"); 1716 break; 1717 } 1718 wr32(E1000_CTRL_EXT, ctrl_ext); 1719} 1720 1721/** 1722 * igb_up - Open the interface and prepare it to handle traffic 1723 * @adapter: board private structure 1724 **/ 1725int igb_up(struct igb_adapter *adapter) 1726{ 1727 struct e1000_hw *hw = &adapter->hw; 1728 int i; 1729 1730 /* hardware has been reset, we need to reload some things */ 1731 igb_configure(adapter); 1732 1733 clear_bit(__IGB_DOWN, &adapter->state); 1734 1735 for (i = 0; i < adapter->num_q_vectors; i++) 1736 napi_enable(&(adapter->q_vector[i]->napi)); 1737 1738 if (adapter->flags & IGB_FLAG_HAS_MSIX) 1739 igb_configure_msix(adapter); 1740 else 1741 igb_assign_vector(adapter->q_vector[0], 0); 1742 1743 /* Clear any pending interrupts. */ 1744 rd32(E1000_ICR); 1745 igb_irq_enable(adapter); 1746 1747 /* notify VFs that reset has been completed */ 1748 if (adapter->vfs_allocated_count) { 1749 u32 reg_data = rd32(E1000_CTRL_EXT); 1750 1751 reg_data |= E1000_CTRL_EXT_PFRSTD; 1752 wr32(E1000_CTRL_EXT, reg_data); 1753 } 1754 1755 netif_tx_start_all_queues(adapter->netdev); 1756 1757 /* start the watchdog. */ 1758 hw->mac.get_link_status = 1; 1759 schedule_work(&adapter->watchdog_task); 1760 1761 if ((adapter->flags & IGB_FLAG_EEE) && 1762 (!hw->dev_spec._82575.eee_disable)) 1763 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 1764 1765 return 0; 1766} 1767 1768void igb_down(struct igb_adapter *adapter) 1769{ 1770 struct net_device *netdev = adapter->netdev; 1771 struct e1000_hw *hw = &adapter->hw; 1772 u32 tctl, rctl; 1773 int i; 1774 1775 /* signal that we're down so the interrupt handler does not 1776 * reschedule our watchdog timer 1777 */ 1778 set_bit(__IGB_DOWN, &adapter->state); 1779 1780 /* disable receives in the hardware */ 1781 rctl = rd32(E1000_RCTL); 1782 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN); 1783 /* flush and sleep below */ 1784 1785 netif_carrier_off(netdev); 1786 netif_tx_stop_all_queues(netdev); 1787 1788 /* disable transmits in the hardware */ 1789 tctl = rd32(E1000_TCTL); 1790 tctl &= ~E1000_TCTL_EN; 1791 wr32(E1000_TCTL, tctl); 1792 /* flush both disables and wait for them to finish */ 1793 wrfl(); 1794 usleep_range(10000, 11000); 1795 1796 igb_irq_disable(adapter); 1797 1798 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 1799 1800 for (i = 0; i < adapter->num_q_vectors; i++) { 1801 if (adapter->q_vector[i]) { 1802 napi_synchronize(&adapter->q_vector[i]->napi); 1803 napi_disable(&adapter->q_vector[i]->napi); 1804 } 1805 } 1806 1807 del_timer_sync(&adapter->watchdog_timer); 1808 del_timer_sync(&adapter->phy_info_timer); 1809 1810 /* record the stats before reset*/ 1811 spin_lock(&adapter->stats64_lock); 1812 igb_update_stats(adapter, &adapter->stats64); 1813 spin_unlock(&adapter->stats64_lock); 1814 1815 adapter->link_speed = 0; 1816 adapter->link_duplex = 0; 1817 1818 if (!pci_channel_offline(adapter->pdev)) 1819 igb_reset(adapter); 1820 igb_clean_all_tx_rings(adapter); 1821 igb_clean_all_rx_rings(adapter); 1822#ifdef CONFIG_IGB_DCA 1823 1824 /* since we reset the hardware DCA settings were cleared */ 1825 igb_setup_dca(adapter); 1826#endif 1827} 1828 1829void igb_reinit_locked(struct igb_adapter *adapter) 1830{ 1831 WARN_ON(in_interrupt()); 1832 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 1833 usleep_range(1000, 2000); 1834 igb_down(adapter); 1835 igb_up(adapter); 1836 clear_bit(__IGB_RESETTING, &adapter->state); 1837} 1838 1839/** igb_enable_mas - Media Autosense re-enable after swap 1840 * 1841 * @adapter: adapter struct 1842 **/ 1843static s32 igb_enable_mas(struct igb_adapter *adapter) 1844{ 1845 struct e1000_hw *hw = &adapter->hw; 1846 u32 connsw; 1847 s32 ret_val = 0; 1848 1849 connsw = rd32(E1000_CONNSW); 1850 if (!(hw->phy.media_type == e1000_media_type_copper)) 1851 return ret_val; 1852 1853 /* configure for SerDes media detect */ 1854 if (!(connsw & E1000_CONNSW_SERDESD)) { 1855 connsw |= E1000_CONNSW_ENRGSRC; 1856 connsw |= E1000_CONNSW_AUTOSENSE_EN; 1857 wr32(E1000_CONNSW, connsw); 1858 wrfl(); 1859 } else if (connsw & E1000_CONNSW_SERDESD) { 1860 /* already SerDes, no need to enable anything */ 1861 return ret_val; 1862 } else { 1863 netdev_info(adapter->netdev, 1864 "MAS: Unable to configure feature, disabling..\n"); 1865 adapter->flags &= ~IGB_FLAG_MAS_ENABLE; 1866 } 1867 return ret_val; 1868} 1869 1870void igb_reset(struct igb_adapter *adapter) 1871{ 1872 struct pci_dev *pdev = adapter->pdev; 1873 struct e1000_hw *hw = &adapter->hw; 1874 struct e1000_mac_info *mac = &hw->mac; 1875 struct e1000_fc_info *fc = &hw->fc; 1876 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm; 1877 1878 /* Repartition Pba for greater than 9k mtu 1879 * To take effect CTRL.RST is required. 1880 */ 1881 switch (mac->type) { 1882 case e1000_i350: 1883 case e1000_i354: 1884 case e1000_82580: 1885 pba = rd32(E1000_RXPBS); 1886 pba = igb_rxpbs_adjust_82580(pba); 1887 break; 1888 case e1000_82576: 1889 pba = rd32(E1000_RXPBS); 1890 pba &= E1000_RXPBS_SIZE_MASK_82576; 1891 break; 1892 case e1000_82575: 1893 case e1000_i210: 1894 case e1000_i211: 1895 default: 1896 pba = E1000_PBA_34K; 1897 break; 1898 } 1899 1900 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) && 1901 (mac->type < e1000_82576)) { 1902 /* adjust PBA for jumbo frames */ 1903 wr32(E1000_PBA, pba); 1904 1905 /* To maintain wire speed transmits, the Tx FIFO should be 1906 * large enough to accommodate two full transmit packets, 1907 * rounded up to the next 1KB and expressed in KB. Likewise, 1908 * the Rx FIFO should be large enough to accommodate at least 1909 * one full receive packet and is similarly rounded up and 1910 * expressed in KB. 1911 */ 1912 pba = rd32(E1000_PBA); 1913 /* upper 16 bits has Tx packet buffer allocation size in KB */ 1914 tx_space = pba >> 16; 1915 /* lower 16 bits has Rx packet buffer allocation size in KB */ 1916 pba &= 0xffff; 1917 /* the Tx fifo also stores 16 bytes of information about the Tx 1918 * but don't include ethernet FCS because hardware appends it 1919 */ 1920 min_tx_space = (adapter->max_frame_size + 1921 sizeof(union e1000_adv_tx_desc) - 1922 ETH_FCS_LEN) * 2; 1923 min_tx_space = ALIGN(min_tx_space, 1024); 1924 min_tx_space >>= 10; 1925 /* software strips receive CRC, so leave room for it */ 1926 min_rx_space = adapter->max_frame_size; 1927 min_rx_space = ALIGN(min_rx_space, 1024); 1928 min_rx_space >>= 10; 1929 1930 /* If current Tx allocation is less than the min Tx FIFO size, 1931 * and the min Tx FIFO size is less than the current Rx FIFO 1932 * allocation, take space away from current Rx allocation 1933 */ 1934 if (tx_space < min_tx_space && 1935 ((min_tx_space - tx_space) < pba)) { 1936 pba = pba - (min_tx_space - tx_space); 1937 1938 /* if short on Rx space, Rx wins and must trump Tx 1939 * adjustment 1940 */ 1941 if (pba < min_rx_space) 1942 pba = min_rx_space; 1943 } 1944 wr32(E1000_PBA, pba); 1945 } 1946 1947 /* flow control settings */ 1948 /* The high water mark must be low enough to fit one full frame 1949 * (or the size used for early receive) above it in the Rx FIFO. 1950 * Set it to the lower of: 1951 * - 90% of the Rx FIFO size, or 1952 * - the full Rx FIFO size minus one full frame 1953 */ 1954 hwm = min(((pba << 10) * 9 / 10), 1955 ((pba << 10) - 2 * adapter->max_frame_size)); 1956 1957 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */ 1958 fc->low_water = fc->high_water - 16; 1959 fc->pause_time = 0xFFFF; 1960 fc->send_xon = 1; 1961 fc->current_mode = fc->requested_mode; 1962 1963 /* disable receive for all VFs and wait one second */ 1964 if (adapter->vfs_allocated_count) { 1965 int i; 1966 1967 for (i = 0 ; i < adapter->vfs_allocated_count; i++) 1968 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC; 1969 1970 /* ping all the active vfs to let them know we are going down */ 1971 igb_ping_all_vfs(adapter); 1972 1973 /* disable transmits and receives */ 1974 wr32(E1000_VFRE, 0); 1975 wr32(E1000_VFTE, 0); 1976 } 1977 1978 /* Allow time for pending master requests to run */ 1979 hw->mac.ops.reset_hw(hw); 1980 wr32(E1000_WUC, 0); 1981 1982 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 1983 /* need to resetup here after media swap */ 1984 adapter->ei.get_invariants(hw); 1985 adapter->flags &= ~IGB_FLAG_MEDIA_RESET; 1986 } 1987 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 1988 if (igb_enable_mas(adapter)) 1989 dev_err(&pdev->dev, 1990 "Error enabling Media Auto Sense\n"); 1991 } 1992 if (hw->mac.ops.init_hw(hw)) 1993 dev_err(&pdev->dev, "Hardware Error\n"); 1994 1995 /* Flow control settings reset on hardware reset, so guarantee flow 1996 * control is off when forcing speed. 1997 */ 1998 if (!hw->mac.autoneg) 1999 igb_force_mac_fc(hw); 2000 2001 igb_init_dmac(adapter, pba); 2002#ifdef CONFIG_IGB_HWMON 2003 /* Re-initialize the thermal sensor on i350 devices. */ 2004 if (!test_bit(__IGB_DOWN, &adapter->state)) { 2005 if (mac->type == e1000_i350 && hw->bus.func == 0) { 2006 /* If present, re-initialize the external thermal sensor 2007 * interface. 2008 */ 2009 if (adapter->ets) 2010 mac->ops.init_thermal_sensor_thresh(hw); 2011 } 2012 } 2013#endif 2014 /* Re-establish EEE setting */ 2015 if (hw->phy.media_type == e1000_media_type_copper) { 2016 switch (mac->type) { 2017 case e1000_i350: 2018 case e1000_i210: 2019 case e1000_i211: 2020 igb_set_eee_i350(hw, true, true); 2021 break; 2022 case e1000_i354: 2023 igb_set_eee_i354(hw, true, true); 2024 break; 2025 default: 2026 break; 2027 } 2028 } 2029 if (!netif_running(adapter->netdev)) 2030 igb_power_down_link(adapter); 2031 2032 igb_update_mng_vlan(adapter); 2033 2034 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 2035 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE); 2036 2037 /* Re-enable PTP, where applicable. */ 2038 igb_ptp_reset(adapter); 2039 2040 igb_get_phy_info(hw); 2041} 2042 2043static netdev_features_t igb_fix_features(struct net_device *netdev, 2044 netdev_features_t features) 2045{ 2046 /* Since there is no support for separate Rx/Tx vlan accel 2047 * enable/disable make sure Tx flag is always in same state as Rx. 2048 */ 2049 if (features & NETIF_F_HW_VLAN_CTAG_RX) 2050 features |= NETIF_F_HW_VLAN_CTAG_TX; 2051 else 2052 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 2053 2054 return features; 2055} 2056 2057static int igb_set_features(struct net_device *netdev, 2058 netdev_features_t features) 2059{ 2060 netdev_features_t changed = netdev->features ^ features; 2061 struct igb_adapter *adapter = netdev_priv(netdev); 2062 2063 if (changed & NETIF_F_HW_VLAN_CTAG_RX) 2064 igb_vlan_mode(netdev, features); 2065 2066 if (!(changed & NETIF_F_RXALL)) 2067 return 0; 2068 2069 netdev->features = features; 2070 2071 if (netif_running(netdev)) 2072 igb_reinit_locked(adapter); 2073 else 2074 igb_reset(adapter); 2075 2076 return 0; 2077} 2078 2079static const struct net_device_ops igb_netdev_ops = { 2080 .ndo_open = igb_open, 2081 .ndo_stop = igb_close, 2082 .ndo_start_xmit = igb_xmit_frame, 2083 .ndo_get_stats64 = igb_get_stats64, 2084 .ndo_set_rx_mode = igb_set_rx_mode, 2085 .ndo_set_mac_address = igb_set_mac, 2086 .ndo_change_mtu = igb_change_mtu, 2087 .ndo_do_ioctl = igb_ioctl, 2088 .ndo_tx_timeout = igb_tx_timeout, 2089 .ndo_validate_addr = eth_validate_addr, 2090 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid, 2091 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid, 2092 .ndo_set_vf_mac = igb_ndo_set_vf_mac, 2093 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan, 2094 .ndo_set_vf_rate = igb_ndo_set_vf_bw, 2095 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk, 2096 .ndo_get_vf_config = igb_ndo_get_vf_config, 2097#ifdef CONFIG_NET_POLL_CONTROLLER 2098 .ndo_poll_controller = igb_netpoll, 2099#endif 2100 .ndo_fix_features = igb_fix_features, 2101 .ndo_set_features = igb_set_features, 2102 .ndo_features_check = passthru_features_check, 2103}; 2104 2105/** 2106 * igb_set_fw_version - Configure version string for ethtool 2107 * @adapter: adapter struct 2108 **/ 2109void igb_set_fw_version(struct igb_adapter *adapter) 2110{ 2111 struct e1000_hw *hw = &adapter->hw; 2112 struct e1000_fw_version fw; 2113 2114 igb_get_fw_version(hw, &fw); 2115 2116 switch (hw->mac.type) { 2117 case e1000_i210: 2118 case e1000_i211: 2119 if (!(igb_get_flash_presence_i210(hw))) { 2120 snprintf(adapter->fw_version, 2121 sizeof(adapter->fw_version), 2122 "%2d.%2d-%d", 2123 fw.invm_major, fw.invm_minor, 2124 fw.invm_img_type); 2125 break; 2126 } 2127 /* fall through */ 2128 default: 2129 /* if option is rom valid, display its version too */ 2130 if (fw.or_valid) { 2131 snprintf(adapter->fw_version, 2132 sizeof(adapter->fw_version), 2133 "%d.%d, 0x%08x, %d.%d.%d", 2134 fw.eep_major, fw.eep_minor, fw.etrack_id, 2135 fw.or_major, fw.or_build, fw.or_patch); 2136 /* no option rom */ 2137 } else if (fw.etrack_id != 0X0000) { 2138 snprintf(adapter->fw_version, 2139 sizeof(adapter->fw_version), 2140 "%d.%d, 0x%08x", 2141 fw.eep_major, fw.eep_minor, fw.etrack_id); 2142 } else { 2143 snprintf(adapter->fw_version, 2144 sizeof(adapter->fw_version), 2145 "%d.%d.%d", 2146 fw.eep_major, fw.eep_minor, fw.eep_build); 2147 } 2148 break; 2149 } 2150} 2151 2152/** 2153 * igb_init_mas - init Media Autosense feature if enabled in the NVM 2154 * 2155 * @adapter: adapter struct 2156 **/ 2157static void igb_init_mas(struct igb_adapter *adapter) 2158{ 2159 struct e1000_hw *hw = &adapter->hw; 2160 u16 eeprom_data; 2161 2162 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data); 2163 switch (hw->bus.func) { 2164 case E1000_FUNC_0: 2165 if (eeprom_data & IGB_MAS_ENABLE_0) { 2166 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2167 netdev_info(adapter->netdev, 2168 "MAS: Enabling Media Autosense for port %d\n", 2169 hw->bus.func); 2170 } 2171 break; 2172 case E1000_FUNC_1: 2173 if (eeprom_data & IGB_MAS_ENABLE_1) { 2174 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2175 netdev_info(adapter->netdev, 2176 "MAS: Enabling Media Autosense for port %d\n", 2177 hw->bus.func); 2178 } 2179 break; 2180 case E1000_FUNC_2: 2181 if (eeprom_data & IGB_MAS_ENABLE_2) { 2182 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2183 netdev_info(adapter->netdev, 2184 "MAS: Enabling Media Autosense for port %d\n", 2185 hw->bus.func); 2186 } 2187 break; 2188 case E1000_FUNC_3: 2189 if (eeprom_data & IGB_MAS_ENABLE_3) { 2190 adapter->flags |= IGB_FLAG_MAS_ENABLE; 2191 netdev_info(adapter->netdev, 2192 "MAS: Enabling Media Autosense for port %d\n", 2193 hw->bus.func); 2194 } 2195 break; 2196 default: 2197 /* Shouldn't get here */ 2198 netdev_err(adapter->netdev, 2199 "MAS: Invalid port configuration, returning\n"); 2200 break; 2201 } 2202} 2203 2204/** 2205 * igb_init_i2c - Init I2C interface 2206 * @adapter: pointer to adapter structure 2207 **/ 2208static s32 igb_init_i2c(struct igb_adapter *adapter) 2209{ 2210 s32 status = 0; 2211 2212 /* I2C interface supported on i350 devices */ 2213 if (adapter->hw.mac.type != e1000_i350) 2214 return 0; 2215 2216 /* Initialize the i2c bus which is controlled by the registers. 2217 * This bus will use the i2c_algo_bit structue that implements 2218 * the protocol through toggling of the 4 bits in the register. 2219 */ 2220 adapter->i2c_adap.owner = THIS_MODULE; 2221 adapter->i2c_algo = igb_i2c_algo; 2222 adapter->i2c_algo.data = adapter; 2223 adapter->i2c_adap.algo_data = &adapter->i2c_algo; 2224 adapter->i2c_adap.dev.parent = &adapter->pdev->dev; 2225 strlcpy(adapter->i2c_adap.name, "igb BB", 2226 sizeof(adapter->i2c_adap.name)); 2227 status = i2c_bit_add_bus(&adapter->i2c_adap); 2228 return status; 2229} 2230 2231/** 2232 * igb_probe - Device Initialization Routine 2233 * @pdev: PCI device information struct 2234 * @ent: entry in igb_pci_tbl 2235 * 2236 * Returns 0 on success, negative on failure 2237 * 2238 * igb_probe initializes an adapter identified by a pci_dev structure. 2239 * The OS initialization, configuring of the adapter private structure, 2240 * and a hardware reset occur. 2241 **/ 2242static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 2243{ 2244 struct net_device *netdev; 2245 struct igb_adapter *adapter; 2246 struct e1000_hw *hw; 2247 u16 eeprom_data = 0; 2248 s32 ret_val; 2249 static int global_quad_port_a; /* global quad port a indication */ 2250 const struct e1000_info *ei = igb_info_tbl[ent->driver_data]; 2251 int err, pci_using_dac; 2252 u8 part_str[E1000_PBANUM_LENGTH]; 2253 2254 /* Catch broken hardware that put the wrong VF device ID in 2255 * the PCIe SR-IOV capability. 2256 */ 2257 if (pdev->is_virtfn) { 2258 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n", 2259 pci_name(pdev), pdev->vendor, pdev->device); 2260 return -EINVAL; 2261 } 2262 2263 err = pci_enable_device_mem(pdev); 2264 if (err) 2265 return err; 2266 2267 pci_using_dac = 0; 2268 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 2269 if (!err) { 2270 pci_using_dac = 1; 2271 } else { 2272 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 2273 if (err) { 2274 dev_err(&pdev->dev, 2275 "No usable DMA configuration, aborting\n"); 2276 goto err_dma; 2277 } 2278 } 2279 2280 err = pci_request_selected_regions(pdev, pci_select_bars(pdev, 2281 IORESOURCE_MEM), 2282 igb_driver_name); 2283 if (err) 2284 goto err_pci_reg; 2285 2286 pci_enable_pcie_error_reporting(pdev); 2287 2288 pci_set_master(pdev); 2289 pci_save_state(pdev); 2290 2291 err = -ENOMEM; 2292 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter), 2293 IGB_MAX_TX_QUEUES); 2294 if (!netdev) 2295 goto err_alloc_etherdev; 2296 2297 SET_NETDEV_DEV(netdev, &pdev->dev); 2298 2299 pci_set_drvdata(pdev, netdev); 2300 adapter = netdev_priv(netdev); 2301 adapter->netdev = netdev; 2302 adapter->pdev = pdev; 2303 hw = &adapter->hw; 2304 hw->back = adapter; 2305 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 2306 2307 err = -EIO; 2308 hw->hw_addr = pci_iomap(pdev, 0, 0); 2309 if (!hw->hw_addr) 2310 goto err_ioremap; 2311 2312 netdev->netdev_ops = &igb_netdev_ops; 2313 igb_set_ethtool_ops(netdev); 2314 netdev->watchdog_timeo = 5 * HZ; 2315 2316 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); 2317 2318 netdev->mem_start = pci_resource_start(pdev, 0); 2319 netdev->mem_end = pci_resource_end(pdev, 0); 2320 2321 /* PCI config space info */ 2322 hw->vendor_id = pdev->vendor; 2323 hw->device_id = pdev->device; 2324 hw->revision_id = pdev->revision; 2325 hw->subsystem_vendor_id = pdev->subsystem_vendor; 2326 hw->subsystem_device_id = pdev->subsystem_device; 2327 2328 /* Copy the default MAC, PHY and NVM function pointers */ 2329 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 2330 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 2331 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 2332 /* Initialize skew-specific constants */ 2333 err = ei->get_invariants(hw); 2334 if (err) 2335 goto err_sw_init; 2336 2337 /* setup the private structure */ 2338 err = igb_sw_init(adapter); 2339 if (err) 2340 goto err_sw_init; 2341 2342 igb_get_bus_info_pcie(hw); 2343 2344 hw->phy.autoneg_wait_to_complete = false; 2345 2346 /* Copper options */ 2347 if (hw->phy.media_type == e1000_media_type_copper) { 2348 hw->phy.mdix = AUTO_ALL_MODES; 2349 hw->phy.disable_polarity_correction = false; 2350 hw->phy.ms_type = e1000_ms_hw_default; 2351 } 2352 2353 if (igb_check_reset_block(hw)) 2354 dev_info(&pdev->dev, 2355 "PHY reset is blocked due to SOL/IDER session.\n"); 2356 2357 /* features is initialized to 0 in allocation, it might have bits 2358 * set by igb_sw_init so we should use an or instead of an 2359 * assignment. 2360 */ 2361 netdev->features |= NETIF_F_SG | 2362 NETIF_F_IP_CSUM | 2363 NETIF_F_IPV6_CSUM | 2364 NETIF_F_TSO | 2365 NETIF_F_TSO6 | 2366 NETIF_F_RXHASH | 2367 NETIF_F_RXCSUM | 2368 NETIF_F_HW_VLAN_CTAG_RX | 2369 NETIF_F_HW_VLAN_CTAG_TX; 2370 2371 /* copy netdev features into list of user selectable features */ 2372 netdev->hw_features |= netdev->features; 2373 netdev->hw_features |= NETIF_F_RXALL; 2374 2375 /* set this bit last since it cannot be part of hw_features */ 2376 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 2377 2378 netdev->vlan_features |= NETIF_F_TSO | 2379 NETIF_F_TSO6 | 2380 NETIF_F_IP_CSUM | 2381 NETIF_F_IPV6_CSUM | 2382 NETIF_F_SG; 2383 2384 netdev->priv_flags |= IFF_SUPP_NOFCS; 2385 2386 if (pci_using_dac) { 2387 netdev->features |= NETIF_F_HIGHDMA; 2388 netdev->vlan_features |= NETIF_F_HIGHDMA; 2389 } 2390 2391 if (hw->mac.type >= e1000_82576) { 2392 netdev->hw_features |= NETIF_F_SCTP_CSUM; 2393 netdev->features |= NETIF_F_SCTP_CSUM; 2394 } 2395 2396 netdev->priv_flags |= IFF_UNICAST_FLT; 2397 2398 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw); 2399 2400 /* before reading the NVM, reset the controller to put the device in a 2401 * known good starting state 2402 */ 2403 hw->mac.ops.reset_hw(hw); 2404 2405 /* make sure the NVM is good , i211/i210 parts can have special NVM 2406 * that doesn't contain a checksum 2407 */ 2408 switch (hw->mac.type) { 2409 case e1000_i210: 2410 case e1000_i211: 2411 if (igb_get_flash_presence_i210(hw)) { 2412 if (hw->nvm.ops.validate(hw) < 0) { 2413 dev_err(&pdev->dev, 2414 "The NVM Checksum Is Not Valid\n"); 2415 err = -EIO; 2416 goto err_eeprom; 2417 } 2418 } 2419 break; 2420 default: 2421 if (hw->nvm.ops.validate(hw) < 0) { 2422 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 2423 err = -EIO; 2424 goto err_eeprom; 2425 } 2426 break; 2427 } 2428 2429 /* copy the MAC address out of the NVM */ 2430 if (hw->mac.ops.read_mac_addr(hw)) 2431 dev_err(&pdev->dev, "NVM Read Error\n"); 2432 2433 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len); 2434 2435 if (!is_valid_ether_addr(netdev->dev_addr)) { 2436 dev_err(&pdev->dev, "Invalid MAC Address\n"); 2437 err = -EIO; 2438 goto err_eeprom; 2439 } 2440 2441 /* get firmware version for ethtool -i */ 2442 igb_set_fw_version(adapter); 2443 2444 /* configure RXPBSIZE and TXPBSIZE */ 2445 if (hw->mac.type == e1000_i210) { 2446 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT); 2447 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT); 2448 } 2449 2450 setup_timer(&adapter->watchdog_timer, igb_watchdog, 2451 (unsigned long) adapter); 2452 setup_timer(&adapter->phy_info_timer, igb_update_phy_info, 2453 (unsigned long) adapter); 2454 2455 INIT_WORK(&adapter->reset_task, igb_reset_task); 2456 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task); 2457 2458 /* Initialize link properties that are user-changeable */ 2459 adapter->fc_autoneg = true; 2460 hw->mac.autoneg = true; 2461 hw->phy.autoneg_advertised = 0x2f; 2462 2463 hw->fc.requested_mode = e1000_fc_default; 2464 hw->fc.current_mode = e1000_fc_default; 2465 2466 igb_validate_mdi_setting(hw); 2467 2468 /* By default, support wake on port A */ 2469 if (hw->bus.func == 0) 2470 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2471 2472 /* Check the NVM for wake support on non-port A ports */ 2473 if (hw->mac.type >= e1000_82580) 2474 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + 2475 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, 2476 &eeprom_data); 2477 else if (hw->bus.func == 1) 2478 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); 2479 2480 if (eeprom_data & IGB_EEPROM_APME) 2481 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2482 2483 /* now that we have the eeprom settings, apply the special cases where 2484 * the eeprom may be wrong or the board simply won't support wake on 2485 * lan on a particular port 2486 */ 2487 switch (pdev->device) { 2488 case E1000_DEV_ID_82575GB_QUAD_COPPER: 2489 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2490 break; 2491 case E1000_DEV_ID_82575EB_FIBER_SERDES: 2492 case E1000_DEV_ID_82576_FIBER: 2493 case E1000_DEV_ID_82576_SERDES: 2494 /* Wake events only supported on port A for dual fiber 2495 * regardless of eeprom setting 2496 */ 2497 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) 2498 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2499 break; 2500 case E1000_DEV_ID_82576_QUAD_COPPER: 2501 case E1000_DEV_ID_82576_QUAD_COPPER_ET2: 2502 /* if quad port adapter, disable WoL on all but port A */ 2503 if (global_quad_port_a != 0) 2504 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2505 else 2506 adapter->flags |= IGB_FLAG_QUAD_PORT_A; 2507 /* Reset for multiple quad port adapters */ 2508 if (++global_quad_port_a == 4) 2509 global_quad_port_a = 0; 2510 break; 2511 default: 2512 /* If the device can't wake, don't set software support */ 2513 if (!device_can_wakeup(&adapter->pdev->dev)) 2514 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED; 2515 } 2516 2517 /* initialize the wol settings based on the eeprom settings */ 2518 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED) 2519 adapter->wol |= E1000_WUFC_MAG; 2520 2521 /* Some vendors want WoL disabled by default, but still supported */ 2522 if ((hw->mac.type == e1000_i350) && 2523 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) { 2524 adapter->flags |= IGB_FLAG_WOL_SUPPORTED; 2525 adapter->wol = 0; 2526 } 2527 2528 device_set_wakeup_enable(&adapter->pdev->dev, 2529 adapter->flags & IGB_FLAG_WOL_SUPPORTED); 2530 2531 /* reset the hardware with the new settings */ 2532 igb_reset(adapter); 2533 2534 /* Init the I2C interface */ 2535 err = igb_init_i2c(adapter); 2536 if (err) { 2537 dev_err(&pdev->dev, "failed to init i2c interface\n"); 2538 goto err_eeprom; 2539 } 2540 2541 /* let the f/w know that the h/w is now under the control of the 2542 * driver. 