1/* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2/*
3	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4
5	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7	Copyright 2001 Manfred Spraul				    [natsemi.c]
8	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9       	Written 1997-2001 by Donald Becker.			    [8139too.c]
10	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11
12	This software may be used and distributed according to the terms of
13	the GNU General Public License (GPL), incorporated herein by reference.
14	Drivers based on or derived from this code fall under the GPL and must
15	retain the authorship, copyright and license notice.  This file is not
16	a complete program and may only be used when the entire operating
17	system is licensed under the GPL.
18
19	See the file COPYING in this distribution for more information.
20
21	Contributors:
22
23		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26
27	TODO:
28	* Test Tx checksumming thoroughly
29
30	Low priority TODO:
31	* Complete reset on PciErr
32	* Consider Rx interrupt mitigation using TimerIntr
33	* Investigate using skb->priority with h/w VLAN priority
34	* Investigate using High Priority Tx Queue with skb->priority
35	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37	* Implement Tx software interrupt mitigation via
38	  Tx descriptor bit
39	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40	  for this to be supported, one must(?) turn on packet padding.
41	* Support external MII transceivers (patch available)
42
43	NOTES:
44	* TX checksumming is considered experimental.  It is off by
45	  default, use ethtool to turn it on.
46
47 */
48
49#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50
51#define DRV_NAME		"8139cp"
52#define DRV_VERSION		"1.3"
53#define DRV_RELDATE		"Mar 22, 2004"
54
55
56#include <linux/module.h>
57#include <linux/moduleparam.h>
58#include <linux/kernel.h>
59#include <linux/compiler.h>
60#include <linux/netdevice.h>
61#include <linux/etherdevice.h>
62#include <linux/init.h>
63#include <linux/interrupt.h>
64#include <linux/pci.h>
65#include <linux/dma-mapping.h>
66#include <linux/delay.h>
67#include <linux/ethtool.h>
68#include <linux/gfp.h>
69#include <linux/mii.h>
70#include <linux/if_vlan.h>
71#include <linux/crc32.h>
72#include <linux/in.h>
73#include <linux/ip.h>
74#include <linux/tcp.h>
75#include <linux/udp.h>
76#include <linux/cache.h>
77#include <asm/io.h>
78#include <asm/irq.h>
79#include <asm/uaccess.h>
80
81/* These identify the driver base version and may not be removed. */
82static char version[] =
83DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84
85MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87MODULE_VERSION(DRV_VERSION);
88MODULE_LICENSE("GPL");
89
90static int debug = -1;
91module_param(debug, int, 0);
92MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93
94/* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95   The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96static int multicast_filter_limit = 32;
97module_param(multicast_filter_limit, int, 0);
98MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99
100#define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101				 NETIF_MSG_PROBE 	| \
102				 NETIF_MSG_LINK)
103#define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104#define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105#define CP_REGS_SIZE		(0xff + 1)
106#define CP_REGS_VER		1		/* version 1 */
107#define CP_RX_RING_SIZE		64
108#define CP_TX_RING_SIZE		64
109#define CP_RING_BYTES		\
110		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112		 CP_STATS_SIZE)
113#define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114#define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115#define TX_BUFFS_AVAIL(CP)					\
116	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118	  (CP)->tx_tail - (CP)->tx_head - 1)
119
120#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121#define CP_INTERNAL_PHY		32
122
123/* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124#define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125#define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126#define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127#define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128
129/* Time in jiffies before concluding the transmitter is hung. */
130#define TX_TIMEOUT		(6*HZ)
131
132/* hardware minimum and maximum for a single frame's data payload */
133#define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134#define CP_MAX_MTU		4096
135
136enum {
137	/* NIC register offsets */
138	MAC0		= 0x00,	/* Ethernet hardware address. */
139	MAR0		= 0x08,	/* Multicast filter. */
140	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143	Cmd		= 0x37, /* Command register */
144	IntrMask	= 0x3C, /* Interrupt mask */
145	IntrStatus	= 0x3E, /* Interrupt status */
146	TxConfig	= 0x40, /* Tx configuration */
147	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148	RxConfig	= 0x44, /* Rx configuration */
149	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151	Config1		= 0x52, /* Config1 */
152	Config3		= 0x59, /* Config3 */
153	Config4		= 0x5A, /* Config4 */
154	MultiIntr	= 0x5C, /* Multiple interrupt select */
155	BasicModeCtrl	= 0x62,	/* MII BMCR */
156	BasicModeStatus	= 0x64, /* MII BMSR */
157	NWayAdvert	= 0x66, /* MII ADVERTISE */
158	NWayLPAR	= 0x68, /* MII LPA */
159	NWayExpansion	= 0x6A, /* MII Expansion */
160	Config5		= 0xD8,	/* Config5 */
161	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
162	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
163	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
164	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
165	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
166	TxThresh	= 0xEC, /* Early Tx threshold */
167	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
168	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
169
170	/* Tx and Rx status descriptors */
171	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
172	RingEnd		= (1 << 30), /* End of descriptor ring */
173	FirstFrag	= (1 << 29), /* First segment of a packet */
174	LastFrag	= (1 << 28), /* Final segment of a packet */
175	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
176	MSSShift	= 16,	     /* MSS value position */
177	MSSMask		= 0xfff,     /* MSS value: 11 bits */
178	TxError		= (1 << 23), /* Tx error summary */
179	RxError		= (1 << 20), /* Rx error summary */
180	IPCS		= (1 << 18), /* Calculate IP checksum */
181	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
182	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
183	TxVlanTag	= (1 << 17), /* Add VLAN tag */
184	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
185	IPFail		= (1 << 15), /* IP checksum failed */
186	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
187	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
188	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
189	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
190	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
191	RxProtoTCP	= 1,
192	RxProtoUDP	= 2,
193	RxProtoIP	= 3,
194	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
195	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
196	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
197	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
198	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
199	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
200	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
201	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
202	RxErrCRC	= (1 << 18), /* Rx CRC error */
203	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
204	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
205	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
206
207	/* StatsAddr register */
208	DumpStats	= (1 << 3),  /* Begin stats dump */
209
210	/* RxConfig register */
211	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
212	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
213	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
214	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
215	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
216	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
217	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
218	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
219
220	/* IntrMask / IntrStatus registers */
