1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26#include <linux/module.h>
27#include <linux/types.h>
28#include <linux/init.h>
29#include <linux/bitops.h>
30#include <linux/vmalloc.h>
31#include <linux/pagemap.h>
32#include <linux/netdevice.h>
33#include <linux/ipv6.h>
34#include <linux/slab.h>
35#include <net/checksum.h>
36#include <net/ip6_checksum.h>
37#include <linux/net_tstamp.h>
38#include <linux/mii.h>
39#include <linux/ethtool.h>
40#include <linux/if.h>
41#include <linux/if_vlan.h>
42#include <linux/pci.h>
43#include <linux/pci-aspm.h>
44#include <linux/delay.h>
45#include <linux/interrupt.h>
46#include <linux/ip.h>
47#include <linux/tcp.h>
48#include <linux/sctp.h>
49#include <linux/if_ether.h>
50#include <linux/aer.h>
51#include <linux/prefetch.h>
52#include <linux/pm_runtime.h>
53#ifdef CONFIG_IGB_DCA
54#include <linux/dca.h>
55#endif
56#include <linux/i2c.h>
57#include "igb.h"
58
59#define MAJ 5
60#define MIN 2
61#define BUILD 15
62#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63__stringify(BUILD) "-k"
64char igb_driver_name[] = "igb";
65char igb_driver_version[] = DRV_VERSION;
66static const char igb_driver_string[] =
67				"Intel(R) Gigabit Ethernet Network Driver";
68static const char igb_copyright[] =
69				"Copyright (c) 2007-2014 Intel Corporation.";
70
71static const struct e1000_info *igb_info_tbl[] = {
72	[board_82575] = &e1000_82575_info,
73};
74
75static const struct pci_device_id igb_pci_tbl[] = {
76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111	/* required last entry */
112	{0, }
113};
114
115MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117static int igb_setup_all_tx_resources(struct igb_adapter *);
118static int igb_setup_all_rx_resources(struct igb_adapter *);
119static void igb_free_all_tx_resources(struct igb_adapter *);
120static void igb_free_all_rx_resources(struct igb_adapter *);
121static void igb_setup_mrqc(struct igb_adapter *);
122static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123static void igb_remove(struct pci_dev *pdev);
124static int igb_sw_init(struct igb_adapter *);
125static int igb_open(struct net_device *);
126static int igb_close(struct net_device *);
127static void igb_configure(struct igb_adapter *);
128static void igb_configure_tx(struct igb_adapter *);
129static void igb_configure_rx(struct igb_adapter *);
130static void igb_clean_all_tx_rings(struct igb_adapter *);
131static void igb_clean_all_rx_rings(struct igb_adapter *);
132static void igb_clean_tx_ring(struct igb_ring *);
133static void igb_clean_rx_ring(struct igb_ring *);
134static void igb_set_rx_mode(struct net_device *);
135static void igb_update_phy_info(unsigned long);
136static void igb_watchdog(unsigned long);
137static void igb_watchdog_task(struct work_struct *);
138static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140					  struct rtnl_link_stats64 *stats);
141static int igb_change_mtu(struct net_device *, int);
142static int igb_set_mac(struct net_device *, void *);
143static void igb_set_uta(struct igb_adapter *adapter);
144static irqreturn_t igb_intr(int irq, void *);
145static irqreturn_t igb_intr_msi(int irq, void *);
146static irqreturn_t igb_msix_other(int irq, void *);
147static irqreturn_t igb_msix_ring(int irq, void *);
148#ifdef CONFIG_IGB_DCA
149static void igb_update_dca(struct igb_q_vector *);
150static void igb_setup_dca(struct igb_adapter *);
151#endif /* CONFIG_IGB_DCA */
152static int igb_poll(struct napi_struct *, int);
153static bool igb_clean_tx_irq(struct igb_q_vector *);
154static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156static void igb_tx_timeout(struct net_device *);
157static void igb_reset_task(struct work_struct *);
158static void igb_vlan_mode(struct net_device *netdev,
159			  netdev_features_t features);
160static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162static void igb_restore_vlan(struct igb_adapter *);
163static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164static void igb_ping_all_vfs(struct igb_adapter *);
165static void igb_msg_task(struct igb_adapter *);
166static void igb_vmm_control(struct igb_adapter *);
167static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171			       int vf, u16 vlan, u8 qos);
172static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174				   bool setting);
175static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176				 struct ifla_vf_info *ivi);
177static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179#ifdef CONFIG_PCI_IOV
180static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182#endif
183
184#ifdef CONFIG_PM
185#ifdef CONFIG_PM_SLEEP
186static int igb_suspend(struct device *);
187#endif
188static int igb_resume(struct device *);
189static int igb_runtime_suspend(struct device *dev);
190static int igb_runtime_resume(struct device *dev);
191static int igb_runtime_idle(struct device *dev);
192static const struct dev_pm_ops igb_pm_ops = {
193	SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
194	SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
195			igb_runtime_idle)
196};
197#endif
198static void igb_shutdown(struct pci_dev *);
199static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200#ifdef CONFIG_IGB_DCA
201static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202static struct notifier_block dca_notifier = {
203	.notifier_call	= igb_notify_dca,
204	.next		= NULL,
205	.priority	= 0
206};
207#endif
208#ifdef CONFIG_NET_POLL_CONTROLLER
209/* for netdump / net console */
210static void igb_netpoll(struct net_device *);
211#endif
212#ifdef CONFIG_PCI_IOV
213static unsigned int max_vfs;
214module_param(max_vfs, uint, 0);
215MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216#endif /* CONFIG_PCI_IOV */
217
218static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219		     pci_channel_state_t);
220static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221static void igb_io_resume(struct pci_dev *);
222
223static const struct pci_error_handlers igb_err_handler = {
224	.error_detected = igb_io_error_detected,
225	.slot_reset = igb_io_slot_reset,
226	.resume = igb_io_resume,
227};
228
229static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231static struct pci_driver igb_driver = {
232	.name     = igb_driver_name,
233	.id_table = igb_pci_tbl,
234	.probe    = igb_probe,
235	.remove   = igb_remove,
236#ifdef CONFIG_PM
237	.driver.pm = &igb_pm_ops,
238#endif
239	.shutdown = igb_shutdown,
240	.sriov_configure = igb_pci_sriov_configure,
241	.err_handler = &igb_err_handler
242};
243
244MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246MODULE_LICENSE("GPL");
247MODULE_VERSION(DRV_VERSION);
248
249#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250static int debug = -1;
251module_param(debug, int, 0);
252MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254struct igb_reg_info {
255	u32 ofs;
256	char *name;
257};
258
259static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261	/* General Registers */
262	{E1000_CTRL, "CTRL"},
263	{E1000_STATUS, "STATUS"},
264	{E1000_CTRL_EXT, "CTRL_EXT"},
265
266	/* Interrupt Registers */
267	{E1000_ICR, "ICR"},
268
269	/* RX Registers */
270	{E1000_RCTL, "RCTL"},
271	{E1000_RDLEN(0), "RDLEN"},
272	{E1000_RDH(0), "RDH"},
273	{E1000_RDT(0), "RDT"},
274	{E1000_RXDCTL(0), "RXDCTL"},
275	{E1000_RDBAL(0), "RDBAL"},
276	{E1000_RDBAH(0), "RDBAH"},
277
278	/* TX Registers */
279	{E1000_TCTL, "TCTL"},
280	{E1000_TDBAL(0), "TDBAL"},
281	{E1000_TDBAH(0), "TDBAH"},
282	{E1000_TDLEN(0), "TDLEN"},
283	{E1000_TDH(0), "TDH"},
284	{E1000_TDT(0), "TDT"},
285	{E1000_TXDCTL(0), "TXDCTL"},
286	{E1000_TDFH, "TDFH"},
287	{E1000_TDFT, "TDFT"},
288	{E1000_TDFHS, "TDFHS"},
289	{E1000_TDFPC, "TDFPC"},
290
291	/* List Terminator */
292	{}
293};
294
295/* igb_regdump - register printout routine */
296static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
297{
298	int n = 0;
299	char rname[16];
300	u32 regs[8];
301
302	switch (reginfo->ofs) {
303	case E1000_RDLEN(0):
304		for (n = 0; n < 4; n++)
305			regs[n] = rd32(E1000_RDLEN(n));
306		break;
307	case E1000_RDH(0):
308		for (n = 0; n < 4; n++)
309			regs[n] = rd32(E1000_RDH(n));
310		break;
311	case E1000_RDT(0):
312		for (n = 0; n < 4; n++)
313			regs[n] = rd32(E1000_RDT(n));
314		break;
315	case E1000_RXDCTL(0):
316		for (n = 0; n < 4; n++)
317			regs[n] = rd32(E1000_RXDCTL(n));
318		break;
319	case E1000_RDBAL(0):
320		for (n = 0; n < 4; n++)
321			regs[n] = rd32(E1000_RDBAL(n));
322		break;
323	case E1000_RDBAH(0):
324		for (n = 0; n < 4; n++)
325			regs[n] = rd32(E1000_RDBAH(n));
326		break;
327	case E1000_TDBAL(0):
328		for (n = 0; n < 4; n++)
329			regs[n] = rd32(E1000_RDBAL(n));
330		break;
331	case E1000_TDBAH(0):
332		for (n = 0; n < 4; n++)
333			regs[n] = rd32(E1000_TDBAH(n));
334		break;
335	case E1000_TDLEN(0):
336		for (n = 0; n < 4; n++)
337			regs[n] = rd32(E1000_TDLEN(n));
338		break;
339	case E1000_TDH(0):
340		for (n = 0; n < 4; n++)
341			regs[n] = rd32(E1000_TDH(n));
342		break;
343	case E1000_TDT(0):
344		for (n = 0; n < 4; n++)
345			regs[n] = rd32(E1000_TDT(n));
346		break;
347	case E1000_TXDCTL(0):
348		for (n = 0; n < 4; n++)
349			regs[n] = rd32(E1000_TXDCTL(n));
350		break;
351	default:
352		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353		return;
354	}
355
356	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358		regs[2], regs[3]);
359}
360
361/* igb_dump - Print registers, Tx-rings and Rx-rings */
362static void igb_dump(struct igb_adapter *adapter)
363{
364	struct net_device *netdev = adapter->netdev;
365	struct e1000_hw *hw = &adapter->hw;
366	struct igb_reg_info *reginfo;
367	struct igb_ring *tx_ring;
368	union e1000_adv_tx_desc *tx_desc;
369	struct my_u0 { u64 a; u64 b; } *u0;
370	struct igb_ring *rx_ring;
371	union e1000_adv_rx_desc *rx_desc;
372	u32 staterr;
373	u16 i, n;
374
375	if (!netif_msg_hw(adapter))
376		return;
377
378	/* Print netdevice Info */
379	if (netdev) {
380		dev_info(&adapter->pdev->dev, "Net device Info\n");
381		pr_info("Device Name     state            trans_start      last_rx\n");
382		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383			netdev->state, netdev->trans_start, netdev->last_rx);
384	}
385
386	/* Print Registers */
387	dev_info(&adapter->pdev->dev, "Register Dump\n");
388	pr_info(" Register Name   Value\n");
389	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390	     reginfo->name; reginfo++) {
391		igb_regdump(hw, reginfo);
392	}
393
394	/* Print TX Ring Summary */
395	if (!netdev || !netif_running(netdev))
396		goto exit;
397
398	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400	for (n = 0; n < adapter->num_tx_queues; n++) {
401		struct igb_tx_buffer *buffer_info;
402		tx_ring = adapter->tx_ring[n];
403		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405			n, tx_ring->next_to_use, tx_ring->next_to_clean,
406			(u64)dma_unmap_addr(buffer_info, dma),
407			dma_unmap_len(buffer_info, len),
408			buffer_info->next_to_watch,
409			(u64)buffer_info->time_stamp);
410	}
411
412	/* Print TX Rings */
413	if (!netif_msg_tx_done(adapter))
414		goto rx_ring_summary;
415
416	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418	/* Transmit Descriptor Formats
419	 *
420	 * Advanced Transmit Descriptor
421	 *   +--------------------------------------------------------------+
422	 * 0 |         Buffer Address [63:0]                                |
423	 *   +--------------------------------------------------------------+
424	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425	 *   +--------------------------------------------------------------+
426	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
427	 */
428
429	for (n = 0; n < adapter->num_tx_queues; n++) {
430		tx_ring = adapter->tx_ring[n];
431		pr_info("------------------------------------\n");
432		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433		pr_info("------------------------------------\n");
434		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
435
436		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437			const char *next_desc;
438			struct igb_tx_buffer *buffer_info;
439			tx_desc = IGB_TX_DESC(tx_ring, i);
440			buffer_info = &tx_ring->tx_buffer_info[i];
441			u0 = (struct my_u0 *)tx_desc;
442			if (i == tx_ring->next_to_use &&
443			    i == tx_ring->next_to_clean)
444				next_desc = " NTC/U";
445			else if (i == tx_ring->next_to_use)
446				next_desc = " NTU";
447			else if (i == tx_ring->next_to_clean)
448				next_desc = " NTC";
449			else
450				next_desc = "";
451
452			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
453				i, le64_to_cpu(u0->a),
454				le64_to_cpu(u0->b),
455				(u64)dma_unmap_addr(buffer_info, dma),
456				dma_unmap_len(buffer_info, len),
457				buffer_info->next_to_watch,
458				(u64)buffer_info->time_stamp,
459				buffer_info->skb, next_desc);
460
461			if (netif_msg_pktdata(adapter) && buffer_info->skb)
462				print_hex_dump(KERN_INFO, "",
463					DUMP_PREFIX_ADDRESS,
464					16, 1, buffer_info->skb->data,
465					dma_unmap_len(buffer_info, len),
466					true);
467		}
468	}
469
470	/* Print RX Rings Summary */
471rx_ring_summary:
472	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473	pr_info("Queue [NTU] [NTC]\n");
474	for (n = 0; n < adapter->num_rx_queues; n++) {
475		rx_ring = adapter->rx_ring[n];
476		pr_info(" %5d %5X %5X\n",
477			n, rx_ring->next_to_use, rx_ring->next_to_clean);
478	}
479
480	/* Print RX Rings */
481	if (!netif_msg_rx_status(adapter))
482		goto exit;
483
484	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
485
486	/* Advanced Receive Descriptor (Read) Format
487	 *    63                                           1        0
488	 *    +-----------------------------------------------------+
489	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
490	 *    +----------------------------------------------+------+
491	 *  8 |       Header Buffer Address [63:1]           |  DD  |
492	 *    +-----------------------------------------------------+
493	 *
494	 *
495	 * Advanced Receive Descriptor (Write-Back) Format
496	 *
497	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
498	 *   +------------------------------------------------------+
499	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
500	 *   | Checksum   Ident  |   |           |    | Type | Type |
501	 *   +------------------------------------------------------+
502	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503	 *   +------------------------------------------------------+
504	 *   63       48 47    32 31            20 19               0
505	 */
506
507	for (n = 0; n < adapter->num_rx_queues; n++) {
508		rx_ring = adapter->rx_ring[n];
509		pr_info("------------------------------------\n");
510		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511		pr_info("------------------------------------\n");
512		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
513		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
514
515		for (i = 0; i < rx_ring->count; i++) {
516			const char *next_desc;
517			struct igb_rx_buffer *buffer_info;
518			buffer_info = &rx_ring->rx_buffer_info[i];
519			rx_desc = IGB_RX_DESC(rx_ring, i);
520			u0 = (struct my_u0 *)rx_desc;
521			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
522
523			if (i == rx_ring->next_to_use)
524				next_desc = " NTU";
525			else if (i == rx_ring->next_to_clean)
526				next_desc = " NTC";
527			else
528				next_desc = "";
529
530			if (staterr & E1000_RXD_STAT_DD) {
531				/* Descriptor Done */
532				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
533					"RWB", i,
534					le64_to_cpu(u0->a),
535					le64_to_cpu(u0->b),
536					next_desc);
537			} else {
538				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
539					"R  ", i,
540					le64_to_cpu(u0->a),
541					le64_to_cpu(u0->b),
542					(u64)buffer_info->dma,
543					next_desc);
544
545				if (netif_msg_pktdata(adapter) &&
546				    buffer_info->dma && buffer_info->page) {
547					print_hex_dump(KERN_INFO, "",
548					  DUMP_PREFIX_ADDRESS,
549					  16, 1,
550					  page_address(buffer_info->page) +
551						      buffer_info->page_offset,
552					  IGB_RX_BUFSZ, true);
553				}
554			}
555		}
556	}
557
558exit:
559	return;
560}
561
562/**
563 *  igb_get_i2c_data - Reads the I2C SDA data bit
564 *  @hw: pointer to hardware structure
565 *  @i2cctl: Current value of I2CCTL register
566 *
567 *  Returns the I2C data bit value
568 **/
569static int igb_get_i2c_data(void *data)
570{
571	struct igb_adapter *adapter = (struct igb_adapter *)data;
572	struct e1000_hw *hw = &adapter->hw;
573	s32 i2cctl = rd32(E1000_I2CPARAMS);
574
575	return !!(i2cctl & E1000_I2C_DATA_IN);
576}
577
578/**
579 *  igb_set_i2c_data - Sets the I2C data bit
580 *  @data: pointer to hardware structure
581 *  @state: I2C data value (0 or 1) to set
582 *
583 *  Sets the I2C data bit
584 **/
585static void igb_set_i2c_data(void *data, int state)
586{
587	struct igb_adapter *adapter = (struct igb_adapter *)data;
588	struct e1000_hw *hw = &adapter->hw;
589	s32 i2cctl = rd32(E1000_I2CPARAMS);
590
591	if (state)
592		i2cctl |= E1000_I2C_DATA_OUT;
593	else
594		i2cctl &= ~E1000_I2C_DATA_OUT;
595
596	i2cctl &= ~E1000_I2C_DATA_OE_N;
597	i2cctl |= E1000_I2C_CLK_OE_N;
598	wr32(E1000_I2CPARAMS, i2cctl);
599	wrfl();
600
601}
602
603/**
604 *  igb_set_i2c_clk - Sets the I2C SCL clock
605 *  @data: pointer to hardware structure
606 *  @state: state to set clock
607 *
608 *  Sets the I2C clock line to state
609 **/
610static void igb_set_i2c_clk(void *data, int state)
611{
612	struct igb_adapter *adapter = (struct igb_adapter *)data;
613	struct e1000_hw *hw = &adapter->hw;
614	s32 i2cctl = rd32(E1000_I2CPARAMS);
615
616	if (state) {
617		i2cctl |= E1000_I2C_CLK_OUT;
618		i2cctl &= ~E1000_I2C_CLK_OE_N;
619	} else {
620		i2cctl &= ~E1000_I2C_CLK_OUT;
621		i2cctl &= ~E1000_I2C_CLK_OE_N;
622	}
623	wr32(E1000_I2CPARAMS, i2cctl);
624	wrfl();
625}
626
627/**
628 *  igb_get_i2c_clk - Gets the I2C SCL clock state
629 *  @data: pointer to hardware structure
630 *
631 *  Gets the I2C clock state
632 **/
633static int igb_get_i2c_clk(void *data)
634{
635	struct igb_adapter *adapter = (struct igb_adapter *)data;
636	struct e1000_hw *hw = &adapter->hw;
637	s32 i2cctl = rd32(E1000_I2CPARAMS);
638
639	return !!(i2cctl & E1000_I2C_CLK_IN);
640}
641
642static const struct i2c_algo_bit_data igb_i2c_algo = {
643	.setsda		= igb_set_i2c_data,
644	.setscl		= igb_set_i2c_clk,
645	.getsda		= igb_get_i2c_data,
646	.getscl		= igb_get_i2c_clk,
647	.udelay		= 5,
648	.timeout	= 20,
649};
650
651/**
652 *  igb_get_hw_dev - return device
653 *  @hw: pointer to hardware structure
654 *
655 *  used by hardware layer to print debugging information
656 **/
657struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
658{
659	struct igb_adapter *adapter = hw->back;
660	return adapter->netdev;
661}
662
663/**
664 *  igb_init_module - Driver Registration Routine
665 *
666 *  igb_init_module is the first routine called when the driver is
667 *  loaded. All it does is register with the PCI subsystem.
668 **/
669static int __init igb_init_module(void)
670{
671	int ret;
672
673	pr_info("%s - version %s\n",
674	       igb_driver_string, igb_driver_version);
675	pr_info("%s\n", igb_copyright);
676
677#ifdef CONFIG_IGB_DCA
678	dca_register_notify(&dca_notifier);
679#endif
680	ret = pci_register_driver(&igb_driver);
681	return ret;
682}
683
684module_init(igb_init_module);
685
686/**
687 *  igb_exit_module - Driver Exit Cleanup Routine
688 *
689 *  igb_exit_module is called just before the driver is removed
690 *  from memory.
691 **/
692static void __exit igb_exit_module(void)
693{
694#ifdef CONFIG_IGB_DCA
695	dca_unregister_notify(&dca_notifier);
696#endif
697	pci_unregister_driver(&igb_driver);
698}
699
700module_exit(igb_exit_module);
701
702#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
703/**
704 *  igb_cache_ring_register - Descriptor ring to register mapping
705 *  @adapter: board private structure to initialize
706 *
707 *  Once we know the feature-set enabled for the device, we'll cache
708 *  the register offset the descriptor ring is assigned to.
709 **/
710static void igb_cache_ring_register(struct igb_adapter *adapter)
711{
712	int i = 0, j = 0;
713	u32 rbase_offset = adapter->vfs_allocated_count;
714
715	switch (adapter->hw.mac.type) {
716	case e1000_82576:
717		/* The queues are allocated for virtualization such that VF 0
718		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719		 * In order to avoid collision we start at the first free queue
720		 * and continue consuming queues in the same sequence
721		 */
722		if (adapter->vfs_allocated_count) {
723			for (; i < adapter->rss_queues; i++)
724				adapter->rx_ring[i]->reg_idx = rbase_offset +
725							       Q_IDX_82576(i);
726		}
727		/* Fall through */
728	case e1000_82575:
729	case e1000_82580:
730	case e1000_i350:
731	case e1000_i354:
732	case e1000_i210:
733	case e1000_i211:
734		/* Fall through */
735	default:
736		for (; i < adapter->num_rx_queues; i++)
737			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738		for (; j < adapter->num_tx_queues; j++)
739			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740		break;
741	}
742}
743
744u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745{
746	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747	u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748	u32 value = 0;
749
750	if (E1000_REMOVED(hw_addr))
751		return ~value;
752
753	value = readl(&hw_addr[reg]);
754
755	/* reads should not return all F's */
756	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757		struct net_device *netdev = igb->netdev;
758		hw->hw_addr = NULL;
759		netif_device_detach(netdev);
760		netdev_err(netdev, "PCIe link lost, device now detached\n");
761	}
762
763	return value;
764}
765
766/**
767 *  igb_write_ivar - configure ivar for given MSI-X vector
768 *  @hw: pointer to the HW structure
769 *  @msix_vector: vector number we are allocating to a given ring
770 *  @index: row index of IVAR register to write within IVAR table
771 *  @offset: column offset of in IVAR, should be multiple of 8
772 *
773 *  This function is intended to handle the writing of the IVAR register
774 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
775 *  each containing an cause allocation for an Rx and Tx ring, and a
776 *  variable number of rows depending on the number of queues supported.
777 **/
778static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779			   int index, int offset)
780{
781	u32 ivar = array_rd32(E1000_IVAR0, index);
782
783	/* clear any bits that are currently set */
784	ivar &= ~((u32)0xFF << offset);
785
786	/* write vector and valid bit */
787	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789	array_wr32(E1000_IVAR0, index, ivar);
790}
791
792#define IGB_N0_QUEUE -1
793static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794{
795	struct igb_adapter *adapter = q_vector->adapter;
796	struct e1000_hw *hw = &adapter->hw;
797	int rx_queue = IGB_N0_QUEUE;
798	int tx_queue = IGB_N0_QUEUE;
799	u32 msixbm = 0;
800
801	if (q_vector->rx.ring)
802		rx_queue = q_vector->rx.ring->reg_idx;
803	if (q_vector->tx.ring)
804		tx_queue = q_vector->tx.ring->reg_idx;
805
806	switch (hw->mac.type) {
807	case e1000_82575:
808		/* The 82575 assigns vectors using a bitmask, which matches the
809		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
810		 * or more queues to a vector, we write the appropriate bits
811		 * into the MSIXBM register for that vector.
812		 */
813		if (rx_queue > IGB_N0_QUEUE)
814			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815		if (tx_queue > IGB_N0_QUEUE)
816			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818			msixbm |= E1000_EIMS_OTHER;
819		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820		q_vector->eims_value = msixbm;
821		break;
822	case e1000_82576:
823		/* 82576 uses a table that essentially consists of 2 columns
824		 * with 8 rows.  The ordering is column-major so we use the
825		 * lower 3 bits as the row index, and the 4th bit as the
826		 * column offset.
827		 */
828		if (rx_queue > IGB_N0_QUEUE)
829			igb_write_ivar(hw, msix_vector,
830				       rx_queue & 0x7,
831				       (rx_queue & 0x8) << 1);
832		if (tx_queue > IGB_N0_QUEUE)
833			igb_write_ivar(hw, msix_vector,
834				       tx_queue & 0x7,
835				       ((tx_queue & 0x8) << 1) + 8);
836		q_vector->eims_value = 1 << msix_vector;
837		break;
838	case e1000_82580:
839	case e1000_i350:
840	case e1000_i354:
841	case e1000_i210:
842	case e1000_i211:
843		/* On 82580 and newer adapters the scheme is similar to 82576
844		 * however instead of ordering column-major we have things
845		 * ordered row-major.  So we traverse the table by using
846		 * bit 0 as the column offset, and the remaining bits as the
847		 * row index.
848		 */
849		if (rx_queue > IGB_N0_QUEUE)
850			igb_write_ivar(hw, msix_vector,
851				       rx_queue >> 1,
852				       (rx_queue & 0x1) << 4);
853		if (tx_queue > IGB_N0_QUEUE)
854			igb_write_ivar(hw, msix_vector,
855				       tx_queue >> 1,
856				       ((tx_queue & 0x1) << 4) + 8);
857		q_vector->eims_value = 1 << msix_vector;
858		break;
859	default:
860		BUG();
861		break;
862	}
863
864	/* add q_vector eims value to global eims_enable_mask */
865	adapter->eims_enable_mask |= q_vector->eims_value;
866
867	/* configure q_vector to set itr on first interrupt */
868	q_vector->set_itr = 1;
869}
870
871/**
872 *  igb_configure_msix - Configure MSI-X hardware
873 *  @adapter: board private structure to initialize
874 *
875 *  igb_configure_msix sets up the hardware to properly
876 *  generate MSI-X interrupts.
877 **/
878static void igb_configure_msix(struct igb_adapter *adapter)
879{
880	u32 tmp;
881	int i, vector = 0;
882	struct e1000_hw *hw = &adapter->hw;
883
884	adapter->eims_enable_mask = 0;
885
886	/* set vector for other causes, i.e. link changes */
887	switch (hw->mac.type) {
888	case e1000_82575:
889		tmp = rd32(E1000_CTRL_EXT);
890		/* enable MSI-X PBA support*/
891		tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893		/* Auto-Mask interrupts upon ICR read. */
894		tmp |= E1000_CTRL_EXT_EIAME;
895		tmp |= E1000_CTRL_EXT_IRCA;
896
897		wr32(E1000_CTRL_EXT, tmp);
898
899		/* enable msix_other interrupt */
900		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901		adapter->eims_other = E1000_EIMS_OTHER;
902
903		break;
904
905	case e1000_82576:
906	case e1000_82580:
907	case e1000_i350:
908	case e1000_i354:
909	case e1000_i210:
910	case e1000_i211:
911		/* Turn on MSI-X capability first, or our settings
912		 * won't stick.  And it will take days to debug.
913		 */
914		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
916		     E1000_GPIE_NSICR);
917
918		/* enable msix_other interrupt */
919		adapter->eims_other = 1 << vector;
920		tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922		wr32(E1000_IVAR_MISC, tmp);
923		break;
924	default:
925		/* do nothing, since nothing else supports MSI-X */
926		break;
927	} /* switch (hw->mac.type) */
928
929	adapter->eims_enable_mask |= adapter->eims_other;
930
931	for (i = 0; i < adapter->num_q_vectors; i++)
932		igb_assign_vector(adapter->q_vector[i], vector++);
933
934	wrfl();
935}
936
937/**
938 *  igb_request_msix - Initialize MSI-X interrupts
939 *  @adapter: board private structure to initialize
940 *
941 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
942 *  kernel.
943 **/
944static int igb_request_msix(struct igb_adapter *adapter)
945{
946	struct net_device *netdev = adapter->netdev;
947	struct e1000_hw *hw = &adapter->hw;
948	int i, err = 0, vector = 0, free_vector = 0;
949
950	err = request_irq(adapter->msix_entries[vector].vector,
951			  igb_msix_other, 0, netdev->name, adapter);
952	if (err)
953		goto err_out;
954
955	for (i = 0; i < adapter->num_q_vectors; i++) {
956		struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958		vector++;
959
960		q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962		if (q_vector->rx.ring && q_vector->tx.ring)
963			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964				q_vector->rx.ring->queue_index);
965		else if (q_vector->tx.ring)
966			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967				q_vector->tx.ring->queue_index);
968		else if (q_vector->rx.ring)
969			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970				q_vector->rx.ring->queue_index);
971		else
972			sprintf(q_vector->name, "%s-unused", netdev->name);
973
974		err = request_irq(adapter->msix_entries[vector].vector,
975				  igb_msix_ring, 0, q_vector->name,
976				  q_vector);
977		if (err)
978			goto err_free;
979	}
980
981	igb_configure_msix(adapter);
982	return 0;
983
984err_free:
985	/* free already assigned IRQs */
986	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988	vector--;
989	for (i = 0; i < vector; i++) {
990		free_irq(adapter->msix_entries[free_vector++].vector,
991			 adapter->q_vector[i]);
992	}
993err_out:
994	return err;
995}
996
997/**
998 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
999 *  @adapter: board private structure to initialize
1000 *  @v_idx: Index of vector to be freed
1001 *
1002 *  This function frees the memory allocated to the q_vector.
1003 **/
1004static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005{
1006	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008	adapter->q_vector[v_idx] = NULL;
1009
1010	/* igb_get_stats64() might access the rings on this vector,
1011	 * we must wait a grace period before freeing it.
1012	 */
1013	if (q_vector)
1014		kfree_rcu(q_vector, rcu);
1015}
1016
1017/**
1018 *  igb_reset_q_vector - Reset config for interrupt vector
1019 *  @adapter: board private structure to initialize
1020 *  @v_idx: Index of vector to be reset
1021 *
1022 *  If NAPI is enabled it will delete any references to the
1023 *  NAPI struct. This is preparation for igb_free_q_vector.
1024 **/
1025static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1026{
1027	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1028
1029	/* Coming from igb_set_interrupt_capability, the vectors are not yet
1030	 * allocated. So, q_vector is NULL so we should stop here.
1031	 */
1032	if (!q_vector)
1033		return;
1034
1035	if (q_vector->tx.ring)
1036		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1037
1038	if (q_vector->rx.ring)
1039		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1040
1041	netif_napi_del(&q_vector->napi);
1042
1043}
1044
1045static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1046{
1047	int v_idx = adapter->num_q_vectors;
1048
1049	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1050		pci_disable_msix(adapter->pdev);
1051	else if (adapter->flags & IGB_FLAG_HAS_MSI)
1052		pci_disable_msi(adapter->pdev);
1053
1054	while (v_idx--)
1055		igb_reset_q_vector(adapter, v_idx);
1056}
1057
1058/**
1059 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1060 *  @adapter: board private structure to initialize
1061 *
1062 *  This function frees the memory allocated to the q_vectors.  In addition if
1063 *  NAPI is enabled it will delete any references to the NAPI struct prior
1064 *  to freeing the q_vector.
1065 **/
1066static void igb_free_q_vectors(struct igb_adapter *adapter)
1067{
1068	int v_idx = adapter->num_q_vectors;
1069
1070	adapter->num_tx_queues = 0;
1071	adapter->num_rx_queues = 0;
1072	adapter->num_q_vectors = 0;
1073
1074	while (v_idx--) {
1075		igb_reset_q_vector(adapter, v_idx);
1076		igb_free_q_vector(adapter, v_idx);
1077	}
1078}
1079
1080/**
1081 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1082 *  @adapter: board private structure to initialize
1083 *
1084 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1085 *  MSI-X interrupts allocated.
