1/* drivers/net/ethernet/micrel/ks8851.c
2 *
3 * Copyright 2009 Simtec Electronics
4 *	http://www.simtec.co.uk/
5 *	Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#define DEBUG
15
16#include <linux/interrupt.h>
17#include <linux/module.h>
18#include <linux/kernel.h>
19#include <linux/netdevice.h>
20#include <linux/etherdevice.h>
21#include <linux/ethtool.h>
22#include <linux/cache.h>
23#include <linux/crc32.h>
24#include <linux/mii.h>
25#include <linux/eeprom_93cx6.h>
26#include <linux/regulator/consumer.h>
27
28#include <linux/spi/spi.h>
29#include <linux/gpio.h>
30#include <linux/of_gpio.h>
31
32#include "ks8851.h"
33
34/**
35 * struct ks8851_rxctrl - KS8851 driver rx control
36 * @mchash: Multicast hash-table data.
37 * @rxcr1: KS_RXCR1 register setting
38 * @rxcr2: KS_RXCR2 register setting
39 *
40 * Representation of the settings needs to control the receive filtering
41 * such as the multicast hash-filter and the receive register settings. This
42 * is used to make the job of working out if the receive settings change and
43 * then issuing the new settings to the worker that will send the necessary
44 * commands.
45 */
46struct ks8851_rxctrl {
47	u16	mchash[4];
48	u16	rxcr1;
49	u16	rxcr2;
50};
51
52/**
53 * union ks8851_tx_hdr - tx header data
54 * @txb: The header as bytes
55 * @txw: The header as 16bit, little-endian words
56 *
57 * A dual representation of the tx header data to allow
58 * access to individual bytes, and to allow 16bit accesses
59 * with 16bit alignment.
60 */
61union ks8851_tx_hdr {
62	u8	txb[6];
63	__le16	txw[3];
64};
65
66/**
67 * struct ks8851_net - KS8851 driver private data
68 * @netdev: The network device we're bound to
69 * @spidev: The spi device we're bound to.
70 * @lock: Lock to ensure that the device is not accessed when busy.
71 * @statelock: Lock on this structure for tx list.
72 * @mii: The MII state information for the mii calls.
73 * @rxctrl: RX settings for @rxctrl_work.
74 * @tx_work: Work queue for tx packets
75 * @rxctrl_work: Work queue for updating RX mode and multicast lists
76 * @txq: Queue of packets for transmission.
77 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
78 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
79 * @txh: Space for generating packet TX header in DMA-able data
80 * @rxd: Space for receiving SPI data, in DMA-able space.
81 * @txd: Space for transmitting SPI data, in DMA-able space.
82 * @msg_enable: The message flags controlling driver output (see ethtool).
83 * @fid: Incrementing frame id tag.
84 * @rc_ier: Cached copy of KS_IER.
85 * @rc_ccr: Cached copy of KS_CCR.
86 * @rc_rxqcr: Cached copy of KS_RXQCR.
87 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
88 * @eeprom: 93CX6 EEPROM state for accessing on-board EEPROM.
89 * @vdd_reg:	Optional regulator supplying the chip
90 * @vdd_io: Optional digital power supply for IO
91 * @gpio: Optional reset_n gpio
92 *
93 * The @lock ensures that the chip is protected when certain operations are
94 * in progress. When the read or write packet transfer is in progress, most
95 * of the chip registers are not ccessible until the transfer is finished and
96 * the DMA has been de-asserted.
97 *
98 * The @statelock is used to protect information in the structure which may
99 * need to be accessed via several sources, such as the network driver layer
100 * or one of the work queues.
101 *
102 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
103 * wants to DMA map them, it will not have any problems with data the driver
104 * modifies.
105 */
106struct ks8851_net {
107	struct net_device	*netdev;
108	struct spi_device	*spidev;
109	struct mutex		lock;
110	spinlock_t		statelock;
111
112	union ks8851_tx_hdr	txh ____cacheline_aligned;
113	u8			rxd[8];
114	u8			txd[8];
115
116	u32			msg_enable ____cacheline_aligned;
117	u16			tx_space;
118	u8			fid;
119
120	u16			rc_ier;
121	u16			rc_rxqcr;
122	u16			rc_ccr;
123	u16			eeprom_size;
124
125	struct mii_if_info	mii;
126	struct ks8851_rxctrl	rxctrl;
127
128	struct work_struct	tx_work;
129	struct work_struct	rxctrl_work;
130
131	struct sk_buff_head	txq;
132
133	struct spi_message	spi_msg1;
134	struct spi_message	spi_msg2;
135	struct spi_transfer	spi_xfer1;
136	struct spi_transfer	spi_xfer2[2];
137
138	struct eeprom_93cx6	eeprom;
139	struct regulator	*vdd_reg;
140	struct regulator	*vdd_io;
141	int			gpio;
142};
143
144static int msg_enable;
145
146/* shift for byte-enable data */
147#define BYTE_EN(_x)	((_x) << 2)
148
149/* turn register number and byte-enable mask into data for start of packet */
150#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
151
152/* SPI register read/write calls.
153 *
154 * All these calls issue SPI transactions to access the chip's registers. They
155 * all require that the necessary lock is held to prevent accesses when the
156 * chip is busy transferring packet data (RX/TX FIFO accesses).
157 */
158
159/**
160 * ks8851_wrreg16 - write 16bit register value to chip
161 * @ks: The chip state
162 * @reg: The register address
163 * @val: The value to write
164 *
165 * Issue a write to put the value @val into the register specified in @reg.
166 */
167static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
168{
169	struct spi_transfer *xfer = &ks->spi_xfer1;
170	struct spi_message *msg = &ks->spi_msg1;
171	__le16 txb[2];
172	int ret;
173
174	txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
175	txb[1] = cpu_to_le16(val);
176
177	xfer->tx_buf = txb;
178	xfer->rx_buf = NULL;
179	xfer->len = 4;
180
181	ret = spi_sync(ks->spidev, msg);
182	if (ret < 0)
183		netdev_err(ks->netdev, "spi_sync() failed\n");
184}
185
186/**
187 * ks8851_wrreg8 - write 8bit register value to chip
188 * @ks: The chip state
189 * @reg: The register address
190 * @val: The value to write
191 *
192 * Issue a write to put the value @val into the register specified in @reg.