221	PciErr		= (1 << 15), /* System error on the PCI bus */
222	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
223	LenChg		= (1 << 13), /* Cable length change */
224	SWInt		= (1 << 8),  /* Software-requested interrupt */
225	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
226	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
227	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
228	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
229	TxErr		= (1 << 3),  /* Tx error */
230	TxOK		= (1 << 2),  /* Tx packet sent */
231	RxErr		= (1 << 1),  /* Rx error */
232	RxOK		= (1 << 0),  /* Rx packet received */
233	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
234					but hardware likes to raise it */
235
236	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
237			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
238			  RxErr | RxOK | IntrResvd,
239
240	/* C mode command register */
241	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
242	RxOn		= (1 << 3),  /* Rx mode enable */
243	TxOn		= (1 << 2),  /* Tx mode enable */
244
245	/* C+ mode command register */
246	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
247	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
248	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
249	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
250	CpRxOn		= (1 << 1),  /* Rx mode enable */
251	CpTxOn		= (1 << 0),  /* Tx mode enable */
252
253	/* Cfg9436 EEPROM control register */
254	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
255	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
256
257	/* TxConfig register */
258	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
259	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
260
261	/* Early Tx Threshold register */
262	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
263	TxThreshMax	= 2048,	     /* Max early Tx threshold */
264
265	/* Config1 register */
266	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
267	LWACT           = (1 << 4),  /* LWAKE active mode */
268	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
269
270	/* Config3 register */
271	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
272	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
273	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
274
275	/* Config4 register */
276	LWPTN           = (1 << 1),  /* LWAKE Pattern */
277	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
278
279	/* Config5 register */
280	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
281	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
282	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
283	LANWake         = (1 << 1),  /* Enable LANWake signal */
284	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
285
286	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
287	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
288	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
289};
290
291static const unsigned int cp_rx_config =
292	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
293	  (RX_DMA_BURST << RxCfgDMAShift);
294
295struct cp_desc {
296	__le32		opts1;
297	__le32		opts2;
298	__le64		addr;
299};
300
301struct cp_dma_stats {
302	__le64			tx_ok;
303	__le64			rx_ok;
304	__le64			tx_err;
305	__le32			rx_err;
306	__le16			rx_fifo;
307	__le16			frame_align;
308	__le32			tx_ok_1col;
309	__le32			tx_ok_mcol;
310	__le64			rx_ok_phys;
311	__le64			rx_ok_bcast;
312	__le32			rx_ok_mcast;
313	__le16			tx_abort;
314	__le16			tx_underrun;
315} __packed;
316
317struct cp_extra_stats {
318	unsigned long		rx_frags;
319};
320
321struct cp_private {
322	void			__iomem *regs;
323	struct net_device	*dev;
324	spinlock_t		lock;
325	u32			msg_enable;
326
327	struct napi_struct	napi;
328
329	struct pci_dev		*pdev;
330	u32			rx_config;
331	u16			cpcmd;
332
333	struct cp_extra_stats	cp_stats;
334
335	unsigned		rx_head		____cacheline_aligned;
336	unsigned		rx_tail;
337	struct cp_desc		*rx_ring;
338	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
339
340	unsigned		tx_head		____cacheline_aligned;
341	unsigned		tx_tail;
342	struct cp_desc		*tx_ring;
343	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
344
345	unsigned		rx_buf_sz;
346	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
347
348	dma_addr_t		ring_dma;
349
350	struct mii_if_info	mii_if;
351};
352
353#define cpr8(reg)	readb(cp->regs + (reg))
354#define cpr16(reg)	readw(cp->regs + (reg))
355#define cpr32(reg)	readl(cp->regs + (reg))
356#define cpw8(reg,val)	writeb((val), cp->regs + (reg))
357#define cpw16(reg,val)	writew((val), cp->regs + (reg))
358#define cpw32(reg,val)	writel((val), cp->regs + (reg))
359#define cpw8_f(reg,val) do {			\
360	writeb((val), cp->regs + (reg));	\
361	readb(cp->regs + (reg));		\
362	} while (0)
363#define cpw16_f(reg,val) do {			\
364	writew((val), cp->regs + (reg));	\
365	readw(cp->regs + (reg));		\
366	} while (0)
367#define cpw32_f(reg,val) do {			\
368	writel((val), cp->regs + (reg));	\
369	readl(cp->regs + (reg));		\
370	} while (0)
371
372
373static void __cp_set_rx_mode (struct net_device *dev);
374static void cp_tx (struct cp_private *cp);
375static void cp_clean_rings (struct cp_private *cp);
376#ifdef CONFIG_NET_POLL_CONTROLLER
377static void cp_poll_controller(struct net_device *dev);
378#endif
379static int cp_get_eeprom_len(struct net_device *dev);
380static int cp_get_eeprom(struct net_device *dev,
381			 struct ethtool_eeprom *eeprom, u8 *data);
382static int cp_set_eeprom(struct net_device *dev,
383			 struct ethtool_eeprom *eeprom, u8 *data);
384
385static struct {
386	const char str[ETH_GSTRING_LEN];
387} ethtool_stats_keys[] = {
388	{ "tx_ok" },
389	{ "rx_ok" },
390	{ "tx_err" },
391	{ "rx_err" },
392	{ "rx_fifo" },
393	{ "frame_align" },
394	{ "tx_ok_1col" },
395	{ "tx_ok_mcol" },
396	{ "rx_ok_phys" },
397	{ "rx_ok_bcast" },
398	{ "rx_ok_mcast" },
399	{ "tx_abort" },
400	{ "tx_underrun" },
401	{ "rx_frags" },
402};
403
404
405static inline void cp_set_rxbufsize (struct cp_private *cp)
406{
407	unsigned int mtu = cp->dev->mtu;
408
409	if (mtu > ETH_DATA_LEN)
410		/* MTU + ethernet header + FCS + optional VLAN tag */
411		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
412	else
413		cp->rx_buf_sz = PKT_BUF_SZ;
414}
415
416static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
417			      struct cp_desc *desc)
418{
419	u32 opts2 = le32_to_cpu(desc->opts2);
420
421	skb->protocol = eth_type_trans (skb, cp->dev);
422
423	cp->dev->stats.rx_packets++;
424	cp->dev->stats.rx_bytes += skb->len;
425
426	if (opts2 & RxVlanTagged)
427		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
428
429	napi_gro_receive(&cp->napi, skb);
430}
431
432static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
433			    u32 status, u32 len)
434{
435	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
436		  rx_tail, status, len);
437	cp->dev->stats.rx_errors++;
438	if (status & RxErrFrame)
439		cp->dev->stats.rx_frame_errors++;
440	if (status & RxErrCRC)
441		cp->dev->stats.rx_crc_errors++;
442	if ((status & RxErrRunt) || (status & RxErrLong))
443		cp->dev->stats.rx_length_errors++;
444	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
445		cp->dev->stats.rx_length_errors++;
446	if (status & RxErrFIFO)
447		cp->dev->stats.rx_fifo_errors++;
448}
449
450static inline unsigned int cp_rx_csum_ok (u32 status)
451{
452	unsigned int protocol = (status >> 16) & 0x3;
453
454	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
455	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
456		return 1;
457	else
458		return 0;
459}
460
461static int cp_rx_poll(struct napi_struct *napi, int budget)
462{
463	struct cp_private *cp = container_of(napi, struct cp_private, napi);
464	struct net_device *dev = cp->dev;
465	unsigned int rx_tail = cp->rx_tail;
466	int rx;
467
468rx_status_loop:
469	rx = 0;
470	cpw16(IntrStatus, cp_rx_intr_mask);
471
472	while (rx < budget) {
473		u32 status, len;
474		dma_addr_t mapping, new_mapping;
475		struct sk_buff *skb, *new_skb;
476		struct cp_desc *desc;
477		const unsigned buflen = cp->rx_buf_sz;
478
479		skb = cp->rx_skb[rx_tail];
480		BUG_ON(!skb);
481
482		desc = &cp->rx_ring[rx_tail];
483		status = le32_to_cpu(desc->opts1);
484		if (status & DescOwn)
485			break;
486
487		len = (status & 0x1fff) - 4;
488		mapping = le64_to_cpu(desc->addr);
489
490		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
491			/* we don't support incoming fragmented frames.