1086 */
1087static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1088{
1089	igb_free_q_vectors(adapter);
1090	igb_reset_interrupt_capability(adapter);
1091}
1092
1093/**
1094 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1095 *  @adapter: board private structure to initialize
1096 *  @msix: boolean value of MSIX capability
1097 *
1098 *  Attempt to configure interrupts using the best available
1099 *  capabilities of the hardware and kernel.
1100 **/
1101static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102{
1103	int err;
1104	int numvecs, i;
1105
1106	if (!msix)
1107		goto msi_only;
1108	adapter->flags |= IGB_FLAG_HAS_MSIX;
1109
1110	/* Number of supported queues. */
1111	adapter->num_rx_queues = adapter->rss_queues;
1112	if (adapter->vfs_allocated_count)
1113		adapter->num_tx_queues = 1;
1114	else
1115		adapter->num_tx_queues = adapter->rss_queues;
1116
1117	/* start with one vector for every Rx queue */
1118	numvecs = adapter->num_rx_queues;
1119
1120	/* if Tx handler is separate add 1 for every Tx queue */
1121	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1122		numvecs += adapter->num_tx_queues;
1123
1124	/* store the number of vectors reserved for queues */
1125	adapter->num_q_vectors = numvecs;
1126
1127	/* add 1 vector for link status interrupts */
1128	numvecs++;
1129	for (i = 0; i < numvecs; i++)
1130		adapter->msix_entries[i].entry = i;
1131
1132	err = pci_enable_msix_range(adapter->pdev,
1133				    adapter->msix_entries,
1134				    numvecs,
1135				    numvecs);
1136	if (err > 0)
1137		return;
1138
1139	igb_reset_interrupt_capability(adapter);
1140
1141	/* If we can't do MSI-X, try MSI */
1142msi_only:
1143	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1144#ifdef CONFIG_PCI_IOV
1145	/* disable SR-IOV for non MSI-X configurations */
1146	if (adapter->vf_data) {
1147		struct e1000_hw *hw = &adapter->hw;
1148		/* disable iov and allow time for transactions to clear */
1149		pci_disable_sriov(adapter->pdev);
1150		msleep(500);
1151
1152		kfree(adapter->vf_data);
1153		adapter->vf_data = NULL;
1154		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155		wrfl();
1156		msleep(100);
1157		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158	}
1159#endif
1160	adapter->vfs_allocated_count = 0;
1161	adapter->rss_queues = 1;
1162	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163	adapter->num_rx_queues = 1;
1164	adapter->num_tx_queues = 1;
1165	adapter->num_q_vectors = 1;
1166	if (!pci_enable_msi(adapter->pdev))
1167		adapter->flags |= IGB_FLAG_HAS_MSI;
1168}
1169
1170static void igb_add_ring(struct igb_ring *ring,
1171			 struct igb_ring_container *head)
1172{
1173	head->ring = ring;
1174	head->count++;
1175}
1176
1177/**
1178 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179 *  @adapter: board private structure to initialize
1180 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1181 *  @v_idx: index of vector in adapter struct
1182 *  @txr_count: total number of Tx rings to allocate
1183 *  @txr_idx: index of first Tx ring to allocate
1184 *  @rxr_count: total number of Rx rings to allocate
1185 *  @rxr_idx: index of first Rx ring to allocate
1186 *
1187 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1188 **/
1189static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190			      int v_count, int v_idx,
1191			      int txr_count, int txr_idx,
1192			      int rxr_count, int rxr_idx)
1193{
1194	struct igb_q_vector *q_vector;
1195	struct igb_ring *ring;
1196	int ring_count, size;
1197
1198	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199	if (txr_count > 1 || rxr_count > 1)
1200		return -ENOMEM;
1201
1202	ring_count = txr_count + rxr_count;
1203	size = sizeof(struct igb_q_vector) +
1204	       (sizeof(struct igb_ring) * ring_count);
1205
1206	/* allocate q_vector and rings */
1207	q_vector = adapter->q_vector[v_idx];
1208	if (!q_vector) {
1209		q_vector = kzalloc(size, GFP_KERNEL);
1210	} else if (size > ksize(q_vector)) {
1211		kfree_rcu(q_vector, rcu);
1212		q_vector = kzalloc(size, GFP_KERNEL);
1213	} else {
1214		memset(q_vector, 0, size);
1215	}
1216	if (!q_vector)
1217		return -ENOMEM;
1218
1219	/* initialize NAPI */
1220	netif_napi_add(adapter->netdev, &q_vector->napi,
1221		       igb_poll, 64);
1222
1223	/* tie q_vector and adapter together */
1224	adapter->q_vector[v_idx] = q_vector;
1225	q_vector->adapter = adapter;
1226
1227	/* initialize work limits */
1228	q_vector->tx.work_limit = adapter->tx_work_limit;
1229
1230	/* initialize ITR configuration */
1231	q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1232	q_vector->itr_val = IGB_START_ITR;
1233
1234	/* initialize pointer to rings */
1235	ring = q_vector->ring;
1236
1237	/* intialize ITR */
1238	if (rxr_count) {
1239		/* rx or rx/tx vector */
1240		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1241			q_vector->itr_val = adapter->rx_itr_setting;
1242	} else {
1243		/* tx only vector */
1244		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1245			q_vector->itr_val = adapter->tx_itr_setting;
1246	}
1247
1248	if (txr_count) {
1249		/* assign generic ring traits */
1250		ring->dev = &adapter->pdev->dev;
1251		ring->netdev = adapter->netdev;
1252
1253		/* configure backlink on ring */
1254		ring->q_vector = q_vector;
1255
1256		/* update q_vector Tx values */
1257		igb_add_ring(ring, &q_vector->tx);
1258
1259		/* For 82575, context index must be unique per ring. */
1260		if (adapter->hw.mac.type == e1000_82575)
1261			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1262
1263		/* apply Tx specific ring traits */
1264		ring->count = adapter->tx_ring_count;
1265		ring->queue_index = txr_idx;
1266
1267		u64_stats_init(&ring->tx_syncp);
1268		u64_stats_init(&ring->tx_syncp2);
1269
1270		/* assign ring to adapter */
1271		adapter->tx_ring[txr_idx] = ring;
1272
1273		/* push pointer to next ring */
1274		ring++;
1275	}
1276
1277	if (rxr_count) {
1278		/* assign generic ring traits */
1279		ring->dev = &adapter->pdev->dev;
1280		ring->netdev = adapter->netdev;
1281
1282		/* configure backlink on ring */
1283		ring->q_vector = q_vector;
1284
1285		/* update q_vector Rx values */
1286		igb_add_ring(ring, &q_vector->rx);
1287
1288		/* set flag indicating ring supports SCTP checksum offload */
1289		if (adapter->hw.mac.type >= e1000_82576)
1290			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1291
1292		/* On i350, i354, i210, and i211, loopback VLAN packets
1293		 * have the tag byte-swapped.
1294		 */
1295		if (adapter->hw.mac.type >= e1000_i350)
1296			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1297
1298		/* apply Rx specific ring traits */
1299		ring->count = adapter->rx_ring_count;
1300		ring->queue_index = rxr_idx;
1301
1302		u64_stats_init(&ring->rx_syncp);
1303
1304		/* assign ring to adapter */
1305		adapter->rx_ring[rxr_idx] = ring;
1306	}
1307
1308	return 0;
1309}
1310
1311
1312/**
1313 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1314 *  @adapter: board private structure to initialize
1315 *
1316 *  We allocate one q_vector per queue interrupt.  If allocation fails we
1317 *  return -ENOMEM.
1318 **/
1319static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1320{
1321	int q_vectors = adapter->num_q_vectors;
1322	int rxr_remaining = adapter->num_rx_queues;
1323	int txr_remaining = adapter->num_tx_queues;
1324	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1325	int err;
1326
1327	if (q_vectors >= (rxr_remaining + txr_remaining)) {
1328		for (; rxr_remaining; v_idx++) {
1329			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1330						 0, 0, 1, rxr_idx);
1331
1332			if (err)
1333				goto err_out;
1334
1335			/* update counts and index */
1336			rxr_remaining--;
1337			rxr_idx++;
1338		}
1339	}
1340
1341	for (; v_idx < q_vectors; v_idx++) {
1342		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1343		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1344
1345		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1346					 tqpv, txr_idx, rqpv, rxr_idx);
1347
1348		if (err)
1349			goto err_out;
1350
1351		/* update counts and index */
1352		rxr_remaining -= rqpv;
1353		txr_remaining -= tqpv;
1354		rxr_idx++;
1355		txr_idx++;
1356	}
1357
1358	return 0;
1359
1360err_out:
1361	adapter->num_tx_queues = 0;
1362	adapter->num_rx_queues = 0;
1363	adapter->num_q_vectors = 0;
1364
1365	while (v_idx--)
1366		igb_free_q_vector(adapter, v_idx);
1367
1368	return -ENOMEM;
1369}
1370
1371/**
1372 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1373 *  @adapter: board private structure to initialize
1374 *  @msix: boolean value of MSIX capability
1375 *
1376 *  This function initializes the interrupts and allocates all of the queues.
1377 **/
1378static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1379{
1380	struct pci_dev *pdev = adapter->pdev;
1381	int err;
1382
1383	igb_set_interrupt_capability(adapter, msix);
1384
1385	err = igb_alloc_q_vectors(adapter);
1386	if (err) {
1387		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1388		goto err_alloc_q_vectors;
1389	}
1390
1391	igb_cache_ring_register(adapter);
1392
1393	return 0;
1394
1395err_alloc_q_vectors:
1396	igb_reset_interrupt_capability(adapter);
1397	return err;
1398}
1399
1400/**
1401 *  igb_request_irq - initialize interrupts
1402 *  @adapter: board private structure to initialize
1403 *
1404 *  Attempts to configure interrupts using the best available
1405 *  capabilities of the hardware and kernel.
1406 **/
1407static int igb_request_irq(struct igb_adapter *adapter)
1408{
1409	struct net_device *netdev = adapter->netdev;
1410	struct pci_dev *pdev = adapter->pdev;
1411	int err = 0;
1412
1413	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1414		err = igb_request_msix(adapter);
1415		if (!err)
1416			goto request_done;
1417		/* fall back to MSI */
1418		igb_free_all_tx_resources(adapter);
1419		igb_free_all_rx_resources(adapter);
1420
1421		igb_clear_interrupt_scheme(adapter);
1422		err = igb_init_interrupt_scheme(adapter, false);
1423		if (err)
1424			goto request_done;
1425
1426		igb_setup_all_tx_resources(adapter);
1427		igb_setup_all_rx_resources(adapter);
1428		igb_configure(adapter);
1429	}
1430
1431	igb_assign_vector(adapter->q_vector[0], 0);
1432
1433	if (adapter->flags & IGB_FLAG_HAS_MSI) {
1434		err = request_irq(pdev->irq, igb_intr_msi, 0,
1435				  netdev->name, adapter);
1436		if (!err)
1437			goto request_done;
1438
1439		/* fall back to legacy interrupts */
1440		igb_reset_interrupt_capability(adapter);
1441		adapter->flags &= ~IGB_FLAG_HAS_MSI;
1442	}
1443
1444	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1445			  netdev->name, adapter);
1446
1447	if (err)
1448		dev_err(&pdev->dev, "Error %d getting interrupt\n",
1449			err);
1450
1451request_done:
1452	return err;
1453}
1454
1455static void igb_free_irq(struct igb_adapter *adapter)
1456{
1457	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1458		int vector = 0, i;
1459
1460		free_irq(adapter->msix_entries[vector++].vector, adapter);
1461
1462		for (i = 0; i < adapter->num_q_vectors; i++)
1463			free_irq(adapter->msix_entries[vector++].vector,
1464				 adapter->q_vector[i]);
1465	} else {
1466		free_irq(adapter->pdev->irq, adapter);
1467	}
1468}
1469
1470/**
1471 *  igb_irq_disable - Mask off interrupt generation on the NIC
1472 *  @adapter: board private structure
1473 **/
1474static void igb_irq_disable(struct igb_adapter *adapter)
1475{
1476	struct e1000_hw *hw = &adapter->hw;
1477
1478	/* we need to be careful when disabling interrupts.  The VFs are also
1479	 * mapped into these registers and so clearing the bits can cause
1480	 * issues on the VF drivers so we only need to clear what we set
1481	 */
1482	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1483		u32 regval = rd32(E1000_EIAM);
1484
1485		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1486		wr32(E1000_EIMC, adapter->eims_enable_mask);
1487		regval = rd32(E1000_EIAC);
1488		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1489	}
1490
1491	wr32(E1000_IAM, 0);
1492	wr32(E1000_IMC, ~0);
1493	wrfl();
1494	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1495		int i;
1496
1497		for (i = 0; i < adapter->num_q_vectors; i++)
1498			synchronize_irq(adapter->msix_entries[i].vector);
1499	} else {
1500		synchronize_irq(adapter->pdev->irq);
1501	}
1502}
1503
1504/**
1505 *  igb_irq_enable - Enable default interrupt generation settings
1506 *  @adapter: board private structure
1507 **/
1508static void igb_irq_enable(struct igb_adapter *adapter)
1509{
1510	struct e1000_hw *hw = &adapter->hw;
1511
1512	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1513		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1514		u32 regval = rd32(E1000_EIAC);
1515
1516		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1517		regval = rd32(E1000_EIAM);
1518		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1519		wr32(E1000_EIMS, adapter->eims_enable_mask);
1520		if (adapter->vfs_allocated_count) {
1521			wr32(E1000_MBVFIMR, 0xFF);
1522			ims |= E1000_IMS_VMMB;
1523		}
1524		wr32(E1000_IMS, ims);
1525	} else {
1526		wr32(E1000_IMS, IMS_ENABLE_MASK |
1527				E1000_IMS_DRSTA);
1528		wr32(E1000_IAM, IMS_ENABLE_MASK |
1529				E1000_IMS_DRSTA);
1530	}
1531}
1532
1533static void igb_update_mng_vlan(struct igb_adapter *adapter)
1534{
1535	struct e1000_hw *hw = &adapter->hw;
1536	u16 vid = adapter->hw.mng_cookie.vlan_id;
1537	u16 old_vid = adapter->mng_vlan_id;
1538
1539	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1540		/* add VID to filter table */
1541		igb_vfta_set(hw, vid, true);
1542		adapter->mng_vlan_id = vid;
1543	} else {
1544		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1545	}
1546
1547	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1548	    (vid != old_vid) &&
1549	    !test_bit(old_vid, adapter->active_vlans)) {
1550		/* remove VID from filter table */
1551		igb_vfta_set(hw, old_vid, false);
1552	}
1553}
1554
1555/**
1556 *  igb_release_hw_control - release control of the h/w to f/w
1557 *  @adapter: address of board private structure
1558 *
1559 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1560 *  For ASF and Pass Through versions of f/w this means that the
1561 *  driver is no longer loaded.
1562 **/
1563static void igb_release_hw_control(struct igb_adapter *adapter)
1564{
1565	struct e1000_hw *hw = &adapter->hw;
1566	u32 ctrl_ext;
1567
1568	/* Let firmware take over control of h/w */
1569	ctrl_ext = rd32(E1000_CTRL_EXT);
1570	wr32(E1000_CTRL_EXT,
1571			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1572}
1573
1574/**
1575 *  igb_get_hw_control - get control of the h/w from f/w
1576 *  @adapter: address of board private structure
1577 *
1578 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1579 *  For ASF and Pass Through versions of f/w this means that
1580 *  the driver is loaded.
1581 **/
1582static void igb_get_hw_control(struct igb_adapter *adapter)
1583{
1584	struct e1000_hw *hw = &adapter->hw;
1585	u32 ctrl_ext;
1586
1587	/* Let firmware know the driver has taken over */
1588	ctrl_ext = rd32(E1000_CTRL_EXT);
1589	wr32(E1000_CTRL_EXT,
1590			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1591}
1592
1593/**
1594 *  igb_configure - configure the hardware for RX and TX
1595 *  @adapter: private board structure
1596 **/
1597static void igb_configure(struct igb_adapter *adapter)
1598{
1599	struct net_device *netdev = adapter->netdev;
1600	int i;
1601
1602	igb_get_hw_control(adapter);
1603	igb_set_rx_mode(netdev);
1604
1605	igb_restore_vlan(adapter);
1606
1607	igb_setup_tctl(adapter);
1608	igb_setup_mrqc(adapter);
1609	igb_setup_rctl(adapter);
1610
1611	igb_configure_tx(adapter);
1612	igb_configure_rx(adapter);
1613
1614	igb_rx_fifo_flush_82575(&adapter->hw);
1615
1616	/* call igb_desc_unused which always leaves
1617	 * at least 1 descriptor unused to make sure
1618	 * next_to_use != next_to_clean
1619	 */
1620	for (i = 0; i < adapter->num_rx_queues; i++) {
1621		struct igb_ring *ring = adapter->rx_ring[i];
1622		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1623	}
1624}
1625
1626/**
1627 *  igb_power_up_link - Power up the phy/serdes link
1628 *  @adapter: address of board private structure
1629 **/
1630void igb_power_up_link(struct igb_adapter *adapter)
1631{
1632	igb_reset_phy(&adapter->hw);
1633
1634	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1635		igb_power_up_phy_copper(&adapter->hw);
1636	else
1637		igb_power_up_serdes_link_82575(&adapter->hw);
1638
1639	igb_setup_link(&adapter->hw);
1640}
1641
1642/**
1643 *  igb_power_down_link - Power down the phy/serdes link
1644 *  @adapter: address of board private structure
1645 */
1646static void igb_power_down_link(struct igb_adapter *adapter)
1647{
1648	if (adapter->hw.phy.media_type == e1000_media_type_copper)
1649		igb_power_down_phy_copper_82575(&adapter->hw);
1650	else
1651		igb_shutdown_serdes_link_82575(&adapter->hw);
1652}
1653
1654/**
1655 * Detect and switch function for Media Auto Sense
1656 * @adapter: address of the board private structure
1657 **/
1658static void igb_check_swap_media(struct igb_adapter *adapter)
1659{
1660	struct e1000_hw *hw = &adapter->hw;
1661	u32 ctrl_ext, connsw;
1662	bool swap_now = false;
1663
1664	ctrl_ext = rd32(E1000_CTRL_EXT);
1665	connsw = rd32(E1000_CONNSW);
1666
1667	/* need to live swap if current media is copper and we have fiber/serdes
1668	 * to go to.
1669	 */
1670
1671	if ((hw->phy.media_type == e1000_media_type_copper) &&
1672	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1673		swap_now = true;
1674	} else if (!(connsw & E1000_CONNSW_SERDESD)) {
1675		/* copper signal takes time to appear */
1676		if (adapter->copper_tries < 4) {
1677			adapter->copper_tries++;
1678			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1679			wr32(E1000_CONNSW, connsw);
1680			return;
1681		} else {
1682			adapter->copper_tries = 0;
1683			if ((connsw & E1000_CONNSW_PHYSD) &&
1684			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
1685				swap_now = true;
1686				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1687				wr32(E1000_CONNSW, connsw);
1688			}
1689		}
1690	}
1691
1692	if (!swap_now)
1693		return;
1694
1695	switch (hw->phy.media_type) {
1696	case e1000_media_type_copper:
1697		netdev_info(adapter->netdev,
1698			"MAS: changing media to fiber/serdes\n");
1699		ctrl_ext |=
1700			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1701		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1702		adapter->copper_tries = 0;
1703		break;
1704	case e1000_media_type_internal_serdes:
1705	case e1000_media_type_fiber:
1706		netdev_info(adapter->netdev,
1707			"MAS: changing media to copper\n");
1708		ctrl_ext &=
1709			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1710		adapter->flags |= IGB_FLAG_MEDIA_RESET;
1711		break;
1712	default:
1713		/* shouldn't get here during regular operation */
1714		netdev_err(adapter->netdev,
1715			"AMS: Invalid media type found, returning\n");
1716		break;
1717	}
1718	wr32(E1000_CTRL_EXT, ctrl_ext);
1719}
1720
1721/**
1722 *  igb_up - Open the interface and prepare it to handle traffic
1723 *  @adapter: board private structure
1724 **/
1725int igb_up(struct igb_adapter *adapter)
1726{
1727	struct e1000_hw *hw = &adapter->hw;
1728	int i;
1729
1730	/* hardware has been reset, we need to reload some things */
1731	igb_configure(adapter);
1732
1733	clear_bit(__IGB_DOWN, &adapter->state);
1734
1735	for (i = 0; i < adapter->num_q_vectors; i++)
1736		napi_enable(&(adapter->q_vector[i]->napi));
1737
1738	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1739		igb_configure_msix(adapter);
1740	else
1741		igb_assign_vector(adapter->q_vector[0], 0);
1742
1743	/* Clear any pending interrupts. */
1744	rd32(E1000_ICR);
1745	igb_irq_enable(adapter);
1746
1747	/* notify VFs that reset has been completed */
1748	if (adapter->vfs_allocated_count) {
1749		u32 reg_data = rd32(E1000_CTRL_EXT);
1750
1751		reg_data |= E1000_CTRL_EXT_PFRSTD;
1752		wr32(E1000_CTRL_EXT, reg_data);
1753	}
1754
1755	netif_tx_start_all_queues(adapter->netdev);
1756
1757	/* start the watchdog. */
1758	hw->mac.get_link_status = 1;
1759	schedule_work(&adapter->watchdog_task);
1760
1761	if ((adapter->flags & IGB_FLAG_EEE) &&
1762	    (!hw->dev_spec._82575.eee_disable))
1763		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1764
1765	return 0;
1766}
1767
1768void igb_down(struct igb_adapter *adapter)
1769{
1770	struct net_device *netdev = adapter->netdev;
1771	struct e1000_hw *hw = &adapter->hw;
1772	u32 tctl, rctl;
1773	int i;
1774
1775	/* signal that we're down so the interrupt handler does not
1776	 * reschedule our watchdog timer
1777	 */
1778	set_bit(__IGB_DOWN, &adapter->state);
1779
1780	/* disable receives in the hardware */
1781	rctl = rd32(E1000_RCTL);
1782	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1783	/* flush and sleep below */
1784
1785	netif_carrier_off(netdev);
1786	netif_tx_stop_all_queues(netdev);
1787
1788	/* disable transmits in the hardware */
1789	tctl = rd32(E1000_TCTL);
1790	tctl &= ~E1000_TCTL_EN;
1791	wr32(E1000_TCTL, tctl);
1792	/* flush both disables and wait for them to finish */
1793	wrfl();
1794	usleep_range(10000, 11000);
1795
1796	igb_irq_disable(adapter);
1797
1798	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1799
1800	for (i = 0; i < adapter->num_q_vectors; i++) {
1801		if (adapter->q_vector[i]) {
1802			napi_synchronize(&adapter->q_vector[i]->napi);
1803			napi_disable(&adapter->q_vector[i]->napi);
1804		}
1805	}
1806
1807	del_timer_sync(&adapter->watchdog_timer);
1808	del_timer_sync(&adapter->phy_info_timer);
1809
1810	/* record the stats before reset*/
1811	spin_lock(&adapter->stats64_lock);
1812	igb_update_stats(adapter, &adapter->stats64);
1813	spin_unlock(&adapter->stats64_lock);
1814
1815	adapter->link_speed = 0;
1816	adapter->link_duplex = 0;
1817
1818	if (!pci_channel_offline(adapter->pdev))
1819		igb_reset(adapter);
1820	igb_clean_all_tx_rings(adapter);
1821	igb_clean_all_rx_rings(adapter);
1822#ifdef CONFIG_IGB_DCA
1823
1824	/* since we reset the hardware DCA settings were cleared */
1825	igb_setup_dca(adapter);
1826#endif
1827}
1828
1829void igb_reinit_locked(struct igb_adapter *adapter)
1830{
1831	WARN_ON(in_interrupt());
1832	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1833		usleep_range(1000, 2000);
1834	igb_down(adapter);
1835	igb_up(adapter);
1836	clear_bit(__IGB_RESETTING, &adapter->state);
1837}
1838
1839/** igb_enable_mas - Media Autosense re-enable after swap
1840 *
1841 * @adapter: adapter struct
1842 **/
1843static s32 igb_enable_mas(struct igb_adapter *adapter)
1844{
1845	struct e1000_hw *hw = &adapter->hw;
1846	u32 connsw;
1847	s32 ret_val = 0;
1848
1849	connsw = rd32(E1000_CONNSW);
1850	if (!(hw->phy.media_type == e1000_media_type_copper))
1851		return ret_val;
1852
1853	/* configure for SerDes media detect */
1854	if (!(connsw & E1000_CONNSW_SERDESD)) {
1855		connsw |= E1000_CONNSW_ENRGSRC;
1856		connsw |= E1000_CONNSW_AUTOSENSE_EN;
1857		wr32(E1000_CONNSW, connsw);
1858		wrfl();
1859	} else if (connsw & E1000_CONNSW_SERDESD) {
1860		/* already SerDes, no need to enable anything */
1861		return ret_val;
1862	} else {
1863		netdev_info(adapter->netdev,
1864			"MAS: Unable to configure feature, disabling..\n");
1865		adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1866	}
1867	return ret_val;
1868}
1869
1870void igb_reset(struct igb_adapter *adapter)
1871{
1872	struct pci_dev *pdev = adapter->pdev;
1873	struct e1000_hw *hw = &adapter->hw;
1874	struct e1000_mac_info *mac = &hw->mac;
1875	struct e1000_fc_info *fc = &hw->fc;
1876	u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1877
1878	/* Repartition Pba for greater than 9k mtu
1879	 * To take effect CTRL.RST is required.
1880	 */
1881	switch (mac->type) {
1882	case e1000_i350:
1883	case e1000_i354:
1884	case e1000_82580:
1885		pba = rd32(E1000_RXPBS);
1886		pba = igb_rxpbs_adjust_82580(pba);
1887		break;
1888	case e1000_82576:
1889		pba = rd32(E1000_RXPBS);
1890		pba &= E1000_RXPBS_SIZE_MASK_82576;
1891		break;
1892	case e1000_82575:
1893	case e1000_i210:
1894	case e1000_i211:
1895	default:
1896		pba = E1000_PBA_34K;
1897		break;
1898	}
1899
1900	if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1901	    (mac->type < e1000_82576)) {
1902		/* adjust PBA for jumbo frames */
1903		wr32(E1000_PBA, pba);
1904
1905		/* To maintain wire speed transmits, the Tx FIFO should be
1906		 * large enough to accommodate two full transmit packets,
1907		 * rounded up to the next 1KB and expressed in KB.  Likewise,
1908		 * the Rx FIFO should be large enough to accommodate at least
1909		 * one full receive packet and is similarly rounded up and
1910		 * expressed in KB.
1911		 */
1912		pba = rd32(E1000_PBA);
1913		/* upper 16 bits has Tx packet buffer allocation size in KB */
1914		tx_space = pba >> 16;
1915		/* lower 16 bits has Rx packet buffer allocation size in KB */
1916		pba &= 0xffff;
1917		/* the Tx fifo also stores 16 bytes of information about the Tx
1918		 * but don't include ethernet FCS because hardware appends it
1919		 */
1920		min_tx_space = (adapter->max_frame_size +
1921				sizeof(union e1000_adv_tx_desc) -
1922				ETH_FCS_LEN) * 2;
1923		min_tx_space = ALIGN(min_tx_space, 1024);
1924		min_tx_space >>= 10;
1925		/* software strips receive CRC, so leave room for it */
1926		min_rx_space = adapter->max_frame_size;
1927		min_rx_space = ALIGN(min_rx_space, 1024);
1928		min_rx_space >>= 10;
1929
1930		/* If current Tx allocation is less than the min Tx FIFO size,
1931		 * and the min Tx FIFO size is less than the current Rx FIFO
1932		 * allocation, take space away from current Rx allocation
1933		 */
1934		if (tx_space < min_tx_space &&
1935		    ((min_tx_space - tx_space) < pba)) {
1936			pba = pba - (min_tx_space - tx_space);
1937
1938			/* if short on Rx space, Rx wins and must trump Tx
1939			 * adjustment
1940			 */
1941			if (pba < min_rx_space)
1942				pba = min_rx_space;
1943		}
1944		wr32(E1000_PBA, pba);
1945	}
1946
1947	/* flow control settings */
1948	/* The high water mark must be low enough to fit one full frame
1949	 * (or the size used for early receive) above it in the Rx FIFO.
1950	 * Set it to the lower of:
1951	 * - 90% of the Rx FIFO size, or
1952	 * - the full Rx FIFO size minus one full frame
1953	 */
1954	hwm = min(((pba << 10) * 9 / 10),
1955			((pba << 10) - 2 * adapter->max_frame_size));
1956
1957	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
1958	fc->low_water = fc->high_water - 16;
1959	fc->pause_time = 0xFFFF;
1960	fc->send_xon = 1;
1961	fc->current_mode = fc->requested_mode;
1962
1963	/* disable receive for all VFs and wait one second */
1964	if (adapter->vfs_allocated_count) {
1965		int i;
1966
1967		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1968			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1969
1970		/* ping all the active vfs to let them know we are going down */
1971		igb_ping_all_vfs(adapter);
1972
1973		/* disable transmits and receives */
1974		wr32(E1000_VFRE, 0);
1975		wr32(E1000_VFTE, 0);
1976	}
1977
1978	/* Allow time for pending master requests to run */
1979	hw->mac.ops.reset_hw(hw);
1980	wr32(E1000_WUC, 0);
1981
1982	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1983		/* need to resetup here after media swap */
1984		adapter->ei.get_invariants(hw);
1985		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1986	}
1987	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1988		if (igb_enable_mas(adapter))
1989			dev_err(&pdev->dev,
1990				"Error enabling Media Auto Sense\n");
1991	}
1992	if (hw->mac.ops.init_hw(hw))
1993		dev_err(&pdev->dev, "Hardware Error\n");
1994
1995	/* Flow control settings reset on hardware reset, so guarantee flow
1996	 * control is off when forcing speed.
1997	 */
1998	if (!hw->mac.autoneg)
1999		igb_force_mac_fc(hw);
2000
2001	igb_init_dmac(adapter, pba);
2002#ifdef CONFIG_IGB_HWMON
2003	/* Re-initialize the thermal sensor on i350 devices. */
2004	if (!test_bit(__IGB_DOWN, &adapter->state)) {
2005		if (mac->type == e1000_i350 && hw->bus.func == 0) {
2006			/* If present, re-initialize the external thermal sensor
2007			 * interface.
2008			 */
2009			if (adapter->ets)
2010				mac->ops.init_thermal_sensor_thresh(hw);
2011		}
2012	}
2013#endif
2014	/* Re-establish EEE setting */
2015	if (hw->phy.media_type == e1000_media_type_copper) {
2016		switch (mac->type) {
2017		case e1000_i350:
2018		case e1000_i210:
2019		case e1000_i211:
2020			igb_set_eee_i350(hw, true, true);
2021			break;
2022		case e1000_i354:
2023			igb_set_eee_i354(hw, true, true);
2024			break;
2025		default:
2026			break;
2027		}
2028	}
2029	if (!netif_running(adapter->netdev))
2030		igb_power_down_link(adapter);
2031
2032	igb_update_mng_vlan(adapter);
2033
2034	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2035	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2036
2037	/* Re-enable PTP, where applicable. */
2038	igb_ptp_reset(adapter);
2039
2040	igb_get_phy_info(hw);
2041}
2042
2043static netdev_features_t igb_fix_features(struct net_device *netdev,
2044	netdev_features_t features)
2045{
2046	/* Since there is no support for separate Rx/Tx vlan accel
2047	 * enable/disable make sure Tx flag is always in same state as Rx.