193 */
194static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
195{
196	struct spi_transfer *xfer = &ks->spi_xfer1;
197	struct spi_message *msg = &ks->spi_msg1;
198	__le16 txb[2];
199	int ret;
200	int bit;
201
202	bit = 1 << (reg & 3);
203
204	txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
205	txb[1] = val;
206
207	xfer->tx_buf = txb;
208	xfer->rx_buf = NULL;
209	xfer->len = 3;
210
211	ret = spi_sync(ks->spidev, msg);
212	if (ret < 0)
213		netdev_err(ks->netdev, "spi_sync() failed\n");
214}
215
216/**
217 * ks8851_rx_1msg - select whether to use one or two messages for spi read
218 * @ks: The device structure
219 *
220 * Return whether to generate a single message with a tx and rx buffer
221 * supplied to spi_sync(), or alternatively send the tx and rx buffers
222 * as separate messages.
223 *
224 * Depending on the hardware in use, a single message may be more efficient
225 * on interrupts or work done by the driver.
226 *
227 * This currently always returns true until we add some per-device data passed
228 * from the platform code to specify which mode is better.
229 */
230static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
231{
232	return true;
233}
234
235/**
236 * ks8851_rdreg - issue read register command and return the data
237 * @ks: The device state
238 * @op: The register address and byte enables in message format.
239 * @rxb: The RX buffer to return the result into
240 * @rxl: The length of data expected.
241 *
242 * This is the low level read call that issues the necessary spi message(s)
243 * to read data from the register specified in @op.
244 */
245static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
246			 u8 *rxb, unsigned rxl)
247{
248	struct spi_transfer *xfer;
249	struct spi_message *msg;
250	__le16 *txb = (__le16 *)ks->txd;
251	u8 *trx = ks->rxd;
252	int ret;
253
254	txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
255
256	if (ks8851_rx_1msg(ks)) {
257		msg = &ks->spi_msg1;
258		xfer = &ks->spi_xfer1;
259
260		xfer->tx_buf = txb;
261		xfer->rx_buf = trx;
262		xfer->len = rxl + 2;
263	} else {
264		msg = &ks->spi_msg2;
265		xfer = ks->spi_xfer2;
266
267		xfer->tx_buf = txb;
268		xfer->rx_buf = NULL;
269		xfer->len = 2;
270
271		xfer++;
272		xfer->tx_buf = NULL;
273		xfer->rx_buf = trx;
274		xfer->len = rxl;
275	}
276
277	ret = spi_sync(ks->spidev, msg);
278	if (ret < 0)
279		netdev_err(ks->netdev, "read: spi_sync() failed\n");
280	else if (ks8851_rx_1msg(ks))
281		memcpy(rxb, trx + 2, rxl);
282	else
283		memcpy(rxb, trx, rxl);
284}
285
286/**
287 * ks8851_rdreg8 - read 8 bit register from device
288 * @ks: The chip information
289 * @reg: The register address
290 *
291 * Read a 8bit register from the chip, returning the result
292*/
293static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
294{
295	u8 rxb[1];
296
297	ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
298	return rxb[0];
299}
300
301/**
302 * ks8851_rdreg16 - read 16 bit register from device
303 * @ks: The chip information
304 * @reg: The register address
305 *
306 * Read a 16bit register from the chip, returning the result
307*/
308static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
309{
310	__le16 rx = 0;
311
312	ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
313	return le16_to_cpu(rx);
314}
315
316/**
317 * ks8851_rdreg32 - read 32 bit register from device
318 * @ks: The chip information
319 * @reg: The register address
320 *
321 * Read a 32bit register from the chip.
322 *
323 * Note, this read requires the address be aligned to 4 bytes.
324*/
325static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
326{
327	__le32 rx = 0;
328
329	WARN_ON(reg & 3);
330
331	ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
332	return le32_to_cpu(rx);
333}
334
335/**
336 * ks8851_soft_reset - issue one of the soft reset to the device
337 * @ks: The device state.
338 * @op: The bit(s) to set in the GRR
339 *
340 * Issue the relevant soft-reset command to the device's GRR register
341 * specified by @op.
342 *
343 * Note, the delays are in there as a caution to ensure that the reset
344 * has time to take effect and then complete. Since the datasheet does
345 * not currently specify the exact sequence, we have chosen something
346 * that seems to work with our device.
347 */
348static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
349{
350	ks8851_wrreg16(ks, KS_GRR, op);
351	mdelay(1);	/* wait a short time to effect reset */
352	ks8851_wrreg16(ks, KS_GRR, 0);
353	mdelay(1);	/* wait for condition to clear */
354}
355
356/**
357 * ks8851_set_powermode - set power mode of the device
358 * @ks: The device state
359 * @pwrmode: The power mode value to write to KS_PMECR.
360 *
361 * Change the power mode of the chip.
362 */
363static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
364{
365	unsigned pmecr;
366
367	netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
368
369	pmecr = ks8851_rdreg16(ks, KS_PMECR);
370	pmecr &= ~PMECR_PM_MASK;
371	pmecr |= pwrmode;
372
373	ks8851_wrreg16(ks, KS_PMECR, pmecr);
374}
375
376/**
377 * ks8851_write_mac_addr - write mac address to device registers
378 * @dev: The network device
379 *
380 * Update the KS8851 MAC address registers from the address in @dev.
381 *
382 * This call assumes that the chip is not running, so there is no need to
383 * shutdown the RXQ process whilst setting this.
384*/
385static int ks8851_write_mac_addr(struct net_device *dev)
386{
387	struct ks8851_net *ks = netdev_priv(dev);
388	int i;
389
390	mutex_lock(&ks->lock);
391
392	/*
393	 * Wake up chip in case it was powered off when stopped; otherwise,
394	 * the first write to the MAC address does not take effect.
395	 */
396	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
397	for (i = 0; i < ETH_ALEN; i++)
398		ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
399	if (!netif_running(dev))
400		ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
401
402	mutex_unlock(&ks->lock);
403
404	return 0;
405}
406
407/**
408 * ks8851_read_mac_addr - read mac address from device registers
409 * @dev: The network device
410 *
411 * Update our copy of the KS8851 MAC address from the registers of @dev.
412*/
413static void ks8851_read_mac_addr(struct net_device *dev)
414{
415	struct ks8851_net *ks = netdev_priv(dev);
416	int i;
417
418	mutex_lock(&ks->lock);
419
420	for (i = 0; i < ETH_ALEN; i++)
421		dev->dev_addr[i] = ks8851_rdreg8(ks, KS_MAR(i));
422
423	mutex_unlock(&ks->lock);
424}
425
426/**
427 * ks8851_init_mac - initialise the mac address
428 * @ks: The device structure
429 *
430 * Get or create the initial mac address for the device and then set that
431 * into the station address register. If there is an EEPROM present, then
432 * we try that. If no valid mac address is found we use eth_random_addr()
433 * to create a new one.