492			 * instead, we attempt to ensure that the
493			 * pre-allocated RX skbs are properly sized such
494			 * that RX fragments are never encountered
495			 */
496			cp_rx_err_acct(cp, rx_tail, status, len);
497			dev->stats.rx_dropped++;
498			cp->cp_stats.rx_frags++;
499			goto rx_next;
500		}
501
502		if (status & (RxError | RxErrFIFO)) {
503			cp_rx_err_acct(cp, rx_tail, status, len);
504			goto rx_next;
505		}
506
507		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
508			  rx_tail, status, len);
509
510		new_skb = napi_alloc_skb(napi, buflen);
511		if (!new_skb) {
512			dev->stats.rx_dropped++;
513			goto rx_next;
514		}
515
516		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
517					 PCI_DMA_FROMDEVICE);
518		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
519			dev->stats.rx_dropped++;
520			kfree_skb(new_skb);
521			goto rx_next;
522		}
523
524		dma_unmap_single(&cp->pdev->dev, mapping,
525				 buflen, PCI_DMA_FROMDEVICE);
526
527		/* Handle checksum offloading for incoming packets. */
528		if (cp_rx_csum_ok(status))
529			skb->ip_summed = CHECKSUM_UNNECESSARY;
530		else
531			skb_checksum_none_assert(skb);
532
533		skb_put(skb, len);
534
535		cp->rx_skb[rx_tail] = new_skb;
536
537		cp_rx_skb(cp, skb, desc);
538		rx++;
539		mapping = new_mapping;
540
541rx_next:
542		cp->rx_ring[rx_tail].opts2 = 0;
543		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
544		if (rx_tail == (CP_RX_RING_SIZE - 1))
545			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
546						  cp->rx_buf_sz);
547		else
548			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
549		rx_tail = NEXT_RX(rx_tail);
550	}
551
552	cp->rx_tail = rx_tail;
553
554	/* if we did not reach work limit, then we're done with
555	 * this round of polling
556	 */
557	if (rx < budget) {
558		unsigned long flags;
559
560		if (cpr16(IntrStatus) & cp_rx_intr_mask)
561			goto rx_status_loop;
562
563		napi_gro_flush(napi, false);
564		spin_lock_irqsave(&cp->lock, flags);
565		__napi_complete(napi);
566		cpw16_f(IntrMask, cp_intr_mask);
567		spin_unlock_irqrestore(&cp->lock, flags);
568	}
569
570	return rx;
571}
572
573static irqreturn_t cp_interrupt (int irq, void *dev_instance)
574{
575	struct net_device *dev = dev_instance;
576	struct cp_private *cp;
577	int handled = 0;
578	u16 status;
579
580	if (unlikely(dev == NULL))
581		return IRQ_NONE;
582	cp = netdev_priv(dev);
583
584	spin_lock(&cp->lock);
585
586	status = cpr16(IntrStatus);
587	if (!status || (status == 0xFFFF))
588		goto out_unlock;
589
590	handled = 1;
591
592	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
593		  status, cpr8(Cmd), cpr16(CpCmd));
594
595	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
596
597	/* close possible race's with dev_close */
598	if (unlikely(!netif_running(dev))) {
599		cpw16(IntrMask, 0);
600		goto out_unlock;
601	}
602
603	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
604		if (napi_schedule_prep(&cp->napi)) {
605			cpw16_f(IntrMask, cp_norx_intr_mask);
606			__napi_schedule(&cp->napi);
607		}
608
609	if (status & (TxOK | TxErr | TxEmpty | SWInt))
610		cp_tx(cp);
611	if (status & LinkChg)
612		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
613
614
615	if (status & PciErr) {
616		u16 pci_status;
617
618		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
619		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
620		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
621			   status, pci_status);
622
623		/* TODO: reset hardware */
624	}
625
626out_unlock:
627	spin_unlock(&cp->lock);
628
629	return IRQ_RETVAL(handled);
630}
631
632#ifdef CONFIG_NET_POLL_CONTROLLER
633/*
634 * Polling receive - used by netconsole and other diagnostic tools
635 * to allow network i/o with interrupts disabled.
636 */
637static void cp_poll_controller(struct net_device *dev)
638{
639	struct cp_private *cp = netdev_priv(dev);
640	const int irq = cp->pdev->irq;
641
642	disable_irq(irq);
643	cp_interrupt(irq, dev);
644	enable_irq(irq);
645}
646#endif
647
648static void cp_tx (struct cp_private *cp)
649{
650	unsigned tx_head = cp->tx_head;
651	unsigned tx_tail = cp->tx_tail;
652	unsigned bytes_compl = 0, pkts_compl = 0;
653
654	while (tx_tail != tx_head) {
655		struct cp_desc *txd = cp->tx_ring + tx_tail;
656		struct sk_buff *skb;
657		u32 status;
658
659		rmb();
660		status = le32_to_cpu(txd->opts1);
661		if (status & DescOwn)
662			break;
663
664		skb = cp->tx_skb[tx_tail];
665		BUG_ON(!skb);
666
667		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
668				 le32_to_cpu(txd->opts1) & 0xffff,
669				 PCI_DMA_TODEVICE);
670
671		if (status & LastFrag) {
672			if (status & (TxError | TxFIFOUnder)) {
673				netif_dbg(cp, tx_err, cp->dev,
674					  "tx err, status 0x%x\n", status);
675				cp->dev->stats.tx_errors++;
676				if (status & TxOWC)
677					cp->dev->stats.tx_window_errors++;
678				if (status & TxMaxCol)
679					cp->dev->stats.tx_aborted_errors++;
680				if (status & TxLinkFail)
681					cp->dev->stats.tx_carrier_errors++;
682				if (status & TxFIFOUnder)
683					cp->dev->stats.tx_fifo_errors++;
684			} else {
685				cp->dev->stats.collisions +=
686					((status >> TxColCntShift) & TxColCntMask);
687				cp->dev->stats.tx_packets++;
688				cp->dev->stats.tx_bytes += skb->len;
689				netif_dbg(cp, tx_done, cp->dev,
690					  "tx done, slot %d\n", tx_tail);
691			}
692			bytes_compl += skb->len;
693			pkts_compl++;
694			dev_kfree_skb_irq(skb);
695		}
696
697		cp->tx_skb[tx_tail] = NULL;
698
699		tx_tail = NEXT_TX(tx_tail);
700	}
701
702	cp->tx_tail = tx_tail;
703
704	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
705	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
706		netif_wake_queue(cp->dev);
707}
708
709static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
710{
711	return skb_vlan_tag_present(skb) ?