2048	 */
2049	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2050		features |= NETIF_F_HW_VLAN_CTAG_TX;
2051	else
2052		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2053
2054	return features;
2055}
2056
2057static int igb_set_features(struct net_device *netdev,
2058	netdev_features_t features)
2059{
2060	netdev_features_t changed = netdev->features ^ features;
2061	struct igb_adapter *adapter = netdev_priv(netdev);
2062
2063	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2064		igb_vlan_mode(netdev, features);
2065
2066	if (!(changed & NETIF_F_RXALL))
2067		return 0;
2068
2069	netdev->features = features;
2070
2071	if (netif_running(netdev))
2072		igb_reinit_locked(adapter);
2073	else
2074		igb_reset(adapter);
2075
2076	return 0;
2077}
2078
2079static const struct net_device_ops igb_netdev_ops = {
2080	.ndo_open		= igb_open,
2081	.ndo_stop		= igb_close,
2082	.ndo_start_xmit		= igb_xmit_frame,
2083	.ndo_get_stats64	= igb_get_stats64,
2084	.ndo_set_rx_mode	= igb_set_rx_mode,
2085	.ndo_set_mac_address	= igb_set_mac,
2086	.ndo_change_mtu		= igb_change_mtu,
2087	.ndo_do_ioctl		= igb_ioctl,
2088	.ndo_tx_timeout		= igb_tx_timeout,
2089	.ndo_validate_addr	= eth_validate_addr,
2090	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
2091	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
2092	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
2093	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
2094	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
2095	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
2096	.ndo_get_vf_config	= igb_ndo_get_vf_config,
2097#ifdef CONFIG_NET_POLL_CONTROLLER
2098	.ndo_poll_controller	= igb_netpoll,
2099#endif
2100	.ndo_fix_features	= igb_fix_features,
2101	.ndo_set_features	= igb_set_features,
2102	.ndo_features_check	= passthru_features_check,
2103};
2104
2105/**
2106 * igb_set_fw_version - Configure version string for ethtool
2107 * @adapter: adapter struct
2108 **/
2109void igb_set_fw_version(struct igb_adapter *adapter)
2110{
2111	struct e1000_hw *hw = &adapter->hw;
2112	struct e1000_fw_version fw;
2113
2114	igb_get_fw_version(hw, &fw);
2115
2116	switch (hw->mac.type) {
2117	case e1000_i210:
2118	case e1000_i211:
2119		if (!(igb_get_flash_presence_i210(hw))) {
2120			snprintf(adapter->fw_version,
2121				 sizeof(adapter->fw_version),
2122				 "%2d.%2d-%d",
2123				 fw.invm_major, fw.invm_minor,
2124				 fw.invm_img_type);
2125			break;
2126		}
2127		/* fall through */
2128	default:
2129		/* if option is rom valid, display its version too */
2130		if (fw.or_valid) {
2131			snprintf(adapter->fw_version,
2132				 sizeof(adapter->fw_version),
2133				 "%d.%d, 0x%08x, %d.%d.%d",
2134				 fw.eep_major, fw.eep_minor, fw.etrack_id,
2135				 fw.or_major, fw.or_build, fw.or_patch);
2136		/* no option rom */
2137		} else if (fw.etrack_id != 0X0000) {
2138			snprintf(adapter->fw_version,
2139			    sizeof(adapter->fw_version),
2140			    "%d.%d, 0x%08x",
2141			    fw.eep_major, fw.eep_minor, fw.etrack_id);
2142		} else {
2143		snprintf(adapter->fw_version,
2144		    sizeof(adapter->fw_version),
2145		    "%d.%d.%d",
2146		    fw.eep_major, fw.eep_minor, fw.eep_build);
2147		}
2148		break;
2149	}
2150}
2151
2152/**
2153 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2154 *
2155 * @adapter: adapter struct
2156 **/
2157static void igb_init_mas(struct igb_adapter *adapter)
2158{
2159	struct e1000_hw *hw = &adapter->hw;
2160	u16 eeprom_data;
2161
2162	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2163	switch (hw->bus.func) {
2164	case E1000_FUNC_0:
2165		if (eeprom_data & IGB_MAS_ENABLE_0) {
2166			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2167			netdev_info(adapter->netdev,
2168				"MAS: Enabling Media Autosense for port %d\n",
2169				hw->bus.func);
2170		}
2171		break;
2172	case E1000_FUNC_1:
2173		if (eeprom_data & IGB_MAS_ENABLE_1) {
2174			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2175			netdev_info(adapter->netdev,
2176				"MAS: Enabling Media Autosense for port %d\n",
2177				hw->bus.func);
2178		}
2179		break;
2180	case E1000_FUNC_2:
2181		if (eeprom_data & IGB_MAS_ENABLE_2) {
2182			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2183			netdev_info(adapter->netdev,
2184				"MAS: Enabling Media Autosense for port %d\n",
2185				hw->bus.func);
2186		}
2187		break;
2188	case E1000_FUNC_3:
2189		if (eeprom_data & IGB_MAS_ENABLE_3) {
2190			adapter->flags |= IGB_FLAG_MAS_ENABLE;
2191			netdev_info(adapter->netdev,
2192				"MAS: Enabling Media Autosense for port %d\n",
2193				hw->bus.func);
2194		}
2195		break;
2196	default:
2197		/* Shouldn't get here */
2198		netdev_err(adapter->netdev,
2199			"MAS: Invalid port configuration, returning\n");
2200		break;
2201	}
2202}
2203
2204/**
2205 *  igb_init_i2c - Init I2C interface
2206 *  @adapter: pointer to adapter structure
2207 **/
2208static s32 igb_init_i2c(struct igb_adapter *adapter)
2209{
2210	s32 status = 0;
2211
2212	/* I2C interface supported on i350 devices */
2213	if (adapter->hw.mac.type != e1000_i350)
2214		return 0;
2215
2216	/* Initialize the i2c bus which is controlled by the registers.
2217	 * This bus will use the i2c_algo_bit structue that implements
2218	 * the protocol through toggling of the 4 bits in the register.
2219	 */
2220	adapter->i2c_adap.owner = THIS_MODULE;
2221	adapter->i2c_algo = igb_i2c_algo;
2222	adapter->i2c_algo.data = adapter;
2223	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2224	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2225	strlcpy(adapter->i2c_adap.name, "igb BB",
2226		sizeof(adapter->i2c_adap.name));
2227	status = i2c_bit_add_bus(&adapter->i2c_adap);
2228	return status;
2229}
2230
2231/**
2232 *  igb_probe - Device Initialization Routine
2233 *  @pdev: PCI device information struct
2234 *  @ent: entry in igb_pci_tbl
2235 *
2236 *  Returns 0 on success, negative on failure
2237 *
2238 *  igb_probe initializes an adapter identified by a pci_dev structure.
2239 *  The OS initialization, configuring of the adapter private structure,
2240 *  and a hardware reset occur.
2241 **/
2242static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2243{
2244	struct net_device *netdev;
2245	struct igb_adapter *adapter;
2246	struct e1000_hw *hw;
2247	u16 eeprom_data = 0;
2248	s32 ret_val;
2249	static int global_quad_port_a; /* global quad port a indication */
2250	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2251	int err, pci_using_dac;
2252	u8 part_str[E1000_PBANUM_LENGTH];
2253
2254	/* Catch broken hardware that put the wrong VF device ID in
2255	 * the PCIe SR-IOV capability.
2256	 */
2257	if (pdev->is_virtfn) {
2258		WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2259			pci_name(pdev), pdev->vendor, pdev->device);
2260		return -EINVAL;
2261	}
2262
2263	err = pci_enable_device_mem(pdev);
2264	if (err)
2265		return err;
2266
2267	pci_using_dac = 0;
2268	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2269	if (!err) {
2270		pci_using_dac = 1;
2271	} else {
2272		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2273		if (err) {
2274			dev_err(&pdev->dev,
2275				"No usable DMA configuration, aborting\n");
2276			goto err_dma;
2277		}
2278	}
2279
2280	err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2281					   IORESOURCE_MEM),
2282					   igb_driver_name);
2283	if (err)
2284		goto err_pci_reg;
2285
2286	pci_enable_pcie_error_reporting(pdev);
2287
2288	pci_set_master(pdev);
2289	pci_save_state(pdev);
2290
2291	err = -ENOMEM;
2292	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2293				   IGB_MAX_TX_QUEUES);
2294	if (!netdev)
2295		goto err_alloc_etherdev;
2296
2297	SET_NETDEV_DEV(netdev, &pdev->dev);
2298
2299	pci_set_drvdata(pdev, netdev);
2300	adapter = netdev_priv(netdev);
2301	adapter->netdev = netdev;
2302	adapter->pdev = pdev;
2303	hw = &adapter->hw;
2304	hw->back = adapter;
2305	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2306
2307	err = -EIO;
2308	hw->hw_addr = pci_iomap(pdev, 0, 0);
2309	if (!hw->hw_addr)
2310		goto err_ioremap;
2311
2312	netdev->netdev_ops = &igb_netdev_ops;
2313	igb_set_ethtool_ops(netdev);
2314	netdev->watchdog_timeo = 5 * HZ;
2315
2316	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2317
2318	netdev->mem_start = pci_resource_start(pdev, 0);
2319	netdev->mem_end = pci_resource_end(pdev, 0);
2320
2321	/* PCI config space info */
2322	hw->vendor_id = pdev->vendor;
2323	hw->device_id = pdev->device;
2324	hw->revision_id = pdev->revision;
2325	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2326	hw->subsystem_device_id = pdev->subsystem_device;
2327
2328	/* Copy the default MAC, PHY and NVM function pointers */
2329	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2330	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2331	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2332	/* Initialize skew-specific constants */
2333	err = ei->get_invariants(hw);
2334	if (err)
2335		goto err_sw_init;
2336
2337	/* setup the private structure */
2338	err = igb_sw_init(adapter);
2339	if (err)
2340		goto err_sw_init;
2341
2342	igb_get_bus_info_pcie(hw);
2343
2344	hw->phy.autoneg_wait_to_complete = false;
2345
2346	/* Copper options */
2347	if (hw->phy.media_type == e1000_media_type_copper) {
2348		hw->phy.mdix = AUTO_ALL_MODES;
2349		hw->phy.disable_polarity_correction = false;
2350		hw->phy.ms_type = e1000_ms_hw_default;
2351	}
2352
2353	if (igb_check_reset_block(hw))
2354		dev_info(&pdev->dev,
2355			"PHY reset is blocked due to SOL/IDER session.\n");
2356
2357	/* features is initialized to 0 in allocation, it might have bits
2358	 * set by igb_sw_init so we should use an or instead of an
2359	 * assignment.
2360	 */
2361	netdev->features |= NETIF_F_SG |
2362			    NETIF_F_IP_CSUM |
2363			    NETIF_F_IPV6_CSUM |
2364			    NETIF_F_TSO |
2365			    NETIF_F_TSO6 |
2366			    NETIF_F_RXHASH |
2367			    NETIF_F_RXCSUM |
2368			    NETIF_F_HW_VLAN_CTAG_RX |
2369			    NETIF_F_HW_VLAN_CTAG_TX;
2370
2371	/* copy netdev features into list of user selectable features */
2372	netdev->hw_features |= netdev->features;
2373	netdev->hw_features |= NETIF_F_RXALL;
2374
2375	/* set this bit last since it cannot be part of hw_features */
2376	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2377
2378	netdev->vlan_features |= NETIF_F_TSO |
2379				 NETIF_F_TSO6 |
2380				 NETIF_F_IP_CSUM |
2381				 NETIF_F_IPV6_CSUM |
2382				 NETIF_F_SG;
2383
2384	netdev->priv_flags |= IFF_SUPP_NOFCS;
2385
2386	if (pci_using_dac) {
2387		netdev->features |= NETIF_F_HIGHDMA;
2388		netdev->vlan_features |= NETIF_F_HIGHDMA;
2389	}
2390
2391	if (hw->mac.type >= e1000_82576) {
2392		netdev->hw_features |= NETIF_F_SCTP_CSUM;
2393		netdev->features |= NETIF_F_SCTP_CSUM;
2394	}
2395
2396	netdev->priv_flags |= IFF_UNICAST_FLT;
2397
2398	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2399
2400	/* before reading the NVM, reset the controller to put the device in a
2401	 * known good starting state
2402	 */
2403	hw->mac.ops.reset_hw(hw);
2404
2405	/* make sure the NVM is good , i211/i210 parts can have special NVM
2406	 * that doesn't contain a checksum
2407	 */
2408	switch (hw->mac.type) {
2409	case e1000_i210:
2410	case e1000_i211:
2411		if (igb_get_flash_presence_i210(hw)) {
2412			if (hw->nvm.ops.validate(hw) < 0) {
2413				dev_err(&pdev->dev,
2414					"The NVM Checksum Is Not Valid\n");
2415				err = -EIO;
2416				goto err_eeprom;
2417			}
2418		}
2419		break;
2420	default:
2421		if (hw->nvm.ops.validate(hw) < 0) {
2422			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2423			err = -EIO;
2424			goto err_eeprom;
2425		}
2426		break;
2427	}
2428
2429	/* copy the MAC address out of the NVM */
2430	if (hw->mac.ops.read_mac_addr(hw))
2431		dev_err(&pdev->dev, "NVM Read Error\n");
2432
2433	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2434
2435	if (!is_valid_ether_addr(netdev->dev_addr)) {
2436		dev_err(&pdev->dev, "Invalid MAC Address\n");
2437		err = -EIO;
2438		goto err_eeprom;
2439	}
2440
2441	/* get firmware version for ethtool -i */
2442	igb_set_fw_version(adapter);
2443
2444	/* configure RXPBSIZE and TXPBSIZE */
2445	if (hw->mac.type == e1000_i210) {
2446		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2447		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2448	}
2449
2450	setup_timer(&adapter->watchdog_timer, igb_watchdog,
2451		    (unsigned long) adapter);
2452	setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2453		    (unsigned long) adapter);
2454
2455	INIT_WORK(&adapter->reset_task, igb_reset_task);
2456	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2457
2458	/* Initialize link properties that are user-changeable */
2459	adapter->fc_autoneg = true;
2460	hw->mac.autoneg = true;
2461	hw->phy.autoneg_advertised = 0x2f;
2462
2463	hw->fc.requested_mode = e1000_fc_default;
2464	hw->fc.current_mode = e1000_fc_default;
2465
2466	igb_validate_mdi_setting(hw);
2467
2468	/* By default, support wake on port A */
2469	if (hw->bus.func == 0)
2470		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2471
2472	/* Check the NVM for wake support on non-port A ports */
2473	if (hw->mac.type >= e1000_82580)
2474		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2475				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2476				 &eeprom_data);
2477	else if (hw->bus.func == 1)
2478		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2479
2480	if (eeprom_data & IGB_EEPROM_APME)
2481		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2482
2483	/* now that we have the eeprom settings, apply the special cases where
2484	 * the eeprom may be wrong or the board simply won't support wake on
2485	 * lan on a particular port
2486	 */
2487	switch (pdev->device) {
2488	case E1000_DEV_ID_82575GB_QUAD_COPPER:
2489		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2490		break;
2491	case E1000_DEV_ID_82575EB_FIBER_SERDES:
2492	case E1000_DEV_ID_82576_FIBER:
2493	case E1000_DEV_ID_82576_SERDES:
2494		/* Wake events only supported on port A for dual fiber
2495		 * regardless of eeprom setting
2496		 */
2497		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2498			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2499		break;
2500	case E1000_DEV_ID_82576_QUAD_COPPER:
2501	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2502		/* if quad port adapter, disable WoL on all but port A */
2503		if (global_quad_port_a != 0)
2504			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2505		else
2506			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2507		/* Reset for multiple quad port adapters */
2508		if (++global_quad_port_a == 4)
2509			global_quad_port_a = 0;
2510		break;
2511	default:
2512		/* If the device can't wake, don't set software support */
2513		if (!device_can_wakeup(&adapter->pdev->dev))
2514			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2515	}
2516
2517	/* initialize the wol settings based on the eeprom settings */
2518	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2519		adapter->wol |= E1000_WUFC_MAG;
2520
2521	/* Some vendors want WoL disabled by default, but still supported */
2522	if ((hw->mac.type == e1000_i350) &&
2523	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2524		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2525		adapter->wol = 0;
2526	}
2527
2528	device_set_wakeup_enable(&adapter->pdev->dev,
2529				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2530
2531	/* reset the hardware with the new settings */
2532	igb_reset(adapter);
2533
2534	/* Init the I2C interface */
2535	err = igb_init_i2c(adapter);
2536	if (err) {
2537		dev_err(&pdev->dev, "failed to init i2c interface\n");
2538		goto err_eeprom;
2539	}
2540
2541	/* let the f/w know that the h/w is now under the control of the
2542	 * driver.
2543	 */
2544	igb_get_hw_control(adapter);
2545
2546	strcpy(netdev->name, "eth%d");
2547	err = register_netdev(netdev);
2548	if (err)
2549		goto err_register;
2550
2551	/* carrier off reporting is important to ethtool even BEFORE open */
2552	netif_carrier_off(netdev);
2553
2554#ifdef CONFIG_IGB_DCA
2555	if (dca_add_requester(&pdev->dev) == 0) {
2556		adapter->flags |= IGB_FLAG_DCA_ENABLED;
2557		dev_info(&pdev->dev, "DCA enabled\n");
2558		igb_setup_dca(adapter);
2559	}
2560
2561#endif
2562#ifdef CONFIG_IGB_HWMON
2563	/* Initialize the thermal sensor on i350 devices. */
2564	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2565		u16 ets_word;
2566
2567		/* Read the NVM to determine if this i350 device supports an
2568		 * external thermal sensor.
2569		 */
2570		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2571		if (ets_word != 0x0000 && ets_word != 0xFFFF)
2572			adapter->ets = true;
2573		else
2574			adapter->ets = false;
2575		if (igb_sysfs_init(adapter))
2576			dev_err(&pdev->dev,
2577				"failed to allocate sysfs resources\n");
2578	} else {
2579		adapter->ets = false;
2580	}
2581#endif
2582	/* Check if Media Autosense is enabled */
2583	adapter->ei = *ei;
2584	if (hw->dev_spec._82575.mas_capable)
2585		igb_init_mas(adapter);
2586
2587	/* do hw tstamp init after resetting */
2588	igb_ptp_init(adapter);
2589
2590	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2591	/* print bus type/speed/width info, not applicable to i354 */
2592	if (hw->mac.type != e1000_i354) {
2593		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2594			 netdev->name,
2595			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2596			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2597			   "unknown"),
2598			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2599			  "Width x4" :
2600			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
2601			  "Width x2" :
2602			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
2603			  "Width x1" : "unknown"), netdev->dev_addr);
2604	}
2605
2606	if ((hw->mac.type >= e1000_i210 ||
2607	     igb_get_flash_presence_i210(hw))) {
2608		ret_val = igb_read_part_string(hw, part_str,
2609					       E1000_PBANUM_LENGTH);
2610	} else {
2611		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2612	}
2613
2614	if (ret_val)
2615		strcpy(part_str, "Unknown");
2616	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2617	dev_info(&pdev->dev,
2618		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2619		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2620		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2621		adapter->num_rx_queues, adapter->num_tx_queues);
2622	if (hw->phy.media_type == e1000_media_type_copper) {
2623		switch (hw->mac.type) {
2624		case e1000_i350:
2625		case e1000_i210:
2626		case e1000_i211:
2627			/* Enable EEE for internal copper PHY devices */
2628			err = igb_set_eee_i350(hw, true, true);
2629			if ((!err) &&
2630			    (!hw->dev_spec._82575.eee_disable)) {
2631				adapter->eee_advert =
2632					MDIO_EEE_100TX | MDIO_EEE_1000T;
2633				adapter->flags |= IGB_FLAG_EEE;
2634			}
2635			break;
2636		case e1000_i354:
2637			if ((rd32(E1000_CTRL_EXT) &
2638			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2639				err = igb_set_eee_i354(hw, true, true);
2640				if ((!err) &&
2641					(!hw->dev_spec._82575.eee_disable)) {
2642					adapter->eee_advert =
2643					   MDIO_EEE_100TX | MDIO_EEE_1000T;
2644					adapter->flags |= IGB_FLAG_EEE;
2645				}
2646			}
2647			break;
2648		default:
2649			break;
2650		}
2651	}
2652	pm_runtime_put_noidle(&pdev->dev);
2653	return 0;
2654
2655err_register:
2656	igb_release_hw_control(adapter);
2657	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2658err_eeprom:
2659	if (!igb_check_reset_block(hw))
2660		igb_reset_phy(hw);
2661
2662	if (hw->flash_address)
2663		iounmap(hw->flash_address);
2664err_sw_init:
2665	igb_clear_interrupt_scheme(adapter);
2666	pci_iounmap(pdev, hw->hw_addr);
2667err_ioremap:
2668	free_netdev(netdev);
2669err_alloc_etherdev:
2670	pci_release_selected_regions(pdev,
2671				     pci_select_bars(pdev, IORESOURCE_MEM));
2672err_pci_reg:
2673err_dma:
2674	pci_disable_device(pdev);
2675	return err;
2676}
2677
2678#ifdef CONFIG_PCI_IOV
2679static int igb_disable_sriov(struct pci_dev *pdev)
2680{
2681	struct net_device *netdev = pci_get_drvdata(pdev);
2682	struct igb_adapter *adapter = netdev_priv(netdev);
2683	struct e1000_hw *hw = &adapter->hw;
2684
2685	/* reclaim resources allocated to VFs */
2686	if (adapter->vf_data) {
2687		/* disable iov and allow time for transactions to clear */
2688		if (pci_vfs_assigned(pdev)) {
2689			dev_warn(&pdev->dev,
2690				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2691			return -EPERM;
2692		} else {
2693			pci_disable_sriov(pdev);
2694			msleep(500);
2695		}
2696
2697		kfree(adapter->vf_data);
2698		adapter->vf_data = NULL;
2699		adapter->vfs_allocated_count = 0;
2700		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2701		wrfl();
2702		msleep(100);
2703		dev_info(&pdev->dev, "IOV Disabled\n");
2704
2705		/* Re-enable DMA Coalescing flag since IOV is turned off */
2706		adapter->flags |= IGB_FLAG_DMAC;
2707	}
2708
2709	return 0;
2710}
2711
2712static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2713{
2714	struct net_device *netdev = pci_get_drvdata(pdev);
2715	struct igb_adapter *adapter = netdev_priv(netdev);
2716	int old_vfs = pci_num_vf(pdev);
2717	int err = 0;
2718	int i;
2719
2720	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2721		err = -EPERM;
2722		goto out;
2723	}
2724	if (!num_vfs)
2725		goto out;
2726
2727	if (old_vfs) {
2728		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2729			 old_vfs, max_vfs);
2730		adapter->vfs_allocated_count = old_vfs;
2731	} else
2732		adapter->vfs_allocated_count = num_vfs;
2733
2734	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2735				sizeof(struct vf_data_storage), GFP_KERNEL);
2736
2737	/* if allocation failed then we do not support SR-IOV */
2738	if (!adapter->vf_data) {
2739		adapter->vfs_allocated_count = 0;
2740		dev_err(&pdev->dev,
2741			"Unable to allocate memory for VF Data Storage\n");
2742		err = -ENOMEM;
2743		goto out;
2744	}
2745
2746	/* only call pci_enable_sriov() if no VFs are allocated already */
2747	if (!old_vfs) {
2748		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2749		if (err)
2750			goto err_out;
2751	}
2752	dev_info(&pdev->dev, "%d VFs allocated\n",
2753		 adapter->vfs_allocated_count);
2754	for (i = 0; i < adapter->vfs_allocated_count; i++)
2755		igb_vf_configure(adapter, i);
2756
2757	/* DMA Coalescing is not supported in IOV mode. */
2758	adapter->flags &= ~IGB_FLAG_DMAC;
2759	goto out;
2760
2761err_out:
2762	kfree(adapter->vf_data);
2763	adapter->vf_data = NULL;
2764	adapter->vfs_allocated_count = 0;
2765out:
2766	return err;
2767}
2768
2769#endif
2770/**
2771 *  igb_remove_i2c - Cleanup  I2C interface
2772 *  @adapter: pointer to adapter structure
2773 **/
2774static void igb_remove_i2c(struct igb_adapter *adapter)
2775{
2776	/* free the adapter bus structure */
2777	i2c_del_adapter(&adapter->i2c_adap);
2778}
2779
2780/**
2781 *  igb_remove - Device Removal Routine
2782 *  @pdev: PCI device information struct
2783 *
2784 *  igb_remove is called by the PCI subsystem to alert the driver
2785 *  that it should release a PCI device.  The could be caused by a
2786 *  Hot-Plug event, or because the driver is going to be removed from
2787 *  memory.
2788 **/
2789static void igb_remove(struct pci_dev *pdev)
2790{
2791	struct net_device *netdev = pci_get_drvdata(pdev);
2792	struct igb_adapter *adapter = netdev_priv(netdev);
2793	struct e1000_hw *hw = &adapter->hw;
2794
2795	pm_runtime_get_noresume(&pdev->dev);
2796#ifdef CONFIG_IGB_HWMON
2797	igb_sysfs_exit(adapter);
2798#endif
2799	igb_remove_i2c(adapter);
2800	igb_ptp_stop(adapter);
2801	/* The watchdog timer may be rescheduled, so explicitly
2802	 * disable watchdog from being rescheduled.
2803	 */
2804	set_bit(__IGB_DOWN, &adapter->state);
2805	del_timer_sync(&adapter->watchdog_timer);
2806	del_timer_sync(&adapter->phy_info_timer);
2807
2808	cancel_work_sync(&adapter->reset_task);
2809	cancel_work_sync(&adapter->watchdog_task);
2810
2811#ifdef CONFIG_IGB_DCA
2812	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2813		dev_info(&pdev->dev, "DCA disabled\n");
2814		dca_remove_requester(&pdev->dev);
2815		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2816		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2817	}
2818#endif
2819
2820	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
2821	 * would have already happened in close and is redundant.
2822	 */
2823	igb_release_hw_control(adapter);
2824
2825	unregister_netdev(netdev);
2826
2827	igb_clear_interrupt_scheme(adapter);
2828
2829#ifdef CONFIG_PCI_IOV
2830	igb_disable_sriov(pdev);
2831#endif
2832
2833	pci_iounmap(pdev, hw->hw_addr);
2834	if (hw->flash_address)
2835		iounmap(hw->flash_address);
2836	pci_release_selected_regions(pdev,
2837				     pci_select_bars(pdev, IORESOURCE_MEM));
2838
2839	kfree(adapter->shadow_vfta);
2840	free_netdev(netdev);
2841
2842	pci_disable_pcie_error_reporting(pdev);
2843
2844	pci_disable_device(pdev);
2845}
2846
2847/**
2848 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2849 *  @adapter: board private structure to initialize
2850 *
2851 *  This function initializes the vf specific data storage and then attempts to
2852 *  allocate the VFs.  The reason for ordering it this way is because it is much
2853 *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2854 *  the memory for the VFs.
2855 **/
2856static void igb_probe_vfs(struct igb_adapter *adapter)
2857{
2858#ifdef CONFIG_PCI_IOV
2859	struct pci_dev *pdev = adapter->pdev;
2860	struct e1000_hw *hw = &adapter->hw;
2861
2862	/* Virtualization features not supported on i210 family. */
2863	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2864		return;
2865
2866	pci_sriov_set_totalvfs(pdev, 7);
2867	igb_enable_sriov(pdev, max_vfs);
2868
2869#endif /* CONFIG_PCI_IOV */
2870}
2871
2872static void igb_init_queue_configuration(struct igb_adapter *adapter)
2873{
2874	struct e1000_hw *hw = &adapter->hw;
2875	u32 max_rss_queues;
2876
2877	/* Determine the maximum number of RSS queues supported. */
2878	switch (hw->mac.type) {
2879	case e1000_i211:
2880		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2881		break;
2882	case e1000_82575:
2883	case e1000_i210:
2884		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2885		break;
2886	case e1000_i350:
2887		/* I350 cannot do RSS and SR-IOV at the same time */
2888		if (!!adapter->vfs_allocated_count) {
2889			max_rss_queues = 1;
2890			break;
2891		}
2892		/* fall through */
2893	case e1000_82576:
2894		if (!!adapter->vfs_allocated_count) {
2895			max_rss_queues = 2;
2896			break;
2897		}
2898		/* fall through */
2899	case e1000_82580:
2900	case e1000_i354:
2901	default:
2902		max_rss_queues = IGB_MAX_RX_QUEUES;
2903		break;
2904	}
2905
2906	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2907
2908	igb_set_flag_queue_pairs(adapter, max_rss_queues);
2909}
2910
2911void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2912			      const u32 max_rss_queues)
2913{
2914	struct e1000_hw *hw = &adapter->hw;
2915
2916	/* Determine if we need to pair queues. */
2917	switch (hw->mac.type) {
2918	case e1000_82575:
2919	case e1000_i211:
2920		/* Device supports enough interrupts without queue pairing. */
2921		break;
2922	case e1000_82576:
2923		/* If VFs are going to be allocated with RSS queues then we
2924		 * should pair the queues in order to conserve interrupts due
2925		 * to limited supply.
2926		 */
2927		if ((adapter->rss_queues > 1) &&
2928		    (adapter->vfs_allocated_count > 6))
2929			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2930		/* fall through */
2931	case e1000_82580:
2932	case e1000_i350:
2933	case e1000_i354:
2934	case e1000_i210:
2935	default:
2936		/* If rss_queues > half of max_rss_queues, pair the queues in
2937		 * order to conserve interrupts due to limited supply.
2938		 */
2939		if (adapter->rss_queues > (max_rss_queues / 2))
2940			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2941		break;
2942	}
2943}
2944
2945/**
2946 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2947 *  @adapter: board private structure to initialize
2948 *
2949 *  igb_sw_init initializes the Adapter private data structure.
2950 *  Fields are initialized based on PCI device information and
2951 *  OS network device settings (MTU size).
2952 **/
2953static int igb_sw_init(struct igb_adapter *adapter)
2954{
2955	struct e1000_hw *hw = &adapter->hw;
2956	struct net_device *netdev = adapter->netdev;
2957	struct pci_dev *pdev = adapter->pdev;
2958
2959	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2960
2961	/* set default ring sizes */
2962	adapter->tx_ring_count = IGB_DEFAULT_TXD;
2963	adapter->rx_ring_count = IGB_DEFAULT_RXD;
2964
2965	/* set default ITR values */
2966	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2967	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2968
2969	/* set default work limits */
2970	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2971
2972	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2973				  VLAN_HLEN;
2974	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2975
2976	spin_lock_init(&adapter->stats64_lock);
2977#ifdef CONFIG_PCI_IOV
2978	switch (hw->mac.type) {
2979	case e1000_82576:
2980	case e1000_i350:
2981		if (max_vfs > 7) {
2982			dev_warn(&pdev->dev,
2983				 "Maximum of 7 VFs per PF, using max\n");
2984			max_vfs = adapter->vfs_allocated_count = 7;
2985		} else
2986			adapter->vfs_allocated_count = max_vfs;
2987		if (adapter->vfs_allocated_count)
2988			dev_warn(&pdev->dev,
2989				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2990		break;
2991	default:
2992		break;
2993	}
2994#endif /* CONFIG_PCI_IOV */
2995
2996	igb_init_queue_configuration(adapter);
2997
2998	/* Setup and initialize a copy of the hw vlan table array */
2999	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3000				       GFP_ATOMIC);
3001
3002	/* This call may decrease the number of queues */
3003	if (igb_init_interrupt_scheme(adapter, true)) {
3004		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3005		return -ENOMEM;
3006	}
3007
3008	igb_probe_vfs(adapter);
3009
3010	/* Explicitly disable IRQ since the NIC can be in any state. */
3011	igb_irq_disable(adapter);
3012
3013	if (hw->mac.type >= e1000_i350)
3014		adapter->flags &= ~IGB_FLAG_DMAC;
3015
3016	set_bit(__IGB_DOWN, &adapter->state);
3017	return 0;
3018}
3019
3020/**
3021 *  igb_open - Called when a network interface is made active
3022 *  @netdev: network interface device structure
3023 *
3024 *  Returns 0 on success, negative value on failure
3025 *
3026 *  The open entry point is called when a network interface is made
3027 *  active by the system (IFF_UP).  At this point all resources needed
3028 *  for transmit and receive operations are allocated, the interrupt
3029 *  handler is registered with the OS, the watchdog timer is started,
3030 *  and the stack is notified that the interface is ready.
3031 **/
3032static int __igb_open(struct net_device *netdev, bool resuming)
3033{
3034	struct igb_adapter *adapter = netdev_priv(netdev);
3035	struct e1000_hw *hw = &adapter->hw;
3036	struct pci_dev *pdev = adapter->pdev;
3037	int err;
3038	int i;
3039
3040	/* disallow open during test */
3041	if (test_bit(__IGB_TESTING, &adapter->state)) {
3042		WARN_ON(resuming);
3043		return -EBUSY;
3044	}
3045
3046	if (!resuming)
3047		pm_runtime_get_sync(&pdev->dev);
3048
3049	netif_carrier_off(netdev);
3050
3051	/* allocate transmit descriptors */
3052	err = igb_setup_all_tx_resources(adapter);
3053	if (err)
3054		goto err_setup_tx;
3055
3056	/* allocate receive descriptors */
3057	err = igb_setup_all_rx_resources(adapter);
3058	if (err)
3059		goto err_setup_rx;
3060
3061	igb_power_up_link(adapter);
3062
3063	/* before we allocate an interrupt, we must be ready to handle it.
3064	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3065	 * as soon as we call pci_request_irq, so we have to setup our
3066	 * clean_rx handler before we do so.