2543 */ 2544 igb_get_hw_control(adapter); 2545 2546 strcpy(netdev->name, "eth%d"); 2547 err = register_netdev(netdev); 2548 if (err) 2549 goto err_register; 2550 2551 /* carrier off reporting is important to ethtool even BEFORE open */ 2552 netif_carrier_off(netdev); 2553 2554#ifdef CONFIG_IGB_DCA 2555 if (dca_add_requester(&pdev->dev) == 0) { 2556 adapter->flags |= IGB_FLAG_DCA_ENABLED; 2557 dev_info(&pdev->dev, "DCA enabled\n"); 2558 igb_setup_dca(adapter); 2559 } 2560 2561#endif 2562#ifdef CONFIG_IGB_HWMON 2563 /* Initialize the thermal sensor on i350 devices. */ 2564 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) { 2565 u16 ets_word; 2566 2567 /* Read the NVM to determine if this i350 device supports an 2568 * external thermal sensor. 2569 */ 2570 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word); 2571 if (ets_word != 0x0000 && ets_word != 0xFFFF) 2572 adapter->ets = true; 2573 else 2574 adapter->ets = false; 2575 if (igb_sysfs_init(adapter)) 2576 dev_err(&pdev->dev, 2577 "failed to allocate sysfs resources\n"); 2578 } else { 2579 adapter->ets = false; 2580 } 2581#endif 2582 /* Check if Media Autosense is enabled */ 2583 adapter->ei = *ei; 2584 if (hw->dev_spec._82575.mas_capable) 2585 igb_init_mas(adapter); 2586 2587 /* do hw tstamp init after resetting */ 2588 igb_ptp_init(adapter); 2589 2590 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n"); 2591 /* print bus type/speed/width info, not applicable to i354 */ 2592 if (hw->mac.type != e1000_i354) { 2593 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n", 2594 netdev->name, 2595 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" : 2596 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" : 2597 "unknown"), 2598 ((hw->bus.width == e1000_bus_width_pcie_x4) ? 2599 "Width x4" : 2600 (hw->bus.width == e1000_bus_width_pcie_x2) ? 2601 "Width x2" : 2602 (hw->bus.width == e1000_bus_width_pcie_x1) ? 2603 "Width x1" : "unknown"), netdev->dev_addr); 2604 } 2605 2606 if ((hw->mac.type >= e1000_i210 || 2607 igb_get_flash_presence_i210(hw))) { 2608 ret_val = igb_read_part_string(hw, part_str, 2609 E1000_PBANUM_LENGTH); 2610 } else { 2611 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND; 2612 } 2613 2614 if (ret_val) 2615 strcpy(part_str, "Unknown"); 2616 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str); 2617 dev_info(&pdev->dev, 2618 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n", 2619 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" : 2620 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy", 2621 adapter->num_rx_queues, adapter->num_tx_queues); 2622 if (hw->phy.media_type == e1000_media_type_copper) { 2623 switch (hw->mac.type) { 2624 case e1000_i350: 2625 case e1000_i210: 2626 case e1000_i211: 2627 /* Enable EEE for internal copper PHY devices */ 2628 err = igb_set_eee_i350(hw, true, true); 2629 if ((!err) && 2630 (!hw->dev_spec._82575.eee_disable)) { 2631 adapter->eee_advert = 2632 MDIO_EEE_100TX | MDIO_EEE_1000T; 2633 adapter->flags |= IGB_FLAG_EEE; 2634 } 2635 break; 2636 case e1000_i354: 2637 if ((rd32(E1000_CTRL_EXT) & 2638 E1000_CTRL_EXT_LINK_MODE_SGMII)) { 2639 err = igb_set_eee_i354(hw, true, true); 2640 if ((!err) && 2641 (!hw->dev_spec._82575.eee_disable)) { 2642 adapter->eee_advert = 2643 MDIO_EEE_100TX | MDIO_EEE_1000T; 2644 adapter->flags |= IGB_FLAG_EEE; 2645 } 2646 } 2647 break; 2648 default: 2649 break; 2650 } 2651 } 2652 pm_runtime_put_noidle(&pdev->dev); 2653 return 0; 2654 2655err_register: 2656 igb_release_hw_control(adapter); 2657 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap)); 2658err_eeprom: 2659 if (!igb_check_reset_block(hw)) 2660 igb_reset_phy(hw); 2661 2662 if (hw->flash_address) 2663 iounmap(hw->flash_address); 2664err_sw_init: 2665 igb_clear_interrupt_scheme(adapter); 2666 pci_iounmap(pdev, hw->hw_addr); 2667err_ioremap: 2668 free_netdev(netdev); 2669err_alloc_etherdev: 2670 pci_release_selected_regions(pdev, 2671 pci_select_bars(pdev, IORESOURCE_MEM)); 2672err_pci_reg: 2673err_dma: 2674 pci_disable_device(pdev); 2675 return err; 2676} 2677 2678#ifdef CONFIG_PCI_IOV 2679static int igb_disable_sriov(struct pci_dev *pdev) 2680{ 2681 struct net_device *netdev = pci_get_drvdata(pdev); 2682 struct igb_adapter *adapter = netdev_priv(netdev); 2683 struct e1000_hw *hw = &adapter->hw; 2684 2685 /* reclaim resources allocated to VFs */ 2686 if (adapter->vf_data) { 2687 /* disable iov and allow time for transactions to clear */ 2688 if (pci_vfs_assigned(pdev)) { 2689 dev_warn(&pdev->dev, 2690 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n"); 2691 return -EPERM; 2692 } else { 2693 pci_disable_sriov(pdev); 2694 msleep(500); 2695 } 2696 2697 kfree(adapter->vf_data); 2698 adapter->vf_data = NULL; 2699 adapter->vfs_allocated_count = 0; 2700 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ); 2701 wrfl(); 2702 msleep(100); 2703 dev_info(&pdev->dev, "IOV Disabled\n"); 2704 2705 /* Re-enable DMA Coalescing flag since IOV is turned off */ 2706 adapter->flags |= IGB_FLAG_DMAC; 2707 } 2708 2709 return 0; 2710} 2711 2712static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs) 2713{ 2714 struct net_device *netdev = pci_get_drvdata(pdev); 2715 struct igb_adapter *adapter = netdev_priv(netdev); 2716 int old_vfs = pci_num_vf(pdev); 2717 int err = 0; 2718 int i; 2719 2720 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) { 2721 err = -EPERM; 2722 goto out; 2723 } 2724 if (!num_vfs) 2725 goto out; 2726 2727 if (old_vfs) { 2728 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n", 2729 old_vfs, max_vfs); 2730 adapter->vfs_allocated_count = old_vfs; 2731 } else 2732 adapter->vfs_allocated_count = num_vfs; 2733 2734 adapter->vf_data = kcalloc(adapter->vfs_allocated_count, 2735 sizeof(struct vf_data_storage), GFP_KERNEL); 2736 2737 /* if allocation failed then we do not support SR-IOV */ 2738 if (!adapter->vf_data) { 2739 adapter->vfs_allocated_count = 0; 2740 dev_err(&pdev->dev, 2741 "Unable to allocate memory for VF Data Storage\n"); 2742 err = -ENOMEM; 2743 goto out; 2744 } 2745 2746 /* only call pci_enable_sriov() if no VFs are allocated already */ 2747 if (!old_vfs) { 2748 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count); 2749 if (err) 2750 goto err_out; 2751 } 2752 dev_info(&pdev->dev, "%d VFs allocated\n", 2753 adapter->vfs_allocated_count); 2754 for (i = 0; i < adapter->vfs_allocated_count; i++) 2755 igb_vf_configure(adapter, i); 2756 2757 /* DMA Coalescing is not supported in IOV mode. */ 2758 adapter->flags &= ~IGB_FLAG_DMAC; 2759 goto out; 2760 2761err_out: 2762 kfree(adapter->vf_data); 2763 adapter->vf_data = NULL; 2764 adapter->vfs_allocated_count = 0; 2765out: 2766 return err; 2767} 2768 2769#endif 2770/** 2771 * igb_remove_i2c - Cleanup I2C interface 2772 * @adapter: pointer to adapter structure 2773 **/ 2774static void igb_remove_i2c(struct igb_adapter *adapter) 2775{ 2776 /* free the adapter bus structure */ 2777 i2c_del_adapter(&adapter->i2c_adap); 2778} 2779 2780/** 2781 * igb_remove - Device Removal Routine 2782 * @pdev: PCI device information struct 2783 * 2784 * igb_remove is called by the PCI subsystem to alert the driver 2785 * that it should release a PCI device. The could be caused by a 2786 * Hot-Plug event, or because the driver is going to be removed from 2787 * memory. 2788 **/ 2789static void igb_remove(struct pci_dev *pdev) 2790{ 2791 struct net_device *netdev = pci_get_drvdata(pdev); 2792 struct igb_adapter *adapter = netdev_priv(netdev); 2793 struct e1000_hw *hw = &adapter->hw; 2794 2795 pm_runtime_get_noresume(&pdev->dev); 2796#ifdef CONFIG_IGB_HWMON 2797 igb_sysfs_exit(adapter); 2798#endif 2799 igb_remove_i2c(adapter); 2800 igb_ptp_stop(adapter); 2801 /* The watchdog timer may be rescheduled, so explicitly 2802 * disable watchdog from being rescheduled. 2803 */ 2804 set_bit(__IGB_DOWN, &adapter->state); 2805 del_timer_sync(&adapter->watchdog_timer); 2806 del_timer_sync(&adapter->phy_info_timer); 2807 2808 cancel_work_sync(&adapter->reset_task); 2809 cancel_work_sync(&adapter->watchdog_task); 2810 2811#ifdef CONFIG_IGB_DCA 2812 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 2813 dev_info(&pdev->dev, "DCA disabled\n"); 2814 dca_remove_requester(&pdev->dev); 2815 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 2816 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 2817 } 2818#endif 2819 2820 /* Release control of h/w to f/w. If f/w is AMT enabled, this 2821 * would have already happened in close and is redundant. 2822 */ 2823 igb_release_hw_control(adapter); 2824 2825 unregister_netdev(netdev); 2826 2827 igb_clear_interrupt_scheme(adapter); 2828 2829#ifdef CONFIG_PCI_IOV 2830 igb_disable_sriov(pdev); 2831#endif 2832 2833 pci_iounmap(pdev, hw->hw_addr); 2834 if (hw->flash_address) 2835 iounmap(hw->flash_address); 2836 pci_release_selected_regions(pdev, 2837 pci_select_bars(pdev, IORESOURCE_MEM)); 2838 2839 kfree(adapter->shadow_vfta); 2840 free_netdev(netdev); 2841 2842 pci_disable_pcie_error_reporting(pdev); 2843 2844 pci_disable_device(pdev); 2845} 2846 2847/** 2848 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space 2849 * @adapter: board private structure to initialize 2850 * 2851 * This function initializes the vf specific data storage and then attempts to 2852 * allocate the VFs. The reason for ordering it this way is because it is much 2853 * mor expensive time wise to disable SR-IOV than it is to allocate and free 2854 * the memory for the VFs. 2855 **/ 2856static void igb_probe_vfs(struct igb_adapter *adapter) 2857{ 2858#ifdef CONFIG_PCI_IOV 2859 struct pci_dev *pdev = adapter->pdev; 2860 struct e1000_hw *hw = &adapter->hw; 2861 2862 /* Virtualization features not supported on i210 family. */ 2863 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) 2864 return; 2865 2866 pci_sriov_set_totalvfs(pdev, 7); 2867 igb_enable_sriov(pdev, max_vfs); 2868 2869#endif /* CONFIG_PCI_IOV */ 2870} 2871 2872static void igb_init_queue_configuration(struct igb_adapter *adapter) 2873{ 2874 struct e1000_hw *hw = &adapter->hw; 2875 u32 max_rss_queues; 2876 2877 /* Determine the maximum number of RSS queues supported. */ 2878 switch (hw->mac.type) { 2879 case e1000_i211: 2880 max_rss_queues = IGB_MAX_RX_QUEUES_I211; 2881 break; 2882 case e1000_82575: 2883 case e1000_i210: 2884 max_rss_queues = IGB_MAX_RX_QUEUES_82575; 2885 break; 2886 case e1000_i350: 2887 /* I350 cannot do RSS and SR-IOV at the same time */ 2888 if (!!adapter->vfs_allocated_count) { 2889 max_rss_queues = 1; 2890 break; 2891 } 2892 /* fall through */ 2893 case e1000_82576: 2894 if (!!adapter->vfs_allocated_count) { 2895 max_rss_queues = 2; 2896 break; 2897 } 2898 /* fall through */ 2899 case e1000_82580: 2900 case e1000_i354: 2901 default: 2902 max_rss_queues = IGB_MAX_RX_QUEUES; 2903 break; 2904 } 2905 2906 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus()); 2907 2908 igb_set_flag_queue_pairs(adapter, max_rss_queues); 2909} 2910 2911void igb_set_flag_queue_pairs(struct igb_adapter *adapter, 2912 const u32 max_rss_queues) 2913{ 2914 struct e1000_hw *hw = &adapter->hw; 2915 2916 /* Determine if we need to pair queues. */ 2917 switch (hw->mac.type) { 2918 case e1000_82575: 2919 case e1000_i211: 2920 /* Device supports enough interrupts without queue pairing. */ 2921 break; 2922 case e1000_82576: 2923 /* If VFs are going to be allocated with RSS queues then we 2924 * should pair the queues in order to conserve interrupts due 2925 * to limited supply. 2926 */ 2927 if ((adapter->rss_queues > 1) && 2928 (adapter->vfs_allocated_count > 6)) 2929 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2930 /* fall through */ 2931 case e1000_82580: 2932 case e1000_i350: 2933 case e1000_i354: 2934 case e1000_i210: 2935 default: 2936 /* If rss_queues > half of max_rss_queues, pair the queues in 2937 * order to conserve interrupts due to limited supply. 2938 */ 2939 if (adapter->rss_queues > (max_rss_queues / 2)) 2940 adapter->flags |= IGB_FLAG_QUEUE_PAIRS; 2941 break; 2942 } 2943} 2944 2945/** 2946 * igb_sw_init - Initialize general software structures (struct igb_adapter) 2947 * @adapter: board private structure to initialize 2948 * 2949 * igb_sw_init initializes the Adapter private data structure. 2950 * Fields are initialized based on PCI device information and 2951 * OS network device settings (MTU size). 2952 **/ 2953static int igb_sw_init(struct igb_adapter *adapter) 2954{ 2955 struct e1000_hw *hw = &adapter->hw; 2956 struct net_device *netdev = adapter->netdev; 2957 struct pci_dev *pdev = adapter->pdev; 2958 2959 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word); 2960 2961 /* set default ring sizes */ 2962 adapter->tx_ring_count = IGB_DEFAULT_TXD; 2963 adapter->rx_ring_count = IGB_DEFAULT_RXD; 2964 2965 /* set default ITR values */ 2966 adapter->rx_itr_setting = IGB_DEFAULT_ITR; 2967 adapter->tx_itr_setting = IGB_DEFAULT_ITR; 2968 2969 /* set default work limits */ 2970 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK; 2971 2972 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + 2973 VLAN_HLEN; 2974 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 2975 2976 spin_lock_init(&adapter->stats64_lock); 2977#ifdef CONFIG_PCI_IOV 2978 switch (hw->mac.type) { 2979 case e1000_82576: 2980 case e1000_i350: 2981 if (max_vfs > 7) { 2982 dev_warn(&pdev->dev, 2983 "Maximum of 7 VFs per PF, using max\n"); 2984 max_vfs = adapter->vfs_allocated_count = 7; 2985 } else 2986 adapter->vfs_allocated_count = max_vfs; 2987 if (adapter->vfs_allocated_count) 2988 dev_warn(&pdev->dev, 2989 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n"); 2990 break; 2991 default: 2992 break; 2993 } 2994#endif /* CONFIG_PCI_IOV */ 2995 2996 igb_init_queue_configuration(adapter); 2997 2998 /* Setup and initialize a copy of the hw vlan table array */ 2999 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32), 3000 GFP_ATOMIC); 3001 3002 /* This call may decrease the number of queues */ 3003 if (igb_init_interrupt_scheme(adapter, true)) { 3004 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 3005 return -ENOMEM; 3006 } 3007 3008 igb_probe_vfs(adapter); 3009 3010 /* Explicitly disable IRQ since the NIC can be in any state. */ 3011 igb_irq_disable(adapter); 3012 3013 if (hw->mac.type >= e1000_i350) 3014 adapter->flags &= ~IGB_FLAG_DMAC; 3015 3016 set_bit(__IGB_DOWN, &adapter->state); 3017 return 0; 3018} 3019 3020/** 3021 * igb_open - Called when a network interface is made active 3022 * @netdev: network interface device structure 3023 * 3024 * Returns 0 on success, negative value on failure 3025 * 3026 * The open entry point is called when a network interface is made 3027 * active by the system (IFF_UP). At this point all resources needed 3028 * for transmit and receive operations are allocated, the interrupt 3029 * handler is registered with the OS, the watchdog timer is started, 3030 * and the stack is notified that the interface is ready. 3031 **/ 3032static int __igb_open(struct net_device *netdev, bool resuming) 3033{ 3034 struct igb_adapter *adapter = netdev_priv(netdev); 3035 struct e1000_hw *hw = &adapter->hw; 3036 struct pci_dev *pdev = adapter->pdev; 3037 int err; 3038 int i; 3039 3040 /* disallow open during test */ 3041 if (test_bit(__IGB_TESTING, &adapter->state)) { 3042 WARN_ON(resuming); 3043 return -EBUSY; 3044 } 3045 3046 if (!resuming) 3047 pm_runtime_get_sync(&pdev->dev); 3048 3049 netif_carrier_off(netdev); 3050 3051 /* allocate transmit descriptors */ 3052 err = igb_setup_all_tx_resources(adapter); 3053 if (err) 3054 goto err_setup_tx; 3055 3056 /* allocate receive descriptors */ 3057 err = igb_setup_all_rx_resources(adapter); 3058 if (err) 3059 goto err_setup_rx; 3060 3061 igb_power_up_link(adapter); 3062 3063 /* before we allocate an interrupt, we must be ready to handle it. 3064 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 3065 * as soon as we call pci_request_irq, so we have to setup our 3066 * clean_rx handler before we do so. 3067 */ 3068 igb_configure(adapter); 3069 3070 err = igb_request_irq(adapter); 3071 if (err) 3072 goto err_req_irq; 3073 3074 /* Notify the stack of the actual queue counts. */ 3075 err = netif_set_real_num_tx_queues(adapter->netdev, 3076 adapter->num_tx_queues); 3077 if (err) 3078 goto err_set_queues; 3079 3080 err = netif_set_real_num_rx_queues(adapter->netdev, 3081 adapter->num_rx_queues); 3082 if (err) 3083 goto err_set_queues; 3084 3085 /* From here on the code is the same as igb_up() */ 3086 clear_bit(__IGB_DOWN, &adapter->state); 3087 3088 for (i = 0; i < adapter->num_q_vectors; i++) 3089 napi_enable(&(adapter->q_vector[i]->napi)); 3090 3091 /* Clear any pending interrupts. */ 3092 rd32(E1000_ICR); 3093 3094 igb_irq_enable(adapter); 3095 3096 /* notify VFs that reset has been completed */ 3097 if (adapter->vfs_allocated_count) { 3098 u32 reg_data = rd32(E1000_CTRL_EXT); 3099 3100 reg_data |= E1000_CTRL_EXT_PFRSTD; 3101 wr32(E1000_CTRL_EXT, reg_data); 3102 } 3103 3104 netif_tx_start_all_queues(netdev); 3105 3106 if (!resuming) 3107 pm_runtime_put(&pdev->dev); 3108 3109 /* start the watchdog. */ 3110 hw->mac.get_link_status = 1; 3111 schedule_work(&adapter->watchdog_task); 3112 3113 return 0; 3114 3115err_set_queues: 3116 igb_free_irq(adapter); 3117err_req_irq: 3118 igb_release_hw_control(adapter); 3119 igb_power_down_link(adapter); 3120 igb_free_all_rx_resources(adapter); 3121err_setup_rx: 3122 igb_free_all_tx_resources(adapter); 3123err_setup_tx: 3124 igb_reset(adapter); 3125 if (!resuming) 3126 pm_runtime_put(&pdev->dev); 3127 3128 return err; 3129} 3130 3131static int igb_open(struct net_device *netdev) 3132{ 3133 return __igb_open(netdev, false); 3134} 3135 3136/** 3137 * igb_close - Disables a network interface 3138 * @netdev: network interface device structure 3139 * 3140 * Returns 0, this is not allowed to fail 3141 * 3142 * The close entry point is called when an interface is de-activated 3143 * by the OS. The hardware is still under the driver's control, but 3144 * needs to be disabled. A global MAC reset is issued to stop the 3145 * hardware, and all transmit and receive resources are freed. 3146 **/ 3147static int __igb_close(struct net_device *netdev, bool suspending) 3148{ 3149 struct igb_adapter *adapter = netdev_priv(netdev); 3150 struct pci_dev *pdev = adapter->pdev; 3151 3152 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state)); 3153 3154 if (!suspending) 3155 pm_runtime_get_sync(&pdev->dev); 3156 3157 igb_down(adapter); 3158 igb_free_irq(adapter); 3159 3160 igb_free_all_tx_resources(adapter); 3161 igb_free_all_rx_resources(adapter); 3162 3163 if (!suspending) 3164 pm_runtime_put_sync(&pdev->dev); 3165 return 0; 3166} 3167 3168static int igb_close(struct net_device *netdev) 3169{ 3170 return __igb_close(netdev, false); 3171} 3172 3173/** 3174 * igb_setup_tx_resources - allocate Tx resources (Descriptors) 3175 * @tx_ring: tx descriptor ring (for a specific queue) to setup 3176 * 3177 * Return 0 on success, negative on failure 3178 **/ 3179int igb_setup_tx_resources(struct igb_ring *tx_ring) 3180{ 3181 struct device *dev = tx_ring->dev; 3182 int size; 3183 3184 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3185 3186 tx_ring->tx_buffer_info = vzalloc(size); 3187 if (!tx_ring->tx_buffer_info) 3188 goto err; 3189 3190 /* round up to nearest 4K */ 3191 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc); 3192 tx_ring->size = ALIGN(tx_ring->size, 4096); 3193 3194 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, 3195 &tx_ring->dma, GFP_KERNEL); 3196 if (!tx_ring->desc) 3197 goto err; 3198 3199 tx_ring->next_to_use = 0; 3200 tx_ring->next_to_clean = 0; 3201 3202 return 0; 3203 3204err: 3205 vfree(tx_ring->tx_buffer_info); 3206 tx_ring->tx_buffer_info = NULL; 3207 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n"); 3208 return -ENOMEM; 3209} 3210 3211/** 3212 * igb_setup_all_tx_resources - wrapper to allocate Tx resources 3213 * (Descriptors) for all queues 3214 * @adapter: board private structure 3215 * 3216 * Return 0 on success, negative on failure 3217 **/ 3218static int igb_setup_all_tx_resources(struct igb_adapter *adapter) 3219{ 3220 struct pci_dev *pdev = adapter->pdev; 3221 int i, err = 0; 3222 3223 for (i = 0; i < adapter->num_tx_queues; i++) { 3224 err = igb_setup_tx_resources(adapter->tx_ring[i]); 3225 if (err) { 3226 dev_err(&pdev->dev, 3227 "Allocation for Tx Queue %u failed\n", i); 3228 for (i--; i >= 0; i--) 3229 igb_free_tx_resources(adapter->tx_ring[i]); 3230 break; 3231 } 3232 } 3233 3234 return err; 3235} 3236 3237/** 3238 * igb_setup_tctl - configure the transmit control registers 3239 * @adapter: Board private structure 3240 **/ 3241void igb_setup_tctl(struct igb_adapter *adapter) 3242{ 3243 struct e1000_hw *hw = &adapter->hw; 3244 u32 tctl; 3245 3246 /* disable queue 0 which is enabled by default on 82575 and 82576 */ 3247 wr32(E1000_TXDCTL(0), 0); 3248 3249 /* Program the Transmit Control Register */ 3250 tctl = rd32(E1000_TCTL); 3251 tctl &= ~E1000_TCTL_CT; 3252 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 3253 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 3254 3255 igb_config_collision_dist(hw); 3256 3257 /* Enable transmits */ 3258 tctl |= E1000_TCTL_EN; 3259 3260 wr32(E1000_TCTL, tctl); 3261} 3262 3263/** 3264 * igb_configure_tx_ring - Configure transmit ring after Reset 3265 * @adapter: board private structure 3266 * @ring: tx ring to configure 3267 * 3268 * Configure a transmit ring after a reset. 3269 **/ 3270void igb_configure_tx_ring(struct igb_adapter *adapter, 3271 struct igb_ring *ring) 3272{ 3273 struct e1000_hw *hw = &adapter->hw; 3274 u32 txdctl = 0; 3275 u64 tdba = ring->dma; 3276 int reg_idx = ring->reg_idx; 3277 3278 /* disable the queue */ 3279 wr32(E1000_TXDCTL(reg_idx), 0); 3280 wrfl(); 3281 mdelay(10); 3282 3283 wr32(E1000_TDLEN(reg_idx), 3284 ring->count * sizeof(union e1000_adv_tx_desc)); 3285 wr32(E1000_TDBAL(reg_idx), 3286 tdba & 0x00000000ffffffffULL); 3287 wr32(E1000_TDBAH(reg_idx), tdba >> 32); 3288 3289 ring->tail = hw->hw_addr + E1000_TDT(reg_idx); 3290 wr32(E1000_TDH(reg_idx), 0); 3291 writel(0, ring->tail); 3292 3293 txdctl |= IGB_TX_PTHRESH; 3294 txdctl |= IGB_TX_HTHRESH << 8; 3295 txdctl |= IGB_TX_WTHRESH << 16; 3296 3297 txdctl |= E1000_TXDCTL_QUEUE_ENABLE; 3298 wr32(E1000_TXDCTL(reg_idx), txdctl); 3299} 3300 3301/** 3302 * igb_configure_tx - Configure transmit Unit after Reset 3303 * @adapter: board private structure 3304 * 3305 * Configure the Tx unit of the MAC after a reset. 