712		TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
713}
714
715static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
716				   int first, int entry_last)
717{
718	int frag, index;
719	struct cp_desc *txd;
720	skb_frag_t *this_frag;
721	for (frag = 0; frag+first < entry_last; frag++) {
722		index = first+frag;
723		cp->tx_skb[index] = NULL;
724		txd = &cp->tx_ring[index];
725		this_frag = &skb_shinfo(skb)->frags[frag];
726		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
727				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
728	}
729}
730
731static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
732					struct net_device *dev)
733{
734	struct cp_private *cp = netdev_priv(dev);
735	unsigned entry;
736	u32 eor, flags;
737	unsigned long intr_flags;
738	__le32 opts2;
739	int mss = 0;
740
741	spin_lock_irqsave(&cp->lock, intr_flags);
742
743	/* This is a hard error, log it. */
744	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
745		netif_stop_queue(dev);
746		spin_unlock_irqrestore(&cp->lock, intr_flags);
747		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
748		return NETDEV_TX_BUSY;
749	}
750
751	entry = cp->tx_head;
752	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
753	mss = skb_shinfo(skb)->gso_size;
754
755	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
756
757	if (skb_shinfo(skb)->nr_frags == 0) {
758		struct cp_desc *txd = &cp->tx_ring[entry];
759		u32 len;
760		dma_addr_t mapping;
761
762		len = skb->len;
763		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
764		if (dma_mapping_error(&cp->pdev->dev, mapping))
765			goto out_dma_error;
766
767		txd->opts2 = opts2;
768		txd->addr = cpu_to_le64(mapping);
769		wmb();
770
771		flags = eor | len | DescOwn | FirstFrag | LastFrag;
772
773		if (mss)
774			flags |= LargeSend | ((mss & MSSMask) << MSSShift);
775		else if (skb->ip_summed == CHECKSUM_PARTIAL) {
776			const struct iphdr *ip = ip_hdr(skb);
777			if (ip->protocol == IPPROTO_TCP)
778				flags |= IPCS | TCPCS;
779			else if (ip->protocol == IPPROTO_UDP)
780				flags |= IPCS | UDPCS;
781			else
782				WARN_ON(1);	/* we need a WARN() */
783		}
784
785		txd->opts1 = cpu_to_le32(flags);
786		wmb();
787
788		cp->tx_skb[entry] = skb;
789		entry = NEXT_TX(entry);
790	} else {
791		struct cp_desc *txd;
792		u32 first_len, first_eor;
793		dma_addr_t first_mapping;
794		int frag, first_entry = entry;
795		const struct iphdr *ip = ip_hdr(skb);
796
797		/* We must give this initial chunk to the device last.
798		 * Otherwise we could race with the device.
799		 */
800		first_eor = eor;
801		first_len = skb_headlen(skb);
802		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
803					       first_len, PCI_DMA_TODEVICE);
804		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
805			goto out_dma_error;
806
807		cp->tx_skb[entry] = skb;
808		entry = NEXT_TX(entry);
809
810		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
811			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
812			u32 len;
813			u32 ctrl;
814			dma_addr_t mapping;
815
816			len = skb_frag_size(this_frag);
817			mapping = dma_map_single(&cp->pdev->dev,
818						 skb_frag_address(this_frag),
819						 len, PCI_DMA_TODEVICE);
820			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
821				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
822				goto out_dma_error;
823			}
824
825			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
826
827			ctrl = eor | len | DescOwn;
828
829			if (mss)
830				ctrl |= LargeSend |
831					((mss & MSSMask) << MSSShift);
832			else if (skb->ip_summed == CHECKSUM_PARTIAL) {
833				if (ip->protocol == IPPROTO_TCP)
834					ctrl |= IPCS | TCPCS;
835				else if (ip->protocol == IPPROTO_UDP)
836					ctrl |= IPCS | UDPCS;
837				else
838					BUG();
839			}
840
841			if (frag == skb_shinfo(skb)->nr_frags - 1)
842				ctrl |= LastFrag;
843
844			txd = &cp->tx_ring[entry];
845			txd->opts2 = opts2;
846			txd->addr = cpu_to_le64(mapping);
847			wmb();
848
849			txd->opts1 = cpu_to_le32(ctrl);
850			wmb();
851
852			cp->tx_skb[entry] = skb;
853			entry = NEXT_TX(entry);
854		}
855
856		txd = &cp->tx_ring[first_entry];
857		txd->opts2 = opts2;
858		txd->addr = cpu_to_le64(first_mapping);
859		wmb();
860
861		if (skb->ip_summed == CHECKSUM_PARTIAL) {
862			if (ip->protocol == IPPROTO_TCP)
863				txd->opts1 = cpu_to_le32(first_eor | first_len |
864							 FirstFrag | DescOwn |
865							 IPCS | TCPCS);
866			else if (ip->protocol == IPPROTO_UDP)
867				txd->opts1 = cpu_to_le32(first_eor | first_len |
868							 FirstFrag | DescOwn |
869							 IPCS | UDPCS);
870			else
871				BUG();
872		} else
873			txd->opts1 = cpu_to_le32(first_eor | first_len |
874						 FirstFrag | DescOwn);
875		wmb();
876	}
877	cp->tx_head = entry;
878
879	netdev_sent_queue(dev, skb->len);
880	netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
881		  entry, skb->len);
882	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
883		netif_stop_queue(dev);
884
885out_unlock:
886	spin_unlock_irqrestore(&cp->lock, intr_flags);
887
888	cpw8(TxPoll, NormalTxPoll);
889
890	return NETDEV_TX_OK;
891out_dma_error:
892	dev_kfree_skb_any(skb);
893	cp->dev->stats.tx_dropped++;
894	goto out_unlock;
895}
896
897/* Set or clear the multicast filter for this adaptor.
898   This routine is not state sensitive and need not be SMP locked. */
899
900static void __cp_set_rx_mode (struct net_device *dev)
901{
902	struct cp_private *cp = netdev_priv(dev);
903	u32 mc_filter[2];	/* Multicast hash filter */
904	int rx_mode;
905
906	/* Note: do not reorder, GCC is clever about common statements. */
907	if (dev->flags & IFF_PROMISC) {
908		/* Unconditionally log net taps. */
909		rx_mode =
910		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
911		    AcceptAllPhys;
912		mc_filter[1] = mc_filter[0] = 0xffffffff;
913	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
914		   (dev->flags & IFF_ALLMULTI)) {
915		/* Too many to filter perfectly -- accept all multicasts. */
916		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
917		mc_filter[1] = mc_filter[0] = 0xffffffff;
918	} else {
919		struct netdev_hw_addr *ha;
920		rx_mode = AcceptBroadcast | AcceptMyPhys;
921		mc_filter[1] = mc_filter[0] = 0;
922		netdev_for_each_mc_addr(ha, dev) {
923			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
924
925			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
926			rx_mode |= AcceptMulticast;
927		}
928	}
929
930	/* We can safely update without stopping the chip. */
931	cp->rx_config = cp_rx_config | rx_mode;
932	cpw32_f(RxConfig, cp->rx_config);
933
934	cpw32_f (MAR0 + 0, mc_filter[0]);
935	cpw32_f (MAR0 + 4, mc_filter[1]);
936}
937
938static void cp_set_rx_mode (struct net_device *dev)
939{
940	unsigned long flags;
941	struct cp_private *cp = netdev_priv(dev);
942
943	spin_lock_irqsave (&cp->lock, flags);
944	__cp_set_rx_mode(dev);
945	spin_unlock_irqrestore (&cp->lock, flags);
946}
947
948static void __cp_get_stats(struct cp_private *cp)
949{
950	/* only lower 24 bits valid; write any value to clear */
951	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
952	cpw32 (RxMissed, 0);
953}
954
955static struct net_device_stats *cp_get_stats(struct net_device *dev)
956{
957	struct cp_private *cp = netdev_priv(dev);
958	unsigned long flags;
959
960	/* The chip only need report frame silently dropped. */
961	spin_lock_irqsave(&cp->lock, flags);
962 	if (netif_running(dev) && netif_device_present(dev))
963 		__cp_get_stats(cp);
964	spin_unlock_irqrestore(&cp->lock, flags);
965
966	return &dev->stats;
967}
968
969static void cp_stop_hw (struct cp_private *cp)
970{
971	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
972	cpw16_f(IntrMask, 0);
973	cpw8(Cmd, 0);
974	cpw16_f(CpCmd, 0);
975	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
976
977	cp->rx_tail = 0;
978	cp->tx_head = cp->tx_tail = 0;
979
980	netdev_reset_queue(cp->dev);
981}
982
983static void cp_reset_hw (struct cp_private *cp)
984{
985	unsigned work = 1000;
986
987	cpw8(Cmd, CmdReset);
988
989	while (work--) {
990		if (!(cpr8(Cmd) & CmdReset))
991			return;
992
993		schedule_timeout_uninterruptible(10);
994	}
995
996	netdev_err(cp->dev, "hardware reset timeout\n");
997}
998
999static inline void cp_start_hw (struct cp_private *cp)
1000{
1001	dma_addr_t ring_dma;
1002
1003	cpw16(CpCmd, cp->cpcmd);
1004
1005	/*
1006	 * These (at least TxRingAddr) need to be configured after the
1007	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
1008	 * (C+ Command Register) recommends that these and more be configured
1009	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
1010	 * it's been observed that the TxRingAddr is actually reset to garbage
1011	 * when C+ mode Tx is enabled in CpCmd.