3067	 */
3068	igb_configure(adapter);
3069
3070	err = igb_request_irq(adapter);
3071	if (err)
3072		goto err_req_irq;
3073
3074	/* Notify the stack of the actual queue counts. */
3075	err = netif_set_real_num_tx_queues(adapter->netdev,
3076					   adapter->num_tx_queues);
3077	if (err)
3078		goto err_set_queues;
3079
3080	err = netif_set_real_num_rx_queues(adapter->netdev,
3081					   adapter->num_rx_queues);
3082	if (err)
3083		goto err_set_queues;
3084
3085	/* From here on the code is the same as igb_up() */
3086	clear_bit(__IGB_DOWN, &adapter->state);
3087
3088	for (i = 0; i < adapter->num_q_vectors; i++)
3089		napi_enable(&(adapter->q_vector[i]->napi));
3090
3091	/* Clear any pending interrupts. */
3092	rd32(E1000_ICR);
3093
3094	igb_irq_enable(adapter);
3095
3096	/* notify VFs that reset has been completed */
3097	if (adapter->vfs_allocated_count) {
3098		u32 reg_data = rd32(E1000_CTRL_EXT);
3099
3100		reg_data |= E1000_CTRL_EXT_PFRSTD;
3101		wr32(E1000_CTRL_EXT, reg_data);
3102	}
3103
3104	netif_tx_start_all_queues(netdev);
3105
3106	if (!resuming)
3107		pm_runtime_put(&pdev->dev);
3108
3109	/* start the watchdog. */
3110	hw->mac.get_link_status = 1;
3111	schedule_work(&adapter->watchdog_task);
3112
3113	return 0;
3114
3115err_set_queues:
3116	igb_free_irq(adapter);
3117err_req_irq:
3118	igb_release_hw_control(adapter);
3119	igb_power_down_link(adapter);
3120	igb_free_all_rx_resources(adapter);
3121err_setup_rx:
3122	igb_free_all_tx_resources(adapter);
3123err_setup_tx:
3124	igb_reset(adapter);
3125	if (!resuming)
3126		pm_runtime_put(&pdev->dev);
3127
3128	return err;
3129}
3130
3131static int igb_open(struct net_device *netdev)
3132{
3133	return __igb_open(netdev, false);
3134}
3135
3136/**
3137 *  igb_close - Disables a network interface
3138 *  @netdev: network interface device structure
3139 *
3140 *  Returns 0, this is not allowed to fail
3141 *
3142 *  The close entry point is called when an interface is de-activated
3143 *  by the OS.  The hardware is still under the driver's control, but
3144 *  needs to be disabled.  A global MAC reset is issued to stop the
3145 *  hardware, and all transmit and receive resources are freed.
3146 **/
3147static int __igb_close(struct net_device *netdev, bool suspending)
3148{
3149	struct igb_adapter *adapter = netdev_priv(netdev);
3150	struct pci_dev *pdev = adapter->pdev;
3151
3152	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3153
3154	if (!suspending)
3155		pm_runtime_get_sync(&pdev->dev);
3156
3157	igb_down(adapter);
3158	igb_free_irq(adapter);
3159
3160	igb_free_all_tx_resources(adapter);
3161	igb_free_all_rx_resources(adapter);
3162
3163	if (!suspending)
3164		pm_runtime_put_sync(&pdev->dev);
3165	return 0;
3166}
3167
3168static int igb_close(struct net_device *netdev)
3169{
3170	return __igb_close(netdev, false);
3171}
3172
3173/**
3174 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3175 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3176 *
3177 *  Return 0 on success, negative on failure
3178 **/
3179int igb_setup_tx_resources(struct igb_ring *tx_ring)
3180{
3181	struct device *dev = tx_ring->dev;
3182	int size;
3183
3184	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3185
3186	tx_ring->tx_buffer_info = vzalloc(size);
3187	if (!tx_ring->tx_buffer_info)
3188		goto err;
3189
3190	/* round up to nearest 4K */
3191	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3192	tx_ring->size = ALIGN(tx_ring->size, 4096);
3193
3194	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3195					   &tx_ring->dma, GFP_KERNEL);
3196	if (!tx_ring->desc)
3197		goto err;
3198
3199	tx_ring->next_to_use = 0;
3200	tx_ring->next_to_clean = 0;
3201
3202	return 0;
3203
3204err:
3205	vfree(tx_ring->tx_buffer_info);
3206	tx_ring->tx_buffer_info = NULL;
3207	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3208	return -ENOMEM;
3209}
3210
3211/**
3212 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3213 *				 (Descriptors) for all queues
3214 *  @adapter: board private structure
3215 *
3216 *  Return 0 on success, negative on failure
3217 **/
3218static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3219{
3220	struct pci_dev *pdev = adapter->pdev;
3221	int i, err = 0;
3222
3223	for (i = 0; i < adapter->num_tx_queues; i++) {
3224		err = igb_setup_tx_resources(adapter->tx_ring[i]);
3225		if (err) {
3226			dev_err(&pdev->dev,
3227				"Allocation for Tx Queue %u failed\n", i);
3228			for (i--; i >= 0; i--)
3229				igb_free_tx_resources(adapter->tx_ring[i]);
3230			break;
3231		}
3232	}
3233
3234	return err;
3235}
3236
3237/**
3238 *  igb_setup_tctl - configure the transmit control registers
3239 *  @adapter: Board private structure
3240 **/
3241void igb_setup_tctl(struct igb_adapter *adapter)
3242{
3243	struct e1000_hw *hw = &adapter->hw;
3244	u32 tctl;
3245
3246	/* disable queue 0 which is enabled by default on 82575 and 82576 */
3247	wr32(E1000_TXDCTL(0), 0);
3248
3249	/* Program the Transmit Control Register */
3250	tctl = rd32(E1000_TCTL);
3251	tctl &= ~E1000_TCTL_CT;
3252	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3253		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3254
3255	igb_config_collision_dist(hw);
3256
3257	/* Enable transmits */
3258	tctl |= E1000_TCTL_EN;
3259
3260	wr32(E1000_TCTL, tctl);
3261}
3262
3263/**
3264 *  igb_configure_tx_ring - Configure transmit ring after Reset
3265 *  @adapter: board private structure
3266 *  @ring: tx ring to configure
3267 *
3268 *  Configure a transmit ring after a reset.
3269 **/
3270void igb_configure_tx_ring(struct igb_adapter *adapter,
3271			   struct igb_ring *ring)
3272{
3273	struct e1000_hw *hw = &adapter->hw;
3274	u32 txdctl = 0;
3275	u64 tdba = ring->dma;
3276	int reg_idx = ring->reg_idx;
3277
3278	/* disable the queue */
3279	wr32(E1000_TXDCTL(reg_idx), 0);
3280	wrfl();
3281	mdelay(10);
3282
3283	wr32(E1000_TDLEN(reg_idx),
3284	     ring->count * sizeof(union e1000_adv_tx_desc));
3285	wr32(E1000_TDBAL(reg_idx),
3286	     tdba & 0x00000000ffffffffULL);
3287	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3288
3289	ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3290	wr32(E1000_TDH(reg_idx), 0);
3291	writel(0, ring->tail);
3292
3293	txdctl |= IGB_TX_PTHRESH;
3294	txdctl |= IGB_TX_HTHRESH << 8;
3295	txdctl |= IGB_TX_WTHRESH << 16;
3296
3297	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3298	wr32(E1000_TXDCTL(reg_idx), txdctl);
3299}
3300
3301/**
3302 *  igb_configure_tx - Configure transmit Unit after Reset
3303 *  @adapter: board private structure
3304 *
3305 *  Configure the Tx unit of the MAC after a reset.
3306 **/
3307static void igb_configure_tx(struct igb_adapter *adapter)
3308{
3309	int i;
3310
3311	for (i = 0; i < adapter->num_tx_queues; i++)
3312		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3313}
3314
3315/**
3316 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3317 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3318 *
3319 *  Returns 0 on success, negative on failure
3320 **/
3321int igb_setup_rx_resources(struct igb_ring *rx_ring)
3322{
3323	struct device *dev = rx_ring->dev;
3324	int size;
3325
3326	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3327
3328	rx_ring->rx_buffer_info = vzalloc(size);
3329	if (!rx_ring->rx_buffer_info)
3330		goto err;
3331
3332	/* Round up to nearest 4K */
3333	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3334	rx_ring->size = ALIGN(rx_ring->size, 4096);
3335
3336	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3337					   &rx_ring->dma, GFP_KERNEL);
3338	if (!rx_ring->desc)
3339		goto err;
3340
3341	rx_ring->next_to_alloc = 0;
3342	rx_ring->next_to_clean = 0;
3343	rx_ring->next_to_use = 0;
3344
3345	return 0;
3346
3347err:
3348	vfree(rx_ring->rx_buffer_info);
3349	rx_ring->rx_buffer_info = NULL;
3350	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3351	return -ENOMEM;
3352}
3353
3354/**
3355 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3356 *				 (Descriptors) for all queues
3357 *  @adapter: board private structure
3358 *
3359 *  Return 0 on success, negative on failure
3360 **/
3361static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3362{
3363	struct pci_dev *pdev = adapter->pdev;
3364	int i, err = 0;
3365
3366	for (i = 0; i < adapter->num_rx_queues; i++) {
3367		err = igb_setup_rx_resources(adapter->rx_ring[i]);
3368		if (err) {
3369			dev_err(&pdev->dev,
3370				"Allocation for Rx Queue %u failed\n", i);
3371			for (i--; i >= 0; i--)
3372				igb_free_rx_resources(adapter->rx_ring[i]);
3373			break;
3374		}
3375	}
3376
3377	return err;
3378}
3379
3380/**
3381 *  igb_setup_mrqc - configure the multiple receive queue control registers
3382 *  @adapter: Board private structure
3383 **/
3384static void igb_setup_mrqc(struct igb_adapter *adapter)
3385{
3386	struct e1000_hw *hw = &adapter->hw;
3387	u32 mrqc, rxcsum;
3388	u32 j, num_rx_queues;
3389	u32 rss_key[10];
3390
3391	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3392	for (j = 0; j < 10; j++)
3393		wr32(E1000_RSSRK(j), rss_key[j]);
3394
3395	num_rx_queues = adapter->rss_queues;
3396
3397	switch (hw->mac.type) {
3398	case e1000_82576:
3399		/* 82576 supports 2 RSS queues for SR-IOV */
3400		if (adapter->vfs_allocated_count)
3401			num_rx_queues = 2;
3402		break;
3403	default:
3404		break;
3405	}
3406
3407	if (adapter->rss_indir_tbl_init != num_rx_queues) {
3408		for (j = 0; j < IGB_RETA_SIZE; j++)
3409			adapter->rss_indir_tbl[j] =
3410			(j * num_rx_queues) / IGB_RETA_SIZE;
3411		adapter->rss_indir_tbl_init = num_rx_queues;
3412	}
3413	igb_write_rss_indir_tbl(adapter);
3414
3415	/* Disable raw packet checksumming so that RSS hash is placed in
3416	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3417	 * offloads as they are enabled by default
3418	 */
3419	rxcsum = rd32(E1000_RXCSUM);
3420	rxcsum |= E1000_RXCSUM_PCSD;
3421
3422	if (adapter->hw.mac.type >= e1000_82576)
3423		/* Enable Receive Checksum Offload for SCTP */
3424		rxcsum |= E1000_RXCSUM_CRCOFL;
3425
3426	/* Don't need to set TUOFL or IPOFL, they default to 1 */
3427	wr32(E1000_RXCSUM, rxcsum);
3428
3429	/* Generate RSS hash based on packet types, TCP/UDP
3430	 * port numbers and/or IPv4/v6 src and dst addresses
3431	 */
3432	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3433	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
3434	       E1000_MRQC_RSS_FIELD_IPV6 |
3435	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
3436	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3437
3438	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3439		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3440	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3441		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3442
3443	/* If VMDq is enabled then we set the appropriate mode for that, else
3444	 * we default to RSS so that an RSS hash is calculated per packet even
3445	 * if we are only using one queue
3446	 */
3447	if (adapter->vfs_allocated_count) {
3448		if (hw->mac.type > e1000_82575) {
3449			/* Set the default pool for the PF's first queue */
3450			u32 vtctl = rd32(E1000_VT_CTL);
3451
3452			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3453				   E1000_VT_CTL_DISABLE_DEF_POOL);
3454			vtctl |= adapter->vfs_allocated_count <<
3455				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3456			wr32(E1000_VT_CTL, vtctl);
3457		}
3458		if (adapter->rss_queues > 1)
3459			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3460		else
3461			mrqc |= E1000_MRQC_ENABLE_VMDQ;
3462	} else {
3463		if (hw->mac.type != e1000_i211)
3464			mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3465	}
3466	igb_vmm_control(adapter);
3467
3468	wr32(E1000_MRQC, mrqc);
3469}
3470
3471/**
3472 *  igb_setup_rctl - configure the receive control registers
3473 *  @adapter: Board private structure
3474 **/
3475void igb_setup_rctl(struct igb_adapter *adapter)
3476{
3477	struct e1000_hw *hw = &adapter->hw;
3478	u32 rctl;
3479
3480	rctl = rd32(E1000_RCTL);
3481
3482	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3483	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3484
3485	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3486		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3487
3488	/* enable stripping of CRC. It's unlikely this will break BMC
3489	 * redirection as it did with e1000. Newer features require
3490	 * that the HW strips the CRC.
3491	 */
3492	rctl |= E1000_RCTL_SECRC;
3493
3494	/* disable store bad packets and clear size bits. */
3495	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3496
3497	/* enable LPE to prevent packets larger than max_frame_size */
3498	rctl |= E1000_RCTL_LPE;
3499
3500	/* disable queue 0 to prevent tail write w/o re-config */
3501	wr32(E1000_RXDCTL(0), 0);
3502
3503	/* Attention!!!  For SR-IOV PF driver operations you must enable
3504	 * queue drop for all VF and PF queues to prevent head of line blocking
3505	 * if an un-trusted VF does not provide descriptors to hardware.
3506	 */
3507	if (adapter->vfs_allocated_count) {
3508		/* set all queue drop enable bits */
3509		wr32(E1000_QDE, ALL_QUEUES);
3510	}
3511
3512	/* This is useful for sniffing bad packets. */
3513	if (adapter->netdev->features & NETIF_F_RXALL) {
3514		/* UPE and MPE will be handled by normal PROMISC logic
3515		 * in e1000e_set_rx_mode
3516		 */
3517		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3518			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3519			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3520
3521		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3522			  E1000_RCTL_DPF | /* Allow filtered pause */
3523			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3524		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3525		 * and that breaks VLANs.
3526		 */
3527	}
3528
3529	wr32(E1000_RCTL, rctl);
3530}
3531
3532static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3533				   int vfn)
3534{
3535	struct e1000_hw *hw = &adapter->hw;
3536	u32 vmolr;
3537
3538	/* if it isn't the PF check to see if VFs are enabled and
3539	 * increase the size to support vlan tags
3540	 */
3541	if (vfn < adapter->vfs_allocated_count &&
3542	    adapter->vf_data[vfn].vlans_enabled)
3543		size += VLAN_TAG_SIZE;
3544
3545	vmolr = rd32(E1000_VMOLR(vfn));
3546	vmolr &= ~E1000_VMOLR_RLPML_MASK;
3547	vmolr |= size | E1000_VMOLR_LPE;
3548	wr32(E1000_VMOLR(vfn), vmolr);
3549
3550	return 0;
3551}
3552
3553/**
3554 *  igb_rlpml_set - set maximum receive packet size
3555 *  @adapter: board private structure
3556 *
3557 *  Configure maximum receivable packet size.
3558 **/
3559static void igb_rlpml_set(struct igb_adapter *adapter)
3560{
3561	u32 max_frame_size = adapter->max_frame_size;
3562	struct e1000_hw *hw = &adapter->hw;
3563	u16 pf_id = adapter->vfs_allocated_count;
3564
3565	if (pf_id) {
3566		igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3567		/* If we're in VMDQ or SR-IOV mode, then set global RLPML
3568		 * to our max jumbo frame size, in case we need to enable
3569		 * jumbo frames on one of the rings later.
3570		 * This will not pass over-length frames into the default
3571		 * queue because it's gated by the VMOLR.RLPML.
3572		 */
3573		max_frame_size = MAX_JUMBO_FRAME_SIZE;
3574	}
3575
3576	wr32(E1000_RLPML, max_frame_size);
3577}
3578
3579static inline void igb_set_vmolr(struct igb_adapter *adapter,
3580				 int vfn, bool aupe)
3581{
3582	struct e1000_hw *hw = &adapter->hw;
3583	u32 vmolr;
3584
3585	/* This register exists only on 82576 and newer so if we are older then
3586	 * we should exit and do nothing
3587	 */
3588	if (hw->mac.type < e1000_82576)
3589		return;
3590
3591	vmolr = rd32(E1000_VMOLR(vfn));
3592	vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3593	if (hw->mac.type == e1000_i350) {
3594		u32 dvmolr;
3595
3596		dvmolr = rd32(E1000_DVMOLR(vfn));
3597		dvmolr |= E1000_DVMOLR_STRVLAN;
3598		wr32(E1000_DVMOLR(vfn), dvmolr);
3599	}
3600	if (aupe)
3601		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3602	else
3603		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3604
3605	/* clear all bits that might not be set */
3606	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3607
3608	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3609		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3610	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
3611	 * multicast packets
3612	 */
3613	if (vfn <= adapter->vfs_allocated_count)
3614		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3615
3616	wr32(E1000_VMOLR(vfn), vmolr);
3617}
3618
3619/**
3620 *  igb_configure_rx_ring - Configure a receive ring after Reset
3621 *  @adapter: board private structure
3622 *  @ring: receive ring to be configured
3623 *
3624 *  Configure the Rx unit of the MAC after a reset.
3625 **/
3626void igb_configure_rx_ring(struct igb_adapter *adapter,
3627			   struct igb_ring *ring)
3628{
3629	struct e1000_hw *hw = &adapter->hw;
3630	u64 rdba = ring->dma;
3631	int reg_idx = ring->reg_idx;
3632	u32 srrctl = 0, rxdctl = 0;
3633
3634	/* disable the queue */
3635	wr32(E1000_RXDCTL(reg_idx), 0);
3636
3637	/* Set DMA base address registers */
3638	wr32(E1000_RDBAL(reg_idx),
3639	     rdba & 0x00000000ffffffffULL);
3640	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3641	wr32(E1000_RDLEN(reg_idx),
3642	     ring->count * sizeof(union e1000_adv_rx_desc));
3643
3644	/* initialize head and tail */
3645	ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3646	wr32(E1000_RDH(reg_idx), 0);
3647	writel(0, ring->tail);
3648
3649	/* set descriptor configuration */
3650	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3651	srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3652	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3653	if (hw->mac.type >= e1000_82580)
3654		srrctl |= E1000_SRRCTL_TIMESTAMP;
3655	/* Only set Drop Enable if we are supporting multiple queues */
3656	if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3657		srrctl |= E1000_SRRCTL_DROP_EN;
3658
3659	wr32(E1000_SRRCTL(reg_idx), srrctl);
3660
3661	/* set filtering for VMDQ pools */
3662	igb_set_vmolr(adapter, reg_idx & 0x7, true);
3663
3664	rxdctl |= IGB_RX_PTHRESH;
3665	rxdctl |= IGB_RX_HTHRESH << 8;
3666	rxdctl |= IGB_RX_WTHRESH << 16;
3667
3668	/* enable receive descriptor fetching */
3669	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3670	wr32(E1000_RXDCTL(reg_idx), rxdctl);
3671}
3672
3673/**
3674 *  igb_configure_rx - Configure receive Unit after Reset
3675 *  @adapter: board private structure
3676 *
3677 *  Configure the Rx unit of the MAC after a reset.
3678 **/
3679static void igb_configure_rx(struct igb_adapter *adapter)
3680{
3681	int i;
3682
3683	/* set UTA to appropriate mode */
3684	igb_set_uta(adapter);
3685
3686	/* set the correct pool for the PF default MAC address in entry 0 */
3687	igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3688			 adapter->vfs_allocated_count);
3689
3690	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3691	 * the Base and Length of the Rx Descriptor Ring
3692	 */
3693	for (i = 0; i < adapter->num_rx_queues; i++)
3694		igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3695}
3696
3697/**
3698 *  igb_free_tx_resources - Free Tx Resources per Queue
3699 *  @tx_ring: Tx descriptor ring for a specific queue
3700 *
3701 *  Free all transmit software resources
3702 **/
3703void igb_free_tx_resources(struct igb_ring *tx_ring)
3704{
3705	igb_clean_tx_ring(tx_ring);
3706
3707	vfree(tx_ring->tx_buffer_info);
3708	tx_ring->tx_buffer_info = NULL;
3709
3710	/* if not set, then don't free */
3711	if (!tx_ring->desc)
3712		return;
3713
3714	dma_free_coherent(tx_ring->dev, tx_ring->size,
3715			  tx_ring->desc, tx_ring->dma);
3716
3717	tx_ring->desc = NULL;
3718}
3719
3720/**
3721 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3722 *  @adapter: board private structure
3723 *
3724 *  Free all transmit software resources
3725 **/
3726static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3727{
3728	int i;
3729
3730	for (i = 0; i < adapter->num_tx_queues; i++)
3731		if (adapter->tx_ring[i])
3732			igb_free_tx_resources(adapter->tx_ring[i]);
3733}
3734
3735void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3736				    struct igb_tx_buffer *tx_buffer)
3737{
3738	if (tx_buffer->skb) {
3739		dev_kfree_skb_any(tx_buffer->skb);
3740		if (dma_unmap_len(tx_buffer, len))
3741			dma_unmap_single(ring->dev,
3742					 dma_unmap_addr(tx_buffer, dma),
3743					 dma_unmap_len(tx_buffer, len),
3744					 DMA_TO_DEVICE);
3745	} else if (dma_unmap_len(tx_buffer, len)) {
3746		dma_unmap_page(ring->dev,
3747			       dma_unmap_addr(tx_buffer, dma),
3748			       dma_unmap_len(tx_buffer, len),
3749			       DMA_TO_DEVICE);
3750	}
3751	tx_buffer->next_to_watch = NULL;
3752	tx_buffer->skb = NULL;
3753	dma_unmap_len_set(tx_buffer, len, 0);
3754	/* buffer_info must be completely set up in the transmit path */
3755}
3756
3757/**
3758 *  igb_clean_tx_ring - Free Tx Buffers
3759 *  @tx_ring: ring to be cleaned
3760 **/
3761static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3762{
3763	struct igb_tx_buffer *buffer_info;
3764	unsigned long size;
3765	u16 i;
3766
3767	if (!tx_ring->tx_buffer_info)
3768		return;
3769	/* Free all the Tx ring sk_buffs */
3770
3771	for (i = 0; i < tx_ring->count; i++) {
3772		buffer_info = &tx_ring->tx_buffer_info[i];
3773		igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3774	}
3775
3776	netdev_tx_reset_queue(txring_txq(tx_ring));
3777
3778	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3779	memset(tx_ring->tx_buffer_info, 0, size);
3780
3781	/* Zero out the descriptor ring */
3782	memset(tx_ring->desc, 0, tx_ring->size);
3783
3784	tx_ring->next_to_use = 0;
3785	tx_ring->next_to_clean = 0;
3786}
3787
3788/**
3789 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3790 *  @adapter: board private structure
3791 **/
3792static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3793{
3794	int i;
3795
3796	for (i = 0; i < adapter->num_tx_queues; i++)
3797		if (adapter->tx_ring[i])
3798			igb_clean_tx_ring(adapter->tx_ring[i]);
3799}
3800
3801/**
3802 *  igb_free_rx_resources - Free Rx Resources
3803 *  @rx_ring: ring to clean the resources from
3804 *
3805 *  Free all receive software resources
3806 **/
3807void igb_free_rx_resources(struct igb_ring *rx_ring)
3808{
3809	igb_clean_rx_ring(rx_ring);
3810
3811	vfree(rx_ring->rx_buffer_info);
3812	rx_ring->rx_buffer_info = NULL;
3813
3814	/* if not set, then don't free */
3815	if (!rx_ring->desc)
3816		return;
3817
3818	dma_free_coherent(rx_ring->dev, rx_ring->size,
3819			  rx_ring->desc, rx_ring->dma);
3820
3821	rx_ring->desc = NULL;
3822}
3823
3824/**
3825 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3826 *  @adapter: board private structure
3827 *
3828 *  Free all receive software resources
3829 **/
3830static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3831{
3832	int i;
3833
3834	for (i = 0; i < adapter->num_rx_queues; i++)
3835		if (adapter->rx_ring[i])
3836			igb_free_rx_resources(adapter->rx_ring[i]);
3837}
3838
3839/**
3840 *  igb_clean_rx_ring - Free Rx Buffers per Queue
3841 *  @rx_ring: ring to free buffers from
3842 **/
3843static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3844{
3845	unsigned long size;
3846	u16 i;
3847
3848	if (rx_ring->skb)
3849		dev_kfree_skb(rx_ring->skb);
3850	rx_ring->skb = NULL;
3851
3852	if (!rx_ring->rx_buffer_info)
3853		return;
3854
3855	/* Free all the Rx ring sk_buffs */
3856	for (i = 0; i < rx_ring->count; i++) {
3857		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3858
3859		if (!buffer_info->page)
3860			continue;
3861
3862		dma_unmap_page(rx_ring->dev,
3863			       buffer_info->dma,
3864			       PAGE_SIZE,
3865			       DMA_FROM_DEVICE);
3866		__free_page(buffer_info->page);
3867
3868		buffer_info->page = NULL;
3869	}
3870
3871	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3872	memset(rx_ring->rx_buffer_info, 0, size);
3873
3874	/* Zero out the descriptor ring */
3875	memset(rx_ring->desc, 0, rx_ring->size);
3876
3877	rx_ring->next_to_alloc = 0;
3878	rx_ring->next_to_clean = 0;
3879	rx_ring->next_to_use = 0;
3880}
3881
3882/**
3883 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3884 *  @adapter: board private structure
3885 **/
3886static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3887{
3888	int i;
3889
3890	for (i = 0; i < adapter->num_rx_queues; i++)
3891		if (adapter->rx_ring[i])
3892			igb_clean_rx_ring(adapter->rx_ring[i]);
3893}
3894
3895/**
3896 *  igb_set_mac - Change the Ethernet Address of the NIC
3897 *  @netdev: network interface device structure
3898 *  @p: pointer to an address structure
3899 *
3900 *  Returns 0 on success, negative on failure
3901 **/
3902static int igb_set_mac(struct net_device *netdev, void *p)
3903{
3904	struct igb_adapter *adapter = netdev_priv(netdev);
3905	struct e1000_hw *hw = &adapter->hw;
3906	struct sockaddr *addr = p;
3907
3908	if (!is_valid_ether_addr(addr->sa_data))
3909		return -EADDRNOTAVAIL;
3910
3911	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3912	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3913
3914	/* set the correct pool for the new PF MAC address in entry 0 */
3915	igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3916			 adapter->vfs_allocated_count);
3917
3918	return 0;
3919}
3920
3921/**
3922 *  igb_write_mc_addr_list - write multicast addresses to MTA
3923 *  @netdev: network interface device structure
3924 *
3925 *  Writes multicast address list to the MTA hash table.
3926 *  Returns: -ENOMEM on failure
3927 *           0 on no addresses written
3928 *           X on writing X addresses to MTA
3929 **/
3930static int igb_write_mc_addr_list(struct net_device *netdev)
3931{
3932	struct igb_adapter *adapter = netdev_priv(netdev);
3933	struct e1000_hw *hw = &adapter->hw;
3934	struct netdev_hw_addr *ha;
3935	u8  *mta_list;
3936	int i;
3937
3938	if (netdev_mc_empty(netdev)) {
3939		/* nothing to program, so clear mc list */
3940		igb_update_mc_addr_list(hw, NULL, 0);
3941		igb_restore_vf_multicasts(adapter);
3942		return 0;
3943	}
3944
3945	mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3946	if (!mta_list)
3947		return -ENOMEM;
3948
3949	/* The shared function expects a packed array of only addresses. */
3950	i = 0;
3951	netdev_for_each_mc_addr(ha, netdev)
3952		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3953
3954	igb_update_mc_addr_list(hw, mta_list, i);
3955	kfree(mta_list);
3956
3957	return netdev_mc_count(netdev);
3958}
3959
3960/**
3961 *  igb_write_uc_addr_list - write unicast addresses to RAR table
3962 *  @netdev: network interface device structure
3963 *
3964 *  Writes unicast address list to the RAR table.
3965 *  Returns: -ENOMEM on failure/insufficient address space
3966 *           0 on no addresses written
3967 *           X on writing X addresses to the RAR table
3968 **/
3969static int igb_write_uc_addr_list(struct net_device *netdev)
3970{
3971	struct igb_adapter *adapter = netdev_priv(netdev);
3972	struct e1000_hw *hw = &adapter->hw;
3973	unsigned int vfn = adapter->vfs_allocated_count;
3974	unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3975	int count = 0;
3976
3977	/* return ENOMEM indicating insufficient memory for addresses */
3978	if (netdev_uc_count(netdev) > rar_entries)
3979		return -ENOMEM;
3980
3981	if (!netdev_uc_empty(netdev) && rar_entries) {
3982		struct netdev_hw_addr *ha;
3983
3984		netdev_for_each_uc_addr(ha, netdev) {
3985			if (!rar_entries)
3986				break;
3987			igb_rar_set_qsel(adapter, ha->addr,
3988					 rar_entries--,
3989					 vfn);
3990			count++;
3991		}
3992	}
3993	/* write the addresses in reverse order to avoid write combining */
3994	for (; rar_entries > 0 ; rar_entries--) {
3995		wr32(E1000_RAH(rar_entries), 0);
3996		wr32(E1000_RAL(rar_entries), 0);
3997	}
3998	wrfl();
3999
4000	return count;
4001}
4002
4003/**
4004 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4005 *  @netdev: network interface device structure
4006 *
4007 *  The set_rx_mode entry point is called whenever the unicast or multicast
4008 *  address lists or the network interface flags are updated.  This routine is
4009 *  responsible for configuring the hardware for proper unicast, multicast,
4010 *  promiscuous mode, and all-multi behavior.