434 */
435static void ks8851_init_mac(struct ks8851_net *ks)
436{
437	struct net_device *dev = ks->netdev;
438
439	/* first, try reading what we've got already */
440	if (ks->rc_ccr & CCR_EEPROM) {
441		ks8851_read_mac_addr(dev);
442		if (is_valid_ether_addr(dev->dev_addr))
443			return;
444
445		netdev_err(ks->netdev, "invalid mac address read %pM\n",
446				dev->dev_addr);
447	}
448
449	eth_hw_addr_random(dev);
450	ks8851_write_mac_addr(dev);
451}
452
453/**
454 * ks8851_rdfifo - read data from the receive fifo
455 * @ks: The device state.
456 * @buff: The buffer address
457 * @len: The length of the data to read
458 *
459 * Issue an RXQ FIFO read command and read the @len amount of data from
460 * the FIFO into the buffer specified by @buff.
461 */
462static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
463{
464	struct spi_transfer *xfer = ks->spi_xfer2;
465	struct spi_message *msg = &ks->spi_msg2;
466	u8 txb[1];
467	int ret;
468
469	netif_dbg(ks, rx_status, ks->netdev,
470		  "%s: %d@%p\n", __func__, len, buff);
471
472	/* set the operation we're issuing */
473	txb[0] = KS_SPIOP_RXFIFO;
474
475	xfer->tx_buf = txb;
476	xfer->rx_buf = NULL;
477	xfer->len = 1;
478
479	xfer++;
480	xfer->rx_buf = buff;
481	xfer->tx_buf = NULL;
482	xfer->len = len;
483
484	ret = spi_sync(ks->spidev, msg);
485	if (ret < 0)
486		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
487}
488
489/**
490 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
491 * @ks: The device state
492 * @rxpkt: The data for the received packet
493 *
494 * Dump the initial data from the packet to dev_dbg().
495*/
496static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
497{
498	netdev_dbg(ks->netdev,
499		   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
500		   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
501		   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
502		   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
503}
504
505/**
506 * ks8851_rx_pkts - receive packets from the host
507 * @ks: The device information.
508 *
509 * This is called from the IRQ work queue when the system detects that there
510 * are packets in the receive queue. Find out how many packets there are and
511 * read them from the FIFO.
512 */
513static void ks8851_rx_pkts(struct ks8851_net *ks)
514{
515	struct sk_buff *skb;
516	unsigned rxfc;
517	unsigned rxlen;
518	unsigned rxstat;
519	u32 rxh;
520	u8 *rxpkt;
521
522	rxfc = ks8851_rdreg8(ks, KS_RXFC);
523
524	netif_dbg(ks, rx_status, ks->netdev,
525		  "%s: %d packets\n", __func__, rxfc);
526
527	/* Currently we're issuing a read per packet, but we could possibly
528	 * improve the code by issuing a single read, getting the receive
529	 * header, allocating the packet and then reading the packet data
530	 * out in one go.
531	 *
532	 * This form of operation would require us to hold the SPI bus'
533	 * chipselect low during the entie transaction to avoid any
534	 * reset to the data stream coming from the chip.
535	 */
536
537	for (; rxfc != 0; rxfc--) {
538		rxh = ks8851_rdreg32(ks, KS_RXFHSR);
539		rxstat = rxh & 0xffff;
540		rxlen = (rxh >> 16) & 0xfff;
541
542		netif_dbg(ks, rx_status, ks->netdev,
543			  "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
544
545		/* the length of the packet includes the 32bit CRC */
546
547		/* set dma read address */
548		ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
549
550		/* start the packet dma process, and set auto-dequeue rx */
551		ks8851_wrreg16(ks, KS_RXQCR,
552			       ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
553
554		if (rxlen > 4) {
555			unsigned int rxalign;
556
557			rxlen -= 4;
558			rxalign = ALIGN(rxlen, 4);
559			skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
560			if (skb) {
561
562				/* 4 bytes of status header + 4 bytes of
563				 * garbage: we put them before ethernet
564				 * header, so that they are copied,
565				 * but ignored.
566				 */
567
568				rxpkt = skb_put(skb, rxlen) - 8;
569
570				ks8851_rdfifo(ks, rxpkt, rxalign + 8);
571
572				if (netif_msg_pktdata(ks))
573					ks8851_dbg_dumpkkt(ks, rxpkt);
574
575				skb->protocol = eth_type_trans(skb, ks->netdev);
576				netif_rx_ni(skb);
577
578				ks->netdev->stats.rx_packets++;
579				ks->netdev->stats.rx_bytes += rxlen;
580			}
581		}
582
583		ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
584	}
585}
586
587/**
588 * ks8851_irq - IRQ handler for dealing with interrupt requests
589 * @irq: IRQ number
590 * @_ks: cookie
591 *
592 * This handler is invoked when the IRQ line asserts to find out what happened.
593 * As we cannot allow ourselves to sleep in HARDIRQ context, this handler runs
594 * in thread context.
595 *
596 * Read the interrupt status, work out what needs to be done and then clear
597 * any of the interrupts that are not needed.