3306 **/ 3307static void igb_configure_tx(struct igb_adapter *adapter) 3308{ 3309 int i; 3310 3311 for (i = 0; i < adapter->num_tx_queues; i++) 3312 igb_configure_tx_ring(adapter, adapter->tx_ring[i]); 3313} 3314 3315/** 3316 * igb_setup_rx_resources - allocate Rx resources (Descriptors) 3317 * @rx_ring: Rx descriptor ring (for a specific queue) to setup 3318 * 3319 * Returns 0 on success, negative on failure 3320 **/ 3321int igb_setup_rx_resources(struct igb_ring *rx_ring) 3322{ 3323 struct device *dev = rx_ring->dev; 3324 int size; 3325 3326 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3327 3328 rx_ring->rx_buffer_info = vzalloc(size); 3329 if (!rx_ring->rx_buffer_info) 3330 goto err; 3331 3332 /* Round up to nearest 4K */ 3333 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc); 3334 rx_ring->size = ALIGN(rx_ring->size, 4096); 3335 3336 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, 3337 &rx_ring->dma, GFP_KERNEL); 3338 if (!rx_ring->desc) 3339 goto err; 3340 3341 rx_ring->next_to_alloc = 0; 3342 rx_ring->next_to_clean = 0; 3343 rx_ring->next_to_use = 0; 3344 3345 return 0; 3346 3347err: 3348 vfree(rx_ring->rx_buffer_info); 3349 rx_ring->rx_buffer_info = NULL; 3350 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n"); 3351 return -ENOMEM; 3352} 3353 3354/** 3355 * igb_setup_all_rx_resources - wrapper to allocate Rx resources 3356 * (Descriptors) for all queues 3357 * @adapter: board private structure 3358 * 3359 * Return 0 on success, negative on failure 3360 **/ 3361static int igb_setup_all_rx_resources(struct igb_adapter *adapter) 3362{ 3363 struct pci_dev *pdev = adapter->pdev; 3364 int i, err = 0; 3365 3366 for (i = 0; i < adapter->num_rx_queues; i++) { 3367 err = igb_setup_rx_resources(adapter->rx_ring[i]); 3368 if (err) { 3369 dev_err(&pdev->dev, 3370 "Allocation for Rx Queue %u failed\n", i); 3371 for (i--; i >= 0; i--) 3372 igb_free_rx_resources(adapter->rx_ring[i]); 3373 break; 3374 } 3375 } 3376 3377 return err; 3378} 3379 3380/** 3381 * igb_setup_mrqc - configure the multiple receive queue control registers 3382 * @adapter: Board private structure 3383 **/ 3384static void igb_setup_mrqc(struct igb_adapter *adapter) 3385{ 3386 struct e1000_hw *hw = &adapter->hw; 3387 u32 mrqc, rxcsum; 3388 u32 j, num_rx_queues; 3389 u32 rss_key[10]; 3390 3391 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 3392 for (j = 0; j < 10; j++) 3393 wr32(E1000_RSSRK(j), rss_key[j]); 3394 3395 num_rx_queues = adapter->rss_queues; 3396 3397 switch (hw->mac.type) { 3398 case e1000_82576: 3399 /* 82576 supports 2 RSS queues for SR-IOV */ 3400 if (adapter->vfs_allocated_count) 3401 num_rx_queues = 2; 3402 break; 3403 default: 3404 break; 3405 } 3406 3407 if (adapter->rss_indir_tbl_init != num_rx_queues) { 3408 for (j = 0; j < IGB_RETA_SIZE; j++) 3409 adapter->rss_indir_tbl[j] = 3410 (j * num_rx_queues) / IGB_RETA_SIZE; 3411 adapter->rss_indir_tbl_init = num_rx_queues; 3412 } 3413 igb_write_rss_indir_tbl(adapter); 3414 3415 /* Disable raw packet checksumming so that RSS hash is placed in 3416 * descriptor on writeback. No need to enable TCP/UDP/IP checksum 3417 * offloads as they are enabled by default 3418 */ 3419 rxcsum = rd32(E1000_RXCSUM); 3420 rxcsum |= E1000_RXCSUM_PCSD; 3421 3422 if (adapter->hw.mac.type >= e1000_82576) 3423 /* Enable Receive Checksum Offload for SCTP */ 3424 rxcsum |= E1000_RXCSUM_CRCOFL; 3425 3426 /* Don't need to set TUOFL or IPOFL, they default to 1 */ 3427 wr32(E1000_RXCSUM, rxcsum); 3428 3429 /* Generate RSS hash based on packet types, TCP/UDP 3430 * port numbers and/or IPv4/v6 src and dst addresses 3431 */ 3432 mrqc = E1000_MRQC_RSS_FIELD_IPV4 | 3433 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3434 E1000_MRQC_RSS_FIELD_IPV6 | 3435 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3436 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX; 3437 3438 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP) 3439 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP; 3440 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP) 3441 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP; 3442 3443 /* If VMDq is enabled then we set the appropriate mode for that, else 3444 * we default to RSS so that an RSS hash is calculated per packet even 3445 * if we are only using one queue 3446 */ 3447 if (adapter->vfs_allocated_count) { 3448 if (hw->mac.type > e1000_82575) { 3449 /* Set the default pool for the PF's first queue */ 3450 u32 vtctl = rd32(E1000_VT_CTL); 3451 3452 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK | 3453 E1000_VT_CTL_DISABLE_DEF_POOL); 3454 vtctl |= adapter->vfs_allocated_count << 3455 E1000_VT_CTL_DEFAULT_POOL_SHIFT; 3456 wr32(E1000_VT_CTL, vtctl); 3457 } 3458 if (adapter->rss_queues > 1) 3459 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q; 3460 else 3461 mrqc |= E1000_MRQC_ENABLE_VMDQ; 3462 } else { 3463 if (hw->mac.type != e1000_i211) 3464 mrqc |= E1000_MRQC_ENABLE_RSS_4Q; 3465 } 3466 igb_vmm_control(adapter); 3467 3468 wr32(E1000_MRQC, mrqc); 3469} 3470 3471/** 3472 * igb_setup_rctl - configure the receive control registers 3473 * @adapter: Board private structure 3474 **/ 3475void igb_setup_rctl(struct igb_adapter *adapter) 3476{ 3477 struct e1000_hw *hw = &adapter->hw; 3478 u32 rctl; 3479 3480 rctl = rd32(E1000_RCTL); 3481 3482 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3483 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); 3484 3485 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF | 3486 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3487 3488 /* enable stripping of CRC. It's unlikely this will break BMC 3489 * redirection as it did with e1000. Newer features require 3490 * that the HW strips the CRC. 3491 */ 3492 rctl |= E1000_RCTL_SECRC; 3493 3494 /* disable store bad packets and clear size bits. */ 3495 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256); 3496 3497 /* enable LPE to prevent packets larger than max_frame_size */ 3498 rctl |= E1000_RCTL_LPE; 3499 3500 /* disable queue 0 to prevent tail write w/o re-config */ 3501 wr32(E1000_RXDCTL(0), 0); 3502 3503 /* Attention!!! For SR-IOV PF driver operations you must enable 3504 * queue drop for all VF and PF queues to prevent head of line blocking 3505 * if an un-trusted VF does not provide descriptors to hardware. 3506 */ 3507 if (adapter->vfs_allocated_count) { 3508 /* set all queue drop enable bits */ 3509 wr32(E1000_QDE, ALL_QUEUES); 3510 } 3511 3512 /* This is useful for sniffing bad packets. */ 3513 if (adapter->netdev->features & NETIF_F_RXALL) { 3514 /* UPE and MPE will be handled by normal PROMISC logic 3515 * in e1000e_set_rx_mode 3516 */ 3517 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3518 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3519 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3520 3521 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3522 E1000_RCTL_DPF | /* Allow filtered pause */ 3523 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3524 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3525 * and that breaks VLANs. 3526 */ 3527 } 3528 3529 wr32(E1000_RCTL, rctl); 3530} 3531 3532static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size, 3533 int vfn) 3534{ 3535 struct e1000_hw *hw = &adapter->hw; 3536 u32 vmolr; 3537 3538 /* if it isn't the PF check to see if VFs are enabled and 3539 * increase the size to support vlan tags 3540 */ 3541 if (vfn < adapter->vfs_allocated_count && 3542 adapter->vf_data[vfn].vlans_enabled) 3543 size += VLAN_TAG_SIZE; 3544 3545 vmolr = rd32(E1000_VMOLR(vfn)); 3546 vmolr &= ~E1000_VMOLR_RLPML_MASK; 3547 vmolr |= size | E1000_VMOLR_LPE; 3548 wr32(E1000_VMOLR(vfn), vmolr); 3549 3550 return 0; 3551} 3552 3553/** 3554 * igb_rlpml_set - set maximum receive packet size 3555 * @adapter: board private structure 3556 * 3557 * Configure maximum receivable packet size. 3558 **/ 3559static void igb_rlpml_set(struct igb_adapter *adapter) 3560{ 3561 u32 max_frame_size = adapter->max_frame_size; 3562 struct e1000_hw *hw = &adapter->hw; 3563 u16 pf_id = adapter->vfs_allocated_count; 3564 3565 if (pf_id) { 3566 igb_set_vf_rlpml(adapter, max_frame_size, pf_id); 3567 /* If we're in VMDQ or SR-IOV mode, then set global RLPML 3568 * to our max jumbo frame size, in case we need to enable 3569 * jumbo frames on one of the rings later. 3570 * This will not pass over-length frames into the default 3571 * queue because it's gated by the VMOLR.RLPML. 3572 */ 3573 max_frame_size = MAX_JUMBO_FRAME_SIZE; 3574 } 3575 3576 wr32(E1000_RLPML, max_frame_size); 3577} 3578 3579static inline void igb_set_vmolr(struct igb_adapter *adapter, 3580 int vfn, bool aupe) 3581{ 3582 struct e1000_hw *hw = &adapter->hw; 3583 u32 vmolr; 3584 3585 /* This register exists only on 82576 and newer so if we are older then 3586 * we should exit and do nothing 3587 */ 3588 if (hw->mac.type < e1000_82576) 3589 return; 3590 3591 vmolr = rd32(E1000_VMOLR(vfn)); 3592 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */ 3593 if (hw->mac.type == e1000_i350) { 3594 u32 dvmolr; 3595 3596 dvmolr = rd32(E1000_DVMOLR(vfn)); 3597 dvmolr |= E1000_DVMOLR_STRVLAN; 3598 wr32(E1000_DVMOLR(vfn), dvmolr); 3599 } 3600 if (aupe) 3601 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */ 3602 else 3603 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */ 3604 3605 /* clear all bits that might not be set */ 3606 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE); 3607 3608 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count) 3609 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */ 3610 /* for VMDq only allow the VFs and pool 0 to accept broadcast and 3611 * multicast packets 3612 */ 3613 if (vfn <= adapter->vfs_allocated_count) 3614 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */ 3615 3616 wr32(E1000_VMOLR(vfn), vmolr); 3617} 3618 3619/** 3620 * igb_configure_rx_ring - Configure a receive ring after Reset 3621 * @adapter: board private structure 3622 * @ring: receive ring to be configured 3623 * 3624 * Configure the Rx unit of the MAC after a reset. 3625 **/ 3626void igb_configure_rx_ring(struct igb_adapter *adapter, 3627 struct igb_ring *ring) 3628{ 3629 struct e1000_hw *hw = &adapter->hw; 3630 u64 rdba = ring->dma; 3631 int reg_idx = ring->reg_idx; 3632 u32 srrctl = 0, rxdctl = 0; 3633 3634 /* disable the queue */ 3635 wr32(E1000_RXDCTL(reg_idx), 0); 3636 3637 /* Set DMA base address registers */ 3638 wr32(E1000_RDBAL(reg_idx), 3639 rdba & 0x00000000ffffffffULL); 3640 wr32(E1000_RDBAH(reg_idx), rdba >> 32); 3641 wr32(E1000_RDLEN(reg_idx), 3642 ring->count * sizeof(union e1000_adv_rx_desc)); 3643 3644 /* initialize head and tail */ 3645 ring->tail = hw->hw_addr + E1000_RDT(reg_idx); 3646 wr32(E1000_RDH(reg_idx), 0); 3647 writel(0, ring->tail); 3648 3649 /* set descriptor configuration */ 3650 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT; 3651 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT; 3652 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF; 3653 if (hw->mac.type >= e1000_82580) 3654 srrctl |= E1000_SRRCTL_TIMESTAMP; 3655 /* Only set Drop Enable if we are supporting multiple queues */ 3656 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1) 3657 srrctl |= E1000_SRRCTL_DROP_EN; 3658 3659 wr32(E1000_SRRCTL(reg_idx), srrctl); 3660 3661 /* set filtering for VMDQ pools */ 3662 igb_set_vmolr(adapter, reg_idx & 0x7, true); 3663 3664 rxdctl |= IGB_RX_PTHRESH; 3665 rxdctl |= IGB_RX_HTHRESH << 8; 3666 rxdctl |= IGB_RX_WTHRESH << 16; 3667 3668 /* enable receive descriptor fetching */ 3669 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE; 3670 wr32(E1000_RXDCTL(reg_idx), rxdctl); 3671} 3672 3673/** 3674 * igb_configure_rx - Configure receive Unit after Reset 3675 * @adapter: board private structure 3676 * 3677 * Configure the Rx unit of the MAC after a reset. 3678 **/ 3679static void igb_configure_rx(struct igb_adapter *adapter) 3680{ 3681 int i; 3682 3683 /* set UTA to appropriate mode */ 3684 igb_set_uta(adapter); 3685 3686 /* set the correct pool for the PF default MAC address in entry 0 */ 3687 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0, 3688 adapter->vfs_allocated_count); 3689 3690 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3691 * the Base and Length of the Rx Descriptor Ring 3692 */ 3693 for (i = 0; i < adapter->num_rx_queues; i++) 3694 igb_configure_rx_ring(adapter, adapter->rx_ring[i]); 3695} 3696 3697/** 3698 * igb_free_tx_resources - Free Tx Resources per Queue 3699 * @tx_ring: Tx descriptor ring for a specific queue 3700 * 3701 * Free all transmit software resources 3702 **/ 3703void igb_free_tx_resources(struct igb_ring *tx_ring) 3704{ 3705 igb_clean_tx_ring(tx_ring); 3706 3707 vfree(tx_ring->tx_buffer_info); 3708 tx_ring->tx_buffer_info = NULL; 3709 3710 /* if not set, then don't free */ 3711 if (!tx_ring->desc) 3712 return; 3713 3714 dma_free_coherent(tx_ring->dev, tx_ring->size, 3715 tx_ring->desc, tx_ring->dma); 3716 3717 tx_ring->desc = NULL; 3718} 3719 3720/** 3721 * igb_free_all_tx_resources - Free Tx Resources for All Queues 3722 * @adapter: board private structure 3723 * 3724 * Free all transmit software resources 3725 **/ 3726static void igb_free_all_tx_resources(struct igb_adapter *adapter) 3727{ 3728 int i; 3729 3730 for (i = 0; i < adapter->num_tx_queues; i++) 3731 if (adapter->tx_ring[i]) 3732 igb_free_tx_resources(adapter->tx_ring[i]); 3733} 3734 3735void igb_unmap_and_free_tx_resource(struct igb_ring *ring, 3736 struct igb_tx_buffer *tx_buffer) 3737{ 3738 if (tx_buffer->skb) { 3739 dev_kfree_skb_any(tx_buffer->skb); 3740 if (dma_unmap_len(tx_buffer, len)) 3741 dma_unmap_single(ring->dev, 3742 dma_unmap_addr(tx_buffer, dma), 3743 dma_unmap_len(tx_buffer, len), 3744 DMA_TO_DEVICE); 3745 } else if (dma_unmap_len(tx_buffer, len)) { 3746 dma_unmap_page(ring->dev, 3747 dma_unmap_addr(tx_buffer, dma), 3748 dma_unmap_len(tx_buffer, len), 3749 DMA_TO_DEVICE); 3750 } 3751 tx_buffer->next_to_watch = NULL; 3752 tx_buffer->skb = NULL; 3753 dma_unmap_len_set(tx_buffer, len, 0); 3754 /* buffer_info must be completely set up in the transmit path */ 3755} 3756 3757/** 3758 * igb_clean_tx_ring - Free Tx Buffers 3759 * @tx_ring: ring to be cleaned 3760 **/ 3761static void igb_clean_tx_ring(struct igb_ring *tx_ring) 3762{ 3763 struct igb_tx_buffer *buffer_info; 3764 unsigned long size; 3765 u16 i; 3766 3767 if (!tx_ring->tx_buffer_info) 3768 return; 3769 /* Free all the Tx ring sk_buffs */ 3770 3771 for (i = 0; i < tx_ring->count; i++) { 3772 buffer_info = &tx_ring->tx_buffer_info[i]; 3773 igb_unmap_and_free_tx_resource(tx_ring, buffer_info); 3774 } 3775 3776 netdev_tx_reset_queue(txring_txq(tx_ring)); 3777 3778 size = sizeof(struct igb_tx_buffer) * tx_ring->count; 3779 memset(tx_ring->tx_buffer_info, 0, size); 3780 3781 /* Zero out the descriptor ring */ 3782 memset(tx_ring->desc, 0, tx_ring->size); 3783 3784 tx_ring->next_to_use = 0; 3785 tx_ring->next_to_clean = 0; 3786} 3787 3788/** 3789 * igb_clean_all_tx_rings - Free Tx Buffers for all queues 3790 * @adapter: board private structure 3791 **/ 3792static void igb_clean_all_tx_rings(struct igb_adapter *adapter) 3793{ 3794 int i; 3795 3796 for (i = 0; i < adapter->num_tx_queues; i++) 3797 if (adapter->tx_ring[i]) 3798 igb_clean_tx_ring(adapter->tx_ring[i]); 3799} 3800 3801/** 3802 * igb_free_rx_resources - Free Rx Resources 3803 * @rx_ring: ring to clean the resources from 3804 * 3805 * Free all receive software resources 3806 **/ 3807void igb_free_rx_resources(struct igb_ring *rx_ring) 3808{ 3809 igb_clean_rx_ring(rx_ring); 3810 3811 vfree(rx_ring->rx_buffer_info); 3812 rx_ring->rx_buffer_info = NULL; 3813 3814 /* if not set, then don't free */ 3815 if (!rx_ring->desc) 3816 return; 3817 3818 dma_free_coherent(rx_ring->dev, rx_ring->size, 3819 rx_ring->desc, rx_ring->dma); 3820 3821 rx_ring->desc = NULL; 3822} 3823 3824/** 3825 * igb_free_all_rx_resources - Free Rx Resources for All Queues 3826 * @adapter: board private structure 3827 * 3828 * Free all receive software resources 3829 **/ 3830static void igb_free_all_rx_resources(struct igb_adapter *adapter) 3831{ 3832 int i; 3833 3834 for (i = 0; i < adapter->num_rx_queues; i++) 3835 if (adapter->rx_ring[i]) 3836 igb_free_rx_resources(adapter->rx_ring[i]); 3837} 3838 3839/** 3840 * igb_clean_rx_ring - Free Rx Buffers per Queue 3841 * @rx_ring: ring to free buffers from 3842 **/ 3843static void igb_clean_rx_ring(struct igb_ring *rx_ring) 3844{ 3845 unsigned long size; 3846 u16 i; 3847 3848 if (rx_ring->skb) 3849 dev_kfree_skb(rx_ring->skb); 3850 rx_ring->skb = NULL; 3851 3852 if (!rx_ring->rx_buffer_info) 3853 return; 3854 3855 /* Free all the Rx ring sk_buffs */ 3856 for (i = 0; i < rx_ring->count; i++) { 3857 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i]; 3858 3859 if (!buffer_info->page) 3860 continue; 3861 3862 dma_unmap_page(rx_ring->dev, 3863 buffer_info->dma, 3864 PAGE_SIZE, 3865 DMA_FROM_DEVICE); 3866 __free_page(buffer_info->page); 3867 3868 buffer_info->page = NULL; 3869 } 3870 3871 size = sizeof(struct igb_rx_buffer) * rx_ring->count; 3872 memset(rx_ring->rx_buffer_info, 0, size); 3873 3874 /* Zero out the descriptor ring */ 3875 memset(rx_ring->desc, 0, rx_ring->size); 3876 3877 rx_ring->next_to_alloc = 0; 3878 rx_ring->next_to_clean = 0; 3879 rx_ring->next_to_use = 0; 3880} 3881 3882/** 3883 * igb_clean_all_rx_rings - Free Rx Buffers for all queues 3884 * @adapter: board private structure 3885 **/ 3886static void igb_clean_all_rx_rings(struct igb_adapter *adapter) 3887{ 3888 int i; 3889 3890 for (i = 0; i < adapter->num_rx_queues; i++) 3891 if (adapter->rx_ring[i]) 3892 igb_clean_rx_ring(adapter->rx_ring[i]); 3893} 3894 3895/** 3896 * igb_set_mac - Change the Ethernet Address of the NIC 3897 * @netdev: network interface device structure 3898 * @p: pointer to an address structure 3899 * 3900 * Returns 0 on success, negative on failure 3901 **/ 3902static int igb_set_mac(struct net_device *netdev, void *p) 3903{ 3904 struct igb_adapter *adapter = netdev_priv(netdev); 3905 struct e1000_hw *hw = &adapter->hw; 3906 struct sockaddr *addr = p; 3907 3908 if (!is_valid_ether_addr(addr->sa_data)) 3909 return -EADDRNOTAVAIL; 3910 3911 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 3912 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len); 3913 3914 /* set the correct pool for the new PF MAC address in entry 0 */ 3915 igb_rar_set_qsel(adapter, hw->mac.addr, 0, 3916 adapter->vfs_allocated_count); 3917 3918 return 0; 3919} 3920 3921/** 3922 * igb_write_mc_addr_list - write multicast addresses to MTA 3923 * @netdev: network interface device structure 3924 * 3925 * Writes multicast address list to the MTA hash table. 3926 * Returns: -ENOMEM on failure 3927 * 0 on no addresses written 3928 * X on writing X addresses to MTA 3929 **/ 3930static int igb_write_mc_addr_list(struct net_device *netdev) 3931{ 3932 struct igb_adapter *adapter = netdev_priv(netdev); 3933 struct e1000_hw *hw = &adapter->hw; 3934 struct netdev_hw_addr *ha; 3935 u8 *mta_list; 3936 int i; 3937 3938 if (netdev_mc_empty(netdev)) { 3939 /* nothing to program, so clear mc list */ 3940 igb_update_mc_addr_list(hw, NULL, 0); 3941 igb_restore_vf_multicasts(adapter); 3942 return 0; 3943 } 3944 3945 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC); 3946 if (!mta_list) 3947 return -ENOMEM; 3948 3949 /* The shared function expects a packed array of only addresses. */ 3950 i = 0; 3951 netdev_for_each_mc_addr(ha, netdev) 3952 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3953 3954 igb_update_mc_addr_list(hw, mta_list, i); 3955 kfree(mta_list); 3956 3957 return netdev_mc_count(netdev); 3958} 3959 3960/** 3961 * igb_write_uc_addr_list - write unicast addresses to RAR table 3962 * @netdev: network interface device structure 3963 * 3964 * Writes unicast address list to the RAR table. 3965 * Returns: -ENOMEM on failure/insufficient address space 3966 * 0 on no addresses written 3967 * X on writing X addresses to the RAR table 3968 **/ 3969static int igb_write_uc_addr_list(struct net_device *netdev) 3970{ 3971 struct igb_adapter *adapter = netdev_priv(netdev); 3972 struct e1000_hw *hw = &adapter->hw; 3973 unsigned int vfn = adapter->vfs_allocated_count; 3974 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1); 3975 int count = 0; 3976 3977 /* return ENOMEM indicating insufficient memory for addresses */ 3978 if (netdev_uc_count(netdev) > rar_entries) 3979 return -ENOMEM; 3980 3981 if (!netdev_uc_empty(netdev) && rar_entries) { 3982 struct netdev_hw_addr *ha; 3983 3984 netdev_for_each_uc_addr(ha, netdev) { 3985 if (!rar_entries) 3986 break; 3987 igb_rar_set_qsel(adapter, ha->addr, 3988 rar_entries--, 3989 vfn); 3990 count++; 3991 } 3992 } 3993 /* write the addresses in reverse order to avoid write combining */ 3994 for (; rar_entries > 0 ; rar_entries--) { 3995 wr32(E1000_RAH(rar_entries), 0); 3996 wr32(E1000_RAL(rar_entries), 0); 3997 } 3998 wrfl(); 3999 4000 return count; 4001} 4002 4003/** 4004 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set 4005 * @netdev: network interface device structure 4006 * 4007 * The set_rx_mode entry point is called whenever the unicast or multicast 4008 * address lists or the network interface flags are updated. This routine is 4009 * responsible for configuring the hardware for proper unicast, multicast, 4010 * promiscuous mode, and all-multi behavior. 4011 **/ 4012static void igb_set_rx_mode(struct net_device *netdev) 4013{ 4014 struct igb_adapter *adapter = netdev_priv(netdev); 4015 struct e1000_hw *hw = &adapter->hw; 4016 unsigned int vfn = adapter->vfs_allocated_count; 4017 u32 rctl, vmolr = 0; 4018 int count; 4019 4020 /* Check for Promiscuous and All Multicast modes */ 4021 rctl = rd32(E1000_RCTL); 4022 4023 /* clear the effected bits */ 4024 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE); 4025 4026 if (netdev->flags & IFF_PROMISC) { 4027 /* retain VLAN HW filtering if in VT mode */ 4028 if (adapter->vfs_allocated_count) 4029 rctl |= E1000_RCTL_VFE; 4030 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 4031 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME); 4032 } else { 4033 if (netdev->flags & IFF_ALLMULTI) { 4034 rctl |= E1000_RCTL_MPE; 4035 vmolr |= E1000_VMOLR_MPME; 4036 } else { 4037 /* Write addresses to the MTA, if the attempt fails 4038 * then we should just turn on promiscuous mode so 4039 * that we can at least receive multicast traffic 4040 */ 4041 count = igb_write_mc_addr_list(netdev); 4042 if (count < 0) { 4043 rctl |= E1000_RCTL_MPE; 4044 vmolr |= E1000_VMOLR_MPME; 4045 } else if (count) { 4046 vmolr |= E1000_VMOLR_ROMPE; 4047 } 4048 } 4049 /* Write addresses to available RAR registers, if there is not 4050 * sufficient space to store all the addresses then enable 4051 * unicast promiscuous mode 4052 */ 4053 count = igb_write_uc_addr_list(netdev); 4054 if (count < 0) { 4055 rctl |= E1000_RCTL_UPE; 4056 vmolr |= E1000_VMOLR_ROPE; 4057 } 4058 rctl |= E1000_RCTL_VFE; 4059 } 4060 wr32(E1000_RCTL, rctl); 4061 4062 /* In order to support SR-IOV and eventually VMDq it is necessary to set 4063 * the VMOLR to enable the appropriate modes. Without this workaround 4064 * we will have issues with VLAN tag stripping not being done for frames 4065 * that are only arriving because we are the default pool 4066 */ 4067 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350)) 4068 return; 4069 4070 vmolr |= rd32(E1000_VMOLR(vfn)) & 4071 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE); 4072 wr32(E1000_VMOLR(vfn), vmolr); 4073 igb_restore_vf_multicasts(adapter); 4074} 4075 4076static void igb_check_wvbr(struct igb_adapter *adapter) 4077{ 4078 struct e1000_hw *hw = &adapter->hw; 4079 u32 wvbr = 0; 4080 4081 switch (hw->mac.type) { 4082 case e1000_82576: 4083 case e1000_i350: 4084 wvbr = rd32(E1000_WVBR); 4085 if (!wvbr) 4086 return; 4087 break; 4088 default: 4089 break; 4090 } 4091 4092 adapter->wvbr |= wvbr; 4093} 4094 4095#define IGB_STAGGERED_QUEUE_OFFSET 8 4096 4097static void igb_spoof_check(struct igb_adapter *adapter) 4098{ 4099 int j; 4100 4101 if (!adapter->wvbr) 4102 return; 4103 4104 for (j = 0; j < adapter->vfs_allocated_count; j++) { 4105 if (adapter->wvbr & (1 << j) || 4106 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) { 4107 dev_warn(&adapter->pdev->dev, 4108 "Spoof event(s) detected on VF %d\n", j); 4109 adapter->wvbr &= 4110 ~((1 << j) | 4111 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))); 4112 } 4113 } 4114} 4115 4116/* Need to wait a few seconds after link up to get diagnostic information from 4117 * the phy 4118 */ 4119static void igb_update_phy_info(unsigned long data) 4120{ 4121 struct igb_adapter *adapter = (struct igb_adapter *) data; 4122 igb_get_phy_info(&adapter->hw); 4123} 4124 4125/** 4126 * igb_has_link - check shared code for link and determine up/down 4127 * @adapter: pointer to driver private info 4128 **/ 4129bool igb_has_link(struct igb_adapter *adapter) 4130{ 4131 struct e1000_hw *hw = &adapter->hw; 4132 bool link_active = false; 4133 4134 /* get_link_status is set on LSC (link status) interrupt or 4135 * rx sequence error interrupt. get_link_status will stay 4136 * false until the e1000_check_for_link establishes link 4137 * for copper adapters ONLY 4138 */ 4139 switch (hw->phy.media_type) { 4140 case e1000_media_type_copper: 4141 if (!hw->mac.get_link_status) 4142 return true; 4143 case e1000_media_type_internal_serdes: 4144 hw->mac.ops.check_for_link(hw); 4145 link_active = !hw->mac.get_link_status; 4146 break; 4147 default: 4148 case e1000_media_type_unknown: 4149 break; 4150 } 4151 4152 if (((hw->mac.type == e1000_i210) || 4153 (hw->mac.type == e1000_i211)) && 4154 (hw->phy.id == I210_I_PHY_ID)) { 4155 if (!netif_carrier_ok(adapter->netdev)) { 4156 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 4157 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) { 4158 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE; 4159 adapter->link_check_timeout = jiffies; 4160 } 4161 } 4162 4163 return link_active; 4164} 4165 4166static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event) 4167{ 4168 bool ret = false; 4169 u32 ctrl_ext, thstat; 4170 4171 /* check for thermal sensor event on i350 copper only */ 4172 if (hw->mac.type == e1000_i350) { 4173 thstat = rd32(E1000_THSTAT); 4174 ctrl_ext = rd32(E1000_CTRL_EXT); 4175 4176 if ((hw->phy.media_type == e1000_media_type_copper) && 4177 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII)) 4178 ret = !!