1012	 */
1013	cpw32_f(HiTxRingAddr, 0);
1014	cpw32_f(HiTxRingAddr + 4, 0);
1015
1016	ring_dma = cp->ring_dma;
1017	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1018	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1019
1020	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1021	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1022	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1023
1024	/*
1025	 * Strictly speaking, the datasheet says this should be enabled
1026	 * *before* setting the descriptor addresses. But what, then, would
1027	 * prevent it from doing DMA to random unconfigured addresses?
1028	 * This variant appears to work fine.
1029	 */
1030	cpw8(Cmd, RxOn | TxOn);
1031
1032	netdev_reset_queue(cp->dev);
1033}
1034
1035static void cp_enable_irq(struct cp_private *cp)
1036{
1037	cpw16_f(IntrMask, cp_intr_mask);
1038}
1039
1040static void cp_init_hw (struct cp_private *cp)
1041{
1042	struct net_device *dev = cp->dev;
1043
1044	cp_reset_hw(cp);
1045
1046	cpw8_f (Cfg9346, Cfg9346_Unlock);
1047
1048	/* Restore our idea of the MAC address. */
1049	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1050	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1051
1052	cp_start_hw(cp);
1053	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1054
1055	__cp_set_rx_mode(dev);
1056	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1057
1058	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1059	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1060	cpw8(Config3, PARMEnable);
1061	cp->wol_enabled = 0;
1062
1063	cpw8(Config5, cpr8(Config5) & PMEStatus);
1064
1065	cpw16(MultiIntr, 0);
1066
1067	cpw8_f(Cfg9346, Cfg9346_Lock);
1068}
1069
1070static int cp_refill_rx(struct cp_private *cp)
1071{
1072	struct net_device *dev = cp->dev;
1073	unsigned i;
1074
1075	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1076		struct sk_buff *skb;
1077		dma_addr_t mapping;
1078
1079		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1080		if (!skb)
1081			goto err_out;
1082
1083		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1084					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1085		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1086			kfree_skb(skb);
1087			goto err_out;
1088		}
1089		cp->rx_skb[i] = skb;
1090
1091		cp->rx_ring[i].opts2 = 0;
1092		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1093		if (i == (CP_RX_RING_SIZE - 1))
1094			cp->rx_ring[i].opts1 =
1095				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1096		else
1097			cp->rx_ring[i].opts1 =
1098				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1099	}
1100
1101	return 0;
1102
1103err_out:
1104	cp_clean_rings(cp);
1105	return -ENOMEM;
1106}
1107
1108static void cp_init_rings_index (struct cp_private *cp)
1109{
1110	cp->rx_tail = 0;
1111	cp->tx_head = cp->tx_tail = 0;
1112}
1113
1114static int cp_init_rings (struct cp_private *cp)
1115{
1116	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1117	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1118
1119	cp_init_rings_index(cp);
1120
1121	return cp_refill_rx (cp);
1122}
1123
1124static int cp_alloc_rings (struct cp_private *cp)
1125{
1126	struct device *d = &cp->pdev->dev;
1127	void *mem;
1128	int rc;
1129
1130	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1131	if (!mem)
1132		return -ENOMEM;
1133
1134	cp->rx_ring = mem;
1135	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1136
1137	rc = cp_init_rings(cp);
1138	if (rc < 0)
1139		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1140
1141	return rc;
1142}
1143
1144static void cp_clean_rings (struct cp_private *cp)
1145{
1146	struct cp_desc *desc;
1147	unsigned i;
1148
1149	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1150		if (cp->rx_skb[i]) {
1151			desc = cp->rx_ring + i;
1152			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1153					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1154			dev_kfree_skb(cp->rx_skb[i]);
1155		}
1156	}
1157
1158	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1159		if (cp->tx_skb[i]) {
1160			struct sk_buff *skb = cp->tx_skb[i];
1161
1162			desc = cp->tx_ring + i;
1163			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1164					 le32_to_cpu(desc->opts1) & 0xffff,
1165					 PCI_DMA_TODEVICE);
1166			if (le32_to_cpu(desc->opts1) & LastFrag)
1167				dev_kfree_skb(skb);
1168			cp->dev->stats.tx_dropped++;
1169		}
1170	}
1171	netdev_reset_queue(cp->dev);
1172
1173	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1174	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1175
1176	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1177	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1178}
1179
1180static void cp_free_rings (struct cp_private *cp)
1181{
1182	cp_clean_rings(cp);
1183	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1184			  cp->ring_dma);
1185	cp->rx_ring = NULL;
1186	cp->tx_ring = NULL;
1187}
1188
1189static int cp_open (struct net_device *dev)
1190{
1191	struct cp_private *cp = netdev_priv(dev);
1192	const int irq = cp->pdev->irq;
1193	int rc;
1194
1195	netif_dbg(cp, ifup, dev, "enabling interface\n");
1196
1197	rc = cp_alloc_rings(cp);
1198	if (rc)
1199		return rc;
1200
1201	napi_enable(&cp->napi);
1202
1203	cp_init_hw(cp);
1204
1205	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1206	if (rc)
1207		goto err_out_hw;
1208
1209	cp_enable_irq(cp);
1210
1211	netif_carrier_off(dev);
1212	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1213	netif_start_queue(dev);
1214
1215	return 0;
1216
1217err_out_hw:
1218	napi_disable(&cp->napi);
1219	cp_stop_hw(cp);
1220	cp_free_rings(cp);
1221	return rc;
1222}
1223
1224static int cp_close (struct net_device *dev)
1225{
1226	struct cp_private *cp = netdev_priv(dev);
1227	unsigned long flags;
1228
1229	napi_disable(&cp->napi);
1230
1231	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1232
1233	spin_lock_irqsave(&cp->lock, flags);
1234
1235	netif_stop_queue(dev);
1236	netif_carrier_off(dev);