598 */
599static irqreturn_t ks8851_irq(int irq, void *_ks)
600{
601	struct ks8851_net *ks = _ks;
602	unsigned status;
603	unsigned handled = 0;
604
605	mutex_lock(&ks->lock);
606
607	status = ks8851_rdreg16(ks, KS_ISR);
608
609	netif_dbg(ks, intr, ks->netdev,
610		  "%s: status 0x%04x\n", __func__, status);
611
612	if (status & IRQ_LCI)
613		handled |= IRQ_LCI;
614
615	if (status & IRQ_LDI) {
616		u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
617		pmecr &= ~PMECR_WKEVT_MASK;
618		ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
619
620		handled |= IRQ_LDI;
621	}
622
623	if (status & IRQ_RXPSI)
624		handled |= IRQ_RXPSI;
625
626	if (status & IRQ_TXI) {
627		handled |= IRQ_TXI;
628
629		/* no lock here, tx queue should have been stopped */
630
631		/* update our idea of how much tx space is available to the
632		 * system */
633		ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
634
635		netif_dbg(ks, intr, ks->netdev,
636			  "%s: txspace %d\n", __func__, ks->tx_space);
637	}
638
639	if (status & IRQ_RXI)
640		handled |= IRQ_RXI;
641
642	if (status & IRQ_SPIBEI) {
643		dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
644		handled |= IRQ_SPIBEI;
645	}
646
647	ks8851_wrreg16(ks, KS_ISR, handled);
648
649	if (status & IRQ_RXI) {
650		/* the datasheet says to disable the rx interrupt during
651		 * packet read-out, however we're masking the interrupt
652		 * from the device so do not bother masking just the RX
653		 * from the device. */
654
655		ks8851_rx_pkts(ks);
656	}
657
658	/* if something stopped the rx process, probably due to wanting
659	 * to change the rx settings, then do something about restarting
660	 * it. */
661	if (status & IRQ_RXPSI) {
662		struct ks8851_rxctrl *rxc = &ks->rxctrl;
663
664		/* update the multicast hash table */
665		ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
666		ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
667		ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
668		ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
669
670		ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
671		ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
672	}
673
674	mutex_unlock(&ks->lock);
675
676	if (status & IRQ_LCI)
677		mii_check_link(&ks->mii);
678
679	if (status & IRQ_TXI)
680		netif_wake_queue(ks->netdev);
681
682	return IRQ_HANDLED;
683}
684
685/**
686 * calc_txlen - calculate size of message to send packet
687 * @len: Length of data
688 *
689 * Returns the size of the TXFIFO message needed to send
690 * this packet.
691 */
692static inline unsigned calc_txlen(unsigned len)
693{
694	return ALIGN(len + 4, 4);
695}
696
697/**
698 * ks8851_wrpkt - write packet to TX FIFO
699 * @ks: The device state.
700 * @txp: The sk_buff to transmit.
701 * @irq: IRQ on completion of the packet.
702 *
703 * Send the @txp to the chip. This means creating the relevant packet header
704 * specifying the length of the packet and the other information the chip
705 * needs, such as IRQ on completion. Send the header and the packet data to
706 * the device.
707 */
708static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
709{
710	struct spi_transfer *xfer = ks->spi_xfer2;
711	struct spi_message *msg = &ks->spi_msg2;
712	unsigned fid = 0;
713	int ret;
714
715	netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
716		  __func__, txp, txp->len, txp->data, irq);
717
718	fid = ks->fid++;
719	fid &= TXFR_TXFID_MASK;
720
721	if (irq)
722		fid |= TXFR_TXIC;	/* irq on completion */
723
724	/* start header at txb[1] to align txw entries */
725	ks->txh.txb[1] = KS_SPIOP_TXFIFO;
726	ks->txh.txw[1] = cpu_to_le16(fid);
727	ks->txh.txw[2] = cpu_to_le16(txp->len);
728
729	xfer->tx_buf = &ks->txh.txb[1];
730	xfer->rx_buf = NULL;
731	xfer->len = 5;
732
733	xfer++;
734	xfer->tx_buf = txp->data;
735	xfer->rx_buf = NULL;
736	xfer->len = ALIGN(txp->len, 4);
737
738	ret = spi_sync(ks->spidev, msg);
739	if (ret < 0)
740		netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
741}
742
743/**
744 * ks8851_done_tx - update and then free skbuff after transmitting
745 * @ks: The device state
746 * @txb: The buffer transmitted
747 */
748static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
749{
750	struct net_device *dev = ks->netdev;
751
752	dev->stats.tx_bytes += txb->len;
753	dev->stats.tx_packets++;
754
755	dev_kfree_skb(txb);
756}
757
758/**
759 * ks8851_tx_work - process tx packet(s)
760 * @work: The work strucutre what was scheduled.
761 *
762 * This is called when a number of packets have been scheduled for
763 * transmission and need to be sent to the device.
764 */
765static void ks8851_tx_work(struct work_struct *work)
766{
767	struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
768	struct sk_buff *txb;
769	bool last = skb_queue_empty(&ks->txq);
770
771	mutex_lock(&ks->lock);
772
773	while (!last) {
774		txb = skb_dequeue(&ks->txq);
775		last = skb_queue_empty(&ks->txq);
776
777		if (txb != NULL) {
778			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
779			ks8851_wrpkt(ks, txb, last);
780			ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
781			ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
782
783			ks8851_done_tx(ks, txb);
784		}
785	}
786
787	mutex_unlock(&ks->lock);
788}
789
790/**
791 * ks8851_net_open - open network device
792 * @dev: The network device being opened.
793 *
794 * Called when the network device is marked active, such as a user executing
795 * 'ifconfig up' on the device.
796 */
797static int ks8851_net_open(struct net_device *dev)
798{
799	struct ks8851_net *ks = netdev_priv(dev);
800
801	/* lock the card, even if we may not actually be doing anything
802	 * else at the moment */
803	mutex_lock(&ks->lock);
804
805	netif_dbg(ks, ifup, ks->netdev, "opening\n");
806
807	/* bring chip out of any power saving mode it was in */
808	ks8851_set_powermode(ks, PMECR_PM_NORMAL);
809
810	/* issue a soft reset to the RX/TX QMU to put it into a known
811	 * state. */
812	ks8851_soft_reset(ks, GRR_QMU);
813
814	/* setup transmission parameters */
815
816	ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
817				     TXCR_TXPE | /* pad to min length */
818				     TXCR_TXCRC | /* add CRC */
819				     TXCR_TXFCE)); /* enable flow control */
820
821	/* auto-increment tx data, reset tx pointer */
822	ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
823
824	/* setup receiver control */
825
826	ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
827				      RXCR1_RXFCE | /* enable flow control */
828				      RXCR1_RXBE | /* broadcast enable */
829				      RXCR1_RXUE | /* unicast enable */
830				      RXCR1_RXE)); /* enable rx block */
831
832	/* transfer entire frames out in one go */
833	ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
834
835	/* set receive counter timeouts */
836	ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
837	ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
838	ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
839
840	ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
841			RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
842			RXQCR_RXDTTE);  /* IRQ on time exceeded */
843
844	ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
845
846	/* clear then enable interrupts */
847
848#define STD_IRQ (IRQ_LCI |	/* Link Change */	\
849		 IRQ_TXI |	/* TX done */		\
850		 IRQ_RXI |	/* RX done */		\
851		 IRQ_SPIBEI |	/* SPI bus error */	\
852		 IRQ_TXPSI |	/* TX process stop */	\
853		 IRQ_RXPSI)	/* RX process stop */
854
855	ks->rc_ier = STD_IRQ;
856	ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
857	ks8851_wrreg16(ks, KS_IER, STD_IRQ);
858
859	netif_start_queue(ks->netdev);
860
861	netif_dbg(ks, ifup, ks->netdev, "network device up\n");
862
863	mutex_unlock(&ks->lock);
864	return 0;
865}
866
867/**
868 * ks8851_net_stop - close network device
869 * @dev: The device being closed.