4011 **/
4012static void igb_set_rx_mode(struct net_device *netdev)
4013{
4014	struct igb_adapter *adapter = netdev_priv(netdev);
4015	struct e1000_hw *hw = &adapter->hw;
4016	unsigned int vfn = adapter->vfs_allocated_count;
4017	u32 rctl, vmolr = 0;
4018	int count;
4019
4020	/* Check for Promiscuous and All Multicast modes */
4021	rctl = rd32(E1000_RCTL);
4022
4023	/* clear the effected bits */
4024	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4025
4026	if (netdev->flags & IFF_PROMISC) {
4027		/* retain VLAN HW filtering if in VT mode */
4028		if (adapter->vfs_allocated_count)
4029			rctl |= E1000_RCTL_VFE;
4030		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4031		vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4032	} else {
4033		if (netdev->flags & IFF_ALLMULTI) {
4034			rctl |= E1000_RCTL_MPE;
4035			vmolr |= E1000_VMOLR_MPME;
4036		} else {
4037			/* Write addresses to the MTA, if the attempt fails
4038			 * then we should just turn on promiscuous mode so
4039			 * that we can at least receive multicast traffic
4040			 */
4041			count = igb_write_mc_addr_list(netdev);
4042			if (count < 0) {
4043				rctl |= E1000_RCTL_MPE;
4044				vmolr |= E1000_VMOLR_MPME;
4045			} else if (count) {
4046				vmolr |= E1000_VMOLR_ROMPE;
4047			}
4048		}
4049		/* Write addresses to available RAR registers, if there is not
4050		 * sufficient space to store all the addresses then enable
4051		 * unicast promiscuous mode
4052		 */
4053		count = igb_write_uc_addr_list(netdev);
4054		if (count < 0) {
4055			rctl |= E1000_RCTL_UPE;
4056			vmolr |= E1000_VMOLR_ROPE;
4057		}
4058		rctl |= E1000_RCTL_VFE;
4059	}
4060	wr32(E1000_RCTL, rctl);
4061
4062	/* In order to support SR-IOV and eventually VMDq it is necessary to set
4063	 * the VMOLR to enable the appropriate modes.  Without this workaround
4064	 * we will have issues with VLAN tag stripping not being done for frames
4065	 * that are only arriving because we are the default pool
4066	 */
4067	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4068		return;
4069
4070	vmolr |= rd32(E1000_VMOLR(vfn)) &
4071		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4072	wr32(E1000_VMOLR(vfn), vmolr);
4073	igb_restore_vf_multicasts(adapter);
4074}
4075
4076static void igb_check_wvbr(struct igb_adapter *adapter)
4077{
4078	struct e1000_hw *hw = &adapter->hw;
4079	u32 wvbr = 0;
4080
4081	switch (hw->mac.type) {
4082	case e1000_82576:
4083	case e1000_i350:
4084		wvbr = rd32(E1000_WVBR);
4085		if (!wvbr)
4086			return;
4087		break;
4088	default:
4089		break;
4090	}
4091
4092	adapter->wvbr |= wvbr;
4093}
4094
4095#define IGB_STAGGERED_QUEUE_OFFSET 8
4096
4097static void igb_spoof_check(struct igb_adapter *adapter)
4098{
4099	int j;
4100
4101	if (!adapter->wvbr)
4102		return;
4103
4104	for (j = 0; j < adapter->vfs_allocated_count; j++) {
4105		if (adapter->wvbr & (1 << j) ||
4106		    adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4107			dev_warn(&adapter->pdev->dev,
4108				"Spoof event(s) detected on VF %d\n", j);
4109			adapter->wvbr &=
4110				~((1 << j) |
4111				  (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4112		}
4113	}
4114}
4115
4116/* Need to wait a few seconds after link up to get diagnostic information from
4117 * the phy
4118 */
4119static void igb_update_phy_info(unsigned long data)
4120{
4121	struct igb_adapter *adapter = (struct igb_adapter *) data;
4122	igb_get_phy_info(&adapter->hw);
4123}
4124
4125/**
4126 *  igb_has_link - check shared code for link and determine up/down
4127 *  @adapter: pointer to driver private info
4128 **/
4129bool igb_has_link(struct igb_adapter *adapter)
4130{
4131	struct e1000_hw *hw = &adapter->hw;
4132	bool link_active = false;
4133
4134	/* get_link_status is set on LSC (link status) interrupt or
4135	 * rx sequence error interrupt.  get_link_status will stay
4136	 * false until the e1000_check_for_link establishes link
4137	 * for copper adapters ONLY
4138	 */
4139	switch (hw->phy.media_type) {
4140	case e1000_media_type_copper:
4141		if (!hw->mac.get_link_status)
4142			return true;
4143	case e1000_media_type_internal_serdes:
4144		hw->mac.ops.check_for_link(hw);
4145		link_active = !hw->mac.get_link_status;
4146		break;
4147	default:
4148	case e1000_media_type_unknown:
4149		break;
4150	}
4151
4152	if (((hw->mac.type == e1000_i210) ||
4153	     (hw->mac.type == e1000_i211)) &&
4154	     (hw->phy.id == I210_I_PHY_ID)) {
4155		if (!netif_carrier_ok(adapter->netdev)) {
4156			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4157		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4158			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4159			adapter->link_check_timeout = jiffies;
4160		}
4161	}
4162
4163	return link_active;
4164}
4165
4166static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4167{
4168	bool ret = false;
4169	u32 ctrl_ext, thstat;
4170
4171	/* check for thermal sensor event on i350 copper only */
4172	if (hw->mac.type == e1000_i350) {
4173		thstat = rd32(E1000_THSTAT);
4174		ctrl_ext = rd32(E1000_CTRL_EXT);
4175
4176		if ((hw->phy.media_type == e1000_media_type_copper) &&
4177		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4178			ret = !!(thstat & event);
4179	}
4180
4181	return ret;
4182}
4183
4184/**
4185 *  igb_check_lvmmc - check for malformed packets received
4186 *  and indicated in LVMMC register
4187 *  @adapter: pointer to adapter
4188 **/
4189static void igb_check_lvmmc(struct igb_adapter *adapter)
4190{
4191	struct e1000_hw *hw = &adapter->hw;
4192	u32 lvmmc;
4193
4194	lvmmc = rd32(E1000_LVMMC);
4195	if (lvmmc) {
4196		if (unlikely(net_ratelimit())) {
4197			netdev_warn(adapter->netdev,
4198				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4199				    lvmmc);
4200		}
4201	}
4202}
4203
4204/**
4205 *  igb_watchdog - Timer Call-back
4206 *  @data: pointer to adapter cast into an unsigned long
4207 **/
4208static void igb_watchdog(unsigned long data)
4209{
4210	struct igb_adapter *adapter = (struct igb_adapter *)data;
4211	/* Do the rest outside of interrupt context */
4212	schedule_work(&adapter->watchdog_task);
4213}
4214
4215static void igb_watchdog_task(struct work_struct *work)
4216{
4217	struct igb_adapter *adapter = container_of(work,
4218						   struct igb_adapter,
4219						   watchdog_task);
4220	struct e1000_hw *hw = &adapter->hw;
4221	struct e1000_phy_info *phy = &hw->phy;
4222	struct net_device *netdev = adapter->netdev;
4223	u32 link;
4224	int i;
4225	u32 connsw;
4226
4227	link = igb_has_link(adapter);
4228
4229	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4230		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4231			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4232		else
4233			link = false;
4234	}
4235
4236	/* Force link down if we have fiber to swap to */
4237	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4238		if (hw->phy.media_type == e1000_media_type_copper) {
4239			connsw = rd32(E1000_CONNSW);
4240			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4241				link = 0;
4242		}
4243	}
4244	if (link) {
4245		/* Perform a reset if the media type changed. */
4246		if (hw->dev_spec._82575.media_changed) {
4247			hw->dev_spec._82575.media_changed = false;
4248			adapter->flags |= IGB_FLAG_MEDIA_RESET;
4249			igb_reset(adapter);
4250		}
4251		/* Cancel scheduled suspend requests. */
4252		pm_runtime_resume(netdev->dev.parent);
4253
4254		if (!netif_carrier_ok(netdev)) {
4255			u32 ctrl;
4256
4257			hw->mac.ops.get_speed_and_duplex(hw,
4258							 &adapter->link_speed,
4259							 &adapter->link_duplex);
4260
4261			ctrl = rd32(E1000_CTRL);
4262			/* Links status message must follow this format */
4263			netdev_info(netdev,
4264			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4265			       netdev->name,
4266			       adapter->link_speed,
4267			       adapter->link_duplex == FULL_DUPLEX ?
4268			       "Full" : "Half",
4269			       (ctrl & E1000_CTRL_TFCE) &&
4270			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4271			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4272			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4273
4274			/* disable EEE if enabled */
4275			if ((adapter->flags & IGB_FLAG_EEE) &&
4276				(adapter->link_duplex == HALF_DUPLEX)) {
4277				dev_info(&adapter->pdev->dev,
4278				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4279				adapter->hw.dev_spec._82575.eee_disable = true;
4280				adapter->flags &= ~IGB_FLAG_EEE;
4281			}
4282
4283			/* check if SmartSpeed worked */
4284			igb_check_downshift(hw);
4285			if (phy->speed_downgraded)
4286				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4287
4288			/* check for thermal sensor event */
4289			if (igb_thermal_sensor_event(hw,
4290			    E1000_THSTAT_LINK_THROTTLE))
4291				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4292
4293			/* adjust timeout factor according to speed/duplex */
4294			adapter->tx_timeout_factor = 1;
4295			switch (adapter->link_speed) {
4296			case SPEED_10:
4297				adapter->tx_timeout_factor = 14;
4298				break;
4299			case SPEED_100:
4300				/* maybe add some timeout factor ? */
4301				break;
4302			}
4303
4304			netif_carrier_on(netdev);
4305
4306			igb_ping_all_vfs(adapter);
4307			igb_check_vf_rate_limit(adapter);
4308
4309			/* link state has changed, schedule phy info update */
4310			if (!test_bit(__IGB_DOWN, &adapter->state))
4311				mod_timer(&adapter->phy_info_timer,
4312					  round_jiffies(jiffies + 2 * HZ));
4313		}
4314	} else {
4315		if (netif_carrier_ok(netdev)) {
4316			adapter->link_speed = 0;
4317			adapter->link_duplex = 0;
4318
4319			/* check for thermal sensor event */
4320			if (igb_thermal_sensor_event(hw,
4321			    E1000_THSTAT_PWR_DOWN)) {
4322				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4323			}
4324
4325			/* Links status message must follow this format */
4326			netdev_info(netdev, "igb: %s NIC Link is Down\n",
4327			       netdev->name);
4328			netif_carrier_off(netdev);
4329
4330			igb_ping_all_vfs(adapter);
4331
4332			/* link state has changed, schedule phy info update */
4333			if (!test_bit(__IGB_DOWN, &adapter->state))
4334				mod_timer(&adapter->phy_info_timer,
4335					  round_jiffies(jiffies + 2 * HZ));
4336
4337			/* link is down, time to check for alternate media */
4338			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4339				igb_check_swap_media(adapter);
4340				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4341					schedule_work(&adapter->reset_task);
4342					/* return immediately */
4343					return;
4344				}
4345			}
4346			pm_schedule_suspend(netdev->dev.parent,
4347					    MSEC_PER_SEC * 5);
4348
4349		/* also check for alternate media here */
4350		} else if (!netif_carrier_ok(netdev) &&
4351			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4352			igb_check_swap_media(adapter);
4353			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4354				schedule_work(&adapter->reset_task);
4355				/* return immediately */
4356				return;
4357			}
4358		}
4359	}
4360
4361	spin_lock(&adapter->stats64_lock);
4362	igb_update_stats(adapter, &adapter->stats64);
4363	spin_unlock(&adapter->stats64_lock);
4364
4365	for (i = 0; i < adapter->num_tx_queues; i++) {
4366		struct igb_ring *tx_ring = adapter->tx_ring[i];
4367		if (!netif_carrier_ok(netdev)) {
4368			/* We've lost link, so the controller stops DMA,
4369			 * but we've got queued Tx work that's never going
4370			 * to get done, so reset controller to flush Tx.
4371			 * (Do the reset outside of interrupt context).
4372			 */
4373			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4374				adapter->tx_timeout_count++;
4375				schedule_work(&adapter->reset_task);
4376				/* return immediately since reset is imminent */
4377				return;
4378			}
4379		}
4380
4381		/* Force detection of hung controller every watchdog period */
4382		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4383	}
4384
4385	/* Cause software interrupt to ensure Rx ring is cleaned */
4386	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4387		u32 eics = 0;
4388
4389		for (i = 0; i < adapter->num_q_vectors; i++)
4390			eics |= adapter->q_vector[i]->eims_value;
4391		wr32(E1000_EICS, eics);
4392	} else {
4393		wr32(E1000_ICS, E1000_ICS_RXDMT0);
4394	}
4395
4396	igb_spoof_check(adapter);
4397	igb_ptp_rx_hang(adapter);
4398
4399	/* Check LVMMC register on i350/i354 only */
4400	if ((adapter->hw.mac.type == e1000_i350) ||
4401	    (adapter->hw.mac.type == e1000_i354))
4402		igb_check_lvmmc(adapter);
4403
4404	/* Reset the timer */
4405	if (!test_bit(__IGB_DOWN, &adapter->state)) {
4406		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4407			mod_timer(&adapter->watchdog_timer,
4408				  round_jiffies(jiffies +  HZ));
4409		else
4410			mod_timer(&adapter->watchdog_timer,
4411				  round_jiffies(jiffies + 2 * HZ));
4412	}
4413}
4414
4415enum latency_range {
4416	lowest_latency = 0,
4417	low_latency = 1,
4418	bulk_latency = 2,
4419	latency_invalid = 255
4420};
4421
4422/**
4423 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4424 *  @q_vector: pointer to q_vector
4425 *
4426 *  Stores a new ITR value based on strictly on packet size.  This
4427 *  algorithm is less sophisticated than that used in igb_update_itr,
4428 *  due to the difficulty of synchronizing statistics across multiple
4429 *  receive rings.  The divisors and thresholds used by this function
4430 *  were determined based on theoretical maximum wire speed and testing
4431 *  data, in order to minimize response time while increasing bulk
4432 *  throughput.
4433 *  This functionality is controlled by ethtool's coalescing settings.
4434 *  NOTE:  This function is called only when operating in a multiqueue
4435 *         receive environment.
4436 **/
4437static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4438{
4439	int new_val = q_vector->itr_val;
4440	int avg_wire_size = 0;
4441	struct igb_adapter *adapter = q_vector->adapter;
4442	unsigned int packets;
4443
4444	/* For non-gigabit speeds, just fix the interrupt rate at 4000
4445	 * ints/sec - ITR timer value of 120 ticks.
4446	 */
4447	if (adapter->link_speed != SPEED_1000) {
4448		new_val = IGB_4K_ITR;
4449		goto set_itr_val;
4450	}
4451
4452	packets = q_vector->rx.total_packets;
4453	if (packets)
4454		avg_wire_size = q_vector->rx.total_bytes / packets;
4455
4456	packets = q_vector->tx.total_packets;
4457	if (packets)
4458		avg_wire_size = max_t(u32, avg_wire_size,
4459				      q_vector->tx.total_bytes / packets);
4460
4461	/* if avg_wire_size isn't set no work was done */
4462	if (!avg_wire_size)
4463		goto clear_counts;
4464
4465	/* Add 24 bytes to size to account for CRC, preamble, and gap */
4466	avg_wire_size += 24;
4467
4468	/* Don't starve jumbo frames */
4469	avg_wire_size = min(avg_wire_size, 3000);
4470
4471	/* Give a little boost to mid-size frames */
4472	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4473		new_val = avg_wire_size / 3;
4474	else
4475		new_val = avg_wire_size / 2;
4476
4477	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4478	if (new_val < IGB_20K_ITR &&
4479	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4480	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4481		new_val = IGB_20K_ITR;
4482
4483set_itr_val:
4484	if (new_val != q_vector->itr_val) {
4485		q_vector->itr_val = new_val;
4486		q_vector->set_itr = 1;
4487	}
4488clear_counts:
4489	q_vector->rx.total_bytes = 0;
4490	q_vector->rx.total_packets = 0;
4491	q_vector->tx.total_bytes = 0;
4492	q_vector->tx.total_packets = 0;
4493}
4494
4495/**
4496 *  igb_update_itr - update the dynamic ITR value based on statistics
4497 *  @q_vector: pointer to q_vector
4498 *  @ring_container: ring info to update the itr for
4499 *
4500 *  Stores a new ITR value based on packets and byte
4501 *  counts during the last interrupt.  The advantage of per interrupt
4502 *  computation is faster updates and more accurate ITR for the current
4503 *  traffic pattern.  Constants in this function were computed
4504 *  based on theoretical maximum wire speed and thresholds were set based
4505 *  on testing data as well as attempting to minimize response time
4506 *  while increasing bulk throughput.
4507 *  This functionality is controlled by ethtool's coalescing settings.
4508 *  NOTE:  These calculations are only valid when operating in a single-
4509 *         queue environment.
4510 **/
4511static void igb_update_itr(struct igb_q_vector *q_vector,
4512			   struct igb_ring_container *ring_container)
4513{
4514	unsigned int packets = ring_container->total_packets;
4515	unsigned int bytes = ring_container->total_bytes;
4516	u8 itrval = ring_container->itr;
4517
4518	/* no packets, exit with status unchanged */
4519	if (packets == 0)
4520		return;
4521
4522	switch (itrval) {
4523	case lowest_latency:
4524		/* handle TSO and jumbo frames */
4525		if (bytes/packets > 8000)
4526			itrval = bulk_latency;
4527		else if ((packets < 5) && (bytes > 512))
4528			itrval = low_latency;
4529		break;
4530	case low_latency:  /* 50 usec aka 20000 ints/s */
4531		if (bytes > 10000) {
4532			/* this if handles the TSO accounting */
4533			if (bytes/packets > 8000)
4534				itrval = bulk_latency;
4535			else if ((packets < 10) || ((bytes/packets) > 1200))
4536				itrval = bulk_latency;
4537			else if ((packets > 35))
4538				itrval = lowest_latency;
4539		} else if (bytes/packets > 2000) {
4540			itrval = bulk_latency;
4541		} else if (packets <= 2 && bytes < 512) {
4542			itrval = lowest_latency;
4543		}
4544		break;
4545	case bulk_latency: /* 250 usec aka 4000 ints/s */
4546		if (bytes > 25000) {
4547			if (packets > 35)
4548				itrval = low_latency;
4549		} else if (bytes < 1500) {
4550			itrval = low_latency;
4551		}
4552		break;
4553	}
4554
4555	/* clear work counters since we have the values we need */
4556	ring_container->total_bytes = 0;
4557	ring_container->total_packets = 0;
4558
4559	/* write updated itr to ring container */
4560	ring_container->itr = itrval;
4561}
4562
4563static void igb_set_itr(struct igb_q_vector *q_vector)
4564{
4565	struct igb_adapter *adapter = q_vector->adapter;
4566	u32 new_itr = q_vector->itr_val;
4567	u8 current_itr = 0;
4568
4569	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4570	if (adapter->link_speed != SPEED_1000) {
4571		current_itr = 0;
4572		new_itr = IGB_4K_ITR;
4573		goto set_itr_now;
4574	}
4575
4576	igb_update_itr(q_vector, &q_vector->tx);
4577	igb_update_itr(q_vector, &q_vector->rx);
4578
4579	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4580
4581	/* conservative mode (itr 3) eliminates the lowest_latency setting */
4582	if (current_itr == lowest_latency &&
4583	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4584	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4585		current_itr = low_latency;
4586
4587	switch (current_itr) {
4588	/* counts and packets in update_itr are dependent on these numbers */
4589	case lowest_latency:
4590		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4591		break;
4592	case low_latency:
4593		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4594		break;
4595	case bulk_latency:
4596		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4597		break;
4598	default:
4599		break;
4600	}
4601
4602set_itr_now:
4603	if (new_itr != q_vector->itr_val) {
4604		/* this attempts to bias the interrupt rate towards Bulk
4605		 * by adding intermediate steps when interrupt rate is
4606		 * increasing
4607		 */
4608		new_itr = new_itr > q_vector->itr_val ?
4609			  max((new_itr * q_vector->itr_val) /
4610			  (new_itr + (q_vector->itr_val >> 2)),
4611			  new_itr) : new_itr;
4612		/* Don't write the value here; it resets the adapter's
4613		 * internal timer, and causes us to delay far longer than
4614		 * we should between interrupts.  Instead, we write the ITR
4615		 * value at the beginning of the next interrupt so the timing
4616		 * ends up being correct.
4617		 */
4618		q_vector->itr_val = new_itr;
4619		q_vector->set_itr = 1;
4620	}
4621}
4622
4623static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4624			    u32 type_tucmd, u32 mss_l4len_idx)
4625{
4626	struct e1000_adv_tx_context_desc *context_desc;
4627	u16 i = tx_ring->next_to_use;
4628
4629	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4630
4631	i++;
4632	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4633
4634	/* set bits to identify this as an advanced context descriptor */
4635	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4636
4637	/* For 82575, context index must be unique per ring. */
4638	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4639		mss_l4len_idx |= tx_ring->reg_idx << 4;
4640
4641	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
4642	context_desc->seqnum_seed	= 0;
4643	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
4644	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
4645}
4646
4647static int igb_tso(struct igb_ring *tx_ring,
4648		   struct igb_tx_buffer *first,
4649		   u8 *hdr_len)
4650{
4651	struct sk_buff *skb = first->skb;
4652	u32 vlan_macip_lens, type_tucmd;
4653	u32 mss_l4len_idx, l4len;
4654	int err;
4655
4656	if (skb->ip_summed != CHECKSUM_PARTIAL)
4657		return 0;
4658
4659	if (!skb_is_gso(skb))
4660		return 0;
4661
4662	err = skb_cow_head(skb, 0);
4663	if (err < 0)
4664		return err;
4665
4666	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4667	type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4668
4669	if (first->protocol == htons(ETH_P_IP)) {
4670		struct iphdr *iph = ip_hdr(skb);
4671		iph->tot_len = 0;
4672		iph->check = 0;
4673		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4674							 iph->daddr, 0,
4675							 IPPROTO_TCP,
4676							 0);
4677		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4678		first->tx_flags |= IGB_TX_FLAGS_TSO |
4679				   IGB_TX_FLAGS_CSUM |
4680				   IGB_TX_FLAGS_IPV4;
4681	} else if (skb_is_gso_v6(skb)) {
4682		ipv6_hdr(skb)->payload_len = 0;
4683		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4684						       &ipv6_hdr(skb)->daddr,
4685						       0, IPPROTO_TCP, 0);
4686		first->tx_flags |= IGB_TX_FLAGS_TSO |
4687				   IGB_TX_FLAGS_CSUM;
4688	}
4689
4690	/* compute header lengths */
4691	l4len = tcp_hdrlen(skb);
4692	*hdr_len = skb_transport_offset(skb) + l4len;
4693
4694	/* update gso size and bytecount with header size */
4695	first->gso_segs = skb_shinfo(skb)->gso_segs;
4696	first->bytecount += (first->gso_segs - 1) * *hdr_len;
4697
4698	/* MSS L4LEN IDX */
4699	mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4700	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4701
4702	/* VLAN MACLEN IPLEN */
4703	vlan_macip_lens = skb_network_header_len(skb);
4704	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4705	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4706
4707	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4708
4709	return 1;
4710}
4711
4712static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4713{
4714	struct sk_buff *skb = first->skb;
4715	u32 vlan_macip_lens = 0;
4716	u32 mss_l4len_idx = 0;
4717	u32 type_tucmd = 0;
4718
4719	if (skb->ip_summed != CHECKSUM_PARTIAL) {
4720		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4721			return;
4722	} else {
4723		u8 l4_hdr = 0;
4724
4725		switch (first->protocol) {
4726		case htons(ETH_P_IP):
4727			vlan_macip_lens |= skb_network_header_len(skb);
4728			type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4729			l4_hdr = ip_hdr(skb)->protocol;
4730			break;
4731		case htons(ETH_P_IPV6):
4732			vlan_macip_lens |= skb_network_header_len(skb);
4733			l4_hdr = ipv6_hdr(skb)->nexthdr;
4734			break;
4735		default:
4736			if (unlikely(net_ratelimit())) {
4737				dev_warn(tx_ring->dev,
4738					 "partial checksum but proto=%x!\n",
4739					 first->protocol);
4740			}
4741			break;
4742		}
4743
4744		switch (l4_hdr) {
4745		case IPPROTO_TCP:
4746			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4747			mss_l4len_idx = tcp_hdrlen(skb) <<
4748					E1000_ADVTXD_L4LEN_SHIFT;
4749			break;
4750		case IPPROTO_SCTP:
4751			type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4752			mss_l4len_idx = sizeof(struct sctphdr) <<
4753					E1000_ADVTXD_L4LEN_SHIFT;
4754			break;
4755		case IPPROTO_UDP:
4756			mss_l4len_idx = sizeof(struct udphdr) <<
4757					E1000_ADVTXD_L4LEN_SHIFT;
4758			break;
4759		default:
4760			if (unlikely(net_ratelimit())) {
4761				dev_warn(tx_ring->dev,
4762					 "partial checksum but l4 proto=%x!\n",
4763					 l4_hdr);
4764			}
4765			break;
4766		}
4767
4768		/* update TX checksum flag */
4769		first->tx_flags |= IGB_TX_FLAGS_CSUM;
4770	}
4771
4772	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4773	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4774
4775	igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4776}
4777
4778#define IGB_SET_FLAG(_input, _flag, _result) \
4779	((_flag <= _result) ? \
4780	 ((u32)(_input & _flag) * (_result / _flag)) : \
4781	 ((u32)(_input & _flag) / (_flag / _result)))
4782
4783static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4784{
4785	/* set type for advanced descriptor with frame checksum insertion */
4786	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4787		       E1000_ADVTXD_DCMD_DEXT |
4788		       E1000_ADVTXD_DCMD_IFCS;
4789
4790	/* set HW vlan bit if vlan is present */
4791	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4792				 (E1000_ADVTXD_DCMD_VLE));
4793
4794	/* set segmentation bits for TSO */
4795	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4796				 (E1000_ADVTXD_DCMD_TSE));
4797
4798	/* set timestamp bit if present */
4799	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4800				 (E1000_ADVTXD_MAC_TSTAMP));
4801
4802	/* insert frame checksum */
4803	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4804
4805	return cmd_type;
4806}
4807
4808static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4809				 union e1000_adv_tx_desc *tx_desc,
4810				 u32 tx_flags, unsigned int paylen)
4811{
4812	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4813
4814	/* 82575 requires a unique index per ring */
4815	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4816		olinfo_status |= tx_ring->reg_idx << 4;
4817
4818	/* insert L4 checksum */
4819	olinfo_status |= IGB_SET_FLAG(tx_flags,
4820				      IGB_TX_FLAGS_CSUM,
4821				      (E1000_TXD_POPTS_TXSM << 8));
4822
4823	/* insert IPv4 checksum */
4824	olinfo_status |= IGB_SET_FLAG(tx_flags,
4825				      IGB_TX_FLAGS_IPV4,
4826				      (E1000_TXD_POPTS_IXSM << 8));
4827
4828	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4829}
4830
4831static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4832{
4833	struct net_device *netdev = tx_ring->netdev;
4834
4835	netif_stop_subqueue(netdev, tx_ring->queue_index);
4836
4837	/* Herbert's original patch had:
4838	 *  smp_mb__after_netif_stop_queue();
4839	 * but since that doesn't exist yet, just open code it.
4840	 */
4841	smp_mb();
4842
4843	/* We need to check again in a case another CPU has just
4844	 * made room available.
4845	 */
4846	if (igb_desc_unused(tx_ring) < size)
4847		return -EBUSY;
4848
4849	/* A reprieve! */
4850	netif_wake_subqueue(netdev, tx_ring->queue_index);
4851
4852	u64_stats_update_begin(&tx_ring->tx_syncp2);
4853	tx_ring->tx_stats.restart_queue2++;
4854	u64_stats_update_end(&tx_ring->tx_syncp2);
4855
4856	return 0;
4857}
4858
4859static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4860{
4861	if (igb_desc_unused(tx_ring) >= size)
4862		return 0;
4863	return __igb_maybe_stop_tx(tx_ring, size);
4864}
4865
4866static void igb_tx_map(struct igb_ring *tx_ring,
4867		       struct igb_tx_buffer *first,
4868		       const u8 hdr_len)
4869{
4870	struct sk_buff *skb = first->skb;
4871	struct igb_tx_buffer *tx_buffer;
4872	union e1000_adv_tx_desc *tx_desc;
4873	struct skb_frag_struct *frag;
4874	dma_addr_t dma;
4875	unsigned int data_len, size;
4876	u32 tx_flags = first->tx_flags;
4877	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4878	u16 i = tx_ring->next_to_use;
4879
4880	tx_desc = IGB_TX_DESC(tx_ring, i);
4881
4882	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4883
4884	size = skb_headlen(skb);
4885	data_len = skb->data_len;
4886
4887	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4888
4889	tx_buffer = first;
4890
4891	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4892		if (dma_mapping_error(tx_ring->dev, dma))
4893			goto dma_error;
4894
4895		/* record length, and DMA address */
4896		dma_unmap_len_set(tx_buffer, len, size);
4897		dma_unmap_addr_set(tx_buffer, dma, dma);
4898
4899		tx_desc->read.buffer_addr = cpu_to_le64(dma);
4900
4901		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4902			tx_desc->read.cmd_type_len =
4903				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4904
4905			i++;
4906			tx_desc++;
4907			if (i == tx_ring->count) {
4908				tx_desc = IGB_TX_DESC(tx_ring, 0);
4909				i = 0;
4910			}
4911			tx_desc->read.olinfo_status = 0;
4912
4913			dma += IGB_MAX_DATA_PER_TXD;
4914			size -= IGB_MAX_DATA_PER_TXD;
4915
4916			tx_desc->read.buffer_addr = cpu_to_le64(dma);
4917		}
4918
4919		if (likely(!data_len))
4920			break;
4921
4922		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4923
4924		i++;
4925		tx_desc++;
4926		if (i == tx_ring->count) {
4927			tx_desc = IGB_TX_DESC(tx_ring, 0);
4928			i = 0;
4929		}
4930		tx_desc->read.olinfo_status = 0;
4931
4932		size = skb_frag_size(frag);
4933		data_len -= size;
4934
4935		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4936				       size, DMA_TO_DEVICE);
4937
4938		tx_buffer = &tx_ring->tx_buffer_info[i];
4939	}
4940
4941	/* write last descriptor with RS and EOP bits */
4942	cmd_type |= size | IGB_TXD_DCMD;
4943	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4944
4945	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4946
4947	/* set the timestamp */
4948	first->time_stamp = jiffies;
4949
4950	/* Force memory writes to complete before letting h/w know there
4951	 * are new descriptors to fetch.  (Only applicable for weak-ordered
4952	 * memory model archs, such as IA-64).
4953	 *
4954	 * We also need this memory barrier to make certain all of the
4955	 * status bits have been updated before next_to_watch is written.
4956	 */
4957	wmb();
4958
4959	/* set next_to_watch value indicating a packet is present */
4960	first->next_to_watch = tx_desc;
4961
4962	i++;
4963	if (i == tx_ring->count)
4964		i = 0;
4965
4966	tx_ring->next_to_use = i;
4967
4968	/* Make sure there is space in the ring for the next send. */
4969	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4970
4971	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4972		writel(i, tx_ring->tail);
4973
4974		/* we need this if more than one processor can write to our tail
4975		 * at a time, it synchronizes IO on IA64/Altix systems
4976		 */
4977		mmiowb();
4978	}
4979	return;
4980
4981dma_error:
4982	dev_err(tx_ring->dev, "TX DMA map failed\n");
4983
4984	/* clear dma mappings for failed tx_buffer_info map */
4985	for (;;) {
4986		tx_buffer = &tx_ring->tx_buffer_info[i];
4987		igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4988		if (tx_buffer == first)
4989			break;
4990		if (i == 0)
4991			i = tx_ring->count;
4992		i--;
4993	}
4994
4995	tx_ring->next_to_use = i;
4996}
4997
4998netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4999				struct igb_ring *tx_ring)
5000{
5001	struct igb_tx_buffer *first;
5002	int tso;
5003	u32 tx_flags = 0;
5004	u16 count = TXD_USE_COUNT(skb_headlen(skb));
5005	__be16 protocol = vlan_get_protocol(skb);
5006	u8 hdr_len = 0;
5007
5008	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5009	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5010	 *       + 2 desc gap to keep tail from touching head,
5011	 *       + 1 desc for context descriptor,
5012	 * otherwise try next time
5013	 */
5014	if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5015		unsigned short f;
5016
5017		for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5018			count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5019	} else {
5020		count += skb_shinfo(skb)->nr_frags;
5021	}
5022
5023	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5024		/* this is a hard error */
5025		return NETDEV_TX_BUSY;
5026	}
5027
5028	/* record the location of the first descriptor for this packet */
5029	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5030	first->skb = skb;
5031	first->bytecount = skb->len;
5032	first->gso_segs = 1;
5033
5034	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5035		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5036
5037		if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5038					   &adapter->state)) {
5039			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5040			tx_flags |= IGB_TX_FLAGS_TSTAMP;
5041
5042			adapter->ptp_tx_skb = skb_get(skb);
5043			adapter->ptp_tx_start = jiffies;
5044			if (adapter->hw.mac.type == e1000_82576)
5045				schedule_work(&adapter->ptp_tx_work);
5046		}
5047	}
5048
5049	skb_tx_timestamp(skb);
5050
5051	if (skb_vlan_tag_present(skb)) {
5052		tx_flags |= IGB_TX_FLAGS_VLAN;
5053		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5054	}
5055
5056	/* record initial flags and protocol */
5057	first->tx_flags = tx_flags;
5058	first->protocol = protocol;
5059
5060	tso = igb_tso(tx_ring, first, &hdr_len);
5061	if (tso < 0)
5062		goto out_drop;
5063	else if (!tso)
5064		igb_tx_csum(tx_ring, first);
5065
5066	igb_tx_map(tx_ring, first, hdr_len);
5067
5068	return NETDEV_TX_OK;
5069
5070out_drop:
5071	igb_unmap_and_free_tx_resource(tx_ring, first);
5072
5073	return NETDEV_TX_OK;
5074}
5075
5076static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5077						    struct sk_buff *skb)
5078{
5079	unsigned int r_idx = skb->queue_mapping;
5080
5081	if (r_idx >= adapter->num_tx_queues)
5082		r_idx = r_idx % adapter->num_tx_queues;
5083
5084	return adapter->tx_ring[r_idx];
5085}
5086
5087static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5088				  struct net_device *netdev)
5089{
5090	struct igb_adapter *adapter = netdev_priv(netdev);
5091
5092	if (test_bit(__IGB_DOWN, &adapter->state)) {
5093		dev_kfree_skb_any(skb);
5094		return NETDEV_TX_OK;
5095	}
5096
5097	if (skb->len <= 0) {
5098		dev_kfree_skb_any(skb);
5099		return NETDEV_TX_OK;
5100	}
5101
5102	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5103	 * in order to meet this minimum size requirement.