(thstat & event); 4179 } 4180 4181 return ret; 4182} 4183 4184/** 4185 * igb_check_lvmmc - check for malformed packets received 4186 * and indicated in LVMMC register 4187 * @adapter: pointer to adapter 4188 **/ 4189static void igb_check_lvmmc(struct igb_adapter *adapter) 4190{ 4191 struct e1000_hw *hw = &adapter->hw; 4192 u32 lvmmc; 4193 4194 lvmmc = rd32(E1000_LVMMC); 4195 if (lvmmc) { 4196 if (unlikely(net_ratelimit())) { 4197 netdev_warn(adapter->netdev, 4198 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n", 4199 lvmmc); 4200 } 4201 } 4202} 4203 4204/** 4205 * igb_watchdog - Timer Call-back 4206 * @data: pointer to adapter cast into an unsigned long 4207 **/ 4208static void igb_watchdog(unsigned long data) 4209{ 4210 struct igb_adapter *adapter = (struct igb_adapter *)data; 4211 /* Do the rest outside of interrupt context */ 4212 schedule_work(&adapter->watchdog_task); 4213} 4214 4215static void igb_watchdog_task(struct work_struct *work) 4216{ 4217 struct igb_adapter *adapter = container_of(work, 4218 struct igb_adapter, 4219 watchdog_task); 4220 struct e1000_hw *hw = &adapter->hw; 4221 struct e1000_phy_info *phy = &hw->phy; 4222 struct net_device *netdev = adapter->netdev; 4223 u32 link; 4224 int i; 4225 u32 connsw; 4226 4227 link = igb_has_link(adapter); 4228 4229 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) { 4230 if (time_after(jiffies, (adapter->link_check_timeout + HZ))) 4231 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE; 4232 else 4233 link = false; 4234 } 4235 4236 /* Force link down if we have fiber to swap to */ 4237 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 4238 if (hw->phy.media_type == e1000_media_type_copper) { 4239 connsw = rd32(E1000_CONNSW); 4240 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN)) 4241 link = 0; 4242 } 4243 } 4244 if (link) { 4245 /* Perform a reset if the media type changed. */ 4246 if (hw->dev_spec._82575.media_changed) { 4247 hw->dev_spec._82575.media_changed = false; 4248 adapter->flags |= IGB_FLAG_MEDIA_RESET; 4249 igb_reset(adapter); 4250 } 4251 /* Cancel scheduled suspend requests. */ 4252 pm_runtime_resume(netdev->dev.parent); 4253 4254 if (!netif_carrier_ok(netdev)) { 4255 u32 ctrl; 4256 4257 hw->mac.ops.get_speed_and_duplex(hw, 4258 &adapter->link_speed, 4259 &adapter->link_duplex); 4260 4261 ctrl = rd32(E1000_CTRL); 4262 /* Links status message must follow this format */ 4263 netdev_info(netdev, 4264 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 4265 netdev->name, 4266 adapter->link_speed, 4267 adapter->link_duplex == FULL_DUPLEX ? 4268 "Full" : "Half", 4269 (ctrl & E1000_CTRL_TFCE) && 4270 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" : 4271 (ctrl & E1000_CTRL_RFCE) ? "RX" : 4272 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None"); 4273 4274 /* disable EEE if enabled */ 4275 if ((adapter->flags & IGB_FLAG_EEE) && 4276 (adapter->link_duplex == HALF_DUPLEX)) { 4277 dev_info(&adapter->pdev->dev, 4278 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n"); 4279 adapter->hw.dev_spec._82575.eee_disable = true; 4280 adapter->flags &= ~IGB_FLAG_EEE; 4281 } 4282 4283 /* check if SmartSpeed worked */ 4284 igb_check_downshift(hw); 4285 if (phy->speed_downgraded) 4286 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n"); 4287 4288 /* check for thermal sensor event */ 4289 if (igb_thermal_sensor_event(hw, 4290 E1000_THSTAT_LINK_THROTTLE)) 4291 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n"); 4292 4293 /* adjust timeout factor according to speed/duplex */ 4294 adapter->tx_timeout_factor = 1; 4295 switch (adapter->link_speed) { 4296 case SPEED_10: 4297 adapter->tx_timeout_factor = 14; 4298 break; 4299 case SPEED_100: 4300 /* maybe add some timeout factor ? */ 4301 break; 4302 } 4303 4304 netif_carrier_on(netdev); 4305 4306 igb_ping_all_vfs(adapter); 4307 igb_check_vf_rate_limit(adapter); 4308 4309 /* link state has changed, schedule phy info update */ 4310 if (!test_bit(__IGB_DOWN, &adapter->state)) 4311 mod_timer(&adapter->phy_info_timer, 4312 round_jiffies(jiffies + 2 * HZ)); 4313 } 4314 } else { 4315 if (netif_carrier_ok(netdev)) { 4316 adapter->link_speed = 0; 4317 adapter->link_duplex = 0; 4318 4319 /* check for thermal sensor event */ 4320 if (igb_thermal_sensor_event(hw, 4321 E1000_THSTAT_PWR_DOWN)) { 4322 netdev_err(netdev, "The network adapter was stopped because it overheated\n"); 4323 } 4324 4325 /* Links status message must follow this format */ 4326 netdev_info(netdev, "igb: %s NIC Link is Down\n", 4327 netdev->name); 4328 netif_carrier_off(netdev); 4329 4330 igb_ping_all_vfs(adapter); 4331 4332 /* link state has changed, schedule phy info update */ 4333 if (!test_bit(__IGB_DOWN, &adapter->state)) 4334 mod_timer(&adapter->phy_info_timer, 4335 round_jiffies(jiffies + 2 * HZ)); 4336 4337 /* link is down, time to check for alternate media */ 4338 if (adapter->flags & IGB_FLAG_MAS_ENABLE) { 4339 igb_check_swap_media(adapter); 4340 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 4341 schedule_work(&adapter->reset_task); 4342 /* return immediately */ 4343 return; 4344 } 4345 } 4346 pm_schedule_suspend(netdev->dev.parent, 4347 MSEC_PER_SEC * 5); 4348 4349 /* also check for alternate media here */ 4350 } else if (!netif_carrier_ok(netdev) && 4351 (adapter->flags & IGB_FLAG_MAS_ENABLE)) { 4352 igb_check_swap_media(adapter); 4353 if (adapter->flags & IGB_FLAG_MEDIA_RESET) { 4354 schedule_work(&adapter->reset_task); 4355 /* return immediately */ 4356 return; 4357 } 4358 } 4359 } 4360 4361 spin_lock(&adapter->stats64_lock); 4362 igb_update_stats(adapter, &adapter->stats64); 4363 spin_unlock(&adapter->stats64_lock); 4364 4365 for (i = 0; i < adapter->num_tx_queues; i++) { 4366 struct igb_ring *tx_ring = adapter->tx_ring[i]; 4367 if (!netif_carrier_ok(netdev)) { 4368 /* We've lost link, so the controller stops DMA, 4369 * but we've got queued Tx work that's never going 4370 * to get done, so reset controller to flush Tx. 4371 * (Do the reset outside of interrupt context). 4372 */ 4373 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) { 4374 adapter->tx_timeout_count++; 4375 schedule_work(&adapter->reset_task); 4376 /* return immediately since reset is imminent */ 4377 return; 4378 } 4379 } 4380 4381 /* Force detection of hung controller every watchdog period */ 4382 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 4383 } 4384 4385 /* Cause software interrupt to ensure Rx ring is cleaned */ 4386 if (adapter->flags & IGB_FLAG_HAS_MSIX) { 4387 u32 eics = 0; 4388 4389 for (i = 0; i < adapter->num_q_vectors; i++) 4390 eics |= adapter->q_vector[i]->eims_value; 4391 wr32(E1000_EICS, eics); 4392 } else { 4393 wr32(E1000_ICS, E1000_ICS_RXDMT0); 4394 } 4395 4396 igb_spoof_check(adapter); 4397 igb_ptp_rx_hang(adapter); 4398 4399 /* Check LVMMC register on i350/i354 only */ 4400 if ((adapter->hw.mac.type == e1000_i350) || 4401 (adapter->hw.mac.type == e1000_i354)) 4402 igb_check_lvmmc(adapter); 4403 4404 /* Reset the timer */ 4405 if (!test_bit(__IGB_DOWN, &adapter->state)) { 4406 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) 4407 mod_timer(&adapter->watchdog_timer, 4408 round_jiffies(jiffies + HZ)); 4409 else 4410 mod_timer(&adapter->watchdog_timer, 4411 round_jiffies(jiffies + 2 * HZ)); 4412 } 4413} 4414 4415enum latency_range { 4416 lowest_latency = 0, 4417 low_latency = 1, 4418 bulk_latency = 2, 4419 latency_invalid = 255 4420}; 4421 4422/** 4423 * igb_update_ring_itr - update the dynamic ITR value based on packet size 4424 * @q_vector: pointer to q_vector 4425 * 4426 * Stores a new ITR value based on strictly on packet size. This 4427 * algorithm is less sophisticated than that used in igb_update_itr, 4428 * due to the difficulty of synchronizing statistics across multiple 4429 * receive rings. The divisors and thresholds used by this function 4430 * were determined based on theoretical maximum wire speed and testing 4431 * data, in order to minimize response time while increasing bulk 4432 * throughput. 4433 * This functionality is controlled by ethtool's coalescing settings. 4434 * NOTE: This function is called only when operating in a multiqueue 4435 * receive environment. 4436 **/ 4437static void igb_update_ring_itr(struct igb_q_vector *q_vector) 4438{ 4439 int new_val = q_vector->itr_val; 4440 int avg_wire_size = 0; 4441 struct igb_adapter *adapter = q_vector->adapter; 4442 unsigned int packets; 4443 4444 /* For non-gigabit speeds, just fix the interrupt rate at 4000 4445 * ints/sec - ITR timer value of 120 ticks. 4446 */ 4447 if (adapter->link_speed != SPEED_1000) { 4448 new_val = IGB_4K_ITR; 4449 goto set_itr_val; 4450 } 4451 4452 packets = q_vector->rx.total_packets; 4453 if (packets) 4454 avg_wire_size = q_vector->rx.total_bytes / packets; 4455 4456 packets = q_vector->tx.total_packets; 4457 if (packets) 4458 avg_wire_size = max_t(u32, avg_wire_size, 4459 q_vector->tx.total_bytes / packets); 4460 4461 /* if avg_wire_size isn't set no work was done */ 4462 if (!avg_wire_size) 4463 goto clear_counts; 4464 4465 /* Add 24 bytes to size to account for CRC, preamble, and gap */ 4466 avg_wire_size += 24; 4467 4468 /* Don't starve jumbo frames */ 4469 avg_wire_size = min(avg_wire_size, 3000); 4470 4471 /* Give a little boost to mid-size frames */ 4472 if ((avg_wire_size > 300) && (avg_wire_size < 1200)) 4473 new_val = avg_wire_size / 3; 4474 else 4475 new_val = avg_wire_size / 2; 4476 4477 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4478 if (new_val < IGB_20K_ITR && 4479 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4480 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4481 new_val = IGB_20K_ITR; 4482 4483set_itr_val: 4484 if (new_val != q_vector->itr_val) { 4485 q_vector->itr_val = new_val; 4486 q_vector->set_itr = 1; 4487 } 4488clear_counts: 4489 q_vector->rx.total_bytes = 0; 4490 q_vector->rx.total_packets = 0; 4491 q_vector->tx.total_bytes = 0; 4492 q_vector->tx.total_packets = 0; 4493} 4494 4495/** 4496 * igb_update_itr - update the dynamic ITR value based on statistics 4497 * @q_vector: pointer to q_vector 4498 * @ring_container: ring info to update the itr for 4499 * 4500 * Stores a new ITR value based on packets and byte 4501 * counts during the last interrupt. The advantage of per interrupt 4502 * computation is faster updates and more accurate ITR for the current 4503 * traffic pattern. Constants in this function were computed 4504 * based on theoretical maximum wire speed and thresholds were set based 4505 * on testing data as well as attempting to minimize response time 4506 * while increasing bulk throughput. 4507 * This functionality is controlled by ethtool's coalescing settings. 4508 * NOTE: These calculations are only valid when operating in a single- 4509 * queue environment. 4510 **/ 4511static void igb_update_itr(struct igb_q_vector *q_vector, 4512 struct igb_ring_container *ring_container) 4513{ 4514 unsigned int packets = ring_container->total_packets; 4515 unsigned int bytes = ring_container->total_bytes; 4516 u8 itrval = ring_container->itr; 4517 4518 /* no packets, exit with status unchanged */ 4519 if (packets == 0) 4520 return; 4521 4522 switch (itrval) { 4523 case lowest_latency: 4524 /* handle TSO and jumbo frames */ 4525 if (bytes/packets > 8000) 4526 itrval = bulk_latency; 4527 else if ((packets < 5) && (bytes > 512)) 4528 itrval = low_latency; 4529 break; 4530 case low_latency: /* 50 usec aka 20000 ints/s */ 4531 if (bytes > 10000) { 4532 /* this if handles the TSO accounting */ 4533 if (bytes/packets > 8000) 4534 itrval = bulk_latency; 4535 else if ((packets < 10) || ((bytes/packets) > 1200)) 4536 itrval = bulk_latency; 4537 else if ((packets > 35)) 4538 itrval = lowest_latency; 4539 } else if (bytes/packets > 2000) { 4540 itrval = bulk_latency; 4541 } else if (packets <= 2 && bytes < 512) { 4542 itrval = lowest_latency; 4543 } 4544 break; 4545 case bulk_latency: /* 250 usec aka 4000 ints/s */ 4546 if (bytes > 25000) { 4547 if (packets > 35) 4548 itrval = low_latency; 4549 } else if (bytes < 1500) { 4550 itrval = low_latency; 4551 } 4552 break; 4553 } 4554 4555 /* clear work counters since we have the values we need */ 4556 ring_container->total_bytes = 0; 4557 ring_container->total_packets = 0; 4558 4559 /* write updated itr to ring container */ 4560 ring_container->itr = itrval; 4561} 4562 4563static void igb_set_itr(struct igb_q_vector *q_vector) 4564{ 4565 struct igb_adapter *adapter = q_vector->adapter; 4566 u32 new_itr = q_vector->itr_val; 4567 u8 current_itr = 0; 4568 4569 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 4570 if (adapter->link_speed != SPEED_1000) { 4571 current_itr = 0; 4572 new_itr = IGB_4K_ITR; 4573 goto set_itr_now; 4574 } 4575 4576 igb_update_itr(q_vector, &q_vector->tx); 4577 igb_update_itr(q_vector, &q_vector->rx); 4578 4579 current_itr = max(q_vector->rx.itr, q_vector->tx.itr); 4580 4581 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 4582 if (current_itr == lowest_latency && 4583 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) || 4584 (!q_vector->rx.ring && adapter->tx_itr_setting == 3))) 4585 current_itr = low_latency; 4586 4587 switch (current_itr) { 4588 /* counts and packets in update_itr are dependent on these numbers */ 4589 case lowest_latency: 4590 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */ 4591 break; 4592 case low_latency: 4593 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */ 4594 break; 4595 case bulk_latency: 4596 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */ 4597 break; 4598 default: 4599 break; 4600 } 4601 4602set_itr_now: 4603 if (new_itr != q_vector->itr_val) { 4604 /* this attempts to bias the interrupt rate towards Bulk 4605 * by adding intermediate steps when interrupt rate is 4606 * increasing 4607 */ 4608 new_itr = new_itr > q_vector->itr_val ? 4609 max((new_itr * q_vector->itr_val) / 4610 (new_itr + (q_vector->itr_val >> 2)), 4611 new_itr) : new_itr; 4612 /* Don't write the value here; it resets the adapter's 4613 * internal timer, and causes us to delay far longer than 4614 * we should between interrupts. Instead, we write the ITR 4615 * value at the beginning of the next interrupt so the timing 4616 * ends up being correct. 4617 */ 4618 q_vector->itr_val = new_itr; 4619 q_vector->set_itr = 1; 4620 } 4621} 4622 4623static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens, 4624 u32 type_tucmd, u32 mss_l4len_idx) 4625{ 4626 struct e1000_adv_tx_context_desc *context_desc; 4627 u16 i = tx_ring->next_to_use; 4628 4629 context_desc = IGB_TX_CTXTDESC(tx_ring, i); 4630 4631 i++; 4632 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0; 4633 4634 /* set bits to identify this as an advanced context descriptor */ 4635 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT; 4636 4637 /* For 82575, context index must be unique per ring. */ 4638 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4639 mss_l4len_idx |= tx_ring->reg_idx << 4; 4640 4641 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens); 4642 context_desc->seqnum_seed = 0; 4643 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd); 4644 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx); 4645} 4646 4647static int igb_tso(struct igb_ring *tx_ring, 4648 struct igb_tx_buffer *first, 4649 u8 *hdr_len) 4650{ 4651 struct sk_buff *skb = first->skb; 4652 u32 vlan_macip_lens, type_tucmd; 4653 u32 mss_l4len_idx, l4len; 4654 int err; 4655 4656 if (skb->ip_summed != CHECKSUM_PARTIAL) 4657 return 0; 4658 4659 if (!skb_is_gso(skb)) 4660 return 0; 4661 4662 err = skb_cow_head(skb, 0); 4663 if (err < 0) 4664 return err; 4665 4666 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */ 4667 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP; 4668 4669 if (first->protocol == htons(ETH_P_IP)) { 4670 struct iphdr *iph = ip_hdr(skb); 4671 iph->tot_len = 0; 4672 iph->check = 0; 4673 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, 4674 iph->daddr, 0, 4675 IPPROTO_TCP, 4676 0); 4677 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4678 first->tx_flags |= IGB_TX_FLAGS_TSO | 4679 IGB_TX_FLAGS_CSUM | 4680 IGB_TX_FLAGS_IPV4; 4681 } else if (skb_is_gso_v6(skb)) { 4682 ipv6_hdr(skb)->payload_len = 0; 4683 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 4684 &ipv6_hdr(skb)->daddr, 4685 0, IPPROTO_TCP, 0); 4686 first->tx_flags |= IGB_TX_FLAGS_TSO | 4687 IGB_TX_FLAGS_CSUM; 4688 } 4689 4690 /* compute header lengths */ 4691 l4len = tcp_hdrlen(skb); 4692 *hdr_len = skb_transport_offset(skb) + l4len; 4693 4694 /* update gso size and bytecount with header size */ 4695 first->gso_segs = skb_shinfo(skb)->gso_segs; 4696 first->bytecount += (first->gso_segs - 1) * *hdr_len; 4697 4698 /* MSS L4LEN IDX */ 4699 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT; 4700 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT; 4701 4702 /* VLAN MACLEN IPLEN */ 4703 vlan_macip_lens = skb_network_header_len(skb); 4704 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4705 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4706 4707 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4708 4709 return 1; 4710} 4711 4712static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first) 4713{ 4714 struct sk_buff *skb = first->skb; 4715 u32 vlan_macip_lens = 0; 4716 u32 mss_l4len_idx = 0; 4717 u32 type_tucmd = 0; 4718 4719 if (skb->ip_summed != CHECKSUM_PARTIAL) { 4720 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN)) 4721 return; 4722 } else { 4723 u8 l4_hdr = 0; 4724 4725 switch (first->protocol) { 4726 case htons(ETH_P_IP): 4727 vlan_macip_lens |= skb_network_header_len(skb); 4728 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4; 4729 l4_hdr = ip_hdr(skb)->protocol; 4730 break; 4731 case htons(ETH_P_IPV6): 4732 vlan_macip_lens |= skb_network_header_len(skb); 4733 l4_hdr = ipv6_hdr(skb)->nexthdr; 4734 break; 4735 default: 4736 if (unlikely(net_ratelimit())) { 4737 dev_warn(tx_ring->dev, 4738 "partial checksum but proto=%x!\n", 4739 first->protocol); 4740 } 4741 break; 4742 } 4743 4744 switch (l4_hdr) { 4745 case IPPROTO_TCP: 4746 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP; 4747 mss_l4len_idx = tcp_hdrlen(skb) << 4748 E1000_ADVTXD_L4LEN_SHIFT; 4749 break; 4750 case IPPROTO_SCTP: 4751 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP; 4752 mss_l4len_idx = sizeof(struct sctphdr) << 4753 E1000_ADVTXD_L4LEN_SHIFT; 4754 break; 4755 case IPPROTO_UDP: 4756 mss_l4len_idx = sizeof(struct udphdr) << 4757 E1000_ADVTXD_L4LEN_SHIFT; 4758 break; 4759 default: 4760 if (unlikely(net_ratelimit())) { 4761 dev_warn(tx_ring->dev, 4762 "partial checksum but l4 proto=%x!\n", 4763 l4_hdr); 4764 } 4765 break; 4766 } 4767 4768 /* update TX checksum flag */ 4769 first->tx_flags |= IGB_TX_FLAGS_CSUM; 4770 } 4771 4772 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT; 4773 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK; 4774 4775 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); 4776} 4777 4778#define IGB_SET_FLAG(_input, _flag, _result) \ 4779 ((_flag <= _result) ? \ 4780 ((u32)(_input & _flag) * (_result / _flag)) : \ 4781 ((u32)(_input & _flag) / (_flag / _result))) 4782 4783static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags) 4784{ 4785 /* set type for advanced descriptor with frame checksum insertion */ 4786 u32 cmd_type = E1000_ADVTXD_DTYP_DATA | 4787 E1000_ADVTXD_DCMD_DEXT | 4788 E1000_ADVTXD_DCMD_IFCS; 4789 4790 /* set HW vlan bit if vlan is present */ 4791 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN, 4792 (E1000_ADVTXD_DCMD_VLE)); 4793 4794 /* set segmentation bits for TSO */ 4795 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO, 4796 (E1000_ADVTXD_DCMD_TSE)); 4797 4798 /* set timestamp bit if present */ 4799 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP, 4800 (E1000_ADVTXD_MAC_TSTAMP)); 4801 4802 /* insert frame checksum */ 4803 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS); 4804 4805 return cmd_type; 4806} 4807 4808static void igb_tx_olinfo_status(struct igb_ring *tx_ring, 4809 union e1000_adv_tx_desc *tx_desc, 4810 u32 tx_flags, unsigned int paylen) 4811{ 4812 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT; 4813 4814 /* 82575 requires a unique index per ring */ 4815 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags)) 4816 olinfo_status |= tx_ring->reg_idx << 4; 4817 4818 /* insert L4 checksum */ 4819 olinfo_status |= IGB_SET_FLAG(tx_flags, 4820 IGB_TX_FLAGS_CSUM, 4821 (E1000_TXD_POPTS_TXSM << 8)); 4822 4823 /* insert IPv4 checksum */ 4824 olinfo_status |= IGB_SET_FLAG(tx_flags, 4825 IGB_TX_FLAGS_IPV4, 4826 (E1000_TXD_POPTS_IXSM << 8)); 4827 4828 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status); 4829} 4830 4831static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4832{ 4833 struct net_device *netdev = tx_ring->netdev; 4834 4835 netif_stop_subqueue(netdev, tx_ring->queue_index); 4836 4837 /* Herbert's original patch had: 4838 * smp_mb__after_netif_stop_queue(); 4839 * but since that doesn't exist yet, just open code it. 4840 */ 4841 smp_mb(); 4842 4843 /* We need to check again in a case another CPU has just 4844 * made room available. 