1237
1238	cp_stop_hw(cp);
1239
1240	spin_unlock_irqrestore(&cp->lock, flags);
1241
1242	free_irq(cp->pdev->irq, dev);
1243
1244	cp_free_rings(cp);
1245	return 0;
1246}
1247
1248static void cp_tx_timeout(struct net_device *dev)
1249{
1250	struct cp_private *cp = netdev_priv(dev);
1251	unsigned long flags;
1252	int rc;
1253
1254	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1255		    cpr8(Cmd), cpr16(CpCmd),
1256		    cpr16(IntrStatus), cpr16(IntrMask));
1257
1258	spin_lock_irqsave(&cp->lock, flags);
1259
1260	cp_stop_hw(cp);
1261	cp_clean_rings(cp);
1262	rc = cp_init_rings(cp);
1263	cp_start_hw(cp);
1264	cp_enable_irq(cp);
1265
1266	netif_wake_queue(dev);
1267
1268	spin_unlock_irqrestore(&cp->lock, flags);
1269}
1270
1271static int cp_change_mtu(struct net_device *dev, int new_mtu)
1272{
1273	struct cp_private *cp = netdev_priv(dev);
1274
1275	/* check for invalid MTU, according to hardware limits */
1276	if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1277		return -EINVAL;
1278
1279	/* if network interface not up, no need for complexity */
1280	if (!netif_running(dev)) {
1281		dev->mtu = new_mtu;
1282		cp_set_rxbufsize(cp);	/* set new rx buf size */
1283		return 0;
1284	}
1285
1286	/* network IS up, close it, reset MTU, and come up again. */
1287	cp_close(dev);
1288	dev->mtu = new_mtu;
1289	cp_set_rxbufsize(cp);
1290	return cp_open(dev);
1291}
1292
1293static const char mii_2_8139_map[8] = {
1294	BasicModeCtrl,
1295	BasicModeStatus,
1296	0,
1297	0,
1298	NWayAdvert,
1299	NWayLPAR,
1300	NWayExpansion,
1301	0
1302};
1303
1304static int mdio_read(struct net_device *dev, int phy_id, int location)
1305{
1306	struct cp_private *cp = netdev_priv(dev);
1307
1308	return location < 8 && mii_2_8139_map[location] ?
1309	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1310}
1311
1312
1313static void mdio_write(struct net_device *dev, int phy_id, int location,
1314		       int value)
1315{
1316	struct cp_private *cp = netdev_priv(dev);
1317
1318	if (location == 0) {
1319		cpw8(Cfg9346, Cfg9346_Unlock);
1320		cpw16(BasicModeCtrl, value);
1321		cpw8(Cfg9346, Cfg9346_Lock);
1322	} else if (location < 8 && mii_2_8139_map[location])
1323		cpw16(mii_2_8139_map[location], value);
1324}
1325
1326/* Set the ethtool Wake-on-LAN settings */
1327static int netdev_set_wol (struct cp_private *cp,
1328			   const struct ethtool_wolinfo *wol)
1329{
1330	u8 options;
1331
1332	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1333	/* If WOL is being disabled, no need for complexity */
1334	if (wol->wolopts) {
1335		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1336		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1337	}
1338
1339	cpw8 (Cfg9346, Cfg9346_Unlock);
1340	cpw8 (Config3, options);
1341	cpw8 (Cfg9346, Cfg9346_Lock);
1342
1343	options = 0; /* Paranoia setting */
1344	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1345	/* If WOL is being disabled, no need for complexity */
1346	if (wol->wolopts) {
1347		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1348		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1349		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1350	}
1351
1352	cpw8 (Config5, options);
1353
1354	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1355
1356	return 0;
1357}
1358
1359/* Get the ethtool Wake-on-LAN settings */
1360static void netdev_get_wol (struct cp_private *cp,
1361	             struct ethtool_wolinfo *wol)
1362{
1363	u8 options;
1364
1365	wol->wolopts   = 0; /* Start from scratch */
1366	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1367		         WAKE_MCAST | WAKE_UCAST;
1368	/* We don't need to go on if WOL is disabled */
1369	if (!cp->wol_enabled) return;
1370
1371	options        = cpr8 (Config3);
1372	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1373	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1374
1375	options        = 0; /* Paranoia setting */
1376	options        = cpr8 (Config5);
1377	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1378	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1379	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1380}
1381
1382static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1383{
1384	struct cp_private *cp = netdev_priv(dev);
1385
1386	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1387	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1388	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1389}
1390
1391static void cp_get_ringparam(struct net_device *dev,
1392				struct ethtool_ringparam *ring)
1393{
1394	ring->rx_max_pending = CP_RX_RING_SIZE;
1395	ring->tx_max_pending = CP_TX_RING_SIZE;
1396	ring->rx_pending = CP_RX_RING_SIZE;
1397	ring->tx_pending = CP_TX_RING_SIZE;
1398}
1399
1400static int cp_get_regs_len(struct net_device *dev)
1401{
1402	return CP_REGS_SIZE;
1403}
1404
1405static int cp_get_sset_count (struct net_device *dev, int sset)
1406{
1407	switch (sset) {
1408	case ETH_SS_STATS:
1409		return CP_NUM_STATS;
1410	default:
1411		return -EOPNOTSUPP;
1412	}
1413}
1414
1415static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1416{
1417	struct cp_private *cp = netdev_priv(dev);
1418	int rc;
1419	unsigned long flags;
1420
1421	spin_lock_irqsave(&cp->lock, flags);
1422	rc = mii_ethtool_gset(&cp->mii_if, cmd);
1423	spin_unlock_irqrestore(&cp->lock, flags);
1424
1425	return rc;
1426}
1427
1428static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1429{
1430	struct cp_private *cp = netdev_priv(dev);
1431	int rc;
1432	unsigned long flags;
1433
1434	spin_lock_irqsave(&cp->lock, flags);
1435	rc = mii_ethtool_sset(&cp->mii_if, cmd);
1436	spin_unlock_irqrestore(&cp->lock, flags);
1437
1438	return rc;
1439}
1440
1441static int cp_nway_reset(struct net_device *dev)
1442{
1443	struct cp_private *cp = netdev_priv(dev);
1444	return mii_nway_restart(&cp->mii_if);
1445}
1446
1447static u32 cp_get_msglevel(struct net_device *dev)
1448{
1449	struct cp_private *cp = netdev_priv(dev);