870 *
871 * Called to close down a network device which has been active. Cancell any
872 * work, shutdown the RX and TX process and then place the chip into a low
873 * power state whilst it is not being used.
874 */
875static int ks8851_net_stop(struct net_device *dev)
876{
877	struct ks8851_net *ks = netdev_priv(dev);
878
879	netif_info(ks, ifdown, dev, "shutting down\n");
880
881	netif_stop_queue(dev);
882
883	mutex_lock(&ks->lock);
884	/* turn off the IRQs and ack any outstanding */
885	ks8851_wrreg16(ks, KS_IER, 0x0000);
886	ks8851_wrreg16(ks, KS_ISR, 0xffff);
887	mutex_unlock(&ks->lock);
888
889	/* stop any outstanding work */
890	flush_work(&ks->tx_work);
891	flush_work(&ks->rxctrl_work);
892
893	mutex_lock(&ks->lock);
894	/* shutdown RX process */
895	ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
896
897	/* shutdown TX process */
898	ks8851_wrreg16(ks, KS_TXCR, 0x0000);
899
900	/* set powermode to soft power down to save power */
901	ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
902	mutex_unlock(&ks->lock);
903
904	/* ensure any queued tx buffers are dumped */
905	while (!skb_queue_empty(&ks->txq)) {
906		struct sk_buff *txb = skb_dequeue(&ks->txq);
907
908		netif_dbg(ks, ifdown, ks->netdev,
909			  "%s: freeing txb %p\n", __func__, txb);
910
911		dev_kfree_skb(txb);
912	}
913
914	return 0;
915}
916
917/**
918 * ks8851_start_xmit - transmit packet
919 * @skb: The buffer to transmit
920 * @dev: The device used to transmit the packet.
921 *
922 * Called by the network layer to transmit the @skb. Queue the packet for
923 * the device and schedule the necessary work to transmit the packet when
924 * it is free.
925 *
926 * We do this to firstly avoid sleeping with the network device locked,
927 * and secondly so we can round up more than one packet to transmit which
928 * means we can try and avoid generating too many transmit done interrupts.
929 */
930static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
931				     struct net_device *dev)
932{
933	struct ks8851_net *ks = netdev_priv(dev);
934	unsigned needed = calc_txlen(skb->len);
935	netdev_tx_t ret = NETDEV_TX_OK;
936
937	netif_dbg(ks, tx_queued, ks->netdev,
938		  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
939
940	spin_lock(&ks->statelock);
941
942	if (needed > ks->tx_space) {
943		netif_stop_queue(dev);
944		ret = NETDEV_TX_BUSY;
945	} else {
946		ks->tx_space -= needed;
947		skb_queue_tail(&ks->txq, skb);
948	}
949
950	spin_unlock(&ks->statelock);
951	schedule_work(&ks->tx_work);
952
953	return ret;
954}
955
956/**
957 * ks8851_rxctrl_work - work handler to change rx mode
958 * @work: The work structure this belongs to.
959 *
960 * Lock the device and issue the necessary changes to the receive mode from
961 * the network device layer. This is done so that we can do this without
962 * having to sleep whilst holding the network device lock.
963 *
964 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
965 * receive parameters are programmed, we issue a write to disable the RXQ and
966 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
967 * complete. The interrupt handler then writes the new values into the chip.
968 */
969static void ks8851_rxctrl_work(struct work_struct *work)
970{
971	struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
972
973	mutex_lock(&ks->lock);
974
975	/* need to shutdown RXQ before modifying filter parameters */
976	ks8851_wrreg16(ks, KS_RXCR1, 0x00);
977
978	mutex_unlock(&ks->lock);
979}
980
981static void ks8851_set_rx_mode(struct net_device *dev)
982{
983	struct ks8851_net *ks = netdev_priv(dev);
984	struct ks8851_rxctrl rxctrl;
985
986	memset(&rxctrl, 0, sizeof(rxctrl));
987
988	if (dev->flags & IFF_PROMISC) {
989		/* interface to receive everything */
990
991		rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
992	} else if (dev->flags & IFF_ALLMULTI) {
993		/* accept all multicast packets */
994
995		rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
996				RXCR1_RXPAFMA | RXCR1_RXMAFMA);
997	} else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
998		struct netdev_hw_addr *ha;
999		u32 crc;
1000
1001		/* accept some multicast */
1002
1003		netdev_for_each_mc_addr(ha, dev) {
1004			crc = ether_crc(ETH_ALEN, ha->addr);
1005			crc >>= (32 - 6);  /* get top six bits */
1006
1007			rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
1008		}
1009
1010		rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
1011	} else {
1012		/* just accept broadcast / unicast */
1013		rxctrl.rxcr1 = RXCR1_RXPAFMA;
1014	}
1015
1016	rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
1017			 RXCR1_RXBE | /* broadcast enable */
1018			 RXCR1_RXE | /* RX process enable */
1019			 RXCR1_RXFCE); /* enable flow control */
1020
1021	rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
1022
1023	/* schedule work to do the actual set of the data if needed */
1024
1025	spin_lock(&ks->statelock);
1026
1027	if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
1028		memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1029		schedule_work(&ks->rxctrl_work);
1030	}
1031
1032	spin_unlock(&ks->statelock);
1033}
1034
1035static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1036{
1037	struct sockaddr *sa = addr;
1038
1039	if (netif_running(dev))
1040		return -EBUSY;
1041
1042	if (!is_valid_ether_addr(sa->sa_data))
1043		return -EADDRNOTAVAIL;
1044
1045	memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1046	return ks8851_write_mac_addr(dev);
1047}
1048
1049static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1050{
1051	struct ks8851_net *ks = netdev_priv(dev);
1052
1053	if (!netif_running(dev))
1054		return -EINVAL;
1055
1056	return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1057}
1058
1059static const struct net_device_ops ks8851_netdev_ops = {