5104	 */
5105	if (skb_put_padto(skb, 17))
5106		return NETDEV_TX_OK;
5107
5108	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5109}
5110
5111/**
5112 *  igb_tx_timeout - Respond to a Tx Hang
5113 *  @netdev: network interface device structure
5114 **/
5115static void igb_tx_timeout(struct net_device *netdev)
5116{
5117	struct igb_adapter *adapter = netdev_priv(netdev);
5118	struct e1000_hw *hw = &adapter->hw;
5119
5120	/* Do the reset outside of interrupt context */
5121	adapter->tx_timeout_count++;
5122
5123	if (hw->mac.type >= e1000_82580)
5124		hw->dev_spec._82575.global_device_reset = true;
5125
5126	schedule_work(&adapter->reset_task);
5127	wr32(E1000_EICS,
5128	     (adapter->eims_enable_mask & ~adapter->eims_other));
5129}
5130
5131static void igb_reset_task(struct work_struct *work)
5132{
5133	struct igb_adapter *adapter;
5134	adapter = container_of(work, struct igb_adapter, reset_task);
5135
5136	igb_dump(adapter);
5137	netdev_err(adapter->netdev, "Reset adapter\n");
5138	igb_reinit_locked(adapter);
5139}
5140
5141/**
5142 *  igb_get_stats64 - Get System Network Statistics
5143 *  @netdev: network interface device structure
5144 *  @stats: rtnl_link_stats64 pointer
5145 **/
5146static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5147						struct rtnl_link_stats64 *stats)
5148{
5149	struct igb_adapter *adapter = netdev_priv(netdev);
5150
5151	spin_lock(&adapter->stats64_lock);
5152	igb_update_stats(adapter, &adapter->stats64);
5153	memcpy(stats, &adapter->stats64, sizeof(*stats));
5154	spin_unlock(&adapter->stats64_lock);
5155
5156	return stats;
5157}
5158
5159/**
5160 *  igb_change_mtu - Change the Maximum Transfer Unit
5161 *  @netdev: network interface device structure
5162 *  @new_mtu: new value for maximum frame size
5163 *
5164 *  Returns 0 on success, negative on failure
5165 **/
5166static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5167{
5168	struct igb_adapter *adapter = netdev_priv(netdev);
5169	struct pci_dev *pdev = adapter->pdev;
5170	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5171
5172	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5173		dev_err(&pdev->dev, "Invalid MTU setting\n");
5174		return -EINVAL;
5175	}
5176
5177#define MAX_STD_JUMBO_FRAME_SIZE 9238
5178	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5179		dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5180		return -EINVAL;
5181	}
5182
5183	/* adjust max frame to be at least the size of a standard frame */
5184	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5185		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5186
5187	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5188		usleep_range(1000, 2000);
5189
5190	/* igb_down has a dependency on max_frame_size */
5191	adapter->max_frame_size = max_frame;
5192
5193	if (netif_running(netdev))
5194		igb_down(adapter);
5195
5196	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5197		 netdev->mtu, new_mtu);
5198	netdev->mtu = new_mtu;
5199
5200	if (netif_running(netdev))
5201		igb_up(adapter);
5202	else
5203		igb_reset(adapter);
5204
5205	clear_bit(__IGB_RESETTING, &adapter->state);
5206
5207	return 0;
5208}
5209
5210/**
5211 *  igb_update_stats - Update the board statistics counters
5212 *  @adapter: board private structure
5213 **/
5214void igb_update_stats(struct igb_adapter *adapter,
5215		      struct rtnl_link_stats64 *net_stats)
5216{
5217	struct e1000_hw *hw = &adapter->hw;
5218	struct pci_dev *pdev = adapter->pdev;
5219	u32 reg, mpc;
5220	int i;
5221	u64 bytes, packets;
5222	unsigned int start;
5223	u64 _bytes, _packets;
5224
5225	/* Prevent stats update while adapter is being reset, or if the pci
5226	 * connection is down.
5227	 */
5228	if (adapter->link_speed == 0)
5229		return;
5230	if (pci_channel_offline(pdev))
5231		return;
5232
5233	bytes = 0;
5234	packets = 0;
5235
5236	rcu_read_lock();
5237	for (i = 0; i < adapter->num_rx_queues; i++) {
5238		struct igb_ring *ring = adapter->rx_ring[i];
5239		u32 rqdpc = rd32(E1000_RQDPC(i));
5240		if (hw->mac.type >= e1000_i210)
5241			wr32(E1000_RQDPC(i), 0);
5242
5243		if (rqdpc) {
5244			ring->rx_stats.drops += rqdpc;
5245			net_stats->rx_fifo_errors += rqdpc;
5246		}
5247
5248		do {
5249			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5250			_bytes = ring->rx_stats.bytes;
5251			_packets = ring->rx_stats.packets;
5252		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5253		bytes += _bytes;
5254		packets += _packets;
5255	}
5256
5257	net_stats->rx_bytes = bytes;
5258	net_stats->rx_packets = packets;
5259
5260	bytes = 0;
5261	packets = 0;
5262	for (i = 0; i < adapter->num_tx_queues; i++) {
5263		struct igb_ring *ring = adapter->tx_ring[i];
5264		do {
5265			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5266			_bytes = ring->tx_stats.bytes;
5267			_packets = ring->tx_stats.packets;
5268		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5269		bytes += _bytes;
5270		packets += _packets;
5271	}
5272	net_stats->tx_bytes = bytes;
5273	net_stats->tx_packets = packets;
5274	rcu_read_unlock();
5275
5276	/* read stats registers */
5277	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5278	adapter->stats.gprc += rd32(E1000_GPRC);
5279	adapter->stats.gorc += rd32(E1000_GORCL);
5280	rd32(E1000_GORCH); /* clear GORCL */
5281	adapter->stats.bprc += rd32(E1000_BPRC);
5282	adapter->stats.mprc += rd32(E1000_MPRC);
5283	adapter->stats.roc += rd32(E1000_ROC);
5284
5285	adapter->stats.prc64 += rd32(E1000_PRC64);
5286	adapter->stats.prc127 += rd32(E1000_PRC127);
5287	adapter->stats.prc255 += rd32(E1000_PRC255);
5288	adapter->stats.prc511 += rd32(E1000_PRC511);
5289	adapter->stats.prc1023 += rd32(E1000_PRC1023);
5290	adapter->stats.prc1522 += rd32(E1000_PRC1522);
5291	adapter->stats.symerrs += rd32(E1000_SYMERRS);
5292	adapter->stats.sec += rd32(E1000_SEC);
5293
5294	mpc = rd32(E1000_MPC);
5295	adapter->stats.mpc += mpc;
5296	net_stats->rx_fifo_errors += mpc;
5297	adapter->stats.scc += rd32(E1000_SCC);
5298	adapter->stats.ecol += rd32(E1000_ECOL);
5299	adapter->stats.mcc += rd32(E1000_MCC);
5300	adapter->stats.latecol += rd32(E1000_LATECOL);
5301	adapter->stats.dc += rd32(E1000_DC);
5302	adapter->stats.rlec += rd32(E1000_RLEC);
5303	adapter->stats.xonrxc += rd32(E1000_XONRXC);
5304	adapter->stats.xontxc += rd32(E1000_XONTXC);
5305	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5306	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5307	adapter->stats.fcruc += rd32(E1000_FCRUC);
5308	adapter->stats.gptc += rd32(E1000_GPTC);
5309	adapter->stats.gotc += rd32(E1000_GOTCL);
5310	rd32(E1000_GOTCH); /* clear GOTCL */
5311	adapter->stats.rnbc += rd32(E1000_RNBC);
5312	adapter->stats.ruc += rd32(E1000_RUC);
5313	adapter->stats.rfc += rd32(E1000_RFC);
5314	adapter->stats.rjc += rd32(E1000_RJC);
5315	adapter->stats.tor += rd32(E1000_TORH);
5316	adapter->stats.tot += rd32(E1000_TOTH);
5317	adapter->stats.tpr += rd32(E1000_TPR);
5318
5319	adapter->stats.ptc64 += rd32(E1000_PTC64);
5320	adapter->stats.ptc127 += rd32(E1000_PTC127);
5321	adapter->stats.ptc255 += rd32(E1000_PTC255);
5322	adapter->stats.ptc511 += rd32(E1000_PTC511);
5323	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5324	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5325
5326	adapter->stats.mptc += rd32(E1000_MPTC);
5327	adapter->stats.bptc += rd32(E1000_BPTC);
5328
5329	adapter->stats.tpt += rd32(E1000_TPT);
5330	adapter->stats.colc += rd32(E1000_COLC);
5331
5332	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5333	/* read internal phy specific stats */
5334	reg = rd32(E1000_CTRL_EXT);
5335	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5336		adapter->stats.rxerrc += rd32(E1000_RXERRC);
5337
5338		/* this stat has invalid values on i210/i211 */
5339		if ((hw->mac.type != e1000_i210) &&
5340		    (hw->mac.type != e1000_i211))
5341			adapter->stats.tncrs += rd32(E1000_TNCRS);
5342	}
5343
5344	adapter->stats.tsctc += rd32(E1000_TSCTC);
5345	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5346
5347	adapter->stats.iac += rd32(E1000_IAC);
5348	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5349	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5350	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5351	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5352	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5353	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5354	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5355	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5356
5357	/* Fill out the OS statistics structure */
5358	net_stats->multicast = adapter->stats.mprc;
5359	net_stats->collisions = adapter->stats.colc;
5360
5361	/* Rx Errors */
5362
5363	/* RLEC on some newer hardware can be incorrect so build
5364	 * our own version based on RUC and ROC
5365	 */
5366	net_stats->rx_errors = adapter->stats.rxerrc +
5367		adapter->stats.crcerrs + adapter->stats.algnerrc +
5368		adapter->stats.ruc + adapter->stats.roc +
5369		adapter->stats.cexterr;
5370	net_stats->rx_length_errors = adapter->stats.ruc +
5371				      adapter->stats.roc;
5372	net_stats->rx_crc_errors = adapter->stats.crcerrs;
5373	net_stats->rx_frame_errors = adapter->stats.algnerrc;
5374	net_stats->rx_missed_errors = adapter->stats.mpc;
5375
5376	/* Tx Errors */
5377	net_stats->tx_errors = adapter->stats.ecol +
5378			       adapter->stats.latecol;
5379	net_stats->tx_aborted_errors = adapter->stats.ecol;
5380	net_stats->tx_window_errors = adapter->stats.latecol;
5381	net_stats->tx_carrier_errors = adapter->stats.tncrs;
5382
5383	/* Tx Dropped needs to be maintained elsewhere */
5384
5385	/* Management Stats */
5386	adapter->stats.mgptc += rd32(E1000_MGTPTC);
5387	adapter->stats.mgprc += rd32(E1000_MGTPRC);
5388	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5389
5390	/* OS2BMC Stats */
5391	reg = rd32(E1000_MANC);
5392	if (reg & E1000_MANC_EN_BMC2OS) {
5393		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5394		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5395		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5396		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5397	}
5398}
5399
5400static void igb_tsync_interrupt(struct igb_adapter *adapter)
5401{
5402	struct e1000_hw *hw = &adapter->hw;
5403	struct ptp_clock_event event;
5404	struct timespec ts;
5405	u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5406
5407	if (tsicr & TSINTR_SYS_WRAP) {
5408		event.type = PTP_CLOCK_PPS;
5409		if (adapter->ptp_caps.pps)
5410			ptp_clock_event(adapter->ptp_clock, &event);
5411		else
5412			dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5413		ack |= TSINTR_SYS_WRAP;
5414	}
5415
5416	if (tsicr & E1000_TSICR_TXTS) {
5417		/* retrieve hardware timestamp */
5418		schedule_work(&adapter->ptp_tx_work);
5419		ack |= E1000_TSICR_TXTS;
5420	}
5421
5422	if (tsicr & TSINTR_TT0) {
5423		spin_lock(&adapter->tmreg_lock);
5424		ts = timespec_add(adapter->perout[0].start,
5425				  adapter->perout[0].period);
5426		wr32(E1000_TRGTTIML0, ts.tv_nsec);
5427		wr32(E1000_TRGTTIMH0, ts.tv_sec);
5428		tsauxc = rd32(E1000_TSAUXC);
5429		tsauxc |= TSAUXC_EN_TT0;
5430		wr32(E1000_TSAUXC, tsauxc);
5431		adapter->perout[0].start = ts;
5432		spin_unlock(&adapter->tmreg_lock);
5433		ack |= TSINTR_TT0;
5434	}
5435
5436	if (tsicr & TSINTR_TT1) {
5437		spin_lock(&adapter->tmreg_lock);
5438		ts = timespec_add(adapter->perout[1].start,
5439				  adapter->perout[1].period);
5440		wr32(E1000_TRGTTIML1, ts.tv_nsec);
5441		wr32(E1000_TRGTTIMH1, ts.tv_sec);
5442		tsauxc = rd32(E1000_TSAUXC);
5443		tsauxc |= TSAUXC_EN_TT1;
5444		wr32(E1000_TSAUXC, tsauxc);
5445		adapter->perout[1].start = ts;
5446		spin_unlock(&adapter->tmreg_lock);
5447		ack |= TSINTR_TT1;
5448	}
5449
5450	if (tsicr & TSINTR_AUTT0) {
5451		nsec = rd32(E1000_AUXSTMPL0);
5452		sec  = rd32(E1000_AUXSTMPH0);
5453		event.type = PTP_CLOCK_EXTTS;
5454		event.index = 0;
5455		event.timestamp = sec * 1000000000ULL + nsec;
5456		ptp_clock_event(adapter->ptp_clock, &event);
5457		ack |= TSINTR_AUTT0;
5458	}
5459
5460	if (tsicr & TSINTR_AUTT1) {
5461		nsec = rd32(E1000_AUXSTMPL1);
5462		sec  = rd32(E1000_AUXSTMPH1);
5463		event.type = PTP_CLOCK_EXTTS;
5464		event.index = 1;
5465		event.timestamp = sec * 1000000000ULL + nsec;
5466		ptp_clock_event(adapter->ptp_clock, &event);
5467		ack |= TSINTR_AUTT1;
5468	}
5469
5470	/* acknowledge the interrupts */
5471	wr32(E1000_TSICR, ack);
5472}
5473
5474static irqreturn_t igb_msix_other(int irq, void *data)
5475{
5476	struct igb_adapter *adapter = data;
5477	struct e1000_hw *hw = &adapter->hw;
5478	u32 icr = rd32(E1000_ICR);
5479	/* reading ICR causes bit 31 of EICR to be cleared */
5480
5481	if (icr & E1000_ICR_DRSTA)
5482		schedule_work(&adapter->reset_task);
5483
5484	if (icr & E1000_ICR_DOUTSYNC) {
5485		/* HW is reporting DMA is out of sync */
5486		adapter->stats.doosync++;
5487		/* The DMA Out of Sync is also indication of a spoof event
5488		 * in IOV mode. Check the Wrong VM Behavior register to
5489		 * see if it is really a spoof event.
5490		 */
5491		igb_check_wvbr(adapter);
5492	}
5493
5494	/* Check for a mailbox event */
5495	if (icr & E1000_ICR_VMMB)
5496		igb_msg_task(adapter);
5497
5498	if (icr & E1000_ICR_LSC) {
5499		hw->mac.get_link_status = 1;
5500		/* guard against interrupt when we're going down */
5501		if (!test_bit(__IGB_DOWN, &adapter->state))
5502			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5503	}
5504
5505	if (icr & E1000_ICR_TS)
5506		igb_tsync_interrupt(adapter);
5507
5508	wr32(E1000_EIMS, adapter->eims_other);
5509
5510	return IRQ_HANDLED;
5511}
5512
5513static void igb_write_itr(struct igb_q_vector *q_vector)
5514{
5515	struct igb_adapter *adapter = q_vector->adapter;
5516	u32 itr_val = q_vector->itr_val & 0x7FFC;
5517
5518	if (!q_vector->set_itr)
5519		return;
5520
5521	if (!itr_val)
5522		itr_val = 0x4;
5523
5524	if (adapter->hw.mac.type == e1000_82575)
5525		itr_val |= itr_val << 16;
5526	else
5527		itr_val |= E1000_EITR_CNT_IGNR;
5528
5529	writel(itr_val, q_vector->itr_register);
5530	q_vector->set_itr = 0;
5531}
5532
5533static irqreturn_t igb_msix_ring(int irq, void *data)
5534{
5535	struct igb_q_vector *q_vector = data;
5536
5537	/* Write the ITR value calculated from the previous interrupt. */
5538	igb_write_itr(q_vector);
5539
5540	napi_schedule(&q_vector->napi);
5541
5542	return IRQ_HANDLED;
5543}
5544
5545#ifdef CONFIG_IGB_DCA
5546static void igb_update_tx_dca(struct igb_adapter *adapter,
5547			      struct igb_ring *tx_ring,
5548			      int cpu)
5549{
5550	struct e1000_hw *hw = &adapter->hw;
5551	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5552
5553	if (hw->mac.type != e1000_82575)
5554		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5555
5556	/* We can enable relaxed ordering for reads, but not writes when
5557	 * DCA is enabled.  This is due to a known issue in some chipsets
5558	 * which will cause the DCA tag to be cleared.
5559	 */
5560	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5561		  E1000_DCA_TXCTRL_DATA_RRO_EN |
5562		  E1000_DCA_TXCTRL_DESC_DCA_EN;
5563
5564	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5565}
5566
5567static void igb_update_rx_dca(struct igb_adapter *adapter,
5568			      struct igb_ring *rx_ring,
5569			      int cpu)
5570{
5571	struct e1000_hw *hw = &adapter->hw;
5572	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5573
5574	if (hw->mac.type != e1000_82575)
5575		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5576
5577	/* We can enable relaxed ordering for reads, but not writes when
5578	 * DCA is enabled.  This is due to a known issue in some chipsets
5579	 * which will cause the DCA tag to be cleared.
5580	 */
5581	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5582		  E1000_DCA_RXCTRL_DESC_DCA_EN;
5583
5584	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5585}
5586
5587static void igb_update_dca(struct igb_q_vector *q_vector)
5588{
5589	struct igb_adapter *adapter = q_vector->adapter;
5590	int cpu = get_cpu();
5591
5592	if (q_vector->cpu == cpu)
5593		goto out_no_update;
5594
5595	if (q_vector->tx.ring)
5596		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5597
5598	if (q_vector->rx.ring)
5599		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5600
5601	q_vector->cpu = cpu;
5602out_no_update:
5603	put_cpu();
5604}
5605
5606static void igb_setup_dca(struct igb_adapter *adapter)
5607{
5608	struct e1000_hw *hw = &adapter->hw;
5609	int i;
5610
5611	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5612		return;
5613
5614	/* Always use CB2 mode, difference is masked in the CB driver. */
5615	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5616
5617	for (i = 0; i < adapter->num_q_vectors; i++) {
5618		adapter->q_vector[i]->cpu = -1;
5619		igb_update_dca(adapter->q_vector[i]);
5620	}
5621}
5622
5623static int __igb_notify_dca(struct device *dev, void *data)
5624{
5625	struct net_device *netdev = dev_get_drvdata(dev);
5626	struct igb_adapter *adapter = netdev_priv(netdev);
5627	struct pci_dev *pdev = adapter->pdev;
5628	struct e1000_hw *hw = &adapter->hw;
5629	unsigned long event = *(unsigned long *)data;
5630
5631	switch (event) {
5632	case DCA_PROVIDER_ADD:
5633		/* if already enabled, don't do it again */
5634		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5635			break;
5636		if (dca_add_requester(dev) == 0) {
5637			adapter->flags |= IGB_FLAG_DCA_ENABLED;
5638			dev_info(&pdev->dev, "DCA enabled\n");
5639			igb_setup_dca(adapter);
5640			break;
5641		}
5642		/* Fall Through since DCA is disabled. */
5643	case DCA_PROVIDER_REMOVE:
5644		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5645			/* without this a class_device is left
5646			 * hanging around in the sysfs model
5647			 */
5648			dca_remove_requester(dev);
5649			dev_info(&pdev->dev, "DCA disabled\n");
5650			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5651			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5652		}
5653		break;
5654	}
5655
5656	return 0;
5657}
5658
5659static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5660			  void *p)
5661{
5662	int ret_val;
5663
5664	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5665					 __igb_notify_dca);
5666
5667	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5668}
5669#endif /* CONFIG_IGB_DCA */
5670
5671#ifdef CONFIG_PCI_IOV
5672static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5673{
5674	unsigned char mac_addr[ETH_ALEN];
5675
5676	eth_zero_addr(mac_addr);
5677	igb_set_vf_mac(adapter, vf, mac_addr);
5678
5679	/* By default spoof check is enabled for all VFs */
5680	adapter->vf_data[vf].spoofchk_enabled = true;
5681
5682	return 0;
5683}
5684
5685#endif
5686static void igb_ping_all_vfs(struct igb_adapter *adapter)
5687{
5688	struct e1000_hw *hw = &adapter->hw;
5689	u32 ping;
5690	int i;
5691
5692	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5693		ping = E1000_PF_CONTROL_MSG;
5694		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5695			ping |= E1000_VT_MSGTYPE_CTS;
5696		igb_write_mbx(hw, &ping, 1, i);
5697	}
5698}
5699
5700static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5701{
5702	struct e1000_hw *hw = &adapter->hw;
5703	u32 vmolr = rd32(E1000_VMOLR(vf));
5704	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5705
5706	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5707			    IGB_VF_FLAG_MULTI_PROMISC);
5708	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5709
5710	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5711		vmolr |= E1000_VMOLR_MPME;
5712		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5713		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5714	} else {
5715		/* if we have hashes and we are clearing a multicast promisc
5716		 * flag we need to write the hashes to the MTA as this step
5717		 * was previously skipped
5718		 */
5719		if (vf_data->num_vf_mc_hashes > 30) {
5720			vmolr |= E1000_VMOLR_MPME;
5721		} else if (vf_data->num_vf_mc_hashes) {
5722			int j;
5723
5724			vmolr |= E1000_VMOLR_ROMPE;
5725			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5726				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5727		}
5728	}
5729
5730	wr32(E1000_VMOLR(vf), vmolr);
5731
5732	/* there are flags left unprocessed, likely not supported */
5733	if (*msgbuf & E1000_VT_MSGINFO_MASK)
5734		return -EINVAL;
5735
5736	return 0;
5737}
5738
5739static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5740				  u32 *msgbuf, u32 vf)
5741{
5742	int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5743	u16 *hash_list = (u16 *)&msgbuf[1];
5744	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5745	int i;
5746
5747	/* salt away the number of multicast addresses assigned
5748	 * to this VF for later use to restore when the PF multi cast
5749	 * list changes
5750	 */
5751	vf_data->num_vf_mc_hashes = n;
5752
5753	/* only up to 30 hash values supported */
5754	if (n > 30)
5755		n = 30;
5756
5757	/* store the hashes for later use */
5758	for (i = 0; i < n; i++)
5759		vf_data->vf_mc_hashes[i] = hash_list[i];
5760
5761	/* Flush and reset the mta with the new values */
5762	igb_set_rx_mode(adapter->netdev);
5763
5764	return 0;
5765}
5766
5767static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5768{
5769	struct e1000_hw *hw = &adapter->hw;
5770	struct vf_data_storage *vf_data;
5771	int i, j;
5772
5773	for (i = 0; i < adapter->vfs_allocated_count; i++) {
5774		u32 vmolr = rd32(E1000_VMOLR(i));
5775
5776		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5777
5778		vf_data = &adapter->vf_data[i];
5779
5780		if ((vf_data->num_vf_mc_hashes > 30) ||
5781		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5782			vmolr |= E1000_VMOLR_MPME;
5783		} else if (vf_data->num_vf_mc_hashes) {
5784			vmolr |= E1000_VMOLR_ROMPE;
5785			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5786				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5787		}
5788		wr32(E1000_VMOLR(i), vmolr);
5789	}
5790}
5791
5792static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5793{
5794	struct e1000_hw *hw = &adapter->hw;
5795	u32 pool_mask, reg, vid;
5796	int i;
5797
5798	pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5799
5800	/* Find the vlan filter for this id */
5801	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5802		reg = rd32(E1000_VLVF(i));
5803
5804		/* remove the vf from the pool */
5805		reg &= ~pool_mask;
5806
5807		/* if pool is empty then remove entry from vfta */
5808		if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5809		    (reg & E1000_VLVF_VLANID_ENABLE)) {
5810			reg = 0;
5811			vid = reg & E1000_VLVF_VLANID_MASK;
5812			igb_vfta_set(hw, vid, false);
5813		}
5814
5815		wr32(E1000_VLVF(i), reg);
5816	}
5817
5818	adapter->vf_data[vf].vlans_enabled = 0;
5819}
5820
5821static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5822{
5823	struct e1000_hw *hw = &adapter->hw;
5824	u32 reg, i;
5825
5826	/* The vlvf table only exists on 82576 hardware and newer */
5827	if (hw->mac.type < e1000_82576)
5828		return -1;
5829
5830	/* we only need to do this if VMDq is enabled */
5831	if (!adapter->vfs_allocated_count)
5832		return -1;
5833
5834	/* Find the vlan filter for this id */
5835	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5836		reg = rd32(E1000_VLVF(i));
5837		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5838		    vid == (reg & E1000_VLVF_VLANID_MASK))
5839			break;
5840	}
5841
5842	if (add) {
5843		if (i == E1000_VLVF_ARRAY_SIZE) {
5844			/* Did not find a matching VLAN ID entry that was
5845			 * enabled.  Search for a free filter entry, i.e.
5846			 * one without the enable bit set
5847			 */
5848			for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5849				reg = rd32(E1000_VLVF(i));
5850				if (!(reg & E1000_VLVF_VLANID_ENABLE))
5851					break;
5852			}
5853		}
5854		if (i < E1000_VLVF_ARRAY_SIZE) {
5855			/* Found an enabled/available entry */
5856			reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5857
5858			/* if !enabled we need to set this up in vfta */
5859			if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5860				/* add VID to filter table */
5861				igb_vfta_set(hw, vid, true);
5862				reg |= E1000_VLVF_VLANID_ENABLE;
5863			}
5864			reg &= ~E1000_VLVF_VLANID_MASK;
5865			reg |= vid;
5866			wr32(E1000_VLVF(i), reg);
5867
5868			/* do not modify RLPML for PF devices */
5869			if (vf >= adapter->vfs_allocated_count)
5870				return 0;
5871
5872			if (!adapter->vf_data[vf].vlans_enabled) {
5873				u32 size;
5874
5875				reg = rd32(E1000_VMOLR(vf));
5876				size = reg & E1000_VMOLR_RLPML_MASK;
5877				size += 4;
5878				reg &= ~E1000_VMOLR_RLPML_MASK;
5879				reg |= size;
5880				wr32(E1000_VMOLR(vf), reg);
5881			}
5882
5883			adapter->vf_data[vf].vlans_enabled++;
5884		}
5885	} else {
5886		if (i < E1000_VLVF_ARRAY_SIZE) {
5887			/* remove vf from the pool */
5888			reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5889			/* if pool is empty then remove entry from vfta */
5890			if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5891				reg = 0;
5892				igb_vfta_set(hw, vid, false);
5893			}
5894			wr32(E1000_VLVF(i), reg);
5895
5896			/* do not modify RLPML for PF devices */
5897			if (vf >= adapter->vfs_allocated_count)
5898				return 0;
5899
5900			adapter->vf_data[vf].vlans_enabled--;
5901			if (!adapter->vf_data[vf].vlans_enabled) {
5902				u32 size;
5903
5904				reg = rd32(E1000_VMOLR(vf));
5905				size = reg & E1000_VMOLR_RLPML_MASK;
5906				size -= 4;
5907				reg &= ~E1000_VMOLR_RLPML_MASK;
5908				reg |= size;
5909				wr32(E1000_VMOLR(vf), reg);
5910			}
5911		}
5912	}
5913	return 0;
5914}
5915
5916static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5917{
5918	struct e1000_hw *hw = &adapter->hw;
5919
5920	if (vid)
5921		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5922	else
5923		wr32(E1000_VMVIR(vf), 0);
5924}
5925
5926static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5927			       int vf, u16 vlan, u8 qos)
5928{
5929	int err = 0;
5930	struct igb_adapter *adapter = netdev_priv(netdev);
5931
5932	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5933		return -EINVAL;
5934	if (vlan || qos) {
5935		err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5936		if (err)
5937			goto out;
5938		igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5939		igb_set_vmolr(adapter, vf, !vlan);
5940		adapter->vf_data[vf].pf_vlan = vlan;
5941		adapter->vf_data[vf].pf_qos = qos;
5942		dev_info(&adapter->pdev->dev,
5943			 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5944		if (test_bit(__IGB_DOWN, &adapter->state)) {
5945			dev_warn(&adapter->pdev->dev,
5946				 "The VF VLAN has been set, but the PF device is not up.\n");
5947			dev_warn(&adapter->pdev->dev,
5948				 "Bring the PF device up before attempting to use the VF device.\n");
5949		}
5950	} else {
5951		igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5952			     false, vf);
5953		igb_set_vmvir(adapter, vlan, vf);
5954		igb_set_vmolr(adapter, vf, true);
5955		adapter->vf_data[vf].pf_vlan = 0;
5956		adapter->vf_data[vf].pf_qos = 0;
5957	}
5958out:
5959	return err;
5960}
5961
5962static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5963{
5964	struct e1000_hw *hw = &adapter->hw;
5965	int i;
5966	u32 reg;
5967
5968	/* Find the vlan filter for this id */
5969	for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5970		reg = rd32(E1000_VLVF(i));
5971		if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5972		    vid == (reg & E1000_VLVF_VLANID_MASK))
5973			break;
5974	}
5975
5976	if (i >= E1000_VLVF_ARRAY_SIZE)
5977		i = -1;
5978
5979	return i;
5980}
5981
5982static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5983{
5984	struct e1000_hw *hw = &adapter->hw;
5985	int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5986	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5987	int err = 0;
5988
5989	/* If in promiscuous mode we need to make sure the PF also has
5990	 * the VLAN filter set.
5991	 */
5992	if (add && (adapter->netdev->flags & IFF_PROMISC))
5993		err = igb_vlvf_set(adapter, vid, add,
5994				   adapter->vfs_allocated_count);
5995	if (err)
5996		goto out;
5997
5998	err = igb_vlvf_set(adapter, vid, add, vf);
5999
6000	if (err)
6001		goto out;
6002
6003	/* Go through all the checks to see if the VLAN filter should
6004	 * be wiped completely.
6005	 */
6006	if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
6007		u32 vlvf, bits;
6008		int regndx = igb_find_vlvf_entry(adapter, vid);
6009
6010		if (regndx < 0)
6011			goto out;
6012		/* See if any other pools are set for this VLAN filter
6013		 * entry other than the PF.
6014		 */
6015		vlvf = bits = rd32(E1000_VLVF(regndx));
6016		bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6017			      adapter->vfs_allocated_count);
6018		/* If the filter was removed then ensure PF pool bit
6019		 * is cleared if the PF only added itself to the pool
6020		 * because the PF is in promiscuous mode.