4845 */ 4846 if (igb_desc_unused(tx_ring) < size) 4847 return -EBUSY; 4848 4849 /* A reprieve! */ 4850 netif_wake_subqueue(netdev, tx_ring->queue_index); 4851 4852 u64_stats_update_begin(&tx_ring->tx_syncp2); 4853 tx_ring->tx_stats.restart_queue2++; 4854 u64_stats_update_end(&tx_ring->tx_syncp2); 4855 4856 return 0; 4857} 4858 4859static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size) 4860{ 4861 if (igb_desc_unused(tx_ring) >= size) 4862 return 0; 4863 return __igb_maybe_stop_tx(tx_ring, size); 4864} 4865 4866static void igb_tx_map(struct igb_ring *tx_ring, 4867 struct igb_tx_buffer *first, 4868 const u8 hdr_len) 4869{ 4870 struct sk_buff *skb = first->skb; 4871 struct igb_tx_buffer *tx_buffer; 4872 union e1000_adv_tx_desc *tx_desc; 4873 struct skb_frag_struct *frag; 4874 dma_addr_t dma; 4875 unsigned int data_len, size; 4876 u32 tx_flags = first->tx_flags; 4877 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags); 4878 u16 i = tx_ring->next_to_use; 4879 4880 tx_desc = IGB_TX_DESC(tx_ring, i); 4881 4882 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len); 4883 4884 size = skb_headlen(skb); 4885 data_len = skb->data_len; 4886 4887 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE); 4888 4889 tx_buffer = first; 4890 4891 for (frag = &skb_shinfo(skb)->frags[0];; frag++) { 4892 if (dma_mapping_error(tx_ring->dev, dma)) 4893 goto dma_error; 4894 4895 /* record length, and DMA address */ 4896 dma_unmap_len_set(tx_buffer, len, size); 4897 dma_unmap_addr_set(tx_buffer, dma, dma); 4898 4899 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4900 4901 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) { 4902 tx_desc->read.cmd_type_len = 4903 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD); 4904 4905 i++; 4906 tx_desc++; 4907 if (i == tx_ring->count) { 4908 tx_desc = IGB_TX_DESC(tx_ring, 0); 4909 i = 0; 4910 } 4911 tx_desc->read.olinfo_status = 0; 4912 4913 dma += IGB_MAX_DATA_PER_TXD; 4914 size -= IGB_MAX_DATA_PER_TXD; 4915 4916 tx_desc->read.buffer_addr = cpu_to_le64(dma); 4917 } 4918 4919 if (likely(!data_len)) 4920 break; 4921 4922 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size); 4923 4924 i++; 4925 tx_desc++; 4926 if (i == tx_ring->count) { 4927 tx_desc = IGB_TX_DESC(tx_ring, 0); 4928 i = 0; 4929 } 4930 tx_desc->read.olinfo_status = 0; 4931 4932 size = skb_frag_size(frag); 4933 data_len -= size; 4934 4935 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, 4936 size, DMA_TO_DEVICE); 4937 4938 tx_buffer = &tx_ring->tx_buffer_info[i]; 4939 } 4940 4941 /* write last descriptor with RS and EOP bits */ 4942 cmd_type |= size | IGB_TXD_DCMD; 4943 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type); 4944 4945 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount); 4946 4947 /* set the timestamp */ 4948 first->time_stamp = jiffies; 4949 4950 /* Force memory writes to complete before letting h/w know there 4951 * are new descriptors to fetch. (Only applicable for weak-ordered 4952 * memory model archs, such as IA-64). 4953 * 4954 * We also need this memory barrier to make certain all of the 4955 * status bits have been updated before next_to_watch is written. 4956 */ 4957 wmb(); 4958 4959 /* set next_to_watch value indicating a packet is present */ 4960 first->next_to_watch = tx_desc; 4961 4962 i++; 4963 if (i == tx_ring->count) 4964 i = 0; 4965 4966 tx_ring->next_to_use = i; 4967 4968 /* Make sure there is space in the ring for the next send. */ 4969 igb_maybe_stop_tx(tx_ring, DESC_NEEDED); 4970 4971 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) { 4972 writel(i, tx_ring->tail); 4973 4974 /* we need this if more than one processor can write to our tail 4975 * at a time, it synchronizes IO on IA64/Altix systems 4976 */ 4977 mmiowb(); 4978 } 4979 return; 4980 4981dma_error: 4982 dev_err(tx_ring->dev, "TX DMA map failed\n"); 4983 4984 /* clear dma mappings for failed tx_buffer_info map */ 4985 for (;;) { 4986 tx_buffer = &tx_ring->tx_buffer_info[i]; 4987 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer); 4988 if (tx_buffer == first) 4989 break; 4990 if (i == 0) 4991 i = tx_ring->count; 4992 i--; 4993 } 4994 4995 tx_ring->next_to_use = i; 4996} 4997 4998netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb, 4999 struct igb_ring *tx_ring) 5000{ 5001 struct igb_tx_buffer *first; 5002 int tso; 5003 u32 tx_flags = 0; 5004 u16 count = TXD_USE_COUNT(skb_headlen(skb)); 5005 __be16 protocol = vlan_get_protocol(skb); 5006 u8 hdr_len = 0; 5007 5008 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD, 5009 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD, 5010 * + 2 desc gap to keep tail from touching head, 5011 * + 1 desc for context descriptor, 5012 * otherwise try next time 5013 */ 5014 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) { 5015 unsigned short f; 5016 5017 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) 5018 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size); 5019 } else { 5020 count += skb_shinfo(skb)->nr_frags; 5021 } 5022 5023 if (igb_maybe_stop_tx(tx_ring, count + 3)) { 5024 /* this is a hard error */ 5025 return NETDEV_TX_BUSY; 5026 } 5027 5028 /* record the location of the first descriptor for this packet */ 5029 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use]; 5030 first->skb = skb; 5031 first->bytecount = skb->len; 5032 first->gso_segs = 1; 5033 5034 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) { 5035 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev); 5036 5037 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS, 5038 &adapter->state)) { 5039 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 5040 tx_flags |= IGB_TX_FLAGS_TSTAMP; 5041 5042 adapter->ptp_tx_skb = skb_get(skb); 5043 adapter->ptp_tx_start = jiffies; 5044 if (adapter->hw.mac.type == e1000_82576) 5045 schedule_work(&adapter->ptp_tx_work); 5046 } 5047 } 5048 5049 skb_tx_timestamp(skb); 5050 5051 if (skb_vlan_tag_present(skb)) { 5052 tx_flags |= IGB_TX_FLAGS_VLAN; 5053 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT); 5054 } 5055 5056 /* record initial flags and protocol */ 5057 first->tx_flags = tx_flags; 5058 first->protocol = protocol; 5059 5060 tso = igb_tso(tx_ring, first, &hdr_len); 5061 if (tso < 0) 5062 goto out_drop; 5063 else if (!tso) 5064 igb_tx_csum(tx_ring, first); 5065 5066 igb_tx_map(tx_ring, first, hdr_len); 5067 5068 return NETDEV_TX_OK; 5069 5070out_drop: 5071 igb_unmap_and_free_tx_resource(tx_ring, first); 5072 5073 return NETDEV_TX_OK; 5074} 5075 5076static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter, 5077 struct sk_buff *skb) 5078{ 5079 unsigned int r_idx = skb->queue_mapping; 5080 5081 if (r_idx >= adapter->num_tx_queues) 5082 r_idx = r_idx % adapter->num_tx_queues; 5083 5084 return adapter->tx_ring[r_idx]; 5085} 5086 5087static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, 5088 struct net_device *netdev) 5089{ 5090 struct igb_adapter *adapter = netdev_priv(netdev); 5091 5092 if (test_bit(__IGB_DOWN, &adapter->state)) { 5093 dev_kfree_skb_any(skb); 5094 return NETDEV_TX_OK; 5095 } 5096 5097 if (skb->len <= 0) { 5098 dev_kfree_skb_any(skb); 5099 return NETDEV_TX_OK; 5100 } 5101 5102 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb 5103 * in order to meet this minimum size requirement. 5104 */ 5105 if (skb_put_padto(skb, 17)) 5106 return NETDEV_TX_OK; 5107 5108 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb)); 5109} 5110 5111/** 5112 * igb_tx_timeout - Respond to a Tx Hang 5113 * @netdev: network interface device structure 5114 **/ 5115static void igb_tx_timeout(struct net_device *netdev) 5116{ 5117 struct igb_adapter *adapter = netdev_priv(netdev); 5118 struct e1000_hw *hw = &adapter->hw; 5119 5120 /* Do the reset outside of interrupt context */ 5121 adapter->tx_timeout_count++; 5122 5123 if (hw->mac.type >= e1000_82580) 5124 hw->dev_spec._82575.global_device_reset = true; 5125 5126 schedule_work(&adapter->reset_task); 5127 wr32(E1000_EICS, 5128 (adapter->eims_enable_mask & ~adapter->eims_other)); 5129} 5130 5131static void igb_reset_task(struct work_struct *work) 5132{ 5133 struct igb_adapter *adapter; 5134 adapter = container_of(work, struct igb_adapter, reset_task); 5135 5136 igb_dump(adapter); 5137 netdev_err(adapter->netdev, "Reset adapter\n"); 5138 igb_reinit_locked(adapter); 5139} 5140 5141/** 5142 * igb_get_stats64 - Get System Network Statistics 5143 * @netdev: network interface device structure 5144 * @stats: rtnl_link_stats64 pointer 5145 **/ 5146static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev, 5147 struct rtnl_link_stats64 *stats) 5148{ 5149 struct igb_adapter *adapter = netdev_priv(netdev); 5150 5151 spin_lock(&adapter->stats64_lock); 5152 igb_update_stats(adapter, &adapter->stats64); 5153 memcpy(stats, &adapter->stats64, sizeof(*stats)); 5154 spin_unlock(&adapter->stats64_lock); 5155 5156 return stats; 5157} 5158 5159/** 5160 * igb_change_mtu - Change the Maximum Transfer Unit 5161 * @netdev: network interface device structure 5162 * @new_mtu: new value for maximum frame size 5163 * 5164 * Returns 0 on success, negative on failure 5165 **/ 5166static int igb_change_mtu(struct net_device *netdev, int new_mtu) 5167{ 5168 struct igb_adapter *adapter = netdev_priv(netdev); 5169 struct pci_dev *pdev = adapter->pdev; 5170 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN; 5171 5172 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) { 5173 dev_err(&pdev->dev, "Invalid MTU setting\n"); 5174 return -EINVAL; 5175 } 5176 5177#define MAX_STD_JUMBO_FRAME_SIZE 9238 5178 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) { 5179 dev_err(&pdev->dev, "MTU > 9216 not supported.\n"); 5180 return -EINVAL; 5181 } 5182 5183 /* adjust max frame to be at least the size of a standard frame */ 5184 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN)) 5185 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN; 5186 5187 while (test_and_set_bit(__IGB_RESETTING, &adapter->state)) 5188 usleep_range(1000, 2000); 5189 5190 /* igb_down has a dependency on max_frame_size */ 5191 adapter->max_frame_size = max_frame; 5192 5193 if (netif_running(netdev)) 5194 igb_down(adapter); 5195 5196 dev_info(&pdev->dev, "changing MTU from %d to %d\n", 5197 netdev->mtu, new_mtu); 5198 netdev->mtu = new_mtu; 5199 5200 if (netif_running(netdev)) 5201 igb_up(adapter); 5202 else 5203 igb_reset(adapter); 5204 5205 clear_bit(__IGB_RESETTING, &adapter->state); 5206 5207 return 0; 5208} 5209 5210/** 5211 * igb_update_stats - Update the board statistics counters 5212 * @adapter: board private structure 5213 **/ 5214void igb_update_stats(struct igb_adapter *adapter, 5215 struct rtnl_link_stats64 *net_stats) 5216{ 5217 struct e1000_hw *hw = &adapter->hw; 5218 struct pci_dev *pdev = adapter->pdev; 5219 u32 reg, mpc; 5220 int i; 5221 u64 bytes, packets; 5222 unsigned int start; 5223 u64 _bytes, _packets; 5224 5225 /* Prevent stats update while adapter is being reset, or if the pci 5226 * connection is down. 5227 */ 5228 if (adapter->link_speed == 0) 5229 return; 5230 if (pci_channel_offline(pdev)) 5231 return; 5232 5233 bytes = 0; 5234 packets = 0; 5235 5236 rcu_read_lock(); 5237 for (i = 0; i < adapter->num_rx_queues; i++) { 5238 struct igb_ring *ring = adapter->rx_ring[i]; 5239 u32 rqdpc = rd32(E1000_RQDPC(i)); 5240 if (hw->mac.type >= e1000_i210) 5241 wr32(E1000_RQDPC(i), 0); 5242 5243 if (rqdpc) { 5244 ring->rx_stats.drops += rqdpc; 5245 net_stats->rx_fifo_errors += rqdpc; 5246 } 5247 5248 do { 5249 start = u64_stats_fetch_begin_irq(&ring->rx_syncp); 5250 _bytes = ring->rx_stats.bytes; 5251 _packets = ring->rx_stats.packets; 5252 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start)); 5253 bytes += _bytes; 5254 packets += _packets; 5255 } 5256 5257 net_stats->rx_bytes = bytes; 5258 net_stats->rx_packets = packets; 5259 5260 bytes = 0; 5261 packets = 0; 5262 for (i = 0; i < adapter->num_tx_queues; i++) { 5263 struct igb_ring *ring = adapter->tx_ring[i]; 5264 do { 5265 start = u64_stats_fetch_begin_irq(&ring->tx_syncp); 5266 _bytes = ring->tx_stats.bytes; 5267 _packets = ring->tx_stats.packets; 5268 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start)); 5269 bytes += _bytes; 5270 packets += _packets; 5271 } 5272 net_stats->tx_bytes = bytes; 5273 net_stats->tx_packets = packets; 5274 rcu_read_unlock(); 5275 5276 /* read stats registers */ 5277 adapter->stats.crcerrs += rd32(E1000_CRCERRS); 5278 adapter->stats.gprc += rd32(E1000_GPRC); 5279 adapter->stats.gorc += rd32(E1000_GORCL); 5280 rd32(E1000_GORCH); /* clear GORCL */ 5281 adapter->stats.bprc += rd32(E1000_BPRC); 5282 adapter->stats.mprc += rd32(E1000_MPRC); 5283 adapter->stats.roc += rd32(E1000_ROC); 5284 5285 adapter->stats.prc64 += rd32(E1000_PRC64); 5286 adapter->stats.prc127 += rd32(E1000_PRC127); 5287 adapter->stats.prc255 += rd32(E1000_PRC255); 5288 adapter->stats.prc511 += rd32(E1000_PRC511); 5289 adapter->stats.prc1023 += rd32(E1000_PRC1023); 5290 adapter->stats.prc1522 += rd32(E1000_PRC1522); 5291 adapter->stats.symerrs += rd32(E1000_SYMERRS); 5292 adapter->stats.sec += rd32(E1000_SEC); 5293 5294 mpc = rd32(E1000_MPC); 5295 adapter->stats.mpc += mpc; 5296 net_stats->rx_fifo_errors += mpc; 5297 adapter->stats.scc += rd32(E1000_SCC); 5298 adapter->stats.ecol += rd32(E1000_ECOL); 5299 adapter->stats.mcc += rd32(E1000_MCC); 5300 adapter->stats.latecol += rd32(E1000_LATECOL); 5301 adapter->stats.dc += rd32(E1000_DC); 5302 adapter->stats.rlec += rd32(E1000_RLEC); 5303 adapter->stats.xonrxc += rd32(E1000_XONRXC); 5304 adapter->stats.xontxc += rd32(E1000_XONTXC); 5305 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC); 5306 adapter->stats.xofftxc += rd32(E1000_XOFFTXC); 5307 adapter->stats.fcruc += rd32(E1000_FCRUC); 5308 adapter->stats.gptc += rd32(E1000_GPTC); 5309 adapter->stats.gotc += rd32(E1000_GOTCL); 5310 rd32(E1000_GOTCH); /* clear GOTCL */ 5311 adapter->stats.rnbc += rd32(E1000_RNBC); 5312 adapter->stats.ruc += rd32(E1000_RUC); 5313 adapter->stats.rfc += rd32(E1000_RFC); 5314 adapter->stats.rjc += rd32(E1000_RJC); 5315 adapter->stats.tor += rd32(E1000_TORH); 5316 adapter->stats.tot += rd32(E1000_TOTH); 5317 adapter->stats.tpr += rd32(E1000_TPR); 5318 5319 adapter->stats.ptc64 += rd32(E1000_PTC64); 5320 adapter->stats.ptc127 += rd32(E1000_PTC127); 5321 adapter->stats.ptc255 += rd32(E1000_PTC255); 5322 adapter->stats.ptc511 += rd32(E1000_PTC511); 5323 adapter->stats.ptc1023 += rd32(E1000_PTC1023); 5324 adapter->stats.ptc1522 += rd32(E1000_PTC1522); 5325 5326 adapter->stats.mptc += rd32(E1000_MPTC); 5327 adapter->stats.bptc += rd32(E1000_BPTC); 5328 5329 adapter->stats.tpt += rd32(E1000_TPT); 5330 adapter->stats.colc += rd32(E1000_COLC); 5331 5332 adapter->stats.algnerrc += rd32(E1000_ALGNERRC); 5333 /* read internal phy specific stats */ 5334 reg = rd32(E1000_CTRL_EXT); 5335 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) { 5336 adapter->stats.rxerrc += rd32(E1000_RXERRC); 5337 5338 /* this stat has invalid values on i210/i211 */ 5339 if ((hw->mac.type != e1000_i210) && 5340 (hw->mac.type != e1000_i211)) 5341 adapter->stats.tncrs += rd32(E1000_TNCRS); 5342 } 5343 5344 adapter->stats.tsctc += rd32(E1000_TSCTC); 5345 adapter->stats.tsctfc += rd32(E1000_TSCTFC); 5346 5347 adapter->stats.iac += rd32(E1000_IAC); 5348 adapter->stats.icrxoc += rd32(E1000_ICRXOC); 5349 adapter->stats.icrxptc += rd32(E1000_ICRXPTC); 5350 adapter->stats.icrxatc += rd32(E1000_ICRXATC); 5351 adapter->stats.ictxptc += rd32(E1000_ICTXPTC); 5352 adapter->stats.ictxatc += rd32(E1000_ICTXATC); 5353 adapter->stats.ictxqec += rd32(E1000_ICTXQEC); 5354 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC); 5355 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC); 5356 5357 /* Fill out the OS statistics structure */ 5358 net_stats->multicast = adapter->stats.mprc; 5359 net_stats->collisions = adapter->stats.colc; 5360 5361 /* Rx Errors */ 5362 5363 /* RLEC on some newer hardware can be incorrect so build 5364 * our own version based on RUC and ROC 5365 */ 5366 net_stats->rx_errors = adapter->stats.rxerrc + 5367 adapter->stats.crcerrs + adapter->stats.algnerrc + 5368 adapter->stats.ruc + adapter->stats.roc + 5369 adapter->stats.cexterr; 5370 net_stats->rx_length_errors = adapter->stats.ruc + 5371 adapter->stats.roc; 5372 net_stats->rx_crc_errors = adapter->stats.crcerrs; 5373 net_stats->rx_frame_errors = adapter->stats.algnerrc; 5374 net_stats->rx_missed_errors = adapter->stats.mpc; 5375 5376 /* Tx Errors */ 5377 net_stats->tx_errors = adapter->stats.ecol + 5378 adapter->stats.latecol; 5379 net_stats->tx_aborted_errors = adapter->stats.ecol; 5380 net_stats->tx_window_errors = adapter->stats.latecol; 5381 net_stats->tx_carrier_errors = adapter->stats.tncrs; 5382 5383 /* Tx Dropped needs to be maintained elsewhere */ 5384 5385 /* Management Stats */ 5386 adapter->stats.mgptc += rd32(E1000_MGTPTC); 5387 adapter->stats.mgprc += rd32(E1000_MGTPRC); 5388 adapter->stats.mgpdc += rd32(E1000_MGTPDC); 5389 5390 /* OS2BMC Stats */ 5391 reg = rd32(E1000_MANC); 5392 if (reg & E1000_MANC_EN_BMC2OS) { 5393 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC); 5394 adapter->stats.o2bspc += rd32(E1000_O2BSPC); 5395 adapter->stats.b2ospc += rd32(E1000_B2OSPC); 5396 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC); 5397 } 5398} 5399 5400static void igb_tsync_interrupt(struct igb_adapter *adapter) 5401{ 5402 struct e1000_hw *hw = &adapter->hw; 5403 struct ptp_clock_event event; 5404 struct timespec ts; 5405 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR); 5406 5407 if (tsicr & TSINTR_SYS_WRAP) { 5408 event.type = PTP_CLOCK_PPS; 5409 if (adapter->ptp_caps.pps) 5410 ptp_clock_event(adapter->ptp_clock, &event); 5411 else 5412 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP"); 5413 ack |= TSINTR_SYS_WRAP; 5414 } 5415 5416 if (tsicr & E1000_TSICR_TXTS) { 5417 /* retrieve hardware timestamp */ 5418 schedule_work(&adapter->ptp_tx_work); 5419 ack |= E1000_TSICR_TXTS; 5420 } 5421 5422 if (tsicr & TSINTR_TT0) { 5423 spin_lock(&adapter->tmreg_lock); 5424 ts = timespec_add(adapter->perout[0].start, 5425 adapter->perout[0].period); 5426 wr32(E1000_TRGTTIML0, ts.tv_nsec); 5427 wr32(E1000_TRGTTIMH0, ts.tv_sec); 5428 tsauxc = rd32(E1000_TSAUXC); 5429 tsauxc |= TSAUXC_EN_TT0; 5430 wr32(E1000_TSAUXC, tsauxc); 5431 adapter->perout[0].start = ts; 5432 spin_unlock(&adapter->tmreg_lock); 5433 ack |= TSINTR_TT0; 5434 } 5435 5436 if (tsicr & TSINTR_TT1) { 5437 spin_lock(&adapter->tmreg_lock); 5438 ts = timespec_add(adapter->perout[1].start, 5439 adapter->perout[1].period); 5440 wr32(E1000_TRGTTIML1, ts.tv_nsec); 5441 wr32(E1000_TRGTTIMH1, ts.tv_sec); 5442 tsauxc = rd32(E1000_TSAUXC); 5443 tsauxc |= TSAUXC_EN_TT1; 5444 wr32(E1000_TSAUXC, tsauxc); 5445 adapter->perout[1].start = ts; 5446 spin_unlock(&adapter->tmreg_lock); 5447 ack |= TSINTR_TT1; 5448 } 5449 5450 if (tsicr & TSINTR_AUTT0) { 5451 nsec = rd32(E1000_AUXSTMPL0); 5452 sec = rd32(E1000_AUXSTMPH0); 5453 event.type = PTP_CLOCK_EXTTS; 5454 event.index = 0; 5455 event.timestamp = sec * 1000000000ULL + nsec; 5456 ptp_clock_event(adapter->ptp_clock, &event); 5457 ack |= TSINTR_AUTT0; 5458 } 5459 5460 if (tsicr & TSINTR_AUTT1) { 5461 nsec = rd32(E1000_AUXSTMPL1); 5462 sec = rd32(E1000_AUXSTMPH1); 5463 event.type = PTP_CLOCK_EXTTS; 5464 event.index = 1; 5465 event.timestamp = sec * 1000000000ULL + nsec; 5466 ptp_clock_event(adapter->ptp_clock, &event); 5467 ack |= TSINTR_AUTT1; 5468 } 5469 5470 /* acknowledge the interrupts */ 5471 wr32(E1000_TSICR, ack); 5472} 5473 5474static irqreturn_t igb_msix_other(int irq, void *data) 5475{ 5476 struct igb_adapter *adapter = data; 5477 struct e1000_hw *hw = &adapter->hw; 5478 u32 icr = rd32(E1000_ICR); 5479 /* reading ICR causes bit 31 of EICR to be cleared */ 5480 5481 if (icr & E1000_ICR_DRSTA) 5482 schedule_work(&adapter->reset_task); 5483 5484 if (icr & E1000_ICR_DOUTSYNC) { 5485 /* HW is reporting DMA is out of sync */ 5486 adapter->stats.doosync++; 5487 /* The DMA Out of Sync is also indication of a spoof event 5488 * in IOV mode. Check the Wrong VM Behavior register to 5489 * see if it is really a spoof event. 5490 */ 5491 igb_check_wvbr(adapter); 5492 } 5493 5494 /* Check for a mailbox event */ 5495 if (icr & E1000_ICR_VMMB) 5496 igb_msg_task(adapter); 5497 5498 if (icr & E1000_ICR_LSC) { 5499 hw->mac.get_link_status = 1; 5500 /* guard against interrupt when we're going down */ 5501 if (!test_bit(__IGB_DOWN, &adapter->state)) 5502 mod_timer(&adapter->watchdog_timer, jiffies + 1); 5503 } 5504 5505 if (icr & E1000_ICR_TS) 5506 igb_tsync_interrupt(adapter); 5507 5508 wr32(E1000_EIMS, adapter->eims_other); 5509 5510 return IRQ_HANDLED; 5511} 5512 5513static void igb_write_itr(struct igb_q_vector *q_vector) 5514{ 5515 struct igb_adapter *adapter = q_vector->adapter; 5516 u32 itr_val = q_vector->itr_val & 0x7FFC; 5517 5518 if (!q_vector->set_itr) 5519 return; 5520 5521 if (!itr_val) 5522 itr_val = 0x4; 5523 5524 if (adapter->hw.mac.type == e1000_82575) 5525 itr_val |= itr_val << 16; 5526 else 5527 itr_val |= E1000_EITR_CNT_IGNR; 5528 5529 writel(itr_val, q_vector->itr_register); 5530 q_vector->set_itr = 0; 5531} 5532 5533static irqreturn_t igb_msix_ring(int irq, void *data) 5534{ 5535 struct igb_q_vector *q_vector = data; 5536 5537 /* Write the ITR value calculated from the previous interrupt. */ 5538 igb_write_itr(q_vector); 5539 5540 napi_schedule(&q_vector->napi); 5541 5542 return IRQ_HANDLED; 5543} 5544 5545#ifdef CONFIG_IGB_DCA 5546static void igb_update_tx_dca(struct igb_adapter *adapter, 5547 struct igb_ring *tx_ring, 5548 int cpu) 5549{ 5550 struct e1000_hw *hw = &adapter->hw; 5551 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu); 5552 5553 if (hw->mac.type != e1000_82575) 5554 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT; 5555 5556 /* We can enable relaxed ordering for reads, but not writes when 5557 * DCA is enabled. This is due to a known issue in some chipsets 5558 * which will cause the DCA tag to be cleared. 5559 */ 5560 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN | 5561 E1000_DCA_TXCTRL_DATA_RRO_EN | 5562 E1000_DCA_TXCTRL_DESC_DCA_EN; 5563 5564 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl); 5565} 5566 5567static void igb_update_rx_dca(struct igb_adapter *adapter, 5568 struct igb_ring *rx_ring, 5569 int cpu) 5570{ 5571 struct e1000_hw *hw = &adapter->hw; 5572 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu); 5573 5574 if (hw->mac.type != e1000_82575) 5575 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT; 5576 5577 /* We can enable relaxed ordering for reads, but not writes when 5578 * DCA is enabled. This is due to a known issue in some chipsets 5579 * which will cause the DCA tag to be cleared. 