1450	return cp->msg_enable;
1451}
1452
1453static void cp_set_msglevel(struct net_device *dev, u32 value)
1454{
1455	struct cp_private *cp = netdev_priv(dev);
1456	cp->msg_enable = value;
1457}
1458
1459static int cp_set_features(struct net_device *dev, netdev_features_t features)
1460{
1461	struct cp_private *cp = netdev_priv(dev);
1462	unsigned long flags;
1463
1464	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1465		return 0;
1466
1467	spin_lock_irqsave(&cp->lock, flags);
1468
1469	if (features & NETIF_F_RXCSUM)
1470		cp->cpcmd |= RxChkSum;
1471	else
1472		cp->cpcmd &= ~RxChkSum;
1473
1474	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1475		cp->cpcmd |= RxVlanOn;
1476	else
1477		cp->cpcmd &= ~RxVlanOn;
1478
1479	cpw16_f(CpCmd, cp->cpcmd);
1480	spin_unlock_irqrestore(&cp->lock, flags);
1481
1482	return 0;
1483}
1484
1485static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1486		        void *p)
1487{
1488	struct cp_private *cp = netdev_priv(dev);
1489	unsigned long flags;
1490
1491	if (regs->len < CP_REGS_SIZE)
1492		return /* -EINVAL */;
1493
1494	regs->version = CP_REGS_VER;
1495
1496	spin_lock_irqsave(&cp->lock, flags);
1497	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1498	spin_unlock_irqrestore(&cp->lock, flags);
1499}
1500
1501static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1502{
1503	struct cp_private *cp = netdev_priv(dev);
1504	unsigned long flags;
1505
1506	spin_lock_irqsave (&cp->lock, flags);
1507	netdev_get_wol (cp, wol);
1508	spin_unlock_irqrestore (&cp->lock, flags);
1509}
1510
1511static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1512{
1513	struct cp_private *cp = netdev_priv(dev);
1514	unsigned long flags;
1515	int rc;
1516
1517	spin_lock_irqsave (&cp->lock, flags);
1518	rc = netdev_set_wol (cp, wol);
1519	spin_unlock_irqrestore (&cp->lock, flags);
1520
1521	return rc;
1522}
1523
1524static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1525{
1526	switch (stringset) {
1527	case ETH_SS_STATS:
1528		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1529		break;
1530	default:
1531		BUG();
1532		break;
1533	}
1534}
1535
1536static void cp_get_ethtool_stats (struct net_device *dev,
1537				  struct ethtool_stats *estats, u64 *tmp_stats)
1538{
1539	struct cp_private *cp = netdev_priv(dev);
1540	struct cp_dma_stats *nic_stats;
1541	dma_addr_t dma;
1542	int i;
1543
1544	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1545				       &dma, GFP_KERNEL);
1546	if (!nic_stats)
1547		return;
1548
1549	/* begin NIC statistics dump */
1550	cpw32(StatsAddr + 4, (u64)dma >> 32);
1551	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1552	cpr32(StatsAddr);
1553
1554	for (i = 0; i < 1000; i++) {
1555		if ((cpr32(StatsAddr) & DumpStats) == 0)
1556			break;
1557		udelay(10);
1558	}
1559	cpw32(StatsAddr, 0);
1560	cpw32(StatsAddr + 4, 0);
1561	cpr32(StatsAddr);
1562
1563	i = 0;
1564	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1565	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1566	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1567	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1568	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1569	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1570	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1571	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1572	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1573	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1574	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1575	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1576	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1577	tmp_stats[i++] = cp->cp_stats.rx_frags;
1578	BUG_ON(i != CP_NUM_STATS);
1579
1580	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1581}
1582
1583static const struct ethtool_ops cp_ethtool_ops = {
1584	.get_drvinfo		= cp_get_drvinfo,
1585	.get_regs_len		= cp_get_regs_len,
1586	.get_sset_count		= cp_get_sset_count,
1587	.get_settings		= cp_get_settings,
1588	.set_settings		= cp_set_settings,
1589	.nway_reset		= cp_nway_reset,
1590	.get_link		= ethtool_op_get_link,
1591	.get_msglevel		= cp_get_msglevel,
1592	.set_msglevel		= cp_set_msglevel,
1593	.get_regs		= cp_get_regs,
1594	.get_wol		= cp_get_wol,
1595	.set_wol		= cp_set_wol,
1596	.get_strings		= cp_get_strings,
1597	.get_ethtool_stats	= cp_get_ethtool_stats,
1598	.get_eeprom_len		= cp_get_eeprom_len,
1599	.get_eeprom		= cp_get_eeprom,
1600	.set_eeprom		= cp_set_eeprom,
1601	.get_ringparam		= cp_get_ringparam,
1602};
1603
1604static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1605{
1606	struct cp_private *cp = netdev_priv(dev);
1607	int rc;
1608	unsigned long flags;
1609
1610	if (!netif_running(dev))
1611		return -EINVAL;
1612
1613	spin_lock_irqsave(&cp->lock, flags);
1614	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1615	spin_unlock_irqrestore(&cp->lock, flags);
1616	return rc;
1617}
1618
1619static int cp_set_mac_address(struct net_device *dev, void *p)
1620{
1621	struct cp_private *cp = netdev_priv(dev);
1622	struct sockaddr *addr = p;
1623
1624	if (!is_valid_ether_addr(addr->sa_data))
1625		return -EADDRNOTAVAIL;
1626
1627	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1628
1629	spin_lock_irq(&cp->lock);
1630
1631	cpw8_f(Cfg9346, Cfg9346_Unlock);
1632	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1633	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1634	cpw8_f(Cfg9346, Cfg9346_Lock);
1635
1636	spin_unlock_irq(&cp->lock);
1637
1638	return 0;
1639}
1640
1641/* Serial EEPROM section. */
1642
1643/*  EEPROM_Ctrl bits. */
1644#define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1645#define EE_CS			0x08	/* EEPROM chip select. */
1646#define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1647#define EE_WRITE_0		0x00
1648#define EE_WRITE_1		0x02
1649#define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1650#define EE_ENB			(0x80 | EE_CS)
1651
1652/* Delay between EEPROM clock transitions.