6021		 */
6022		if ((vlvf & VLAN_VID_MASK) == vid &&
6023		    !test_bit(vid, adapter->active_vlans) &&
6024		    !bits)
6025			igb_vlvf_set(adapter, vid, add,
6026				     adapter->vfs_allocated_count);
6027	}
6028
6029out:
6030	return err;
6031}
6032
6033static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6034{
6035	/* clear flags - except flag that indicates PF has set the MAC */
6036	adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6037	adapter->vf_data[vf].last_nack = jiffies;
6038
6039	/* reset offloads to defaults */
6040	igb_set_vmolr(adapter, vf, true);
6041
6042	/* reset vlans for device */
6043	igb_clear_vf_vfta(adapter, vf);
6044	if (adapter->vf_data[vf].pf_vlan)
6045		igb_ndo_set_vf_vlan(adapter->netdev, vf,
6046				    adapter->vf_data[vf].pf_vlan,
6047				    adapter->vf_data[vf].pf_qos);
6048	else
6049		igb_clear_vf_vfta(adapter, vf);
6050
6051	/* reset multicast table array for vf */
6052	adapter->vf_data[vf].num_vf_mc_hashes = 0;
6053
6054	/* Flush and reset the mta with the new values */
6055	igb_set_rx_mode(adapter->netdev);
6056}
6057
6058static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6059{
6060	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6061
6062	/* clear mac address as we were hotplug removed/added */
6063	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6064		eth_zero_addr(vf_mac);
6065
6066	/* process remaining reset events */
6067	igb_vf_reset(adapter, vf);
6068}
6069
6070static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6071{
6072	struct e1000_hw *hw = &adapter->hw;
6073	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6074	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6075	u32 reg, msgbuf[3];
6076	u8 *addr = (u8 *)(&msgbuf[1]);
6077
6078	/* process all the same items cleared in a function level reset */
6079	igb_vf_reset(adapter, vf);
6080
6081	/* set vf mac address */
6082	igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6083
6084	/* enable transmit and receive for vf */
6085	reg = rd32(E1000_VFTE);
6086	wr32(E1000_VFTE, reg | (1 << vf));
6087	reg = rd32(E1000_VFRE);
6088	wr32(E1000_VFRE, reg | (1 << vf));
6089
6090	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6091
6092	/* reply to reset with ack and vf mac address */
6093	if (!is_zero_ether_addr(vf_mac)) {
6094		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6095		memcpy(addr, vf_mac, ETH_ALEN);
6096	} else {
6097		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6098	}
6099	igb_write_mbx(hw, msgbuf, 3, vf);
6100}
6101
6102static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6103{
6104	/* The VF MAC Address is stored in a packed array of bytes
6105	 * starting at the second 32 bit word of the msg array
6106	 */
6107	unsigned char *addr = (char *)&msg[1];
6108	int err = -1;
6109
6110	if (is_valid_ether_addr(addr))
6111		err = igb_set_vf_mac(adapter, vf, addr);
6112
6113	return err;
6114}
6115
6116static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6117{
6118	struct e1000_hw *hw = &adapter->hw;
6119	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6120	u32 msg = E1000_VT_MSGTYPE_NACK;
6121
6122	/* if device isn't clear to send it shouldn't be reading either */
6123	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6124	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6125		igb_write_mbx(hw, &msg, 1, vf);
6126		vf_data->last_nack = jiffies;
6127	}
6128}
6129
6130static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6131{
6132	struct pci_dev *pdev = adapter->pdev;
6133	u32 msgbuf[E1000_VFMAILBOX_SIZE];
6134	struct e1000_hw *hw = &adapter->hw;
6135	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6136	s32 retval;
6137
6138	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6139
6140	if (retval) {
6141		/* if receive failed revoke VF CTS stats and restart init */
6142		dev_err(&pdev->dev, "Error receiving message from VF\n");
6143		vf_data->flags &= ~IGB_VF_FLAG_CTS;
6144		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6145			return;
6146		goto out;
6147	}
6148
6149	/* this is a message we already processed, do nothing */
6150	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6151		return;
6152
6153	/* until the vf completes a reset it should not be
6154	 * allowed to start any configuration.
6155	 */
6156	if (msgbuf[0] == E1000_VF_RESET) {
6157		igb_vf_reset_msg(adapter, vf);
6158		return;
6159	}
6160
6161	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6162		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6163			return;
6164		retval = -1;
6165		goto out;
6166	}
6167
6168	switch ((msgbuf[0] & 0xFFFF)) {
6169	case E1000_VF_SET_MAC_ADDR:
6170		retval = -EINVAL;
6171		if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6172			retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6173		else
6174			dev_warn(&pdev->dev,
6175				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6176				 vf);
6177		break;
6178	case E1000_VF_SET_PROMISC:
6179		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6180		break;
6181	case E1000_VF_SET_MULTICAST:
6182		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6183		break;
6184	case E1000_VF_SET_LPE:
6185		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6186		break;
6187	case E1000_VF_SET_VLAN:
6188		retval = -1;
6189		if (vf_data->pf_vlan)
6190			dev_warn(&pdev->dev,
6191				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6192				 vf);
6193		else
6194			retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6195		break;
6196	default:
6197		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6198		retval = -1;
6199		break;
6200	}
6201
6202	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6203out:
6204	/* notify the VF of the results of what it sent us */
6205	if (retval)
6206		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6207	else
6208		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6209
6210	igb_write_mbx(hw, msgbuf, 1, vf);
6211}
6212
6213static void igb_msg_task(struct igb_adapter *adapter)
6214{
6215	struct e1000_hw *hw = &adapter->hw;
6216	u32 vf;
6217
6218	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6219		/* process any reset requests */
6220		if (!igb_check_for_rst(hw, vf))
6221			igb_vf_reset_event(adapter, vf);
6222
6223		/* process any messages pending */
6224		if (!igb_check_for_msg(hw, vf))
6225			igb_rcv_msg_from_vf(adapter, vf);
6226
6227		/* process any acks */
6228		if (!igb_check_for_ack(hw, vf))
6229			igb_rcv_ack_from_vf(adapter, vf);
6230	}
6231}
6232
6233/**
6234 *  igb_set_uta - Set unicast filter table address
6235 *  @adapter: board private structure
6236 *
6237 *  The unicast table address is a register array of 32-bit registers.
6238 *  The table is meant to be used in a way similar to how the MTA is used
6239 *  however due to certain limitations in the hardware it is necessary to
6240 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6241 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6242 **/
6243static void igb_set_uta(struct igb_adapter *adapter)
6244{
6245	struct e1000_hw *hw = &adapter->hw;
6246	int i;
6247
6248	/* The UTA table only exists on 82576 hardware and newer */
6249	if (hw->mac.type < e1000_82576)
6250		return;
6251
6252	/* we only need to do this if VMDq is enabled */
6253	if (!adapter->vfs_allocated_count)
6254		return;
6255
6256	for (i = 0; i < hw->mac.uta_reg_count; i++)
6257		array_wr32(E1000_UTA, i, ~0);
6258}
6259
6260/**
6261 *  igb_intr_msi - Interrupt Handler
6262 *  @irq: interrupt number
6263 *  @data: pointer to a network interface device structure
6264 **/
6265static irqreturn_t igb_intr_msi(int irq, void *data)
6266{
6267	struct igb_adapter *adapter = data;
6268	struct igb_q_vector *q_vector = adapter->q_vector[0];
6269	struct e1000_hw *hw = &adapter->hw;
6270	/* read ICR disables interrupts using IAM */
6271	u32 icr = rd32(E1000_ICR);
6272
6273	igb_write_itr(q_vector);
6274
6275	if (icr & E1000_ICR_DRSTA)
6276		schedule_work(&adapter->reset_task);
6277
6278	if (icr & E1000_ICR_DOUTSYNC) {
6279		/* HW is reporting DMA is out of sync */
6280		adapter->stats.doosync++;
6281	}
6282
6283	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6284		hw->mac.get_link_status = 1;
6285		if (!test_bit(__IGB_DOWN, &adapter->state))
6286			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6287	}
6288
6289	if (icr & E1000_ICR_TS)
6290		igb_tsync_interrupt(adapter);
6291
6292	napi_schedule(&q_vector->napi);
6293
6294	return IRQ_HANDLED;
6295}
6296
6297/**
6298 *  igb_intr - Legacy Interrupt Handler
6299 *  @irq: interrupt number
6300 *  @data: pointer to a network interface device structure
6301 **/
6302static irqreturn_t igb_intr(int irq, void *data)
6303{
6304	struct igb_adapter *adapter = data;
6305	struct igb_q_vector *q_vector = adapter->q_vector[0];
6306	struct e1000_hw *hw = &adapter->hw;
6307	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6308	 * need for the IMC write
6309	 */
6310	u32 icr = rd32(E1000_ICR);
6311
6312	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6313	 * not set, then the adapter didn't send an interrupt
6314	 */
6315	if (!(icr & E1000_ICR_INT_ASSERTED))
6316		return IRQ_NONE;
6317
6318	igb_write_itr(q_vector);
6319
6320	if (icr & E1000_ICR_DRSTA)
6321		schedule_work(&adapter->reset_task);
6322
6323	if (icr & E1000_ICR_DOUTSYNC) {
6324		/* HW is reporting DMA is out of sync */
6325		adapter->stats.doosync++;
6326	}
6327
6328	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6329		hw->mac.get_link_status = 1;
6330		/* guard against interrupt when we're going down */
6331		if (!test_bit(__IGB_DOWN, &adapter->state))
6332			mod_timer(&adapter->watchdog_timer, jiffies + 1);
6333	}
6334
6335	if (icr & E1000_ICR_TS)
6336		igb_tsync_interrupt(adapter);
6337
6338	napi_schedule(&q_vector->napi);
6339
6340	return IRQ_HANDLED;
6341}
6342
6343static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6344{
6345	struct igb_adapter *adapter = q_vector->adapter;
6346	struct e1000_hw *hw = &adapter->hw;
6347
6348	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6349	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6350		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6351			igb_set_itr(q_vector);
6352		else
6353			igb_update_ring_itr(q_vector);
6354	}
6355
6356	if (!test_bit(__IGB_DOWN, &adapter->state)) {
6357		if (adapter->flags & IGB_FLAG_HAS_MSIX)
6358			wr32(E1000_EIMS, q_vector->eims_value);
6359		else
6360			igb_irq_enable(adapter);
6361	}
6362}
6363
6364/**
6365 *  igb_poll - NAPI Rx polling callback
6366 *  @napi: napi polling structure
6367 *  @budget: count of how many packets we should handle
6368 **/
6369static int igb_poll(struct napi_struct *napi, int budget)
6370{
6371	struct igb_q_vector *q_vector = container_of(napi,
6372						     struct igb_q_vector,
6373						     napi);
6374	bool clean_complete = true;
6375
6376#ifdef CONFIG_IGB_DCA
6377	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6378		igb_update_dca(q_vector);
6379#endif
6380	if (q_vector->tx.ring)
6381		clean_complete = igb_clean_tx_irq(q_vector);
6382
6383	if (q_vector->rx.ring)
6384		clean_complete &= igb_clean_rx_irq(q_vector, budget);
6385
6386	/* If all work not completed, return budget and keep polling */
6387	if (!clean_complete)
6388		return budget;
6389
6390	/* If not enough Rx work done, exit the polling mode */
6391	napi_complete(napi);
6392	igb_ring_irq_enable(q_vector);
6393
6394	return 0;
6395}
6396
6397/**
6398 *  igb_clean_tx_irq - Reclaim resources after transmit completes
6399 *  @q_vector: pointer to q_vector containing needed info
6400 *
6401 *  returns true if ring is completely cleaned
6402 **/
6403static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6404{
6405	struct igb_adapter *adapter = q_vector->adapter;
6406	struct igb_ring *tx_ring = q_vector->tx.ring;
6407	struct igb_tx_buffer *tx_buffer;
6408	union e1000_adv_tx_desc *tx_desc;
6409	unsigned int total_bytes = 0, total_packets = 0;
6410	unsigned int budget = q_vector->tx.work_limit;
6411	unsigned int i = tx_ring->next_to_clean;
6412
6413	if (test_bit(__IGB_DOWN, &adapter->state))
6414		return true;
6415
6416	tx_buffer = &tx_ring->tx_buffer_info[i];
6417	tx_desc = IGB_TX_DESC(tx_ring, i);
6418	i -= tx_ring->count;
6419
6420	do {
6421		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6422
6423		/* if next_to_watch is not set then there is no work pending */
6424		if (!eop_desc)
6425			break;
6426
6427		/* prevent any other reads prior to eop_desc */
6428		read_barrier_depends();
6429
6430		/* if DD is not set pending work has not been completed */
6431		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6432			break;
6433
6434		/* clear next_to_watch to prevent false hangs */
6435		tx_buffer->next_to_watch = NULL;
6436
6437		/* update the statistics for this packet */
6438		total_bytes += tx_buffer->bytecount;
6439		total_packets += tx_buffer->gso_segs;
6440
6441		/* free the skb */
6442		dev_consume_skb_any(tx_buffer->skb);
6443
6444		/* unmap skb header data */
6445		dma_unmap_single(tx_ring->dev,
6446				 dma_unmap_addr(tx_buffer, dma),
6447				 dma_unmap_len(tx_buffer, len),
6448				 DMA_TO_DEVICE);
6449
6450		/* clear tx_buffer data */
6451		tx_buffer->skb = NULL;
6452		dma_unmap_len_set(tx_buffer, len, 0);
6453
6454		/* clear last DMA location and unmap remaining buffers */
6455		while (tx_desc != eop_desc) {
6456			tx_buffer++;
6457			tx_desc++;
6458			i++;
6459			if (unlikely(!i)) {
6460				i -= tx_ring->count;
6461				tx_buffer = tx_ring->tx_buffer_info;
6462				tx_desc = IGB_TX_DESC(tx_ring, 0);
6463			}
6464
6465			/* unmap any remaining paged data */
6466			if (dma_unmap_len(tx_buffer, len)) {
6467				dma_unmap_page(tx_ring->dev,
6468					       dma_unmap_addr(tx_buffer, dma),
6469					       dma_unmap_len(tx_buffer, len),
6470					       DMA_TO_DEVICE);
6471				dma_unmap_len_set(tx_buffer, len, 0);
6472			}
6473		}
6474
6475		/* move us one more past the eop_desc for start of next pkt */
6476		tx_buffer++;
6477		tx_desc++;
6478		i++;
6479		if (unlikely(!i)) {
6480			i -= tx_ring->count;
6481			tx_buffer = tx_ring->tx_buffer_info;
6482			tx_desc = IGB_TX_DESC(tx_ring, 0);
6483		}
6484
6485		/* issue prefetch for next Tx descriptor */
6486		prefetch(tx_desc);
6487
6488		/* update budget accounting */
6489		budget--;
6490	} while (likely(budget));
6491
6492	netdev_tx_completed_queue(txring_txq(tx_ring),
6493				  total_packets, total_bytes);
6494	i += tx_ring->count;
6495	tx_ring->next_to_clean = i;
6496	u64_stats_update_begin(&tx_ring->tx_syncp);
6497	tx_ring->tx_stats.bytes += total_bytes;
6498	tx_ring->tx_stats.packets += total_packets;
6499	u64_stats_update_end(&tx_ring->tx_syncp);
6500	q_vector->tx.total_bytes += total_bytes;
6501	q_vector->tx.total_packets += total_packets;
6502
6503	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6504		struct e1000_hw *hw = &adapter->hw;
6505
6506		/* Detect a transmit hang in hardware, this serializes the
6507		 * check with the clearing of time_stamp and movement of i
6508		 */
6509		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6510		if (tx_buffer->next_to_watch &&
6511		    time_after(jiffies, tx_buffer->time_stamp +
6512			       (adapter->tx_timeout_factor * HZ)) &&
6513		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6514
6515			/* detected Tx unit hang */
6516			dev_err(tx_ring->dev,
6517				"Detected Tx Unit Hang\n"
6518				"  Tx Queue             <%d>\n"
6519				"  TDH                  <%x>\n"
6520				"  TDT                  <%x>\n"
6521				"  next_to_use          <%x>\n"
6522				"  next_to_clean        <%x>\n"
6523				"buffer_info[next_to_clean]\n"
6524				"  time_stamp           <%lx>\n"
6525				"  next_to_watch        <%p>\n"
6526				"  jiffies              <%lx>\n"
6527				"  desc.status          <%x>\n",
6528				tx_ring->queue_index,
6529				rd32(E1000_TDH(tx_ring->reg_idx)),
6530				readl(tx_ring->tail),
6531				tx_ring->next_to_use,
6532				tx_ring->next_to_clean,
6533				tx_buffer->time_stamp,
6534				tx_buffer->next_to_watch,
6535				jiffies,
6536				tx_buffer->next_to_watch->wb.status);
6537			netif_stop_subqueue(tx_ring->netdev,
6538					    tx_ring->queue_index);
6539
6540			/* we are about to reset, no point in enabling stuff */
6541			return true;
6542		}
6543	}
6544
6545#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6546	if (unlikely(total_packets &&
6547	    netif_carrier_ok(tx_ring->netdev) &&
6548	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6549		/* Make sure that anybody stopping the queue after this
6550		 * sees the new next_to_clean.
6551		 */
6552		smp_mb();
6553		if (__netif_subqueue_stopped(tx_ring->netdev,
6554					     tx_ring->queue_index) &&
6555		    !(test_bit(__IGB_DOWN, &adapter->state))) {
6556			netif_wake_subqueue(tx_ring->netdev,
6557					    tx_ring->queue_index);
6558
6559			u64_stats_update_begin(&tx_ring->tx_syncp);
6560			tx_ring->tx_stats.restart_queue++;
6561			u64_stats_update_end(&tx_ring->tx_syncp);
6562		}
6563	}
6564
6565	return !!budget;
6566}
6567
6568/**
6569 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6570 *  @rx_ring: rx descriptor ring to store buffers on
6571 *  @old_buff: donor buffer to have page reused
6572 *
6573 *  Synchronizes page for reuse by the adapter
6574 **/
6575static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6576			      struct igb_rx_buffer *old_buff)
6577{
6578	struct igb_rx_buffer *new_buff;
6579	u16 nta = rx_ring->next_to_alloc;
6580
6581	new_buff = &rx_ring->rx_buffer_info[nta];
6582
6583	/* update, and store next to alloc */
6584	nta++;
6585	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6586
6587	/* transfer page from old buffer to new buffer */
6588	*new_buff = *old_buff;
6589
6590	/* sync the buffer for use by the device */
6591	dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6592					 old_buff->page_offset,
6593					 IGB_RX_BUFSZ,
6594					 DMA_FROM_DEVICE);
6595}
6596
6597static inline bool igb_page_is_reserved(struct page *page)
6598{
6599	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6600}
6601
6602static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6603				  struct page *page,
6604				  unsigned int truesize)
6605{
6606	/* avoid re-using remote pages */
6607	if (unlikely(igb_page_is_reserved(page)))
6608		return false;
6609
6610#if (PAGE_SIZE < 8192)
6611	/* if we are only owner of page we can reuse it */
6612	if (unlikely(page_count(page) != 1))
6613		return false;
6614
6615	/* flip page offset to other buffer */
6616	rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6617#else
6618	/* move offset up to the next cache line */
6619	rx_buffer->page_offset += truesize;
6620
6621	if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6622		return false;
6623#endif
6624
6625	/* Even if we own the page, we are not allowed to use atomic_set()
6626	 * This would break get_page_unless_zero() users.
6627	 */
6628	atomic_inc(&page->_count);
6629
6630	return true;
6631}
6632
6633/**
6634 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6635 *  @rx_ring: rx descriptor ring to transact packets on
6636 *  @rx_buffer: buffer containing page to add
6637 *  @rx_desc: descriptor containing length of buffer written by hardware
6638 *  @skb: sk_buff to place the data into
6639 *
6640 *  This function will add the data contained in rx_buffer->page to the skb.
6641 *  This is done either through a direct copy if the data in the buffer is
6642 *  less than the skb header size, otherwise it will just attach the page as
6643 *  a frag to the skb.
6644 *
6645 *  The function will then update the page offset if necessary and return
6646 *  true if the buffer can be reused by the adapter.
6647 **/
6648static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6649			    struct igb_rx_buffer *rx_buffer,
6650			    union e1000_adv_rx_desc *rx_desc,
6651			    struct sk_buff *skb)
6652{
6653	struct page *page = rx_buffer->page;
6654	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6655#if (PAGE_SIZE < 8192)
6656	unsigned int truesize = IGB_RX_BUFSZ;
6657#else
6658	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6659#endif
6660
6661	if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6662		unsigned char *va = page_address(page) + rx_buffer->page_offset;
6663
6664		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6665			igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6666			va += IGB_TS_HDR_LEN;
6667			size -= IGB_TS_HDR_LEN;
6668		}
6669
6670		memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6671
6672		/* page is not reserved, we can reuse buffer as-is */
6673		if (likely(!igb_page_is_reserved(page)))
6674			return true;
6675
6676		/* this page cannot be reused so discard it */
6677		__free_page(page);
6678		return false;
6679	}
6680
6681	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6682			rx_buffer->page_offset, size, truesize);
6683
6684	return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6685}
6686
6687static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6688					   union e1000_adv_rx_desc *rx_desc,
6689					   struct sk_buff *skb)
6690{
6691	struct igb_rx_buffer *rx_buffer;
6692	struct page *page;
6693
6694	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6695	page = rx_buffer->page;
6696	prefetchw(page);
6697
6698	if (likely(!skb)) {
6699		void *page_addr = page_address(page) +
6700				  rx_buffer->page_offset;
6701
6702		/* prefetch first cache line of first page */
6703		prefetch(page_addr);
6704#if L1_CACHE_BYTES < 128
6705		prefetch(page_addr + L1_CACHE_BYTES);
6706#endif
6707
6708		/* allocate a skb to store the frags */
6709		skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6710		if (unlikely(!skb)) {
6711			rx_ring->rx_stats.alloc_failed++;
6712			return NULL;
6713		}
6714
6715		/* we will be copying header into skb->data in
6716		 * pskb_may_pull so it is in our interest to prefetch
6717		 * it now to avoid a possible cache miss
6718		 */
6719		prefetchw(skb->data);
6720	}
6721
6722	/* we are reusing so sync this buffer for CPU use */
6723	dma_sync_single_range_for_cpu(rx_ring->dev,
6724				      rx_buffer->dma,
6725				      rx_buffer->page_offset,
6726				      IGB_RX_BUFSZ,
6727				      DMA_FROM_DEVICE);
6728
6729	/* pull page into skb */
6730	if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6731		/* hand second half of page back to the ring */
6732		igb_reuse_rx_page(rx_ring, rx_buffer);
6733	} else {
6734		/* we are not reusing the buffer so unmap it */
6735		dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6736			       PAGE_SIZE, DMA_FROM_DEVICE);
6737	}
6738
6739	/* clear contents of rx_buffer */
6740	rx_buffer->page = NULL;
6741
6742	return skb;
6743}
6744
6745static inline void igb_rx_checksum(struct igb_ring *ring,
6746				   union e1000_adv_rx_desc *rx_desc,
6747				   struct sk_buff *skb)
6748{
6749	skb_checksum_none_assert(skb);
6750
6751	/* Ignore Checksum bit is set */
6752	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6753		return;
6754
6755	/* Rx checksum disabled via ethtool */
6756	if (!(ring->netdev->features & NETIF_F_RXCSUM))
6757		return;
6758
6759	/* TCP/UDP checksum error bit is set */
6760	if (igb_test_staterr(rx_desc,
6761			     E1000_RXDEXT_STATERR_TCPE |
6762			     E1000_RXDEXT_STATERR_IPE)) {
6763		/* work around errata with sctp packets where the TCPE aka
6764		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6765		 * packets, (aka let the stack check the crc32c)
6766		 */
6767		if (!((skb->len == 60) &&
6768		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6769			u64_stats_update_begin(&ring->rx_syncp);
6770			ring->rx_stats.csum_err++;
6771			u64_stats_update_end(&ring->rx_syncp);
6772		}
6773		/* let the stack verify checksum errors */
6774		return;
6775	}
6776	/* It must be a TCP or UDP packet with a valid checksum */
6777	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6778				      E1000_RXD_STAT_UDPCS))
6779		skb->ip_summed = CHECKSUM_UNNECESSARY;
6780
6781	dev_dbg(ring->dev, "cksum success: bits %08X\n",
6782		le32_to_cpu(rx_desc->wb.upper.status_error));
6783}
6784
6785static inline void igb_rx_hash(struct igb_ring *ring,
6786			       union e1000_adv_rx_desc *rx_desc,
6787			       struct sk_buff *skb)
6788{
6789	if (ring->netdev->features & NETIF_F_RXHASH)
6790		skb_set_hash(skb,
6791			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6792			     PKT_HASH_TYPE_L3);
6793}
6794
6795/**
6796 *  igb_is_non_eop - process handling of non-EOP buffers
6797 *  @rx_ring: Rx ring being processed
6798 *  @rx_desc: Rx descriptor for current buffer
6799 *  @skb: current socket buffer containing buffer in progress
6800 *
6801 *  This function updates next to clean.  If the buffer is an EOP buffer
6802 *  this function exits returning false, otherwise it will place the
6803 *  sk_buff in the next buffer to be chained and return true indicating
6804 *  that this is in fact a non-EOP buffer.
6805 **/
6806static bool igb_is_non_eop(struct igb_ring *rx_ring,
6807			   union e1000_adv_rx_desc *rx_desc)
6808{
6809	u32 ntc = rx_ring->next_to_clean + 1;
6810
6811	/* fetch, update, and store next to clean */
6812	ntc = (ntc < rx_ring->count) ? ntc : 0;
6813	rx_ring->next_to_clean = ntc;
6814
6815	prefetch(IGB_RX_DESC(rx_ring, ntc));
6816
6817	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6818		return false;
6819
6820	return true;
6821}
6822
6823/**
6824 *  igb_pull_tail - igb specific version of skb_pull_tail
6825 *  @rx_ring: rx descriptor ring packet is being transacted on
6826 *  @rx_desc: pointer to the EOP Rx descriptor
6827 *  @skb: pointer to current skb being adjusted
6828 *
6829 *  This function is an igb specific version of __pskb_pull_tail.  The
6830 *  main difference between this version and the original function is that
6831 *  this function can make several assumptions about the state of things
6832 *  that allow for significant optimizations versus the standard function.
6833 *  As a result we can do things like drop a frag and maintain an accurate
6834 *  truesize for the skb.
6835 */
6836static void igb_pull_tail(struct igb_ring *rx_ring,
6837			  union e1000_adv_rx_desc *rx_desc,
6838			  struct sk_buff *skb)
6839{
6840	struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6841	unsigned char *va;
6842	unsigned int pull_len;
6843
6844	/* it is valid to use page_address instead of kmap since we are
6845	 * working with pages allocated out of the lomem pool per
6846	 * alloc_page(GFP_ATOMIC)
6847	 */
6848	va = skb_frag_address(frag);
6849
6850	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6851		/* retrieve timestamp from buffer */
6852		igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6853
6854		/* update pointers to remove timestamp header */
6855		skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6856		frag->page_offset += IGB_TS_HDR_LEN;
6857		skb->data_len -= IGB_TS_HDR_LEN;
6858		skb->len -= IGB_TS_HDR_LEN;
6859
6860		/* move va to start of packet data */
6861		va += IGB_TS_HDR_LEN;
6862	}
6863
6864	/* we need the header to contain the greater of either ETH_HLEN or
6865	 * 60 bytes if the skb->len is less than 60 for skb_pad.
6866	 */
6867	pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6868
6869	/* align pull length to size of long to optimize memcpy performance */
6870	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6871
6872	/* update all of the pointers */
6873	skb_frag_size_sub(frag, pull_len);
6874	frag->page_offset += pull_len;
6875	skb->data_len -= pull_len;
6876	skb->tail += pull_len;
6877}
6878
6879/**
6880 *  igb_cleanup_headers - Correct corrupted or empty headers
6881 *  @rx_ring: rx descriptor ring packet is being transacted on
6882 *  @rx_desc: pointer to the EOP Rx descriptor
6883 *  @skb: pointer to current skb being fixed
6884 *
6885 *  Address the case where we are pulling data in on pages only
6886 *  and as such no data is present in the skb header.
6887 *
6888 *  In addition if skb is not at least 60 bytes we need to pad it so that
6889 *  it is large enough to qualify as a valid Ethernet frame.
6890 *
6891 *  Returns true if an error was encountered and skb was freed.
6892 **/
6893static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6894				union e1000_adv_rx_desc *rx_desc,
6895				struct sk_buff *skb)
6896{
6897	if (unlikely((igb_test_staterr(rx_desc,
6898				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6899		struct net_device *netdev = rx_ring->netdev;
6900		if (!(netdev->features & NETIF_F_RXALL)) {
6901			dev_kfree_skb_any(skb);
6902			return true;
6903		}
6904	}
6905
6906	/* place header in linear portion of buffer */
6907	if (skb_is_nonlinear(skb))
6908		igb_pull_tail(rx_ring, rx_desc, skb);
6909
6910	/* if eth_skb_pad returns an error the skb was freed */
6911	if (eth_skb_pad(skb))
6912		return true;
6913
6914	return false;
6915}
6916
6917/**
6918 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6919 *  @rx_ring: rx descriptor ring packet is being transacted on
6920 *  @rx_desc: pointer to the EOP Rx descriptor
6921 *  @skb: pointer to current skb being populated
6922 *
6923 *  This function checks the ring, descriptor, and packet information in
6924 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6925 *  other fields within the skb.
6926 **/
6927static void igb_process_skb_fields(struct igb_ring *rx_ring,
6928				   union e1000_adv_rx_desc *rx_desc,
6929				   struct sk_buff *skb)
6930{
6931	struct net_device *dev = rx_ring->netdev;
6932
6933	igb_rx_hash(rx_ring, rx_desc, skb);
6934
6935	igb_rx_checksum(rx_ring, rx_desc, skb);
6936
6937	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6938	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6939		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6940
6941	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6942	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6943		u16 vid;
6944
6945		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6946		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6947			vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6948		else
6949			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6950
6951		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6952	}
6953
6954	skb_record_rx_queue(skb, rx_ring->queue_index);
6955
6956	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6957}
6958
6959static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6960{
6961	struct igb_ring *rx_ring = q_vector->rx.ring;
6962	struct sk_buff *skb = rx_ring->skb;
6963	unsigned int total_bytes = 0, total_packets = 0;
6964	u16 cleaned_count = igb_desc_unused(rx_ring);
6965
6966	while (likely(total_packets < budget)) {
6967		union e1000_adv_rx_desc *rx_desc;
6968
6969		/* return some buffers to hardware, one at a time is too slow */
6970		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6971			igb_alloc_rx_buffers(rx_ring, cleaned_count);
6972			cleaned_count = 0;
6973		}
6974
6975		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6976
6977		if (!rx_desc->wb.upper.status_error)
6978			break;
6979
6980		/* This memory barrier is needed to keep us from reading
6981		 * any other fields out of the rx_desc until we know the
6982		 * descriptor has been written back
6983		 */
6984		dma_rmb();
6985
6986		/* retrieve a buffer from the ring */
6987		skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6988
6989		/* exit if we failed to retrieve a buffer */
6990		if (!skb)
6991			break;
6992
6993		cleaned_count++;
6994
6995		/* fetch next buffer in frame if non-eop */
6996		if (igb_is_non_eop(rx_ring, rx_desc))
6997			continue;
6998
6999		/* verify the packet layout is correct */
7000		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7001			skb = NULL;
7002			continue;
7003		}
7004
7005		/* probably a little skewed due to removing CRC */
7006		total_bytes += skb->len;
7007
7008		/* populate checksum, timestamp, VLAN, and protocol */
7009		igb_process_skb_fields(rx_ring, rx_desc, skb);
7010
7011		napi_gro_receive(&q_vector->napi, skb);
7012
7013		/* reset skb pointer */
7014		skb = NULL;
7015
7016		/* update budget accounting */
7017		total_packets++;
7018	}
7019
7020	/* place incomplete frames back on ring for completion */
7021	rx_ring->skb = skb;
7022
7023	u64_stats_update_begin(&rx_ring->rx_syncp);
7024	rx_ring->rx_stats.packets += total_packets;
7025	rx_ring->rx_stats.bytes += total_bytes;
7026	u64_stats_update_end(&rx_ring->rx_syncp);
7027	q_vector->rx.total_packets += total_packets;
7028	q_vector->rx.total_bytes += total_bytes;
7029
7030	if (cleaned_count)
7031		igb_alloc_rx_buffers(rx_ring, cleaned_count);
7032
7033	return total_packets < budget;
7034}
7035
7036static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7037				  struct igb_rx_buffer *bi)
7038{
7039	struct page *page = bi->page;
7040	dma_addr_t dma;
7041
7042	/* since we are recycling buffers we should seldom need to alloc */
7043	if (likely(page))
7044		return true;
7045
7046	/* alloc new page for storage */
7047	page = dev_alloc_page();
7048	if (unlikely(!page)) {
7049		rx_ring->rx_stats.alloc_failed++;
7050		return false;
7051	}
7052
7053	/* map page for use */
7054	dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7055
7056	/* if mapping failed free memory back to system since
7057	 * there isn't much point in holding memory we can't use
7058	 */
7059	if (dma_mapping_error(rx_ring->dev, dma)) {
7060		__free_page(page);
7061
7062		rx_ring->rx_stats.alloc_failed++;
7063		return false;
7064	}
7065
7066	bi->dma = dma;
7067	bi->page = page;
7068	bi->page_offset = 0;
7069
7070	return true;
7071}
7072
7073/**
7074 *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7075 *  @adapter: address of board private structure
7076 **/
7077void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7078{
7079	union e1000_adv_rx_desc *rx_desc;
7080	struct igb_rx_buffer *bi;
7081	u16 i = rx_ring->next_to_use;
7082
7083	/* nothing to do */
7084	if (!cleaned_count)
7085		return;
7086
7087	rx_desc = IGB_RX_DESC(rx_ring, i);
7088	bi = &rx_ring->rx_buffer_info[i];
7089	i -= rx_ring->count;
7090
7091	do {
7092		if (!igb_alloc_mapped_page(rx_ring, bi))
7093			break;
7094
7095		/* Refresh the desc even if buffer_addrs didn't change
7096		 * because each write-back erases this info.