5580 */ 5581 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN | 5582 E1000_DCA_RXCTRL_DESC_DCA_EN; 5583 5584 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl); 5585} 5586 5587static void igb_update_dca(struct igb_q_vector *q_vector) 5588{ 5589 struct igb_adapter *adapter = q_vector->adapter; 5590 int cpu = get_cpu(); 5591 5592 if (q_vector->cpu == cpu) 5593 goto out_no_update; 5594 5595 if (q_vector->tx.ring) 5596 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu); 5597 5598 if (q_vector->rx.ring) 5599 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu); 5600 5601 q_vector->cpu = cpu; 5602out_no_update: 5603 put_cpu(); 5604} 5605 5606static void igb_setup_dca(struct igb_adapter *adapter) 5607{ 5608 struct e1000_hw *hw = &adapter->hw; 5609 int i; 5610 5611 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED)) 5612 return; 5613 5614 /* Always use CB2 mode, difference is masked in the CB driver. */ 5615 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2); 5616 5617 for (i = 0; i < adapter->num_q_vectors; i++) { 5618 adapter->q_vector[i]->cpu = -1; 5619 igb_update_dca(adapter->q_vector[i]); 5620 } 5621} 5622 5623static int __igb_notify_dca(struct device *dev, void *data) 5624{ 5625 struct net_device *netdev = dev_get_drvdata(dev); 5626 struct igb_adapter *adapter = netdev_priv(netdev); 5627 struct pci_dev *pdev = adapter->pdev; 5628 struct e1000_hw *hw = &adapter->hw; 5629 unsigned long event = *(unsigned long *)data; 5630 5631 switch (event) { 5632 case DCA_PROVIDER_ADD: 5633 /* if already enabled, don't do it again */ 5634 if (adapter->flags & IGB_FLAG_DCA_ENABLED) 5635 break; 5636 if (dca_add_requester(dev) == 0) { 5637 adapter->flags |= IGB_FLAG_DCA_ENABLED; 5638 dev_info(&pdev->dev, "DCA enabled\n"); 5639 igb_setup_dca(adapter); 5640 break; 5641 } 5642 /* Fall Through since DCA is disabled. */ 5643 case DCA_PROVIDER_REMOVE: 5644 if (adapter->flags & IGB_FLAG_DCA_ENABLED) { 5645 /* without this a class_device is left 5646 * hanging around in the sysfs model 5647 */ 5648 dca_remove_requester(dev); 5649 dev_info(&pdev->dev, "DCA disabled\n"); 5650 adapter->flags &= ~IGB_FLAG_DCA_ENABLED; 5651 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE); 5652 } 5653 break; 5654 } 5655 5656 return 0; 5657} 5658 5659static int igb_notify_dca(struct notifier_block *nb, unsigned long event, 5660 void *p) 5661{ 5662 int ret_val; 5663 5664 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event, 5665 __igb_notify_dca); 5666 5667 return ret_val ? NOTIFY_BAD : NOTIFY_DONE; 5668} 5669#endif /* CONFIG_IGB_DCA */ 5670 5671#ifdef CONFIG_PCI_IOV 5672static int igb_vf_configure(struct igb_adapter *adapter, int vf) 5673{ 5674 unsigned char mac_addr[ETH_ALEN]; 5675 5676 eth_zero_addr(mac_addr); 5677 igb_set_vf_mac(adapter, vf, mac_addr); 5678 5679 /* By default spoof check is enabled for all VFs */ 5680 adapter->vf_data[vf].spoofchk_enabled = true; 5681 5682 return 0; 5683} 5684 5685#endif 5686static void igb_ping_all_vfs(struct igb_adapter *adapter) 5687{ 5688 struct e1000_hw *hw = &adapter->hw; 5689 u32 ping; 5690 int i; 5691 5692 for (i = 0 ; i < adapter->vfs_allocated_count; i++) { 5693 ping = E1000_PF_CONTROL_MSG; 5694 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS) 5695 ping |= E1000_VT_MSGTYPE_CTS; 5696 igb_write_mbx(hw, &ping, 1, i); 5697 } 5698} 5699 5700static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5701{ 5702 struct e1000_hw *hw = &adapter->hw; 5703 u32 vmolr = rd32(E1000_VMOLR(vf)); 5704 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5705 5706 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC | 5707 IGB_VF_FLAG_MULTI_PROMISC); 5708 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5709 5710 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) { 5711 vmolr |= E1000_VMOLR_MPME; 5712 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC; 5713 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST; 5714 } else { 5715 /* if we have hashes and we are clearing a multicast promisc 5716 * flag we need to write the hashes to the MTA as this step 5717 * was previously skipped 5718 */ 5719 if (vf_data->num_vf_mc_hashes > 30) { 5720 vmolr |= E1000_VMOLR_MPME; 5721 } else if (vf_data->num_vf_mc_hashes) { 5722 int j; 5723 5724 vmolr |= E1000_VMOLR_ROMPE; 5725 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5726 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5727 } 5728 } 5729 5730 wr32(E1000_VMOLR(vf), vmolr); 5731 5732 /* there are flags left unprocessed, likely not supported */ 5733 if (*msgbuf & E1000_VT_MSGINFO_MASK) 5734 return -EINVAL; 5735 5736 return 0; 5737} 5738 5739static int igb_set_vf_multicasts(struct igb_adapter *adapter, 5740 u32 *msgbuf, u32 vf) 5741{ 5742 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5743 u16 *hash_list = (u16 *)&msgbuf[1]; 5744 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 5745 int i; 5746 5747 /* salt away the number of multicast addresses assigned 5748 * to this VF for later use to restore when the PF multi cast 5749 * list changes 5750 */ 5751 vf_data->num_vf_mc_hashes = n; 5752 5753 /* only up to 30 hash values supported */ 5754 if (n > 30) 5755 n = 30; 5756 5757 /* store the hashes for later use */ 5758 for (i = 0; i < n; i++) 5759 vf_data->vf_mc_hashes[i] = hash_list[i]; 5760 5761 /* Flush and reset the mta with the new values */ 5762 igb_set_rx_mode(adapter->netdev); 5763 5764 return 0; 5765} 5766 5767static void igb_restore_vf_multicasts(struct igb_adapter *adapter) 5768{ 5769 struct e1000_hw *hw = &adapter->hw; 5770 struct vf_data_storage *vf_data; 5771 int i, j; 5772 5773 for (i = 0; i < adapter->vfs_allocated_count; i++) { 5774 u32 vmolr = rd32(E1000_VMOLR(i)); 5775 5776 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME); 5777 5778 vf_data = &adapter->vf_data[i]; 5779 5780 if ((vf_data->num_vf_mc_hashes > 30) || 5781 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) { 5782 vmolr |= E1000_VMOLR_MPME; 5783 } else if (vf_data->num_vf_mc_hashes) { 5784 vmolr |= E1000_VMOLR_ROMPE; 5785 for (j = 0; j < vf_data->num_vf_mc_hashes; j++) 5786 igb_mta_set(hw, vf_data->vf_mc_hashes[j]); 5787 } 5788 wr32(E1000_VMOLR(i), vmolr); 5789 } 5790} 5791 5792static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf) 5793{ 5794 struct e1000_hw *hw = &adapter->hw; 5795 u32 pool_mask, reg, vid; 5796 int i; 5797 5798 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5799 5800 /* Find the vlan filter for this id */ 5801 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5802 reg = rd32(E1000_VLVF(i)); 5803 5804 /* remove the vf from the pool */ 5805 reg &= ~pool_mask; 5806 5807 /* if pool is empty then remove entry from vfta */ 5808 if (!(reg & E1000_VLVF_POOLSEL_MASK) && 5809 (reg & E1000_VLVF_VLANID_ENABLE)) { 5810 reg = 0; 5811 vid = reg & E1000_VLVF_VLANID_MASK; 5812 igb_vfta_set(hw, vid, false); 5813 } 5814 5815 wr32(E1000_VLVF(i), reg); 5816 } 5817 5818 adapter->vf_data[vf].vlans_enabled = 0; 5819} 5820 5821static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf) 5822{ 5823 struct e1000_hw *hw = &adapter->hw; 5824 u32 reg, i; 5825 5826 /* The vlvf table only exists on 82576 hardware and newer */ 5827 if (hw->mac.type < e1000_82576) 5828 return -1; 5829 5830 /* we only need to do this if VMDq is enabled */ 5831 if (!adapter->vfs_allocated_count) 5832 return -1; 5833 5834 /* Find the vlan filter for this id */ 5835 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5836 reg = rd32(E1000_VLVF(i)); 5837 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5838 vid == (reg & E1000_VLVF_VLANID_MASK)) 5839 break; 5840 } 5841 5842 if (add) { 5843 if (i == E1000_VLVF_ARRAY_SIZE) { 5844 /* Did not find a matching VLAN ID entry that was 5845 * enabled. Search for a free filter entry, i.e. 5846 * one without the enable bit set 5847 */ 5848 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5849 reg = rd32(E1000_VLVF(i)); 5850 if (!(reg & E1000_VLVF_VLANID_ENABLE)) 5851 break; 5852 } 5853 } 5854 if (i < E1000_VLVF_ARRAY_SIZE) { 5855 /* Found an enabled/available entry */ 5856 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf); 5857 5858 /* if !enabled we need to set this up in vfta */ 5859 if (!(reg & E1000_VLVF_VLANID_ENABLE)) { 5860 /* add VID to filter table */ 5861 igb_vfta_set(hw, vid, true); 5862 reg |= E1000_VLVF_VLANID_ENABLE; 5863 } 5864 reg &= ~E1000_VLVF_VLANID_MASK; 5865 reg |= vid; 5866 wr32(E1000_VLVF(i), reg); 5867 5868 /* do not modify RLPML for PF devices */ 5869 if (vf >= adapter->vfs_allocated_count) 5870 return 0; 5871 5872 if (!adapter->vf_data[vf].vlans_enabled) { 5873 u32 size; 5874 5875 reg = rd32(E1000_VMOLR(vf)); 5876 size = reg & E1000_VMOLR_RLPML_MASK; 5877 size += 4; 5878 reg &= ~E1000_VMOLR_RLPML_MASK; 5879 reg |= size; 5880 wr32(E1000_VMOLR(vf), reg); 5881 } 5882 5883 adapter->vf_data[vf].vlans_enabled++; 5884 } 5885 } else { 5886 if (i < E1000_VLVF_ARRAY_SIZE) { 5887 /* remove vf from the pool */ 5888 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf)); 5889 /* if pool is empty then remove entry from vfta */ 5890 if (!(reg & E1000_VLVF_POOLSEL_MASK)) { 5891 reg = 0; 5892 igb_vfta_set(hw, vid, false); 5893 } 5894 wr32(E1000_VLVF(i), reg); 5895 5896 /* do not modify RLPML for PF devices */ 5897 if (vf >= adapter->vfs_allocated_count) 5898 return 0; 5899 5900 adapter->vf_data[vf].vlans_enabled--; 5901 if (!adapter->vf_data[vf].vlans_enabled) { 5902 u32 size; 5903 5904 reg = rd32(E1000_VMOLR(vf)); 5905 size = reg & E1000_VMOLR_RLPML_MASK; 5906 size -= 4; 5907 reg &= ~E1000_VMOLR_RLPML_MASK; 5908 reg |= size; 5909 wr32(E1000_VMOLR(vf), reg); 5910 } 5911 } 5912 } 5913 return 0; 5914} 5915 5916static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf) 5917{ 5918 struct e1000_hw *hw = &adapter->hw; 5919 5920 if (vid) 5921 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT)); 5922 else 5923 wr32(E1000_VMVIR(vf), 0); 5924} 5925 5926static int igb_ndo_set_vf_vlan(struct net_device *netdev, 5927 int vf, u16 vlan, u8 qos) 5928{ 5929 int err = 0; 5930 struct igb_adapter *adapter = netdev_priv(netdev); 5931 5932 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7)) 5933 return -EINVAL; 5934 if (vlan || qos) { 5935 err = igb_vlvf_set(adapter, vlan, !!vlan, vf); 5936 if (err) 5937 goto out; 5938 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf); 5939 igb_set_vmolr(adapter, vf, !vlan); 5940 adapter->vf_data[vf].pf_vlan = vlan; 5941 adapter->vf_data[vf].pf_qos = qos; 5942 dev_info(&adapter->pdev->dev, 5943 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf); 5944 if (test_bit(__IGB_DOWN, &adapter->state)) { 5945 dev_warn(&adapter->pdev->dev, 5946 "The VF VLAN has been set, but the PF device is not up.\n"); 5947 dev_warn(&adapter->pdev->dev, 5948 "Bring the PF device up before attempting to use the VF device.\n"); 5949 } 5950 } else { 5951 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan, 5952 false, vf); 5953 igb_set_vmvir(adapter, vlan, vf); 5954 igb_set_vmolr(adapter, vf, true); 5955 adapter->vf_data[vf].pf_vlan = 0; 5956 adapter->vf_data[vf].pf_qos = 0; 5957 } 5958out: 5959 return err; 5960} 5961 5962static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid) 5963{ 5964 struct e1000_hw *hw = &adapter->hw; 5965 int i; 5966 u32 reg; 5967 5968 /* Find the vlan filter for this id */ 5969 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) { 5970 reg = rd32(E1000_VLVF(i)); 5971 if ((reg & E1000_VLVF_VLANID_ENABLE) && 5972 vid == (reg & E1000_VLVF_VLANID_MASK)) 5973 break; 5974 } 5975 5976 if (i >= E1000_VLVF_ARRAY_SIZE) 5977 i = -1; 5978 5979 return i; 5980} 5981 5982static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf) 5983{ 5984 struct e1000_hw *hw = &adapter->hw; 5985 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT; 5986 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK); 5987 int err = 0; 5988 5989 /* If in promiscuous mode we need to make sure the PF also has 5990 * the VLAN filter set. 5991 */ 5992 if (add && (adapter->netdev->flags & IFF_PROMISC)) 5993 err = igb_vlvf_set(adapter, vid, add, 5994 adapter->vfs_allocated_count); 5995 if (err) 5996 goto out; 5997 5998 err = igb_vlvf_set(adapter, vid, add, vf); 5999 6000 if (err) 6001 goto out; 6002 6003 /* Go through all the checks to see if the VLAN filter should 6004 * be wiped completely. 6005 */ 6006 if (!add && (adapter->netdev->flags & IFF_PROMISC)) { 6007 u32 vlvf, bits; 6008 int regndx = igb_find_vlvf_entry(adapter, vid); 6009 6010 if (regndx < 0) 6011 goto out; 6012 /* See if any other pools are set for this VLAN filter 6013 * entry other than the PF. 6014 */ 6015 vlvf = bits = rd32(E1000_VLVF(regndx)); 6016 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT + 6017 adapter->vfs_allocated_count); 6018 /* If the filter was removed then ensure PF pool bit 6019 * is cleared if the PF only added itself to the pool 6020 * because the PF is in promiscuous mode. 6021 */ 6022 if ((vlvf & VLAN_VID_MASK) == vid && 6023 !test_bit(vid, adapter->active_vlans) && 6024 !bits) 6025 igb_vlvf_set(adapter, vid, add, 6026 adapter->vfs_allocated_count); 6027 } 6028 6029out: 6030 return err; 6031} 6032 6033static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf) 6034{ 6035 /* clear flags - except flag that indicates PF has set the MAC */ 6036 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC; 6037 adapter->vf_data[vf].last_nack = jiffies; 6038 6039 /* reset offloads to defaults */ 6040 igb_set_vmolr(adapter, vf, true); 6041 6042 /* reset vlans for device */ 6043 igb_clear_vf_vfta(adapter, vf); 6044 if (adapter->vf_data[vf].pf_vlan) 6045 igb_ndo_set_vf_vlan(adapter->netdev, vf, 6046 adapter->vf_data[vf].pf_vlan, 6047 adapter->vf_data[vf].pf_qos); 6048 else 6049 igb_clear_vf_vfta(adapter, vf); 6050 6051 /* reset multicast table array for vf */ 6052 adapter->vf_data[vf].num_vf_mc_hashes = 0; 6053 6054 /* Flush and reset the mta with the new values */ 6055 igb_set_rx_mode(adapter->netdev); 6056} 6057 6058static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf) 6059{ 6060 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 6061 6062 /* clear mac address as we were hotplug removed/added */ 6063 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC)) 6064 eth_zero_addr(vf_mac); 6065 6066 /* process remaining reset events */ 6067 igb_vf_reset(adapter, vf); 6068} 6069 6070static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf) 6071{ 6072 struct e1000_hw *hw = &adapter->hw; 6073 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses; 6074 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 6075 u32 reg, msgbuf[3]; 6076 u8 *addr = (u8 *)(&msgbuf[1]); 6077 6078 /* process all the same items cleared in a function level reset */ 6079 igb_vf_reset(adapter, vf); 6080 6081 /* set vf mac address */ 6082 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf); 6083 6084 /* enable transmit and receive for vf */ 6085 reg = rd32(E1000_VFTE); 6086 wr32(E1000_VFTE, reg | (1 << vf)); 6087 reg = rd32(E1000_VFRE); 6088 wr32(E1000_VFRE, reg | (1 << vf)); 6089 6090 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS; 6091 6092 /* reply to reset with ack and vf mac address */ 6093 if (!is_zero_ether_addr(vf_mac)) { 6094 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK; 6095 memcpy(addr, vf_mac, ETH_ALEN); 6096 } else { 6097 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK; 6098 } 6099 igb_write_mbx(hw, msgbuf, 3, vf); 6100} 6101 6102static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf) 6103{ 6104 /* The VF MAC Address is stored in a packed array of bytes 6105 * starting at the second 32 bit word of the msg array 6106 */ 6107 unsigned char *addr = (char *)&msg[1]; 6108 int err = -1; 6109 6110 if (is_valid_ether_addr(addr)) 6111 err = igb_set_vf_mac(adapter, vf, addr); 6112 6113 return err; 6114} 6115 6116static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf) 6117{ 6118 struct e1000_hw *hw = &adapter->hw; 6119 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 6120 u32 msg = E1000_VT_MSGTYPE_NACK; 6121 6122 /* if device isn't clear to send it shouldn't be reading either */ 6123 if (!(vf_data->flags & IGB_VF_FLAG_CTS) && 6124 time_after(jiffies, vf_data->last_nack + (2 * HZ))) { 6125 igb_write_mbx(hw, &msg, 1, vf); 6126 vf_data->last_nack = jiffies; 6127 } 6128} 6129 6130static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf) 6131{ 6132 struct pci_dev *pdev = adapter->pdev; 6133 u32 msgbuf[E1000_VFMAILBOX_SIZE]; 6134 struct e1000_hw *hw = &adapter->hw; 6135 struct vf_data_storage *vf_data = &adapter->vf_data[vf]; 6136 s32 retval; 6137 6138 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf); 6139 6140 if (retval) { 6141 /* if receive failed revoke VF CTS stats and restart init */ 6142 dev_err(&pdev->dev, "Error receiving message from VF\n"); 6143 vf_data->flags &= ~IGB_VF_FLAG_CTS; 6144 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 6145 return; 6146 goto out; 6147 } 6148 6149 /* this is a message we already processed, do nothing */ 6150 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK)) 6151 return; 6152 6153 /* until the vf completes a reset it should not be 6154 * allowed to start any configuration. 6155 */ 6156 if (msgbuf[0] == E1000_VF_RESET) { 6157 igb_vf_reset_msg(adapter, vf); 6158 return; 6159 } 6160 6161 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) { 6162 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ))) 6163 return; 6164 retval = -1; 6165 goto out; 6166 } 6167 6168 switch ((msgbuf[0] & 0xFFFF)) { 6169 case E1000_VF_SET_MAC_ADDR: 6170 retval = -EINVAL; 6171 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC)) 6172 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf); 6173 else 6174 dev_warn(&pdev->dev, 6175 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n", 6176 vf); 6177 break; 6178 case E1000_VF_SET_PROMISC: 6179 retval = igb_set_vf_promisc(adapter, msgbuf, vf); 6180 break; 6181 case E1000_VF_SET_MULTICAST: 6182 retval = igb_set_vf_multicasts(adapter, msgbuf, vf); 6183 break; 6184 case E1000_VF_SET_LPE: 6185 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf); 6186 break; 6187 case E1000_VF_SET_VLAN: 6188 retval = -1; 6189 if (vf_data->pf_vlan) 6190 dev_warn(&pdev->dev, 6191 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n", 6192 vf); 6193 else 6194 retval = igb_set_vf_vlan(adapter, msgbuf, vf); 6195 break; 6196 default: 6197 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]); 6198 retval = -1; 6199 break; 6200 } 6201 6202 msgbuf[0] |= E1000_VT_MSGTYPE_CTS; 6203out: 6204 /* notify the VF of the results of what it sent us */ 6205 if (retval) 6206 msgbuf[0] |= E1000_VT_MSGTYPE_NACK; 6207 else 6208 msgbuf[0] |= E1000_VT_MSGTYPE_ACK; 6209 6210 igb_write_mbx(hw, msgbuf, 1, vf); 6211} 6212 6213static void igb_msg_task(struct igb_adapter *adapter) 6214{ 6215 struct e1000_hw *hw = &adapter->hw; 6216 u32 vf; 6217 6218 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) { 6219 /* process any reset requests */ 6220 if (!igb_check_for_rst(hw, vf)) 6221 igb_vf_reset_event(adapter, vf); 6222 6223 /* process any messages pending */ 6224 if (!igb_check_for_msg(hw, vf)) 6225 igb_rcv_msg_from_vf(adapter, vf); 6226 6227 /* process any acks */ 6228 if (!igb_check_for_ack(hw, vf)) 6229 igb_rcv_ack_from_vf(adapter, vf); 6230 } 6231} 6232 6233/** 6234 * igb_set_uta - Set unicast filter table address 6235 * @adapter: board private structure 6236 * 6237 * The unicast table address is a register array of 32-bit registers. 6238 * The table is meant to be used in a way similar to how the MTA is used 6239 * however due to certain limitations in the hardware it is necessary to 6240 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous 6241 * enable bit to allow vlan tag stripping when promiscuous mode is enabled 6242 **/ 6243static void igb_set_uta(struct igb_adapter *adapter) 6244{ 6245 struct e1000_hw *hw = &adapter->hw; 6246 int i; 6247 6248 /* The UTA table only exists on 82576 hardware and newer */ 6249 if (hw->mac.type < e1000_82576) 6250 return; 6251 6252 /* we only need to do this if VMDq is enabled */ 6253 if (!adapter->vfs_allocated_count) 6254 return; 6255 6256 for (i = 0; i < hw->mac.uta_reg_count; i++) 6257 array_wr32(E1000_UTA, i, ~0); 6258} 6259 6260/** 6261 * igb_intr_msi - Interrupt Handler 6262 * @irq: interrupt number 6263 * @data: pointer to a network interface device structure 6264 **/ 6265static irqreturn_t igb_intr_msi(int irq, void *data) 6266{ 6267 struct igb_adapter *adapter = data; 6268 struct igb_q_vector *q_vector = adapter->q_vector[0]; 6269 struct e1000_hw *hw = &adapter->hw; 6270 /* read ICR disables interrupts using IAM */ 6271 u32 icr = rd32(E1000_ICR); 6272 6273 igb_write_itr(q_vector); 6274 6275 if (icr & E1000_ICR_DRSTA) 6276 schedule_work(&adapter->reset_task); 6277 6278 if (icr & E1000_ICR_DOUTSYNC) { 6279 /* HW is reporting DMA is out of sync */ 6280 adapter->stats.doosync++; 6281 } 6282 6283 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 6284 hw->mac.get_link_status = 1; 6285 if (!test_bit(__IGB_DOWN, &adapter->state)) 6286 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6287 } 6288 6289 if (icr & E1000_ICR_TS) 6290 igb_tsync_interrupt(adapter); 6291 6292 napi_schedule(&q_vector->napi); 6293 6294 return IRQ_HANDLED; 6295} 6296 6297/** 6298 * igb_intr - Legacy Interrupt Handler 6299 * @irq: interrupt number 6300 * @data: pointer to a network interface device structure 6301 **/ 6302static irqreturn_t igb_intr(int irq, void *data) 6303{ 6304 struct igb_adapter *adapter = data; 6305 struct igb_q_vector *q_vector = adapter->q_vector[0]; 6306 struct e1000_hw *hw = &adapter->hw; 6307 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No 6308 * need for the IMC write 6309 */ 6310 u32 icr = rd32(E1000_ICR); 6311 6312 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 6313 * not set, then the adapter didn't send an interrupt 6314 */ 6315 if (!(icr & E1000_ICR_INT_ASSERTED)) 6316 return IRQ_NONE; 6317 6318 igb_write_itr(q_vector); 6319 6320 if (icr & E1000_ICR_DRSTA) 6321 schedule_work(&adapter->reset_task); 6322 6323 if (icr & E1000_ICR_DOUTSYNC) { 6324 /* HW is reporting DMA is out of sync */ 6325 adapter->stats.doosync++; 6326 } 6327 6328 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) { 6329 hw->mac.get_link_status = 1; 6330 /* guard against interrupt when we're going down */ 6331 if (!test_bit(__IGB_DOWN, &adapter->state)) 6332 mod_timer(&adapter->watchdog_timer, jiffies + 1); 6333 } 6334 6335 if (icr & E1000_ICR_TS) 6336 igb_tsync_interrupt(adapter); 6337 6338 napi_schedule(&q_vector->napi); 6339 6340 return IRQ_HANDLED; 6341} 6342 6343static void igb_ring_irq_enable(struct igb_q_vector *q_vector) 6344{ 6345 struct igb_adapter *adapter = q_vector->adapter; 6346 struct e1000_hw *hw = &adapter->hw; 6347 6348 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) || 6349 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) { 6350 if ((adapter->num_q_vectors == 1) && !adapter->vf_data) 6351 igb_set_itr(q_vector); 6352 else 6353 igb_update_ring_itr(q_vector); 6354 } 6355 6356 if (!test_bit(__IGB_DOWN, &adapter->state)) { 6357 if (adapter->flags & IGB_FLAG_HAS_MSIX) 6358 wr32(E1000_EIMS, q_vector->eims_value); 6359 else 6360 igb_irq_enable(adapter); 6361 } 6362} 6363 6364/** 6365 * igb_poll - NAPI Rx polling callback 6366 * @napi: napi polling structure 6367 * @budget: count of how many packets we should handle 6368 **/ 6369static int igb_poll(struct napi_struct *napi, int budget) 6370{ 6371 struct igb_q_vector *q_vector = container_of(napi, 6372 struct igb_q_vector, 6373 napi); 6374 bool clean_complete = true; 6375 6376#ifdef CONFIG_IGB_DCA 6377 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED) 6378 igb_update_dca(q_vector); 6379#endif 6380 if (q_vector->tx.ring) 6381 clean_complete = igb_clean_tx_irq(q_vector); 6382 6383 if (q_vector->rx.ring) 6384 clean_complete &= igb_clean_rx_irq(q_vector, budget); 6385 6386 /* If all work not completed, return budget and keep polling */ 6387 if (!clean_complete) 6388 return budget; 6389 6390 /* If not enough Rx work done, exit the polling mode */ 6391 napi_complete(napi); 6392 igb_ring_irq_enable(q_vector); 6393 6394 return 0; 6395} 6396 6397/** 6398 * igb_clean_tx_irq - Reclaim resources after transmit completes 6399 * @q_vector: pointer to q_vector containing needed info 6400 * 6401 * returns true if ring is completely cleaned 6402 **/ 6403static bool igb_clean_tx_irq(struct igb_q_vector *q_vector) 6404{ 6405 struct igb_adapter *adapter = q_vector->adapter; 6406 struct igb_ring *tx_ring = q_vector->tx.ring; 6407 struct igb_tx_buffer *tx_buffer; 6408 union e1000_adv_tx_desc *tx_desc; 6409 unsigned int total_bytes = 0, total_packets = 0; 6410 unsigned int budget = q_vector->tx.work_limit; 6411 unsigned int i = tx_ring->next_to_clean; 6412 6413 if (test_bit(__IGB_DOWN, &adapter->state)) 6414 return true; 6415 6416 tx_buffer = &tx_ring->tx_buffer_info[i]; 6417 tx_desc = IGB_TX_DESC(tx_ring, i); 6418 i -= tx_ring->count; 6419 6420 do { 6421 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch; 6422 6423 /* if next_to_watch is not set then there is no work pending */ 6424 if (!eop_desc) 6425 break; 6426 6427 /* prevent any other reads prior to eop_desc */ 6428 read_barrier_depends(); 6429 6430 /* if DD is not set pending work has not been completed */ 6431 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD))) 6432 break; 6433 6434 /* clear next_to_watch to prevent false hangs */ 6435 tx_buffer->next_to_watch = NULL; 6436 6437 /* update the statistics for this packet */ 6438 total_bytes += tx_buffer->bytecount; 6439 total_packets += tx_buffer->gso_segs; 6440 6441 /* free the skb */ 6442 dev_consume_skb_any(tx_buffer->skb); 6443 6444 /* unmap skb header data */ 6445 dma_unmap_single(tx_ring->dev, 6446 dma_unmap_addr(tx_buffer, dma), 6447 dma_unmap_len(tx_buffer, len), 6448 DMA_TO_DEVICE); 6449 6450 /* clear tx_buffer data */ 6451 tx_buffer->skb = NULL; 6452 dma_unmap_len_set(tx_buffer, len, 0); 6453 6454 /* clear last DMA location and unmap remaining buffers */ 6455 while (tx_desc != eop_desc) { 6456 tx_buffer++; 6457 tx_desc++; 6458 i++; 6459 if (unlikely(!i)) { 6460 i -= tx_ring->count; 6461 tx_buffer = tx_ring->tx_buffer_info; 6462 tx_desc = IGB_TX_DESC(tx_ring, 0); 6463 } 6464 6465 /* unmap any remaining paged data */ 6466 if (dma_unmap_len(tx_buffer, len)) { 6467 dma_unmap_page(tx_ring->dev, 6468 dma_unmap_addr(tx_buffer, dma), 6469 dma_unmap_len(tx_buffer, len), 6470 DMA_TO_DEVICE); 6471 dma_unmap_len_set(tx_buffer, len, 0); 6472 } 6473 } 6474 6475 /* move us one more past the eop_desc for start of next pkt */ 6476 tx_buffer++; 6477 tx_desc++; 6478 i++; 6479 if (unlikely(!i)) { 6480 i -= tx_ring->count; 6481 tx_buffer = tx_ring->tx_buffer_info; 6482 tx_desc = IGB_TX_DESC(tx_ring, 0); 6483 } 6484 6485 /* issue prefetch for next Tx descriptor */ 6486 prefetch(tx_desc); 6487 6488 /* update budget accounting */ 6489 budget--; 6490 } while (likely(budget)); 6491 6492 netdev_tx_completed_queue(txring_txq(tx_ring), 6493 total_packets, total_bytes); 6494 i += tx_ring->count; 6495 tx_ring->next_to_clean = i; 6496 u64_stats_update_begin(&tx_ring->tx_syncp); 6497 tx_ring->tx_stats.bytes += total_bytes; 6498 tx_ring->tx_stats.packets += total_packets; 6499 u64_stats_update_end(&tx_ring->tx_syncp); 6500 q_vector->tx.total_bytes += total_bytes; 6501 q_vector->tx.total_packets += total_packets; 6502 6503 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) { 6504 struct e1000_hw *hw = &adapter->hw; 6505 6506 /* Detect a transmit hang in hardware, this serializes the 6507 * check with the clearing of time_stamp and movement of i 6508 */ 6509 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags); 6510 if (tx_buffer->next_to_watch && 6511 time_after(jiffies, tx_buffer->time_stamp + 6512 (adapter->tx_timeout_factor * HZ)) && 6513 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) { 6514 6515 /* detected Tx unit hang */ 6516 dev_err(tx_ring->dev, 6517 "Detected Tx Unit Hang\n" 6518 " Tx Queue <%d>\n" 6519 " TDH <%x>\n" 6520 " TDT <%x>\n" 6521 " next_to_use <%x>\n" 6522 " next_to_clean <%x>\n" 6523 "buffer_info[next_to_clean]\n" 6524 " time_stamp <%lx>\n" 6525 " next_to_watch <%p>\n" 6526 " jiffies <%lx>\n" 6527 " desc.status <%x>\n", 6528 tx_ring->queue_index, 6529 rd32(E1000_TDH(tx_ring->reg_idx)), 6530 readl(tx_ring->tail), 6531 tx_ring->next_to_use, 6532 tx_ring->next_to_clean, 6533 tx_buffer->time_stamp, 6534 tx_buffer->next_to_watch, 6535 jiffies, 6536 tx_buffer->next_to_watch->wb.status); 6537 netif_stop_subqueue(tx_ring->netdev, 6538 tx_ring->queue_index); 6539 6540 /* we are about to reset, no point in enabling stuff */ 6541 return true; 6542 } 6543 } 6544 6545#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2) 6546 if (unlikely(total_packets && 6547 netif_carrier_ok(tx_ring->netdev) && 6548 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) { 6549 /* Make sure that anybody stopping the queue after this 6550 * sees the new next_to_clean. 