1060	.ndo_open		= ks8851_net_open,
1061	.ndo_stop		= ks8851_net_stop,
1062	.ndo_do_ioctl		= ks8851_net_ioctl,
1063	.ndo_start_xmit		= ks8851_start_xmit,
1064	.ndo_set_mac_address	= ks8851_set_mac_address,
1065	.ndo_set_rx_mode	= ks8851_set_rx_mode,
1066	.ndo_change_mtu		= eth_change_mtu,
1067	.ndo_validate_addr	= eth_validate_addr,
1068};
1069
1070/* ethtool support */
1071
1072static void ks8851_get_drvinfo(struct net_device *dev,
1073			       struct ethtool_drvinfo *di)
1074{
1075	strlcpy(di->driver, "KS8851", sizeof(di->driver));
1076	strlcpy(di->version, "1.00", sizeof(di->version));
1077	strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1078}
1079
1080static u32 ks8851_get_msglevel(struct net_device *dev)
1081{
1082	struct ks8851_net *ks = netdev_priv(dev);
1083	return ks->msg_enable;
1084}
1085
1086static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1087{
1088	struct ks8851_net *ks = netdev_priv(dev);
1089	ks->msg_enable = to;
1090}
1091
1092static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1093{
1094	struct ks8851_net *ks = netdev_priv(dev);
1095	return mii_ethtool_gset(&ks->mii, cmd);
1096}
1097
1098static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1099{
1100	struct ks8851_net *ks = netdev_priv(dev);
1101	return mii_ethtool_sset(&ks->mii, cmd);
1102}
1103
1104static u32 ks8851_get_link(struct net_device *dev)
1105{
1106	struct ks8851_net *ks = netdev_priv(dev);
1107	return mii_link_ok(&ks->mii);
1108}
1109
1110static int ks8851_nway_reset(struct net_device *dev)
1111{
1112	struct ks8851_net *ks = netdev_priv(dev);
1113	return mii_nway_restart(&ks->mii);
1114}
1115
1116/* EEPROM support */
1117
1118static void ks8851_eeprom_regread(struct eeprom_93cx6 *ee)
1119{
1120	struct ks8851_net *ks = ee->data;
1121	unsigned val;
1122
1123	val = ks8851_rdreg16(ks, KS_EEPCR);
1124
1125	ee->reg_data_out = (val & EEPCR_EESB) ? 1 : 0;
1126	ee->reg_data_clock = (val & EEPCR_EESCK) ? 1 : 0;
1127	ee->reg_chip_select = (val & EEPCR_EECS) ? 1 : 0;
1128}
1129
1130static void ks8851_eeprom_regwrite(struct eeprom_93cx6 *ee)
1131{
1132	struct ks8851_net *ks = ee->data;
1133	unsigned val = EEPCR_EESA;	/* default - eeprom access on */
1134
1135	if (ee->drive_data)
1136		val |= EEPCR_EESRWA;
1137	if (ee->reg_data_in)
1138		val |= EEPCR_EEDO;
1139	if (ee->reg_data_clock)
1140		val |= EEPCR_EESCK;
1141	if (ee->reg_chip_select)
1142		val |= EEPCR_EECS;
1143
1144	ks8851_wrreg16(ks, KS_EEPCR, val);
1145}
1146
1147/**
1148 * ks8851_eeprom_claim - claim device EEPROM and activate the interface
1149 * @ks: The network device state.
1150 *
1151 * Check for the presence of an EEPROM, and then activate software access
1152 * to the device.
1153 */
1154static int ks8851_eeprom_claim(struct ks8851_net *ks)
1155{
1156	if (!(ks->rc_ccr & CCR_EEPROM))
1157		return -ENOENT;
1158
1159	mutex_lock(&ks->lock);
1160
1161	/* start with clock low, cs high */
1162	ks8851_wrreg16(ks, KS_EEPCR, EEPCR_EESA | EEPCR_EECS);
1163	return 0;
1164}
1165
1166/**
1167 * ks8851_eeprom_release - release the EEPROM interface
1168 * @ks: The device state
1169 *
1170 * Release the software access to the device EEPROM
1171 */
1172static void ks8851_eeprom_release(struct ks8851_net *ks)
1173{
1174	unsigned val = ks8851_rdreg16(ks, KS_EEPCR);
1175
1176	ks8851_wrreg16(ks, KS_EEPCR, val & ~EEPCR_EESA);
1177	mutex_unlock(&ks->lock);
1178}
1179
1180#define KS_EEPROM_MAGIC (0x00008851)
1181
1182static int ks8851_set_eeprom(struct net_device *dev,
1183			     struct ethtool_eeprom *ee, u8 *data)
1184{
1185	struct ks8851_net *ks = netdev_priv(dev);
1186	int offset = ee->offset;
1187	int len = ee->len;
1188	u16 tmp;
1189
1190	/* currently only support byte writing */
1191	if (len != 1)
1192		return -EINVAL;
1193
1194	if (ee->magic != KS_EEPROM_MAGIC)
1195		return -EINVAL;
1196
1197	if (ks8851_eeprom_claim(ks))
1198		return -ENOENT;
1199
1200	eeprom_93cx6_wren(&ks->eeprom, true);
1201
1202	/* ethtool currently only supports writing bytes, which means
1203	 * we have to read/modify/write our 16bit EEPROMs */
1204
1205	eeprom_93cx6_read(&ks->eeprom, offset/2, &tmp);
1206
1207	if (offset & 1) {
1208		tmp &= 0xff;
1209		tmp |= *data << 8;
1210	} else {
1211		tmp &= 0xff00;
1212		tmp |= *data;
1213	}
1214
1215	eeprom_93cx6_write(&ks->eeprom, offset/2, tmp);
1216	eeprom_93cx6_wren(&ks->eeprom, false);
1217
1218	ks8851_eeprom_release(ks);
1219
1220	return 0;
1221}
1222
1223static int ks8851_get_eeprom(struct net_device *dev,
1224			     struct ethtool_eeprom *ee, u8 *data)
1225{
1226	struct ks8851_net *ks = netdev_priv(dev);
1227	int offset = ee->offset;
1228	int len = ee->len;
1229
1230	/* must be 2 byte aligned */
1231	if (len & 1 || offset & 1)
1232		return -EINVAL;
1233
1234	if (ks8851_eeprom_claim(ks))
1235		return -ENOENT;
1236
1237	ee->magic = KS_EEPROM_MAGIC;
1238
1239	eeprom_93cx6_multiread(&ks->eeprom, offset/2, (__le16 *)data, len/2);
1240	ks8851_eeprom_release(ks);
1241
1242	return 0;
1243}
1244
1245static int ks8851_get_eeprom_len(struct net_device *dev)
1246{
1247	struct ks8851_net *ks = netdev_priv(dev);
1248
1249	/* currently, we assume it is an 93C46 attached, so return 128 */
1250	return ks->rc_ccr & CCR_EEPROM ? 128 : 0;
1251}
1252
1253static const struct ethtool_ops ks8851_ethtool_ops = {
1254	.get_drvinfo	= ks8851_get_drvinfo,
1255	.get_msglevel	= ks8851_get_msglevel,
1256	.set_msglevel	= ks8851_set_msglevel,
1257	.get_settings	= ks8851_get_settings,
1258	.set_settings	= ks8851_set_settings,
1259	.get_link	= ks8851_get_link,
1260	.nway_reset	= ks8851_nway_reset,
1261	.get_eeprom_len	= ks8851_get_eeprom_len,
1262	.get_eeprom	= ks8851_get_eeprom,
1263	.set_eeprom	= ks8851_set_eeprom,
1264};
1265
1266/* MII interface controls */
1267
1268/**
1269 * ks8851_phy_reg - convert MII register into a KS8851 register
1270 * @reg: MII register number.