7097		 */
7098		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7099
7100		rx_desc++;
7101		bi++;
7102		i++;
7103		if (unlikely(!i)) {
7104			rx_desc = IGB_RX_DESC(rx_ring, 0);
7105			bi = rx_ring->rx_buffer_info;
7106			i -= rx_ring->count;
7107		}
7108
7109		/* clear the status bits for the next_to_use descriptor */
7110		rx_desc->wb.upper.status_error = 0;
7111
7112		cleaned_count--;
7113	} while (cleaned_count);
7114
7115	i += rx_ring->count;
7116
7117	if (rx_ring->next_to_use != i) {
7118		/* record the next descriptor to use */
7119		rx_ring->next_to_use = i;
7120
7121		/* update next to alloc since we have filled the ring */
7122		rx_ring->next_to_alloc = i;
7123
7124		/* Force memory writes to complete before letting h/w
7125		 * know there are new descriptors to fetch.  (Only
7126		 * applicable for weak-ordered memory model archs,
7127		 * such as IA-64).
7128		 */
7129		wmb();
7130		writel(i, rx_ring->tail);
7131	}
7132}
7133
7134/**
7135 * igb_mii_ioctl -
7136 * @netdev:
7137 * @ifreq:
7138 * @cmd:
7139 **/
7140static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7141{
7142	struct igb_adapter *adapter = netdev_priv(netdev);
7143	struct mii_ioctl_data *data = if_mii(ifr);
7144
7145	if (adapter->hw.phy.media_type != e1000_media_type_copper)
7146		return -EOPNOTSUPP;
7147
7148	switch (cmd) {
7149	case SIOCGMIIPHY:
7150		data->phy_id = adapter->hw.phy.addr;
7151		break;
7152	case SIOCGMIIREG:
7153		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7154				     &data->val_out))
7155			return -EIO;
7156		break;
7157	case SIOCSMIIREG:
7158	default:
7159		return -EOPNOTSUPP;
7160	}
7161	return 0;
7162}
7163
7164/**
7165 * igb_ioctl -
7166 * @netdev:
7167 * @ifreq:
7168 * @cmd:
7169 **/
7170static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7171{
7172	switch (cmd) {
7173	case SIOCGMIIPHY:
7174	case SIOCGMIIREG:
7175	case SIOCSMIIREG:
7176		return igb_mii_ioctl(netdev, ifr, cmd);
7177	case SIOCGHWTSTAMP:
7178		return igb_ptp_get_ts_config(netdev, ifr);
7179	case SIOCSHWTSTAMP:
7180		return igb_ptp_set_ts_config(netdev, ifr);
7181	default:
7182		return -EOPNOTSUPP;
7183	}
7184}
7185
7186void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7187{
7188	struct igb_adapter *adapter = hw->back;
7189
7190	pci_read_config_word(adapter->pdev, reg, value);
7191}
7192
7193void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7194{
7195	struct igb_adapter *adapter = hw->back;
7196
7197	pci_write_config_word(adapter->pdev, reg, *value);
7198}
7199
7200s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7201{
7202	struct igb_adapter *adapter = hw->back;
7203
7204	if (pcie_capability_read_word(adapter->pdev, reg, value))
7205		return -E1000_ERR_CONFIG;
7206
7207	return 0;
7208}
7209
7210s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7211{
7212	struct igb_adapter *adapter = hw->back;
7213
7214	if (pcie_capability_write_word(adapter->pdev, reg, *value))
7215		return -E1000_ERR_CONFIG;
7216
7217	return 0;
7218}
7219
7220static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7221{
7222	struct igb_adapter *adapter = netdev_priv(netdev);
7223	struct e1000_hw *hw = &adapter->hw;
7224	u32 ctrl, rctl;
7225	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7226
7227	if (enable) {
7228		/* enable VLAN tag insert/strip */
7229		ctrl = rd32(E1000_CTRL);
7230		ctrl |= E1000_CTRL_VME;
7231		wr32(E1000_CTRL, ctrl);
7232
7233		/* Disable CFI check */
7234		rctl = rd32(E1000_RCTL);
7235		rctl &= ~E1000_RCTL_CFIEN;
7236		wr32(E1000_RCTL, rctl);
7237	} else {
7238		/* disable VLAN tag insert/strip */
7239		ctrl = rd32(E1000_CTRL);
7240		ctrl &= ~E1000_CTRL_VME;
7241		wr32(E1000_CTRL, ctrl);
7242	}
7243
7244	igb_rlpml_set(adapter);
7245}
7246
7247static int igb_vlan_rx_add_vid(struct net_device *netdev,
7248			       __be16 proto, u16 vid)
7249{
7250	struct igb_adapter *adapter = netdev_priv(netdev);
7251	struct e1000_hw *hw = &adapter->hw;
7252	int pf_id = adapter->vfs_allocated_count;
7253
7254	/* attempt to add filter to vlvf array */
7255	igb_vlvf_set(adapter, vid, true, pf_id);
7256
7257	/* add the filter since PF can receive vlans w/o entry in vlvf */
7258	igb_vfta_set(hw, vid, true);
7259
7260	set_bit(vid, adapter->active_vlans);
7261
7262	return 0;
7263}
7264
7265static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7266				__be16 proto, u16 vid)
7267{
7268	struct igb_adapter *adapter = netdev_priv(netdev);
7269	struct e1000_hw *hw = &adapter->hw;
7270	int pf_id = adapter->vfs_allocated_count;
7271	s32 err;
7272
7273	/* remove vlan from VLVF table array */
7274	err = igb_vlvf_set(adapter, vid, false, pf_id);
7275
7276	/* if vid was not present in VLVF just remove it from table */
7277	if (err)
7278		igb_vfta_set(hw, vid, false);
7279
7280	clear_bit(vid, adapter->active_vlans);
7281
7282	return 0;
7283}
7284
7285static void igb_restore_vlan(struct igb_adapter *adapter)
7286{
7287	u16 vid;
7288
7289	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7290
7291	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7292		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7293}
7294
7295int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7296{
7297	struct pci_dev *pdev = adapter->pdev;
7298	struct e1000_mac_info *mac = &adapter->hw.mac;
7299
7300	mac->autoneg = 0;
7301
7302	/* Make sure dplx is at most 1 bit and lsb of speed is not set
7303	 * for the switch() below to work
7304	 */
7305	if ((spd & 1) || (dplx & ~1))
7306		goto err_inval;
7307
7308	/* Fiber NIC's only allow 1000 gbps Full duplex
7309	 * and 100Mbps Full duplex for 100baseFx sfp
7310	 */
7311	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7312		switch (spd + dplx) {
7313		case SPEED_10 + DUPLEX_HALF:
7314		case SPEED_10 + DUPLEX_FULL:
7315		case SPEED_100 + DUPLEX_HALF:
7316			goto err_inval;
7317		default:
7318			break;
7319		}
7320	}
7321
7322	switch (spd + dplx) {
7323	case SPEED_10 + DUPLEX_HALF:
7324		mac->forced_speed_duplex = ADVERTISE_10_HALF;
7325		break;
7326	case SPEED_10 + DUPLEX_FULL:
7327		mac->forced_speed_duplex = ADVERTISE_10_FULL;
7328		break;
7329	case SPEED_100 + DUPLEX_HALF:
7330		mac->forced_speed_duplex = ADVERTISE_100_HALF;
7331		break;
7332	case SPEED_100 + DUPLEX_FULL:
7333		mac->forced_speed_duplex = ADVERTISE_100_FULL;
7334		break;
7335	case SPEED_1000 + DUPLEX_FULL:
7336		mac->autoneg = 1;
7337		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7338		break;
7339	case SPEED_1000 + DUPLEX_HALF: /* not supported */
7340	default:
7341		goto err_inval;
7342	}
7343
7344	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7345	adapter->hw.phy.mdix = AUTO_ALL_MODES;
7346
7347	return 0;
7348
7349err_inval:
7350	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7351	return -EINVAL;
7352}
7353
7354static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7355			  bool runtime)
7356{
7357	struct net_device *netdev = pci_get_drvdata(pdev);
7358	struct igb_adapter *adapter = netdev_priv(netdev);
7359	struct e1000_hw *hw = &adapter->hw;
7360	u32 ctrl, rctl, status;
7361	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7362#ifdef CONFIG_PM
7363	int retval = 0;
7364#endif
7365
7366	netif_device_detach(netdev);
7367
7368	if (netif_running(netdev))
7369		__igb_close(netdev, true);
7370
7371	igb_clear_interrupt_scheme(adapter);
7372
7373#ifdef CONFIG_PM
7374	retval = pci_save_state(pdev);
7375	if (retval)
7376		return retval;
7377#endif
7378
7379	status = rd32(E1000_STATUS);
7380	if (status & E1000_STATUS_LU)
7381		wufc &= ~E1000_WUFC_LNKC;
7382
7383	if (wufc) {
7384		igb_setup_rctl(adapter);
7385		igb_set_rx_mode(netdev);
7386
7387		/* turn on all-multi mode if wake on multicast is enabled */
7388		if (wufc & E1000_WUFC_MC) {
7389			rctl = rd32(E1000_RCTL);
7390			rctl |= E1000_RCTL_MPE;
7391			wr32(E1000_RCTL, rctl);
7392		}
7393
7394		ctrl = rd32(E1000_CTRL);
7395		/* advertise wake from D3Cold */
7396		#define E1000_CTRL_ADVD3WUC 0x00100000
7397		/* phy power management enable */
7398		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7399		ctrl |= E1000_CTRL_ADVD3WUC;
7400		wr32(E1000_CTRL, ctrl);
7401
7402		/* Allow time for pending master requests to run */
7403		igb_disable_pcie_master(hw);
7404
7405		wr32(E1000_WUC, E1000_WUC_PME_EN);
7406		wr32(E1000_WUFC, wufc);
7407	} else {
7408		wr32(E1000_WUC, 0);
7409		wr32(E1000_WUFC, 0);
7410	}
7411
7412	*enable_wake = wufc || adapter->en_mng_pt;
7413	if (!*enable_wake)
7414		igb_power_down_link(adapter);
7415	else
7416		igb_power_up_link(adapter);
7417
7418	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7419	 * would have already happened in close and is redundant.
7420	 */
7421	igb_release_hw_control(adapter);
7422
7423	pci_disable_device(pdev);
7424
7425	return 0;
7426}
7427
7428#ifdef CONFIG_PM
7429#ifdef CONFIG_PM_SLEEP
7430static int igb_suspend(struct device *dev)
7431{
7432	int retval;
7433	bool wake;
7434	struct pci_dev *pdev = to_pci_dev(dev);
7435
7436	retval = __igb_shutdown(pdev, &wake, 0);
7437	if (retval)
7438		return retval;
7439
7440	if (wake) {
7441		pci_prepare_to_sleep(pdev);
7442	} else {
7443		pci_wake_from_d3(pdev, false);
7444		pci_set_power_state(pdev, PCI_D3hot);
7445	}
7446
7447	return 0;
7448}
7449#endif /* CONFIG_PM_SLEEP */
7450
7451static int igb_resume(struct device *dev)
7452{
7453	struct pci_dev *pdev = to_pci_dev(dev);
7454	struct net_device *netdev = pci_get_drvdata(pdev);
7455	struct igb_adapter *adapter = netdev_priv(netdev);
7456	struct e1000_hw *hw = &adapter->hw;
7457	u32 err;
7458
7459	pci_set_power_state(pdev, PCI_D0);
7460	pci_restore_state(pdev);
7461	pci_save_state(pdev);
7462
7463	if (!pci_device_is_present(pdev))
7464		return -ENODEV;
7465	err = pci_enable_device_mem(pdev);
7466	if (err) {
7467		dev_err(&pdev->dev,
7468			"igb: Cannot enable PCI device from suspend\n");
7469		return err;
7470	}
7471	pci_set_master(pdev);
7472
7473	pci_enable_wake(pdev, PCI_D3hot, 0);
7474	pci_enable_wake(pdev, PCI_D3cold, 0);
7475
7476	if (igb_init_interrupt_scheme(adapter, true)) {
7477		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7478		return -ENOMEM;
7479	}
7480
7481	igb_reset(adapter);
7482
7483	/* let the f/w know that the h/w is now under the control of the
7484	 * driver.
7485	 */
7486	igb_get_hw_control(adapter);
7487
7488	wr32(E1000_WUS, ~0);
7489
7490	if (netdev->flags & IFF_UP) {
7491		rtnl_lock();
7492		err = __igb_open(netdev, true);
7493		rtnl_unlock();
7494		if (err)
7495			return err;
7496	}
7497
7498	netif_device_attach(netdev);
7499	return 0;
7500}
7501
7502static int igb_runtime_idle(struct device *dev)
7503{
7504	struct pci_dev *pdev = to_pci_dev(dev);
7505	struct net_device *netdev = pci_get_drvdata(pdev);
7506	struct igb_adapter *adapter = netdev_priv(netdev);
7507
7508	if (!igb_has_link(adapter))
7509		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7510
7511	return -EBUSY;
7512}
7513
7514static int igb_runtime_suspend(struct device *dev)
7515{
7516	struct pci_dev *pdev = to_pci_dev(dev);
7517	int retval;
7518	bool wake;
7519
7520	retval = __igb_shutdown(pdev, &wake, 1);
7521	if (retval)
7522		return retval;
7523
7524	if (wake) {
7525		pci_prepare_to_sleep(pdev);
7526	} else {
7527		pci_wake_from_d3(pdev, false);
7528		pci_set_power_state(pdev, PCI_D3hot);
7529	}
7530
7531	return 0;
7532}
7533
7534static int igb_runtime_resume(struct device *dev)
7535{
7536	return igb_resume(dev);
7537}
7538#endif /* CONFIG_PM */
7539
7540static void igb_shutdown(struct pci_dev *pdev)
7541{
7542	bool wake;
7543
7544	__igb_shutdown(pdev, &wake, 0);
7545
7546	if (system_state == SYSTEM_POWER_OFF) {
7547		pci_wake_from_d3(pdev, wake);
7548		pci_set_power_state(pdev, PCI_D3hot);
7549	}
7550}
7551
7552#ifdef CONFIG_PCI_IOV
7553static int igb_sriov_reinit(struct pci_dev *dev)
7554{
7555	struct net_device *netdev = pci_get_drvdata(dev);
7556	struct igb_adapter *adapter = netdev_priv(netdev);
7557	struct pci_dev *pdev = adapter->pdev;
7558
7559	rtnl_lock();
7560
7561	if (netif_running(netdev))
7562		igb_close(netdev);
7563	else
7564		igb_reset(adapter);
7565
7566	igb_clear_interrupt_scheme(adapter);
7567
7568	igb_init_queue_configuration(adapter);
7569
7570	if (igb_init_interrupt_scheme(adapter, true)) {
7571		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7572		return -ENOMEM;
7573	}
7574
7575	if (netif_running(netdev))
7576		igb_open(netdev);
7577
7578	rtnl_unlock();
7579
7580	return 0;
7581}
7582
7583static int igb_pci_disable_sriov(struct pci_dev *dev)
7584{
7585	int err = igb_disable_sriov(dev);
7586
7587	if (!err)
7588		err = igb_sriov_reinit(dev);
7589
7590	return err;
7591}
7592
7593static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7594{
7595	int err = igb_enable_sriov(dev, num_vfs);
7596
7597	if (err)
7598		goto out;
7599
7600	err = igb_sriov_reinit(dev);
7601	if (!err)
7602		return num_vfs;
7603
7604out:
7605	return err;
7606}
7607
7608#endif
7609static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7610{
7611#ifdef CONFIG_PCI_IOV
7612	if (num_vfs == 0)
7613		return igb_pci_disable_sriov(dev);
7614	else
7615		return igb_pci_enable_sriov(dev, num_vfs);
7616#endif
7617	return 0;
7618}
7619
7620#ifdef CONFIG_NET_POLL_CONTROLLER
7621/* Polling 'interrupt' - used by things like netconsole to send skbs
7622 * without having to re-enable interrupts. It's not called while
7623 * the interrupt routine is executing.
7624 */
7625static void igb_netpoll(struct net_device *netdev)
7626{
7627	struct igb_adapter *adapter = netdev_priv(netdev);
7628	struct e1000_hw *hw = &adapter->hw;
7629	struct igb_q_vector *q_vector;
7630	int i;
7631
7632	for (i = 0; i < adapter->num_q_vectors; i++) {
7633		q_vector = adapter->q_vector[i];
7634		if (adapter->flags & IGB_FLAG_HAS_MSIX)
7635			wr32(E1000_EIMC, q_vector->eims_value);
7636		else
7637			igb_irq_disable(adapter);
7638		napi_schedule(&q_vector->napi);
7639	}
7640}
7641#endif /* CONFIG_NET_POLL_CONTROLLER */
7642
7643/**
7644 *  igb_io_error_detected - called when PCI error is detected
7645 *  @pdev: Pointer to PCI device
7646 *  @state: The current pci connection state
7647 *
7648 *  This function is called after a PCI bus error affecting
7649 *  this device has been detected.
7650 **/
7651static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7652					      pci_channel_state_t state)
7653{
7654	struct net_device *netdev = pci_get_drvdata(pdev);
7655	struct igb_adapter *adapter = netdev_priv(netdev);
7656
7657	netif_device_detach(netdev);
7658
7659	if (state == pci_channel_io_perm_failure)
7660		return PCI_ERS_RESULT_DISCONNECT;
7661
7662	if (netif_running(netdev))
7663		igb_down(adapter);
7664	pci_disable_device(pdev);
7665
7666	/* Request a slot slot reset. */
7667	return PCI_ERS_RESULT_NEED_RESET;
7668}
7669
7670/**
7671 *  igb_io_slot_reset - called after the pci bus has been reset.
7672 *  @pdev: Pointer to PCI device
7673 *
7674 *  Restart the card from scratch, as if from a cold-boot. Implementation
7675 *  resembles the first-half of the igb_resume routine.
7676 **/
7677static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7678{
7679	struct net_device *netdev = pci_get_drvdata(pdev);
7680	struct igb_adapter *adapter = netdev_priv(netdev);
7681	struct e1000_hw *hw = &adapter->hw;
7682	pci_ers_result_t result;
7683	int err;
7684
7685	if (pci_enable_device_mem(pdev)) {
7686		dev_err(&pdev->dev,
7687			"Cannot re-enable PCI device after reset.\n");
7688		result = PCI_ERS_RESULT_DISCONNECT;
7689	} else {
7690		pci_set_master(pdev);
7691		pci_restore_state(pdev);
7692		pci_save_state(pdev);
7693
7694		pci_enable_wake(pdev, PCI_D3hot, 0);
7695		pci_enable_wake(pdev, PCI_D3cold, 0);
7696
7697		igb_reset(adapter);
7698		wr32(E1000_WUS, ~0);
7699		result = PCI_ERS_RESULT_RECOVERED;
7700	}
7701
7702	err = pci_cleanup_aer_uncorrect_error_status(pdev);
7703	if (err) {
7704		dev_err(&pdev->dev,
7705			"pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7706			err);
7707		/* non-fatal, continue */
7708	}
7709
7710	return result;
7711}
7712
7713/**
7714 *  igb_io_resume - called when traffic can start flowing again.
7715 *  @pdev: Pointer to PCI device
7716 *
7717 *  This callback is called when the error recovery driver tells us that
7718 *  its OK to resume normal operation. Implementation resembles the
7719 *  second-half of the igb_resume routine.
7720 */
7721static void igb_io_resume(struct pci_dev *pdev)
7722{
7723	struct net_device *netdev = pci_get_drvdata(pdev);
7724	struct igb_adapter *adapter = netdev_priv(netdev);
7725
7726	if (netif_running(netdev)) {
7727		if (igb_up(adapter)) {
7728			dev_err(&pdev->dev, "igb_up failed after reset\n");
7729			return;
7730		}
7731	}
7732
7733	netif_device_attach(netdev);
7734
7735	/* let the f/w know that the h/w is now under the control of the
7736	 * driver.
7737	 */
7738	igb_get_hw_control(adapter);
7739}
7740
7741static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7742			     u8 qsel)
7743{
7744	u32 rar_low, rar_high;
7745	struct e1000_hw *hw = &adapter->hw;
7746
7747	/* HW expects these in little endian so we reverse the byte order
7748	 * from network order (big endian) to little endian
7749	 */
7750	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7751		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7752	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7753
7754	/* Indicate to hardware the Address is Valid. */
7755	rar_high |= E1000_RAH_AV;
7756
7757	if (hw->mac.type == e1000_82575)
7758		rar_high |= E1000_RAH_POOL_1 * qsel;
7759	else
7760		rar_high |= E1000_RAH_POOL_1 << qsel;
7761
7762	wr32(E1000_RAL(index), rar_low);
7763	wrfl();
7764	wr32(E1000_RAH(index), rar_high);
7765	wrfl();
7766}
7767
7768static int igb_set_vf_mac(struct igb_adapter *adapter,
7769			  int vf, unsigned char *mac_addr)
7770{
7771	struct e1000_hw *hw = &adapter->hw;
7772	/* VF MAC addresses start at end of receive addresses and moves
7773	 * towards the first, as a result a collision should not be possible
7774	 */
7775	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7776
7777	memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7778
7779	igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7780
7781	return 0;
7782}
7783
7784static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7785{
7786	struct igb_adapter *adapter = netdev_priv(netdev);
7787	if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7788		return -EINVAL;
7789	adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7790	dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7791	dev_info(&adapter->pdev->dev,
7792		 "Reload the VF driver to make this change effective.");
7793	if (test_bit(__IGB_DOWN, &adapter->state)) {
7794		dev_warn(&adapter->pdev->dev,
7795			 "The VF MAC address has been set, but the PF device is not up.\n");
7796		dev_warn(&adapter->pdev->dev,
7797			 "Bring the PF device up before attempting to use the VF device.\n");
7798	}
7799	return igb_set_vf_mac(adapter, vf, mac);
7800}
7801
7802static int igb_link_mbps(int internal_link_speed)
7803{
7804	switch (internal_link_speed) {
7805	case SPEED_100:
7806		return 100;
7807	case SPEED_1000:
7808		return 1000;
7809	default:
7810		return 0;
7811	}
7812}
7813
7814static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7815				  int link_speed)
7816{
7817	int rf_dec, rf_int;
7818	u32 bcnrc_val;
7819
7820	if (tx_rate != 0) {
7821		/* Calculate the rate factor values to set */
7822		rf_int = link_speed / tx_rate;
7823		rf_dec = (link_speed - (rf_int * tx_rate));
7824		rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7825			 tx_rate;
7826
7827		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7828		bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7829			      E1000_RTTBCNRC_RF_INT_MASK);
7830		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7831	} else {
7832		bcnrc_val = 0;
7833	}
7834
7835	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7836	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7837	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7838	 */
7839	wr32(E1000_RTTBCNRM, 0x14);
7840	wr32(E1000_RTTBCNRC, bcnrc_val);
7841}
7842
7843static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7844{
7845	int actual_link_speed, i;
7846	bool reset_rate = false;
7847
7848	/* VF TX rate limit was not set or not supported */
7849	if ((adapter->vf_rate_link_speed == 0) ||
7850	    (adapter->hw.mac.type != e1000_82576))
7851		return;
7852
7853	actual_link_speed = igb_link_mbps(adapter->link_speed);
7854	if (actual_link_speed != adapter->vf_rate_link_speed) {
7855		reset_rate = true;
7856		adapter->vf_rate_link_speed = 0;
7857		dev_info(&adapter->pdev->dev,
7858			 "Link speed has been changed. VF Transmit rate is disabled\n");
7859	}
7860
7861	for (i = 0; i < adapter->vfs_allocated_count; i++) {
7862		if (reset_rate)
7863			adapter->vf_data[i].tx_rate = 0;
7864
7865		igb_set_vf_rate_limit(&adapter->hw, i,
7866				      adapter->vf_data[i].tx_rate,
7867				      actual_link_speed);
7868	}
7869}
7870
7871static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7872			     int min_tx_rate, int max_tx_rate)
7873{
7874	struct igb_adapter *adapter = netdev_priv(netdev);
7875	struct e1000_hw *hw = &adapter->hw;
7876	int actual_link_speed;
7877
7878	if (hw->mac.type != e1000_82576)
7879		return -EOPNOTSUPP;
7880
7881	if (min_tx_rate)
7882		return -EINVAL;
7883
7884	actual_link_speed = igb_link_mbps(adapter->link_speed);
7885	if ((vf >= adapter->vfs_allocated_count) ||
7886	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7887	    (max_tx_rate < 0) ||
7888	    (max_tx_rate > actual_link_speed))
7889		return -EINVAL;
7890
7891	adapter->vf_rate_link_speed = actual_link_speed;
7892	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7893	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7894
7895	return 0;
7896}
7897
7898static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7899				   bool setting)
7900{
7901	struct igb_adapter *adapter = netdev_priv(netdev);
7902	struct e1000_hw *hw = &adapter->hw;
7903	u32 reg_val, reg_offset;
7904
7905	if (!adapter->vfs_allocated_count)
7906		return -EOPNOTSUPP;
7907
7908	if (vf >= adapter->vfs_allocated_count)
7909		return -EINVAL;
7910
7911	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7912	reg_val = rd32(reg_offset);
7913	if (setting)
7914		reg_val |= ((1 << vf) |
7915			    (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7916	else
7917		reg_val &= ~((1 << vf) |
7918			     (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7919	wr32(reg_offset, reg_val);
7920
7921	adapter->vf_data[vf].spoofchk_enabled = setting;
7922	return 0;
7923}
7924
7925static int igb_ndo_get_vf_config(struct net_device *netdev,
7926				 int vf, struct ifla_vf_info *ivi)
7927{
7928	struct igb_adapter *adapter = netdev_priv(netdev);
7929	if (vf >= adapter->vfs_allocated_count)
7930		return -EINVAL;
7931	ivi->vf = vf;
7932	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7933	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7934	ivi->min_tx_rate = 0;
7935	ivi->vlan = adapter->vf_data[vf].pf_vlan;
7936	ivi->qos = adapter->vf_data[vf].pf_qos;
7937	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7938	return 0;
7939}
7940
7941static void igb_vmm_control(struct igb_adapter *adapter)
7942{
7943	struct e1000_hw *hw = &adapter->hw;
7944	u32 reg;
7945
7946	switch (hw->mac.type) {
7947	case e1000_82575:
7948	case e1000_i210:
7949	case e1000_i211:
7950	case e1000_i354:
7951	default:
7952		/* replication is not supported for 82575 */
7953		return;
7954	case e1000_82576:
7955		/* notify HW that the MAC is adding vlan tags */
7956		reg = rd32(E1000_DTXCTL);
7957		reg |= E1000_DTXCTL_VLAN_ADDED;
7958		wr32(E1000_DTXCTL, reg);
7959		/* Fall through */
7960	case e1000_82580:
7961		/* enable replication vlan tag stripping */
7962		reg = rd32(E1000_RPLOLR);
7963		reg |= E1000_RPLOLR_STRVLAN;
7964		wr32(E1000_RPLOLR, reg);
7965		/* Fall through */
7966	case e1000_i350:
7967		/* none of the above registers are supported by i350 */
7968		break;
7969	}
7970
7971	if (adapter->vfs_allocated_count) {
7972		igb_vmdq_set_loopback_pf(hw, true);
7973		igb_vmdq_set_replication_pf(hw, true);
7974		igb_vmdq_set_anti_spoofing_pf(hw, true,
7975					      adapter->vfs_allocated_count);
7976	} else {
7977		igb_vmdq_set_loopback_pf(hw, false);
7978		igb_vmdq_set_replication_pf(hw, false);
7979	}
7980}
7981
7982static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7983{
7984	struct e1000_hw *hw = &adapter->hw;
7985	u32 dmac_thr;
7986	u16 hwm;
7987
7988	if (hw->mac.type > e1000_82580) {
7989		if (adapter->flags & IGB_FLAG_DMAC) {
7990			u32 reg;
7991
7992			/* force threshold to 0. */
7993			wr32(E1000_DMCTXTH, 0);
7994
7995			/* DMA Coalescing high water mark needs to be greater
7996			 * than the Rx threshold. Set hwm to PBA - max frame
7997			 * size in 16B units, capping it at PBA - 6KB.
7998			 */
7999			hwm = 64 * pba - adapter->max_frame_size / 16;
8000			if (hwm < 64 * (pba - 6))
8001				hwm = 64 * (pba - 6);
8002			reg = rd32(E1000_FCRTC);
8003			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8004			reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8005				& E1000_FCRTC_RTH_COAL_MASK);
8006			wr32(E1000_FCRTC, reg);
8007
8008			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8009			 * frame size, capping it at PBA - 10KB.
8010			 */
8011			dmac_thr = pba - adapter->max_frame_size / 512;
8012			if (dmac_thr < pba - 10)
8013				dmac_thr = pba - 10;
8014			reg = rd32(E1000_DMACR);
8015			reg &= ~E1000_DMACR_DMACTHR_MASK;
8016			reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8017				& E1000_DMACR_DMACTHR_MASK);
8018
8019			/* transition to L0x or L1 if available..*/
8020			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8021
8022			/* watchdog timer= +-1000 usec in 32usec intervals */
8023			reg |= (1000 >> 5);
8024
8025			/* Disable BMC-to-OS Watchdog Enable */
8026			if (hw->mac.type != e1000_i354)
8027				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8028
8029			wr32(E1000_DMACR, reg);
8030
8031			/* no lower threshold to disable
8032			 * coalescing(smart fifb)-UTRESH=0
8033			 */
8034			wr32(E1000_DMCRTRH, 0);
8035
8036			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8037
8038			wr32(E1000_DMCTLX, reg);
8039
8040			/* free space in tx packet buffer to wake from
8041			 * DMA coal
8042			 */
8043			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8044			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8045
8046			/* make low power state decision controlled
8047			 * by DMA coal
8048			 */
8049			reg = rd32(E1000_PCIEMISC);
8050			reg &= ~E1000_PCIEMISC_LX_DECISION;
8051			wr32(E1000_PCIEMISC, reg);
8052		} /* endif adapter->dmac is not disabled */
8053	} else if (hw->mac.type == e1000_82580) {
8054		u32 reg = rd32(E1000_PCIEMISC);
8055
8056		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8057		wr32(E1000_DMACR, 0);
8058	}
8059}
8060
8061/**
8062 *  igb_read_i2c_byte - Reads 8 bit word over I2C
8063 *  @hw: pointer to hardware structure
8064 *  @byte_offset: byte offset to read
8065 *  @dev_addr: device address
8066 *  @data: value read
8067 *
8068 *  Performs byte read operation over I2C interface at
8069 *  a specified device address.
8070 **/
8071s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8072		      u8 dev_addr, u8 *data)
8073{
8074	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8075	struct i2c_client *this_client = adapter->i2c_client;
8076	s32 status;
8077	u16 swfw_mask = 0;
8078
8079	if (!this_client)
8080		return E1000_ERR_I2C;
8081
8082	swfw_mask = E1000_SWFW_PHY0_SM;
8083
8084	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8085		return E1000_ERR_SWFW_SYNC;
8086
8087	status = i2c_smbus_read_byte_data(this_client, byte_offset);
8088	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8089
8090	if (status < 0)
8091		return E1000_ERR_I2C;
8092	else {
8093		*data = status;
8094		return 0;
8095	}
8096}
8097
8098/**
8099 *  igb_write_i2c_byte - Writes 8 bit word over I2C
8100 *  @hw: pointer to hardware structure
8101 *  @byte_offset: byte offset to write
8102 *  @dev_addr: device address
8103 *  @data: value to write
8104 *
8105 *  Performs byte write operation over I2C interface at
8106 *  a specified device address.
8107 **/
8108s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8109		       u8 dev_addr, u8 data)
8110{
8111	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8112	struct i2c_client *this_client = adapter->i2c_client;
8113	s32 status;
8114	u16 swfw_mask = E1000_SWFW_PHY0_SM;
8115
8116	if (!this_client)
8117		return E1000_ERR_I2C;
8118
8119	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8120		return E1000_ERR_SWFW_SYNC;
8121	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8122	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8123
8124	if (status)
8125		return E1000_ERR_I2C;
8126	else
8127		return 0;
8128
8129}
8130
8131int igb_reinit_queues(struct igb_adapter *adapter)
8132{
8133	struct net_device *netdev = adapter->netdev;
8134	struct pci_dev *pdev = adapter->pdev;
8135	int err = 0;
8136
8137	if (netif_running(netdev))
8138		igb_close(netdev);
8139
8140	igb_reset_interrupt_capability(adapter);
8141
8142	if (igb_init_interrupt_scheme(adapter, true)) {
8143		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8144		return -ENOMEM;
8145	}
8146
8147	if (netif_running(netdev))
8148		err = igb_open(netdev);
8149
8150	return err;
8151}
8152/* igb_main.c */
8153