6551 */ 6552 smp_mb(); 6553 if (__netif_subqueue_stopped(tx_ring->netdev, 6554 tx_ring->queue_index) && 6555 !(test_bit(__IGB_DOWN, &adapter->state))) { 6556 netif_wake_subqueue(tx_ring->netdev, 6557 tx_ring->queue_index); 6558 6559 u64_stats_update_begin(&tx_ring->tx_syncp); 6560 tx_ring->tx_stats.restart_queue++; 6561 u64_stats_update_end(&tx_ring->tx_syncp); 6562 } 6563 } 6564 6565 return !!budget; 6566} 6567 6568/** 6569 * igb_reuse_rx_page - page flip buffer and store it back on the ring 6570 * @rx_ring: rx descriptor ring to store buffers on 6571 * @old_buff: donor buffer to have page reused 6572 * 6573 * Synchronizes page for reuse by the adapter 6574 **/ 6575static void igb_reuse_rx_page(struct igb_ring *rx_ring, 6576 struct igb_rx_buffer *old_buff) 6577{ 6578 struct igb_rx_buffer *new_buff; 6579 u16 nta = rx_ring->next_to_alloc; 6580 6581 new_buff = &rx_ring->rx_buffer_info[nta]; 6582 6583 /* update, and store next to alloc */ 6584 nta++; 6585 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0; 6586 6587 /* transfer page from old buffer to new buffer */ 6588 *new_buff = *old_buff; 6589 6590 /* sync the buffer for use by the device */ 6591 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma, 6592 old_buff->page_offset, 6593 IGB_RX_BUFSZ, 6594 DMA_FROM_DEVICE); 6595} 6596 6597static inline bool igb_page_is_reserved(struct page *page) 6598{ 6599 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page); 6600} 6601 6602static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer, 6603 struct page *page, 6604 unsigned int truesize) 6605{ 6606 /* avoid re-using remote pages */ 6607 if (unlikely(igb_page_is_reserved(page))) 6608 return false; 6609 6610#if (PAGE_SIZE < 8192) 6611 /* if we are only owner of page we can reuse it */ 6612 if (unlikely(page_count(page) != 1)) 6613 return false; 6614 6615 /* flip page offset to other buffer */ 6616 rx_buffer->page_offset ^= IGB_RX_BUFSZ; 6617#else 6618 /* move offset up to the next cache line */ 6619 rx_buffer->page_offset += truesize; 6620 6621 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ)) 6622 return false; 6623#endif 6624 6625 /* Even if we own the page, we are not allowed to use atomic_set() 6626 * This would break get_page_unless_zero() users. 6627 */ 6628 atomic_inc(&page->_count); 6629 6630 return true; 6631} 6632 6633/** 6634 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff 6635 * @rx_ring: rx descriptor ring to transact packets on 6636 * @rx_buffer: buffer containing page to add 6637 * @rx_desc: descriptor containing length of buffer written by hardware 6638 * @skb: sk_buff to place the data into 6639 * 6640 * This function will add the data contained in rx_buffer->page to the skb. 6641 * This is done either through a direct copy if the data in the buffer is 6642 * less than the skb header size, otherwise it will just attach the page as 6643 * a frag to the skb. 6644 * 6645 * The function will then update the page offset if necessary and return 6646 * true if the buffer can be reused by the adapter. 6647 **/ 6648static bool igb_add_rx_frag(struct igb_ring *rx_ring, 6649 struct igb_rx_buffer *rx_buffer, 6650 union e1000_adv_rx_desc *rx_desc, 6651 struct sk_buff *skb) 6652{ 6653 struct page *page = rx_buffer->page; 6654 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length); 6655#if (PAGE_SIZE < 8192) 6656 unsigned int truesize = IGB_RX_BUFSZ; 6657#else 6658 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES); 6659#endif 6660 6661 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) { 6662 unsigned char *va = page_address(page) + rx_buffer->page_offset; 6663 6664 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6665 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6666 va += IGB_TS_HDR_LEN; 6667 size -= IGB_TS_HDR_LEN; 6668 } 6669 6670 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long))); 6671 6672 /* page is not reserved, we can reuse buffer as-is */ 6673 if (likely(!igb_page_is_reserved(page))) 6674 return true; 6675 6676 /* this page cannot be reused so discard it */ 6677 __free_page(page); 6678 return false; 6679 } 6680 6681 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, 6682 rx_buffer->page_offset, size, truesize); 6683 6684 return igb_can_reuse_rx_page(rx_buffer, page, truesize); 6685} 6686 6687static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring, 6688 union e1000_adv_rx_desc *rx_desc, 6689 struct sk_buff *skb) 6690{ 6691 struct igb_rx_buffer *rx_buffer; 6692 struct page *page; 6693 6694 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean]; 6695 page = rx_buffer->page; 6696 prefetchw(page); 6697 6698 if (likely(!skb)) { 6699 void *page_addr = page_address(page) + 6700 rx_buffer->page_offset; 6701 6702 /* prefetch first cache line of first page */ 6703 prefetch(page_addr); 6704#if L1_CACHE_BYTES < 128 6705 prefetch(page_addr + L1_CACHE_BYTES); 6706#endif 6707 6708 /* allocate a skb to store the frags */ 6709 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN); 6710 if (unlikely(!skb)) { 6711 rx_ring->rx_stats.alloc_failed++; 6712 return NULL; 6713 } 6714 6715 /* we will be copying header into skb->data in 6716 * pskb_may_pull so it is in our interest to prefetch 6717 * it now to avoid a possible cache miss 6718 */ 6719 prefetchw(skb->data); 6720 } 6721 6722 /* we are reusing so sync this buffer for CPU use */ 6723 dma_sync_single_range_for_cpu(rx_ring->dev, 6724 rx_buffer->dma, 6725 rx_buffer->page_offset, 6726 IGB_RX_BUFSZ, 6727 DMA_FROM_DEVICE); 6728 6729 /* pull page into skb */ 6730 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) { 6731 /* hand second half of page back to the ring */ 6732 igb_reuse_rx_page(rx_ring, rx_buffer); 6733 } else { 6734 /* we are not reusing the buffer so unmap it */ 6735 dma_unmap_page(rx_ring->dev, rx_buffer->dma, 6736 PAGE_SIZE, DMA_FROM_DEVICE); 6737 } 6738 6739 /* clear contents of rx_buffer */ 6740 rx_buffer->page = NULL; 6741 6742 return skb; 6743} 6744 6745static inline void igb_rx_checksum(struct igb_ring *ring, 6746 union e1000_adv_rx_desc *rx_desc, 6747 struct sk_buff *skb) 6748{ 6749 skb_checksum_none_assert(skb); 6750 6751 /* Ignore Checksum bit is set */ 6752 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM)) 6753 return; 6754 6755 /* Rx checksum disabled via ethtool */ 6756 if (!(ring->netdev->features & NETIF_F_RXCSUM)) 6757 return; 6758 6759 /* TCP/UDP checksum error bit is set */ 6760 if (igb_test_staterr(rx_desc, 6761 E1000_RXDEXT_STATERR_TCPE | 6762 E1000_RXDEXT_STATERR_IPE)) { 6763 /* work around errata with sctp packets where the TCPE aka 6764 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc) 6765 * packets, (aka let the stack check the crc32c) 6766 */ 6767 if (!((skb->len == 60) && 6768 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) { 6769 u64_stats_update_begin(&ring->rx_syncp); 6770 ring->rx_stats.csum_err++; 6771 u64_stats_update_end(&ring->rx_syncp); 6772 } 6773 /* let the stack verify checksum errors */ 6774 return; 6775 } 6776 /* It must be a TCP or UDP packet with a valid checksum */ 6777 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS | 6778 E1000_RXD_STAT_UDPCS)) 6779 skb->ip_summed = CHECKSUM_UNNECESSARY; 6780 6781 dev_dbg(ring->dev, "cksum success: bits %08X\n", 6782 le32_to_cpu(rx_desc->wb.upper.status_error)); 6783} 6784 6785static inline void igb_rx_hash(struct igb_ring *ring, 6786 union e1000_adv_rx_desc *rx_desc, 6787 struct sk_buff *skb) 6788{ 6789 if (ring->netdev->features & NETIF_F_RXHASH) 6790 skb_set_hash(skb, 6791 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss), 6792 PKT_HASH_TYPE_L3); 6793} 6794 6795/** 6796 * igb_is_non_eop - process handling of non-EOP buffers 6797 * @rx_ring: Rx ring being processed 6798 * @rx_desc: Rx descriptor for current buffer 6799 * @skb: current socket buffer containing buffer in progress 6800 * 6801 * This function updates next to clean. If the buffer is an EOP buffer 6802 * this function exits returning false, otherwise it will place the 6803 * sk_buff in the next buffer to be chained and return true indicating 6804 * that this is in fact a non-EOP buffer. 6805 **/ 6806static bool igb_is_non_eop(struct igb_ring *rx_ring, 6807 union e1000_adv_rx_desc *rx_desc) 6808{ 6809 u32 ntc = rx_ring->next_to_clean + 1; 6810 6811 /* fetch, update, and store next to clean */ 6812 ntc = (ntc < rx_ring->count) ? ntc : 0; 6813 rx_ring->next_to_clean = ntc; 6814 6815 prefetch(IGB_RX_DESC(rx_ring, ntc)); 6816 6817 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP))) 6818 return false; 6819 6820 return true; 6821} 6822 6823/** 6824 * igb_pull_tail - igb specific version of skb_pull_tail 6825 * @rx_ring: rx descriptor ring packet is being transacted on 6826 * @rx_desc: pointer to the EOP Rx descriptor 6827 * @skb: pointer to current skb being adjusted 6828 * 6829 * This function is an igb specific version of __pskb_pull_tail. The 6830 * main difference between this version and the original function is that 6831 * this function can make several assumptions about the state of things 6832 * that allow for significant optimizations versus the standard function. 6833 * As a result we can do things like drop a frag and maintain an accurate 6834 * truesize for the skb. 6835 */ 6836static void igb_pull_tail(struct igb_ring *rx_ring, 6837 union e1000_adv_rx_desc *rx_desc, 6838 struct sk_buff *skb) 6839{ 6840 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0]; 6841 unsigned char *va; 6842 unsigned int pull_len; 6843 6844 /* it is valid to use page_address instead of kmap since we are 6845 * working with pages allocated out of the lomem pool per 6846 * alloc_page(GFP_ATOMIC) 6847 */ 6848 va = skb_frag_address(frag); 6849 6850 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) { 6851 /* retrieve timestamp from buffer */ 6852 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb); 6853 6854 /* update pointers to remove timestamp header */ 6855 skb_frag_size_sub(frag, IGB_TS_HDR_LEN); 6856 frag->page_offset += IGB_TS_HDR_LEN; 6857 skb->data_len -= IGB_TS_HDR_LEN; 6858 skb->len -= IGB_TS_HDR_LEN; 6859 6860 /* move va to start of packet data */ 6861 va += IGB_TS_HDR_LEN; 6862 } 6863 6864 /* we need the header to contain the greater of either ETH_HLEN or 6865 * 60 bytes if the skb->len is less than 60 for skb_pad. 6866 */ 6867 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN); 6868 6869 /* align pull length to size of long to optimize memcpy performance */ 6870 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long))); 6871 6872 /* update all of the pointers */ 6873 skb_frag_size_sub(frag, pull_len); 6874 frag->page_offset += pull_len; 6875 skb->data_len -= pull_len; 6876 skb->tail += pull_len; 6877} 6878 6879/** 6880 * igb_cleanup_headers - Correct corrupted or empty headers 6881 * @rx_ring: rx descriptor ring packet is being transacted on 6882 * @rx_desc: pointer to the EOP Rx descriptor 6883 * @skb: pointer to current skb being fixed 6884 * 6885 * Address the case where we are pulling data in on pages only 6886 * and as such no data is present in the skb header. 6887 * 6888 * In addition if skb is not at least 60 bytes we need to pad it so that 6889 * it is large enough to qualify as a valid Ethernet frame. 6890 * 6891 * Returns true if an error was encountered and skb was freed. 6892 **/ 6893static bool igb_cleanup_headers(struct igb_ring *rx_ring, 6894 union e1000_adv_rx_desc *rx_desc, 6895 struct sk_buff *skb) 6896{ 6897 if (unlikely((igb_test_staterr(rx_desc, 6898 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) { 6899 struct net_device *netdev = rx_ring->netdev; 6900 if (!(netdev->features & NETIF_F_RXALL)) { 6901 dev_kfree_skb_any(skb); 6902 return true; 6903 } 6904 } 6905 6906 /* place header in linear portion of buffer */ 6907 if (skb_is_nonlinear(skb)) 6908 igb_pull_tail(rx_ring, rx_desc, skb); 6909 6910 /* if eth_skb_pad returns an error the skb was freed */ 6911 if (eth_skb_pad(skb)) 6912 return true; 6913 6914 return false; 6915} 6916 6917/** 6918 * igb_process_skb_fields - Populate skb header fields from Rx descriptor 6919 * @rx_ring: rx descriptor ring packet is being transacted on 6920 * @rx_desc: pointer to the EOP Rx descriptor 6921 * @skb: pointer to current skb being populated 6922 * 6923 * This function checks the ring, descriptor, and packet information in 6924 * order to populate the hash, checksum, VLAN, timestamp, protocol, and 6925 * other fields within the skb. 6926 **/ 6927static void igb_process_skb_fields(struct igb_ring *rx_ring, 6928 union e1000_adv_rx_desc *rx_desc, 6929 struct sk_buff *skb) 6930{ 6931 struct net_device *dev = rx_ring->netdev; 6932 6933 igb_rx_hash(rx_ring, rx_desc, skb); 6934 6935 igb_rx_checksum(rx_ring, rx_desc, skb); 6936 6937 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) && 6938 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) 6939 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb); 6940 6941 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) && 6942 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) { 6943 u16 vid; 6944 6945 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) && 6946 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags)) 6947 vid = be16_to_cpu(rx_desc->wb.upper.vlan); 6948 else 6949 vid = le16_to_cpu(rx_desc->wb.upper.vlan); 6950 6951 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); 6952 } 6953 6954 skb_record_rx_queue(skb, rx_ring->queue_index); 6955 6956 skb->protocol = eth_type_trans(skb, rx_ring->netdev); 6957} 6958 6959static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget) 6960{ 6961 struct igb_ring *rx_ring = q_vector->rx.ring; 6962 struct sk_buff *skb = rx_ring->skb; 6963 unsigned int total_bytes = 0, total_packets = 0; 6964 u16 cleaned_count = igb_desc_unused(rx_ring); 6965 6966 while (likely(total_packets < budget)) { 6967 union e1000_adv_rx_desc *rx_desc; 6968 6969 /* return some buffers to hardware, one at a time is too slow */ 6970 if (cleaned_count >= IGB_RX_BUFFER_WRITE) { 6971 igb_alloc_rx_buffers(rx_ring, cleaned_count); 6972 cleaned_count = 0; 6973 } 6974 6975 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean); 6976 6977 if (!rx_desc->wb.upper.status_error) 6978 break; 6979 6980 /* This memory barrier is needed to keep us from reading 6981 * any other fields out of the rx_desc until we know the 6982 * descriptor has been written back 6983 */ 6984 dma_rmb(); 6985 6986 /* retrieve a buffer from the ring */ 6987 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb); 6988 6989 /* exit if we failed to retrieve a buffer */ 6990 if (!skb) 6991 break; 6992 6993 cleaned_count++; 6994 6995 /* fetch next buffer in frame if non-eop */ 6996 if (igb_is_non_eop(rx_ring, rx_desc)) 6997 continue; 6998 6999 /* verify the packet layout is correct */ 7000 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) { 7001 skb = NULL; 7002 continue; 7003 } 7004 7005 /* probably a little skewed due to removing CRC */ 7006 total_bytes += skb->len; 7007 7008 /* populate checksum, timestamp, VLAN, and protocol */ 7009 igb_process_skb_fields(rx_ring, rx_desc, skb); 7010 7011 napi_gro_receive(&q_vector->napi, skb); 7012 7013 /* reset skb pointer */ 7014 skb = NULL; 7015 7016 /* update budget accounting */ 7017 total_packets++; 7018 } 7019 7020 /* place incomplete frames back on ring for completion */ 7021 rx_ring->skb = skb; 7022 7023 u64_stats_update_begin(&rx_ring->rx_syncp); 7024 rx_ring->rx_stats.packets += total_packets; 7025 rx_ring->rx_stats.bytes += total_bytes; 7026 u64_stats_update_end(&rx_ring->rx_syncp); 7027 q_vector->rx.total_packets += total_packets; 7028 q_vector->rx.total_bytes += total_bytes; 7029 7030 if (cleaned_count) 7031 igb_alloc_rx_buffers(rx_ring, cleaned_count); 7032 7033 return total_packets < budget; 7034} 7035 7036static bool igb_alloc_mapped_page(struct igb_ring *rx_ring, 7037 struct igb_rx_buffer *bi) 7038{ 7039 struct page *page = bi->page; 7040 dma_addr_t dma; 7041 7042 /* since we are recycling buffers we should seldom need to alloc */ 7043 if (likely(page)) 7044 return true; 7045 7046 /* alloc new page for storage */ 7047 page = dev_alloc_page(); 7048 if (unlikely(!page)) { 7049 rx_ring->rx_stats.alloc_failed++; 7050 return false; 7051 } 7052 7053 /* map page for use */ 7054 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE); 7055 7056 /* if mapping failed free memory back to system since 7057 * there isn't much point in holding memory we can't use 7058 */ 7059 if (dma_mapping_error(rx_ring->dev, dma)) { 7060 __free_page(page); 7061 7062 rx_ring->rx_stats.alloc_failed++; 7063 return false; 7064 } 7065 7066 bi->dma = dma; 7067 bi->page = page; 7068 bi->page_offset = 0; 7069 7070 return true; 7071} 7072 7073/** 7074 * igb_alloc_rx_buffers - Replace used receive buffers; packet split 7075 * @adapter: address of board private structure 7076 **/ 7077void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count) 7078{ 7079 union e1000_adv_rx_desc *rx_desc; 7080 struct igb_rx_buffer *bi; 7081 u16 i = rx_ring->next_to_use; 7082 7083 /* nothing to do */ 7084 if (!cleaned_count) 7085 return; 7086 7087 rx_desc = IGB_RX_DESC(rx_ring, i); 7088 bi = &rx_ring->rx_buffer_info[i]; 7089 i -= rx_ring->count; 7090 7091 do { 7092 if (!igb_alloc_mapped_page(rx_ring, bi)) 7093 break; 7094 7095 /* Refresh the desc even if buffer_addrs didn't change 7096 * because each write-back erases this info. 7097 */ 7098 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset); 7099 7100 rx_desc++; 7101 bi++; 7102 i++; 7103 if (unlikely(!i)) { 7104 rx_desc = IGB_RX_DESC(rx_ring, 0); 7105 bi = rx_ring->rx_buffer_info; 7106 i -= rx_ring->count; 7107 } 7108 7109 /* clear the status bits for the next_to_use descriptor */ 7110 rx_desc->wb.upper.status_error = 0; 7111 7112 cleaned_count--; 7113 } while (cleaned_count); 7114 7115 i += rx_ring->count; 7116 7117 if (rx_ring->next_to_use != i) { 7118 /* record the next descriptor to use */ 7119 rx_ring->next_to_use = i; 7120 7121 /* update next to alloc since we have filled the ring */ 7122 rx_ring->next_to_alloc = i; 7123 7124 /* Force memory writes to complete before letting h/w 7125 * know there are new descriptors to fetch. (Only 7126 * applicable for weak-ordered memory model archs, 7127 * such as IA-64). 7128 */ 7129 wmb(); 7130 writel(i, rx_ring->tail); 7131 } 7132} 7133 7134/** 7135 * igb_mii_ioctl - 7136 * @netdev: 7137 * @ifreq: 7138 * @cmd: 7139 **/ 7140static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7141{ 7142 struct igb_adapter *adapter = netdev_priv(netdev); 7143 struct mii_ioctl_data *data = if_mii(ifr); 7144 7145 if (adapter->hw.phy.media_type != e1000_media_type_copper) 7146 return -EOPNOTSUPP; 7147 7148 switch (cmd) { 7149 case SIOCGMIIPHY: 7150 data->phy_id = adapter->hw.phy.addr; 7151 break; 7152 case SIOCGMIIREG: 7153 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, 7154 &data->val_out)) 7155 return -EIO; 7156 break; 7157 case SIOCSMIIREG: 7158 default: 7159 return -EOPNOTSUPP; 7160 } 7161 return 0; 7162} 7163 7164/** 7165 * igb_ioctl - 7166 * @netdev: 7167 * @ifreq: 7168 * @cmd: 7169 **/ 7170static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 7171{ 7172 switch (cmd) { 7173 case SIOCGMIIPHY: 7174 case SIOCGMIIREG: 7175 case SIOCSMIIREG: 7176 return igb_mii_ioctl(netdev, ifr, cmd); 7177 case SIOCGHWTSTAMP: 7178 return igb_ptp_get_ts_config(netdev, ifr); 7179 case SIOCSHWTSTAMP: 7180 return igb_ptp_set_ts_config(netdev, ifr); 7181 default: 7182 return -EOPNOTSUPP; 7183 } 7184} 7185 7186void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 7187{ 7188 struct igb_adapter *adapter = hw->back; 7189 7190 pci_read_config_word(adapter->pdev, reg, value); 7191} 7192 7193void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value) 7194{ 7195 struct igb_adapter *adapter = hw->back; 7196 7197 pci_write_config_word(adapter->pdev, reg, *value); 7198} 7199 7200s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 7201{ 7202 struct igb_adapter *adapter = hw->back; 7203 7204 if (pcie_capability_read_word(adapter->pdev, reg, value)) 7205 return -E1000_ERR_CONFIG; 7206 7207 return 0; 7208} 7209 7210s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value) 7211{ 7212 struct igb_adapter *adapter = hw->back; 7213 7214 if (pcie_capability_write_word(adapter->pdev, reg, *value)) 7215 return -E1000_ERR_CONFIG; 7216 7217 return 0; 7218} 7219 7220static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features) 7221{ 7222 struct igb_adapter *adapter = netdev_priv(netdev); 7223 struct e1000_hw *hw = &adapter->hw; 7224 u32 ctrl, rctl; 7225 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 7226 7227 if (enable) { 7228 /* enable VLAN tag insert/strip */ 7229 ctrl = rd32(E1000_CTRL); 7230 ctrl |= E1000_CTRL_VME; 7231 wr32(E1000_CTRL, ctrl); 7232 7233 /* Disable CFI check */ 7234 rctl = rd32(E1000_RCTL); 7235 rctl &= ~E1000_RCTL_CFIEN; 7236 wr32(E1000_RCTL, rctl); 7237 } else { 7238 /* disable VLAN tag insert/strip */ 7239 ctrl = rd32(E1000_CTRL); 7240 ctrl &= ~E1000_CTRL_VME; 7241 wr32(E1000_CTRL, ctrl); 7242 } 7243 7244 igb_rlpml_set(adapter); 7245} 7246 7247static int igb_vlan_rx_add_vid(struct net_device *netdev, 7248 __be16 proto, u16 vid) 7249{ 7250 struct igb_adapter *adapter = netdev_priv(netdev); 7251 struct e1000_hw *hw = &adapter->hw; 7252 int pf_id = adapter->vfs_allocated_count; 7253 7254 /* attempt to add filter to vlvf array */ 7255 igb_vlvf_set(adapter, vid, true, pf_id); 7256 7257 /* add the filter since PF can receive vlans w/o entry in vlvf */ 7258 igb_vfta_set(hw, vid, true); 7259 7260 set_bit(vid, adapter->active_vlans); 7261 7262 return 0; 7263} 7264 7265static int igb_vlan_rx_kill_vid(struct net_device *netdev, 7266 __be16 proto, u16 vid) 7267{ 7268 struct igb_adapter *adapter = netdev_priv(netdev); 7269 struct e1000_hw *hw = &adapter->hw; 7270 int pf_id = adapter->vfs_allocated_count; 7271 s32 err; 7272 7273 /* remove vlan from VLVF table array */ 7274 err = igb_vlvf_set(adapter, vid, false, pf_id); 7275 7276 /* if vid was not present in VLVF just remove it from table */ 7277 if (err) 7278 igb_vfta_set(hw, vid, false); 7279 7280 clear_bit(vid, adapter->active_vlans); 7281 7282 return 0; 7283} 7284 7285static void igb_restore_vlan(struct igb_adapter *adapter) 7286{ 7287 u16 vid; 7288 7289 igb_vlan_mode(adapter->netdev, adapter->netdev->features); 7290 7291 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 7292 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 7293} 7294 7295int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx) 7296{ 7297 struct pci_dev *pdev = adapter->pdev; 7298 struct e1000_mac_info *mac = &adapter->hw.mac; 7299 7300 mac->autoneg = 0; 7301 7302 /* Make sure dplx is at most 1 bit and lsb of speed is not set 7303 * for the switch() below to work 7304 */ 7305 if ((spd & 1) || (dplx & ~1)) 7306 goto err_inval; 7307 7308 /* Fiber NIC's only allow 1000 gbps Full duplex 7309 * and 100Mbps Full duplex for 100baseFx sfp 7310 */ 7311 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) { 7312 switch (spd + dplx) { 7313 case SPEED_10 + DUPLEX_HALF: 7314 case SPEED_10 + DUPLEX_FULL: 7315 case SPEED_100 + DUPLEX_HALF: 7316 goto err_inval; 7317 default: 7318 break; 7319 } 7320 } 7321 7322 switch (spd + dplx) { 7323 case SPEED_10 + DUPLEX_HALF: 7324 mac->forced_speed_duplex = ADVERTISE_10_HALF; 7325 break; 7326 case SPEED_10 + DUPLEX_FULL: 7327 mac->forced_speed_duplex = ADVERTISE_10_FULL; 7328 break; 7329 case SPEED_100 + DUPLEX_HALF: 7330 mac->forced_speed_duplex = ADVERTISE_100_HALF; 7331 break; 7332 case SPEED_100 + DUPLEX_FULL: 7333 mac->forced_speed_duplex = ADVERTISE_100_FULL; 7334 break; 7335 case SPEED_1000 + DUPLEX_FULL: 7336 mac->autoneg = 1; 7337 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL; 7338 break; 7339 case SPEED_1000 + DUPLEX_HALF: /* not supported */ 7340 default: 7341 goto err_inval; 7342 } 7343 7344 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ 7345 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7346 7347 return 0; 7348 7349err_inval: 7350 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n"); 7351 return -EINVAL; 7352} 7353 7354static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake, 7355 bool runtime) 7356{ 7357 struct net_device *netdev = pci_get_drvdata(pdev); 7358 struct igb_adapter *adapter = netdev_priv(netdev); 7359 struct e1000_hw *hw = &adapter->hw; 7360 u32 ctrl, rctl, status; 7361 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 7362#ifdef CONFIG_PM 7363 int retval = 0; 7364#endif 7365 7366 netif_device_detach(netdev); 7367 7368 if (netif_running(netdev)) 7369 __igb_close(netdev, true); 7370 7371 igb_clear_interrupt_scheme(adapter); 7372 7373#ifdef CONFIG_PM 7374 retval = pci_save_state(pdev); 7375 if (retval) 7376 return retval; 7377#endif 7378 7379 status = rd32(E1000_STATUS); 7380 if (status & E1000_STATUS_LU) 7381 wufc &= ~E1000_WUFC_LNKC; 7382 7383 if (wufc) { 7384 igb_setup_rctl(adapter); 7385 igb_set_rx_mode(netdev); 7386 7387 /* turn on all-multi mode if wake on multicast is enabled */ 7388 if (wufc & E1000_WUFC_MC) { 7389 rctl = rd32(E1000_RCTL); 7390 rctl |= E1000_RCTL_MPE; 7391 wr32(E1000_RCTL, rctl); 7392 } 7393 7394 ctrl = rd32(E1000_CTRL); 7395 /* advertise wake from D3Cold */ 7396 #define E1000_CTRL_ADVD3WUC 0x00100000 7397 /* phy power management enable */ 7398 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 7399 ctrl |= E1000_CTRL_ADVD3WUC; 7400 wr32(E1000_CTRL, ctrl); 7401 7402 /* Allow time for pending master requests to run */ 7403 igb_disable_pcie_master(hw); 7404 7405 wr32(E1000_WUC, E1000_WUC_PME_EN); 7406 wr32(E1000_WUFC, wufc); 7407 } else { 7408 wr32(E1000_WUC, 0); 7409 wr32(E1000_WUFC, 0); 7410 } 7411 7412 *enable_wake = wufc || adapter->en_mng_pt; 7413 if (!