1271 *
1272 * Return the KS8851 register number for the corresponding MII PHY register
1273 * if possible. Return zero if the MII register has no direct mapping to the
1274 * KS8851 register set.
1275 */
1276static int ks8851_phy_reg(int reg)
1277{
1278	switch (reg) {
1279	case MII_BMCR:
1280		return KS_P1MBCR;
1281	case MII_BMSR:
1282		return KS_P1MBSR;
1283	case MII_PHYSID1:
1284		return KS_PHY1ILR;
1285	case MII_PHYSID2:
1286		return KS_PHY1IHR;
1287	case MII_ADVERTISE:
1288		return KS_P1ANAR;
1289	case MII_LPA:
1290		return KS_P1ANLPR;
1291	}
1292
1293	return 0x0;
1294}
1295
1296/**
1297 * ks8851_phy_read - MII interface PHY register read.
1298 * @dev: The network device the PHY is on.
1299 * @phy_addr: Address of PHY (ignored as we only have one)
1300 * @reg: The register to read.
1301 *
1302 * This call reads data from the PHY register specified in @reg. Since the
1303 * device does not support all the MII registers, the non-existent values
1304 * are always returned as zero.
1305 *
1306 * We return zero for unsupported registers as the MII code does not check
1307 * the value returned for any error status, and simply returns it to the
1308 * caller. The mii-tool that the driver was tested with takes any -ve error
1309 * as real PHY capabilities, thus displaying incorrect data to the user.
1310 */
1311static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1312{
1313	struct ks8851_net *ks = netdev_priv(dev);
1314	int ksreg;
1315	int result;
1316
1317	ksreg = ks8851_phy_reg(reg);
1318	if (!ksreg)
1319		return 0x0;	/* no error return allowed, so use zero */
1320
1321	mutex_lock(&ks->lock);
1322	result = ks8851_rdreg16(ks, ksreg);
1323	mutex_unlock(&ks->lock);
1324
1325	return result;
1326}
1327
1328static void ks8851_phy_write(struct net_device *dev,
1329			     int phy, int reg, int value)
1330{
1331	struct ks8851_net *ks = netdev_priv(dev);
1332	int ksreg;
1333
1334	ksreg = ks8851_phy_reg(reg);
1335	if (ksreg) {
1336		mutex_lock(&ks->lock);
1337		ks8851_wrreg16(ks, ksreg, value);
1338		mutex_unlock(&ks->lock);
1339	}
1340}
1341
1342/**
1343 * ks8851_read_selftest - read the selftest memory info.
1344 * @ks: The device state
1345 *
1346 * Read and check the TX/RX memory selftest information.
1347 */
1348static int ks8851_read_selftest(struct ks8851_net *ks)
1349{
1350	unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1351	int ret = 0;
1352	unsigned rd;
1353
1354	rd = ks8851_rdreg16(ks, KS_MBIR);
1355
1356	if ((rd & both_done) != both_done) {
1357		netdev_warn(ks->netdev, "Memory selftest not finished\n");
1358		return 0;
1359	}
1360
1361	if (rd & MBIR_TXMBFA) {
1362		netdev_err(ks->netdev, "TX memory selftest fail\n");
1363		ret |= 1;
1364	}
1365
1366	if (rd & MBIR_RXMBFA) {
1367		netdev_err(ks->netdev, "RX memory selftest fail\n");
1368		ret |= 2;
1369	}
1370
1371	return 0;
1372}
1373
1374/* driver bus management functions */
1375
1376#ifdef CONFIG_PM_SLEEP
1377
1378static int ks8851_suspend(struct device *dev)
1379{
1380	struct ks8851_net *ks = dev_get_drvdata(dev);
1381	struct net_device *netdev = ks->netdev;
1382
1383	if (netif_running(netdev)) {
1384		netif_device_detach(netdev);
1385		ks8851_net_stop(netdev);
1386	}
1387
1388	return 0;
1389}
1390
1391static int ks8851_resume(struct device *dev)
1392{
1393	struct ks8851_net *ks = dev_get_drvdata(dev);
1394	struct net_device *netdev = ks->netdev;
1395
1396	if (netif_running(netdev)) {
1397		ks8851_net_open(netdev);
1398		netif_device_attach(netdev);
1399	}
1400
1401	return 0;
1402}
1403#endif
1404
1405static SIMPLE_DEV_PM_OPS(ks8851_pm_ops, ks8851_suspend, ks8851_resume);
1406
1407static int ks8851_probe(struct spi_device *spi)
1408{
1409	struct net_device *ndev;
1410	struct ks8851_net *ks;
1411	int ret;
1412	unsigned cider;
1413	int gpio;
1414
1415	ndev = alloc_etherdev(sizeof(struct ks8851_net));
1416	if (!ndev)
1417		return -ENOMEM;
1418
1419	spi->bits_per_word = 8;
1420
1421	ks = netdev_priv(ndev);
1422
1423	ks->netdev = ndev;
1424	ks->spidev = spi;
1425	ks->tx_space = 6144;
1426
1427	gpio = of_get_named_gpio_flags(spi->dev.of_node, "reset-gpios",
1428				       0, NULL);
1429	if (gpio == -EPROBE_DEFER) {
1430		ret = gpio;
1431		goto err_gpio;
1432	}
1433
1434	ks->gpio = gpio;
1435	if (gpio_is_valid(gpio)) {
1436		ret = devm_gpio_request_one(&spi->dev, gpio,
1437					    GPIOF_OUT_INIT_LOW, "ks8851_rst_n");
1438		if (ret) {
1439			dev_err(&spi->dev, "reset gpio request failed\n");
1440			goto err_gpio;
1441		}
1442	}
1443
1444	ks->vdd_io = devm_regulator_get(&spi->dev, "vdd-io");
1445	if (IS_ERR(ks->vdd_io)) {
1446		ret = PTR_ERR(ks->vdd_io);
1447		goto err_reg_io;
1448	}
1449
1450	ret = regulator_enable(ks->vdd_io);
1451	if (ret) {
1452		dev_err(&spi->dev, "regulator vdd_io enable fail: %d\n",