*enable_wake) 7414 igb_power_down_link(adapter); 7415 else 7416 igb_power_up_link(adapter); 7417 7418 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7419 * would have already happened in close and is redundant. 7420 */ 7421 igb_release_hw_control(adapter); 7422 7423 pci_disable_device(pdev); 7424 7425 return 0; 7426} 7427 7428#ifdef CONFIG_PM 7429#ifdef CONFIG_PM_SLEEP 7430static int igb_suspend(struct device *dev) 7431{ 7432 int retval; 7433 bool wake; 7434 struct pci_dev *pdev = to_pci_dev(dev); 7435 7436 retval = __igb_shutdown(pdev, &wake, 0); 7437 if (retval) 7438 return retval; 7439 7440 if (wake) { 7441 pci_prepare_to_sleep(pdev); 7442 } else { 7443 pci_wake_from_d3(pdev, false); 7444 pci_set_power_state(pdev, PCI_D3hot); 7445 } 7446 7447 return 0; 7448} 7449#endif /* CONFIG_PM_SLEEP */ 7450 7451static int igb_resume(struct device *dev) 7452{ 7453 struct pci_dev *pdev = to_pci_dev(dev); 7454 struct net_device *netdev = pci_get_drvdata(pdev); 7455 struct igb_adapter *adapter = netdev_priv(netdev); 7456 struct e1000_hw *hw = &adapter->hw; 7457 u32 err; 7458 7459 pci_set_power_state(pdev, PCI_D0); 7460 pci_restore_state(pdev); 7461 pci_save_state(pdev); 7462 7463 if (!pci_device_is_present(pdev)) 7464 return -ENODEV; 7465 err = pci_enable_device_mem(pdev); 7466 if (err) { 7467 dev_err(&pdev->dev, 7468 "igb: Cannot enable PCI device from suspend\n"); 7469 return err; 7470 } 7471 pci_set_master(pdev); 7472 7473 pci_enable_wake(pdev, PCI_D3hot, 0); 7474 pci_enable_wake(pdev, PCI_D3cold, 0); 7475 7476 if (igb_init_interrupt_scheme(adapter, true)) { 7477 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7478 return -ENOMEM; 7479 } 7480 7481 igb_reset(adapter); 7482 7483 /* let the f/w know that the h/w is now under the control of the 7484 * driver. 7485 */ 7486 igb_get_hw_control(adapter); 7487 7488 wr32(E1000_WUS, ~0); 7489 7490 if (netdev->flags & IFF_UP) { 7491 rtnl_lock(); 7492 err = __igb_open(netdev, true); 7493 rtnl_unlock(); 7494 if (err) 7495 return err; 7496 } 7497 7498 netif_device_attach(netdev); 7499 return 0; 7500} 7501 7502static int igb_runtime_idle(struct device *dev) 7503{ 7504 struct pci_dev *pdev = to_pci_dev(dev); 7505 struct net_device *netdev = pci_get_drvdata(pdev); 7506 struct igb_adapter *adapter = netdev_priv(netdev); 7507 7508 if (!igb_has_link(adapter)) 7509 pm_schedule_suspend(dev, MSEC_PER_SEC * 5); 7510 7511 return -EBUSY; 7512} 7513 7514static int igb_runtime_suspend(struct device *dev) 7515{ 7516 struct pci_dev *pdev = to_pci_dev(dev); 7517 int retval; 7518 bool wake; 7519 7520 retval = __igb_shutdown(pdev, &wake, 1); 7521 if (retval) 7522 return retval; 7523 7524 if (wake) { 7525 pci_prepare_to_sleep(pdev); 7526 } else { 7527 pci_wake_from_d3(pdev, false); 7528 pci_set_power_state(pdev, PCI_D3hot); 7529 } 7530 7531 return 0; 7532} 7533 7534static int igb_runtime_resume(struct device *dev) 7535{ 7536 return igb_resume(dev); 7537} 7538#endif /* CONFIG_PM */ 7539 7540static void igb_shutdown(struct pci_dev *pdev) 7541{ 7542 bool wake; 7543 7544 __igb_shutdown(pdev, &wake, 0); 7545 7546 if (system_state == SYSTEM_POWER_OFF) { 7547 pci_wake_from_d3(pdev, wake); 7548 pci_set_power_state(pdev, PCI_D3hot); 7549 } 7550} 7551 7552#ifdef CONFIG_PCI_IOV 7553static int igb_sriov_reinit(struct pci_dev *dev) 7554{ 7555 struct net_device *netdev = pci_get_drvdata(dev); 7556 struct igb_adapter *adapter = netdev_priv(netdev); 7557 struct pci_dev *pdev = adapter->pdev; 7558 7559 rtnl_lock(); 7560 7561 if (netif_running(netdev)) 7562 igb_close(netdev); 7563 else 7564 igb_reset(adapter); 7565 7566 igb_clear_interrupt_scheme(adapter); 7567 7568 igb_init_queue_configuration(adapter); 7569 7570 if (igb_init_interrupt_scheme(adapter, true)) { 7571 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 7572 return -ENOMEM; 7573 } 7574 7575 if (netif_running(netdev)) 7576 igb_open(netdev); 7577 7578 rtnl_unlock(); 7579 7580 return 0; 7581} 7582 7583static int igb_pci_disable_sriov(struct pci_dev *dev) 7584{ 7585 int err = igb_disable_sriov(dev); 7586 7587 if (!err) 7588 err = igb_sriov_reinit(dev); 7589 7590 return err; 7591} 7592 7593static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs) 7594{ 7595 int err = igb_enable_sriov(dev, num_vfs); 7596 7597 if (err) 7598 goto out; 7599 7600 err = igb_sriov_reinit(dev); 7601 if (!err) 7602 return num_vfs; 7603 7604out: 7605 return err; 7606} 7607 7608#endif 7609static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 7610{ 7611#ifdef CONFIG_PCI_IOV 7612 if (num_vfs == 0) 7613 return igb_pci_disable_sriov(dev); 7614 else 7615 return igb_pci_enable_sriov(dev, num_vfs); 7616#endif 7617 return 0; 7618} 7619 7620#ifdef CONFIG_NET_POLL_CONTROLLER 7621/* Polling 'interrupt' - used by things like netconsole to send skbs 7622 * without having to re-enable interrupts. It's not called while 7623 * the interrupt routine is executing. 7624 */ 7625static void igb_netpoll(struct net_device *netdev) 7626{ 7627 struct igb_adapter *adapter = netdev_priv(netdev); 7628 struct e1000_hw *hw = &adapter->hw; 7629 struct igb_q_vector *q_vector; 7630 int i; 7631 7632 for (i = 0; i < adapter->num_q_vectors; i++) { 7633 q_vector = adapter->q_vector[i]; 7634 if (adapter->flags & IGB_FLAG_HAS_MSIX) 7635 wr32(E1000_EIMC, q_vector->eims_value); 7636 else 7637 igb_irq_disable(adapter); 7638 napi_schedule(&q_vector->napi); 7639 } 7640} 7641#endif /* CONFIG_NET_POLL_CONTROLLER */ 7642 7643/** 7644 * igb_io_error_detected - called when PCI error is detected 7645 * @pdev: Pointer to PCI device 7646 * @state: The current pci connection state 7647 * 7648 * This function is called after a PCI bus error affecting 7649 * this device has been detected. 7650 **/ 7651static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev, 7652 pci_channel_state_t state) 7653{ 7654 struct net_device *netdev = pci_get_drvdata(pdev); 7655 struct igb_adapter *adapter = netdev_priv(netdev); 7656 7657 netif_device_detach(netdev); 7658 7659 if (state == pci_channel_io_perm_failure) 7660 return PCI_ERS_RESULT_DISCONNECT; 7661 7662 if (netif_running(netdev)) 7663 igb_down(adapter); 7664 pci_disable_device(pdev); 7665 7666 /* Request a slot slot reset. */ 7667 return PCI_ERS_RESULT_NEED_RESET; 7668} 7669 7670/** 7671 * igb_io_slot_reset - called after the pci bus has been reset. 7672 * @pdev: Pointer to PCI device 7673 * 7674 * Restart the card from scratch, as if from a cold-boot. Implementation 7675 * resembles the first-half of the igb_resume routine. 7676 **/ 7677static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev) 7678{ 7679 struct net_device *netdev = pci_get_drvdata(pdev); 7680 struct igb_adapter *adapter = netdev_priv(netdev); 7681 struct e1000_hw *hw = &adapter->hw; 7682 pci_ers_result_t result; 7683 int err; 7684 7685 if (pci_enable_device_mem(pdev)) { 7686 dev_err(&pdev->dev, 7687 "Cannot re-enable PCI device after reset.\n"); 7688 result = PCI_ERS_RESULT_DISCONNECT; 7689 } else { 7690 pci_set_master(pdev); 7691 pci_restore_state(pdev); 7692 pci_save_state(pdev); 7693 7694 pci_enable_wake(pdev, PCI_D3hot, 0); 7695 pci_enable_wake(pdev, PCI_D3cold, 0); 7696 7697 igb_reset(adapter); 7698 wr32(E1000_WUS, ~0); 7699 result = PCI_ERS_RESULT_RECOVERED; 7700 } 7701 7702 err = pci_cleanup_aer_uncorrect_error_status(pdev); 7703 if (err) { 7704 dev_err(&pdev->dev, 7705 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", 7706 err); 7707 /* non-fatal, continue */ 7708 } 7709 7710 return result; 7711} 7712 7713/** 7714 * igb_io_resume - called when traffic can start flowing again. 7715 * @pdev: Pointer to PCI device 7716 * 7717 * This callback is called when the error recovery driver tells us that 7718 * its OK to resume normal operation. Implementation resembles the 7719 * second-half of the igb_resume routine. 7720 */ 7721static void igb_io_resume(struct pci_dev *pdev) 7722{ 7723 struct net_device *netdev = pci_get_drvdata(pdev); 7724 struct igb_adapter *adapter = netdev_priv(netdev); 7725 7726 if (netif_running(netdev)) { 7727 if (igb_up(adapter)) { 7728 dev_err(&pdev->dev, "igb_up failed after reset\n"); 7729 return; 7730 } 7731 } 7732 7733 netif_device_attach(netdev); 7734 7735 /* let the f/w know that the h/w is now under the control of the 7736 * driver. 7737 */ 7738 igb_get_hw_control(adapter); 7739} 7740 7741static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index, 7742 u8 qsel) 7743{ 7744 u32 rar_low, rar_high; 7745 struct e1000_hw *hw = &adapter->hw; 7746 7747 /* HW expects these in little endian so we reverse the byte order 7748 * from network order (big endian) to little endian 7749 */ 7750 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) | 7751 ((u32) addr[2] << 16) | ((u32) addr[3] << 24)); 7752 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8)); 7753 7754 /* Indicate to hardware the Address is Valid. */ 7755 rar_high |= E1000_RAH_AV; 7756 7757 if (hw->mac.type == e1000_82575) 7758 rar_high |= E1000_RAH_POOL_1 * qsel; 7759 else 7760 rar_high |= E1000_RAH_POOL_1 << qsel; 7761 7762 wr32(E1000_RAL(index), rar_low); 7763 wrfl(); 7764 wr32(E1000_RAH(index), rar_high); 7765 wrfl(); 7766} 7767 7768static int igb_set_vf_mac(struct igb_adapter *adapter, 7769 int vf, unsigned char *mac_addr) 7770{ 7771 struct e1000_hw *hw = &adapter->hw; 7772 /* VF MAC addresses start at end of receive addresses and moves 7773 * towards the first, as a result a collision should not be possible 7774 */ 7775 int rar_entry = hw->mac.rar_entry_count - (vf + 1); 7776 7777 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN); 7778 7779 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf); 7780 7781 return 0; 7782} 7783 7784static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac) 7785{ 7786 struct igb_adapter *adapter = netdev_priv(netdev); 7787 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count)) 7788 return -EINVAL; 7789 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC; 7790 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf); 7791 dev_info(&adapter->pdev->dev, 7792 "Reload the VF driver to make this change effective."); 7793 if (test_bit(__IGB_DOWN, &adapter->state)) { 7794 dev_warn(&adapter->pdev->dev, 7795 "The VF MAC address has been set, but the PF device is not up.\n"); 7796 dev_warn(&adapter->pdev->dev, 7797 "Bring the PF device up before attempting to use the VF device.\n"); 7798 } 7799 return igb_set_vf_mac(adapter, vf, mac); 7800} 7801 7802static int igb_link_mbps(int internal_link_speed) 7803{ 7804 switch (internal_link_speed) { 7805 case SPEED_100: 7806 return 100; 7807 case SPEED_1000: 7808 return 1000; 7809 default: 7810 return 0; 7811 } 7812} 7813 7814static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate, 7815 int link_speed) 7816{ 7817 int rf_dec, rf_int; 7818 u32 bcnrc_val; 7819 7820 if (tx_rate != 0) { 7821 /* Calculate the rate factor values to set */ 7822 rf_int = link_speed / tx_rate; 7823 rf_dec = (link_speed - (rf_int * tx_rate)); 7824 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) / 7825 tx_rate; 7826 7827 bcnrc_val = E1000_RTTBCNRC_RS_ENA; 7828 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) & 7829 E1000_RTTBCNRC_RF_INT_MASK); 7830 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK); 7831 } else { 7832 bcnrc_val = 0; 7833 } 7834 7835 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */ 7836 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM 7837 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported. 7838 */ 7839 wr32(E1000_RTTBCNRM, 0x14); 7840 wr32(E1000_RTTBCNRC, bcnrc_val); 7841} 7842 7843static void igb_check_vf_rate_limit(struct igb_adapter *adapter) 7844{ 7845 int actual_link_speed, i; 7846 bool reset_rate = false; 7847 7848 /* VF TX rate limit was not set or not supported */ 7849 if ((adapter->vf_rate_link_speed == 0) || 7850 (adapter->hw.mac.type != e1000_82576)) 7851 return; 7852 7853 actual_link_speed = igb_link_mbps(adapter->link_speed); 7854 if (actual_link_speed != adapter->vf_rate_link_speed) { 7855 reset_rate = true; 7856 adapter->vf_rate_link_speed = 0; 7857 dev_info(&adapter->pdev->dev, 7858 "Link speed has been changed. VF Transmit rate is disabled\n"); 7859 } 7860 7861 for (i = 0; i < adapter->vfs_allocated_count; i++) { 7862 if (reset_rate) 7863 adapter->vf_data[i].tx_rate = 0; 7864 7865 igb_set_vf_rate_limit(&adapter->hw, i, 7866 adapter->vf_data[i].tx_rate, 7867 actual_link_speed); 7868 } 7869} 7870 7871static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, 7872 int min_tx_rate, int max_tx_rate) 7873{ 7874 struct igb_adapter *adapter = netdev_priv(netdev); 7875 struct e1000_hw *hw = &adapter->hw; 7876 int actual_link_speed; 7877 7878 if (hw->mac.type != e1000_82576) 7879 return -EOPNOTSUPP; 7880 7881 if (min_tx_rate) 7882 return -EINVAL; 7883 7884 actual_link_speed = igb_link_mbps(adapter->link_speed); 7885 if ((vf >= adapter->vfs_allocated_count) || 7886 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) || 7887 (max_tx_rate < 0) || 7888 (max_tx_rate > actual_link_speed)) 7889 return -EINVAL; 7890 7891 adapter->vf_rate_link_speed = actual_link_speed; 7892 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate; 7893 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed); 7894 7895 return 0; 7896} 7897 7898static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf, 7899 bool setting) 7900{ 7901 struct igb_adapter *adapter = netdev_priv(netdev); 7902 struct e1000_hw *hw = &adapter->hw; 7903 u32 reg_val, reg_offset; 7904 7905 if (!adapter->vfs_allocated_count) 7906 return -EOPNOTSUPP; 7907 7908 if (vf >= adapter->vfs_allocated_count) 7909 return -EINVAL; 7910 7911 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC; 7912 reg_val = rd32(reg_offset); 7913 if (setting) 7914 reg_val |= ((1 << vf) | 7915 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7916 else 7917 reg_val &= ~((1 << vf) | 7918 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT))); 7919 wr32(reg_offset, reg_val); 7920 7921 adapter->vf_data[vf].spoofchk_enabled = setting; 7922 return 0; 7923} 7924 7925static int igb_ndo_get_vf_config(struct net_device *netdev, 7926 int vf, struct ifla_vf_info *ivi) 7927{ 7928 struct igb_adapter *adapter = netdev_priv(netdev); 7929 if (vf >= adapter->vfs_allocated_count) 7930 return -EINVAL; 7931 ivi->vf = vf; 7932 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN); 7933 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate; 7934 ivi->min_tx_rate = 0; 7935 ivi->vlan = adapter->vf_data[vf].pf_vlan; 7936 ivi->qos = adapter->vf_data[vf].pf_qos; 7937 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled; 7938 return 0; 7939} 7940 7941static void igb_vmm_control(struct igb_adapter *adapter) 7942{ 7943 struct e1000_hw *hw = &adapter->hw; 7944 u32 reg; 7945 7946 switch (hw->mac.type) { 7947 case e1000_82575: 7948 case e1000_i210: 7949 case e1000_i211: 7950 case e1000_i354: 7951 default: 7952 /* replication is not supported for 82575 */ 7953 return; 7954 case e1000_82576: 7955 /* notify HW that the MAC is adding vlan tags */ 7956 reg = rd32(E1000_DTXCTL); 7957 reg |= E1000_DTXCTL_VLAN_ADDED; 7958 wr32(E1000_DTXCTL, reg); 7959 /* Fall through */ 7960 case e1000_82580: 7961 /* enable replication vlan tag stripping */ 7962 reg = rd32(E1000_RPLOLR); 7963 reg |= E1000_RPLOLR_STRVLAN; 7964 wr32(E1000_RPLOLR, reg); 7965 /* Fall through */ 7966 case e1000_i350: 7967 /* none of the above registers are supported by i350 */ 7968 break; 7969 } 7970 7971 if (adapter->vfs_allocated_count) { 7972 igb_vmdq_set_loopback_pf(hw, true); 7973 igb_vmdq_set_replication_pf(hw, true); 7974 igb_vmdq_set_anti_spoofing_pf(hw, true, 7975 adapter->vfs_allocated_count); 7976 } else { 7977 igb_vmdq_set_loopback_pf(hw, false); 7978 igb_vmdq_set_replication_pf(hw, false); 7979 } 7980} 7981 7982static void igb_init_dmac(struct igb_adapter *adapter, u32 pba) 7983{ 7984 struct e1000_hw *hw = &adapter->hw; 7985 u32 dmac_thr; 7986 u16 hwm; 7987 7988 if (hw->mac.type > e1000_82580) { 7989 if (adapter->flags & IGB_FLAG_DMAC) { 7990 u32 reg; 7991 7992 /* force threshold to 0. */ 7993 wr32(E1000_DMCTXTH, 0); 7994 7995 /* DMA Coalescing high water mark needs to be greater 7996 * than the Rx threshold. Set hwm to PBA - max frame 7997 * size in 16B units, capping it at PBA - 6KB. 7998 */ 7999 hwm = 64 * pba - adapter->max_frame_size / 16; 8000 if (hwm < 64 * (pba - 6)) 8001 hwm = 64 * (pba - 6); 8002 reg = rd32(E1000_FCRTC); 8003 reg &= ~E1000_FCRTC_RTH_COAL_MASK; 8004 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT) 8005 & E1000_FCRTC_RTH_COAL_MASK); 8006 wr32(E1000_FCRTC, reg); 8007 8008 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max 8009 * frame size, capping it at PBA - 10KB. 8010 */ 8011 dmac_thr = pba - adapter->max_frame_size / 512; 8012 if (dmac_thr < pba - 10) 8013 dmac_thr = pba - 10; 8014 reg = rd32(E1000_DMACR); 8015 reg &= ~E1000_DMACR_DMACTHR_MASK; 8016 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT) 8017 & E1000_DMACR_DMACTHR_MASK); 8018 8019 /* transition to L0x or L1 if available..*/ 8020 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK); 8021 8022 /* watchdog timer= +-1000 usec in 32usec intervals */ 8023 reg |= (1000 >> 5); 8024 8025 /* Disable BMC-to-OS Watchdog Enable */ 8026 if (hw->mac.type != e1000_i354) 8027 reg &= ~E1000_DMACR_DC_BMC2OSW_EN; 8028 8029 wr32(E1000_DMACR, reg); 8030 8031 /* no lower threshold to disable 8032 * coalescing(smart fifb)-UTRESH=0 8033 */ 8034 wr32(E1000_DMCRTRH, 0); 8035 8036 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4); 8037 8038 wr32(E1000_DMCTLX, reg); 8039 8040 /* free space in tx packet buffer to wake from 8041 * DMA coal 8042 */ 8043 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE - 8044 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6); 8045 8046 /* make low power state decision controlled 8047 * by DMA coal 8048 */ 8049 reg = rd32(E1000_PCIEMISC); 8050 reg &= ~E1000_PCIEMISC_LX_DECISION; 8051 wr32(E1000_PCIEMISC, reg); 8052 } /* endif adapter->dmac is not disabled */ 8053 } else if (hw->mac.type == e1000_82580) { 8054 u32 reg = rd32(E1000_PCIEMISC); 8055 8056 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION); 8057 wr32(E1000_DMACR, 0); 8058 } 8059} 8060 8061/** 8062 * igb_read_i2c_byte - Reads 8 bit word over I2C 8063 * @hw: pointer to hardware structure 8064 * @byte_offset: byte offset to read 8065 * @dev_addr: device address 8066 * @data: value read 8067 * 8068 * Performs byte read operation over I2C interface at 8069 * a specified device address. 8070 **/ 8071s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 8072 u8 dev_addr, u8 *data) 8073{ 8074 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 8075 struct i2c_client *this_client = adapter->i2c_client; 8076 s32 status; 8077 u16 swfw_mask = 0; 8078 8079 if (!this_client) 8080 return E1000_ERR_I2C; 8081 8082 swfw_mask = E1000_SWFW_PHY0_SM; 8083 8084 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 8085 return E1000_ERR_SWFW_SYNC; 8086 8087 status = i2c_smbus_read_byte_data(this_client, byte_offset); 8088 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 8089 8090 if (status < 0) 8091 return E1000_ERR_I2C; 8092 else { 8093 *data = status; 8094 return 0; 8095 } 8096} 8097 8098/** 8099 * igb_write_i2c_byte - Writes 8 bit word over I2C 8100 * @hw: pointer to hardware structure 8101 * @byte_offset: byte offset to write 8102 * @dev_addr: device address 8103 * @data: value to write 8104 * 8105 * Performs byte write operation over I2C interface at 8106 * a specified device address. 8107 **/ 8108s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset, 8109 u8 dev_addr, u8 data) 8110{ 8111 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw); 8112 struct i2c_client *this_client = adapter->i2c_client; 8113 s32 status; 8114 u16 swfw_mask = E1000_SWFW_PHY0_SM; 8115 8116 if (!this_client) 8117 return E1000_ERR_I2C; 8118 8119 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)) 8120 return E1000_ERR_SWFW_SYNC; 8121 status = i2c_smbus_write_byte_data(this_client, byte_offset, data); 8122 hw->mac.ops.release_swfw_sync(hw, swfw_mask); 8123 8124 if (status) 8125 return E1000_ERR_I2C; 8126 else 8127 return 0; 8128 8129} 8130 8131int igb_reinit_queues(struct igb_adapter *adapter) 8132{ 8133 struct net_device *netdev = adapter->netdev; 8134 struct pci_dev *pdev = adapter->pdev; 8135 int err = 0; 8136 8137 if (netif_running(netdev)) 8138 igb_close(netdev); 8139 8140 igb_reset_interrupt_capability(adapter); 8141 8142 if (igb_init_interrupt_scheme(adapter, true)) { 8143 dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); 8144 return -ENOMEM; 8145 } 8146 8147 if (netif_running(netdev)) 8148 err = igb_open(netdev); 8149 8150 return err; 8151} 8152/* igb_main.c */ 8153