1453			ret);
1454		goto err_reg_io;
1455	}
1456
1457	ks->vdd_reg = devm_regulator_get(&spi->dev, "vdd");
1458	if (IS_ERR(ks->vdd_reg)) {
1459		ret = PTR_ERR(ks->vdd_reg);
1460		goto err_reg;
1461	}
1462
1463	ret = regulator_enable(ks->vdd_reg);
1464	if (ret) {
1465		dev_err(&spi->dev, "regulator vdd enable fail: %d\n",
1466			ret);
1467		goto err_reg;
1468	}
1469
1470	if (gpio_is_valid(gpio)) {
1471		usleep_range(10000, 11000);
1472		gpio_set_value(gpio, 1);
1473	}
1474
1475	mutex_init(&ks->lock);
1476	spin_lock_init(&ks->statelock);
1477
1478	INIT_WORK(&ks->tx_work, ks8851_tx_work);
1479	INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1480
1481	/* initialise pre-made spi transfer messages */
1482
1483	spi_message_init(&ks->spi_msg1);
1484	spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1485
1486	spi_message_init(&ks->spi_msg2);
1487	spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1488	spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1489
1490	/* setup EEPROM state */
1491
1492	ks->eeprom.data = ks;
1493	ks->eeprom.width = PCI_EEPROM_WIDTH_93C46;
1494	ks->eeprom.register_read = ks8851_eeprom_regread;
1495	ks->eeprom.register_write = ks8851_eeprom_regwrite;
1496
1497	/* setup mii state */
1498	ks->mii.dev		= ndev;
1499	ks->mii.phy_id		= 1,
1500	ks->mii.phy_id_mask	= 1;
1501	ks->mii.reg_num_mask	= 0xf;
1502	ks->mii.mdio_read	= ks8851_phy_read;
1503	ks->mii.mdio_write	= ks8851_phy_write;
1504
1505	dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1506
1507	/* set the default message enable */
1508	ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1509						     NETIF_MSG_PROBE |
1510						     NETIF_MSG_LINK));
1511
1512	skb_queue_head_init(&ks->txq);
1513
1514	ndev->ethtool_ops = &ks8851_ethtool_ops;
1515	SET_NETDEV_DEV(ndev, &spi->dev);
1516
1517	spi_set_drvdata(spi, ks);
1518
1519	ndev->if_port = IF_PORT_100BASET;
1520	ndev->netdev_ops = &ks8851_netdev_ops;
1521	ndev->irq = spi->irq;
1522
1523	/* issue a global soft reset to reset the device. */
1524	ks8851_soft_reset(ks, GRR_GSR);
1525
1526	/* simple check for a valid chip being connected to the bus */
1527	cider = ks8851_rdreg16(ks, KS_CIDER);
1528	if ((cider & ~CIDER_REV_MASK) != CIDER_ID) {
1529		dev_err(&spi->dev, "failed to read device ID\n");
1530		ret = -ENODEV;
1531		goto err_id;
1532	}
1533
1534	/* cache the contents of the CCR register for EEPROM, etc. */
1535	ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1536
1537	if (ks->rc_ccr & CCR_EEPROM)
1538		ks->eeprom_size = 128;
1539	else
1540		ks->eeprom_size = 0;
1541
1542	ks8851_read_selftest(ks);
1543	ks8851_init_mac(ks);
1544
1545	ret = request_threaded_irq(spi->irq, NULL, ks8851_irq,
1546				   IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1547				   ndev->name, ks);
1548	if (ret < 0) {
1549		dev_err(&spi->dev, "failed to get irq\n");
1550		goto err_irq;
1551	}
1552
1553	ret = register_netdev(ndev);
1554	if (ret) {
1555		dev_err(&spi->dev, "failed to register network device\n");
1556		goto err_netdev;
1557	}
1558
1559	netdev_info(ndev, "revision %d, MAC %pM, IRQ %d, %s EEPROM\n",
1560		    CIDER_REV_GET(cider), ndev->dev_addr, ndev->irq,
1561		    ks->rc_ccr & CCR_EEPROM ? "has" : "no");
1562
1563	return 0;
1564
1565
1566err_netdev:
1567	free_irq(ndev->irq, ks);
1568
1569err_irq:
1570	if (gpio_is_valid(gpio))
1571		gpio_set_value(gpio, 0);
1572err_id:
1573	regulator_disable(ks->vdd_reg);
1574err_reg:
1575	regulator_disable(ks->vdd_io);
1576err_reg_io:
1577err_gpio:
1578	free_netdev(ndev);
1579	return ret;
1580}
1581
1582static int ks8851_remove(struct spi_device *spi)
1583{
1584	struct ks8851_net *priv = spi_get_drvdata(spi);
1585
1586	if (netif_msg_drv(priv))
1587		dev_info(&spi->dev, "remove\n");
1588
1589	unregister_netdev(priv->netdev);
1590	free_irq(spi->irq, priv);
1591	if (gpio_is_valid(priv->gpio))
1592		gpio_set_value(priv->gpio, 0);
1593	regulator_disable(priv->vdd_reg);
1594	regulator_disable(priv->vdd_io);
1595	free_netdev(priv->netdev);
1596
1597	return 0;
1598}
1599
1600static const struct of_device_id ks8851_match_table[] = {
1601	{ .compatible = "micrel,ks8851" },
1602	{ }
1603};
1604
1605static struct spi_driver ks8851_driver = {
1606	.driver = {
1607		.name = "ks8851",
1608		.of_match_table = ks8851_match_table,
1609		.owner = THIS_MODULE,
1610		.pm = &ks8851_pm_ops,
1611	},
1612	.probe = ks8851_probe,
1613	.remove = ks8851_remove,
1614};
1615module_spi_driver(ks8851_driver);
1616
1617MODULE_DESCRIPTION("KS8851 Network driver");
1618MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1619MODULE_LICENSE("GPL");
1620
1621module_param_named(message, msg_enable, int, 0);
1622MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1623MODULE_ALIAS("spi:ks8851");
1624