1653   No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1654 */
1655
1656#define eeprom_delay()	readb(ee_addr)
1657
1658/* The EEPROM commands include the alway-set leading bit. */
1659#define EE_EXTEND_CMD	(4)
1660#define EE_WRITE_CMD	(5)
1661#define EE_READ_CMD		(6)
1662#define EE_ERASE_CMD	(7)
1663
1664#define EE_EWDS_ADDR	(0)
1665#define EE_WRAL_ADDR	(1)
1666#define EE_ERAL_ADDR	(2)
1667#define EE_EWEN_ADDR	(3)
1668
1669#define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1670
1671static void eeprom_cmd_start(void __iomem *ee_addr)
1672{
1673	writeb (EE_ENB & ~EE_CS, ee_addr);
1674	writeb (EE_ENB, ee_addr);
1675	eeprom_delay ();
1676}
1677
1678static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1679{
1680	int i;
1681
1682	/* Shift the command bits out. */
1683	for (i = cmd_len - 1; i >= 0; i--) {
1684		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1685		writeb (EE_ENB | dataval, ee_addr);
1686		eeprom_delay ();
1687		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1688		eeprom_delay ();
1689	}
1690	writeb (EE_ENB, ee_addr);
1691	eeprom_delay ();
1692}
1693
1694static void eeprom_cmd_end(void __iomem *ee_addr)
1695{
1696	writeb(0, ee_addr);
1697	eeprom_delay ();
1698}
1699
1700static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1701			      int addr_len)
1702{
1703	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1704
1705	eeprom_cmd_start(ee_addr);
1706	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1707	eeprom_cmd_end(ee_addr);
1708}
1709
1710static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1711{
1712	int i;
1713	u16 retval = 0;
1714	void __iomem *ee_addr = ioaddr + Cfg9346;
1715	int read_cmd = location | (EE_READ_CMD << addr_len);
1716
1717	eeprom_cmd_start(ee_addr);
1718	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1719
1720	for (i = 16; i > 0; i--) {
1721		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1722		eeprom_delay ();
1723		retval =
1724		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1725				     0);
1726		writeb (EE_ENB, ee_addr);
1727		eeprom_delay ();
1728	}
1729
1730	eeprom_cmd_end(ee_addr);
1731
1732	return retval;
1733}
1734
1735static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1736			 int addr_len)
1737{
1738	int i;
1739	void __iomem *ee_addr = ioaddr + Cfg9346;
1740	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1741
1742	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1743
1744	eeprom_cmd_start(ee_addr);
1745	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1746	eeprom_cmd(ee_addr, val, 16);
1747	eeprom_cmd_end(ee_addr);
1748
1749	eeprom_cmd_start(ee_addr);
1750	for (i = 0; i < 20000; i++)
1751		if (readb(ee_addr) & EE_DATA_READ)
1752			break;
1753	eeprom_cmd_end(ee_addr);
1754
1755	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1756}
1757
1758static int cp_get_eeprom_len(struct net_device *dev)
1759{
1760	struct cp_private *cp = netdev_priv(dev);
1761	int size;
1762
1763	spin_lock_irq(&cp->lock);
1764	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1765	spin_unlock_irq(&cp->lock);
1766
1767	return size;
1768}
1769
1770static int cp_get_eeprom(struct net_device *dev,
1771			 struct ethtool_eeprom *eeprom, u8 *data)
1772{
1773	struct cp_private *cp = netdev_priv(dev);
1774	unsigned int addr_len;
1775	u16 val;
1776	u32 offset = eeprom->offset >> 1;
1777	u32 len = eeprom->len;
1778	u32 i = 0;
1779
1780	eeprom->magic = CP_EEPROM_MAGIC;
1781
1782	spin_lock_irq(&cp->lock);
1783
1784	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1785
1786	if (eeprom->offset & 1) {
1787		val = read_eeprom(cp->regs, offset, addr_len);
1788		data[i++] = (u8)(val >> 8);
1789		offset++;
1790	}
1791
1792	while (i < len - 1) {
1793		val = read_eeprom(cp->regs, offset, addr_len);
1794		data[i++] = (u8)val;
1795		data[i++] = (u8)(val >> 8);
1796		offset++;
1797	}
1798
1799	if (i < len) {
1800		val = read_eeprom(cp->regs, offset, addr_len);
1801		data[i] = (u8)val;
1802	}
1803
1804	spin_unlock_irq(&cp->lock);
1805	return 0;
1806}
1807
1808static int cp_set_eeprom(struct net_device *dev,
1809			 struct ethtool_eeprom *eeprom, u8 *data)
1810{
1811	struct cp_private *cp = netdev_priv(dev);
1812	unsigned int addr_len;
1813	u16 val;
1814	u32 offset = eeprom->offset >> 1;
1815	u32 len = eeprom->len;
1816	u32 i = 0;
1817
1818	if (eeprom->magic != CP_EEPROM_MAGIC)
1819		return -EINVAL;
1820
1821	spin_lock_irq(&cp->lock);
1822
1823	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1824
1825	if (eeprom->offset & 1) {
1826		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1827		val |= (u16)data[i++] << 8;
1828		write_eeprom(cp->regs, offset, val, addr_len);
1829		offset++;
1830	}
1831
1832	while (i < len - 1) {
1833		val = (u16)data[i++];
1834		val |= (u16)data[i++] << 8;
1835		write_eeprom(cp->regs, offset, val, addr_len);
1836		offset++;
1837	}
1838
1839	if (i < len) {
1840		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1841		val |= (u16)data[i];
1842		write_eeprom(cp->regs, offset, val, addr_len);
1843	}
1844
1845	spin_unlock_irq(&cp->lock);
1846	return 0;
1847}
1848
1849/* Put the board into D3cold state and wait for WakeUp signal */
1850static void cp_set_d3_state (struct cp_private *cp)
1851{
1852	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1853	pci_set_power_state (cp->pdev, PCI_D3hot);
1854}
1855
1856static const struct net_device_ops cp_netdev_ops = {
1857	.ndo_open		= cp_open,
1858	.ndo_stop		= cp_close,
1859	.ndo_validate_addr	= eth_validate_addr,
1860	.ndo_set_mac_address 	= cp_set_mac_address,
1861	.ndo_set_rx_mode	= cp_set_rx_mode,
1862	.ndo_get_stats		= cp_get_stats,
1863	.ndo_do_ioctl		= cp_ioctl,
1864	.ndo_start_xmit		= cp_start_xmit,
1865	.ndo_tx_timeout		= cp_tx_timeout,
1866	.ndo_set_features	= cp_set_features,
1867	.ndo_change_mtu		= cp_change_mtu,
1868
1869#ifdef CONFIG_NET_POLL_CONTROLLER
1870	.ndo_poll_controller	= cp_poll_controller,
1871#endif
1872};
1873
1874static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1875{
1876	struct net_device *dev;
1877	struct cp_private *cp;
1878	int rc;
1879	void __iomem *regs;
1880	resource_size_t pciaddr;
1881	unsigned int addr_len, i, pci_using_dac;
1882
1883	pr_info_once("%s", version);
1884
1885	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1886	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1887		dev_info(&pdev->dev,
1888			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1889			 pdev->vendor, pdev->device, pdev->revision);
1890		return -ENODEV;
1891	}
1892
1893	dev = alloc_etherdev(sizeof(struct cp_private));
1894	if (!dev)
1895		return -ENOMEM;
1896	SET_NETDEV_DEV(dev, &pdev->dev);
1897
1898	cp = netdev_priv(dev);
1899	cp->pdev = pdev;
1900	cp->dev = dev;
1901	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1902	spin_lock_init (&cp->lock);
1903	cp->mii_if.dev = dev;
1904	cp->mii_if.mdio_read = mdio_read;
1905	cp->mii_if.mdio_write = mdio_write;
1906	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1907	cp->mii_if.phy_id_mask = 0x1f;
1908	cp->mii_if.reg_num_mask = 0x1f;
1909	cp_set_rxbufsize(cp);
1910
1911	rc = pci_enable_device(pdev);
1912	if (rc)
1913		goto err_out_free;
1914
1915	rc = pci_set_mwi(pdev);
1916	if (rc)
1917		goto err_out_disable;
1918
1919	rc = pci_request_regions(pdev, DRV_NAME);
1920	if (rc)
1921		goto err_out_mwi;
1922
1923	pciaddr = pci_resource_start(pdev, 1);
1924	if (!pciaddr) {
1925		rc = -EIO;
1926		dev_err(&pdev->dev, "no MMIO resource\n");
1927		goto err_out_res;
1928	}
1929	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1930		rc = -EIO;
1931		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1932		       (unsigned long long)pci_resource_len(pdev, 1));
1933		goto err_out_res;
1934	}
1935
1936	/* Configure DMA attributes. */
1937	if ((sizeof(dma_addr_t) > 4) &&
1938	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1939	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1940		pci_using_dac = 1;
1941	} else {
1942		pci_using_dac = 0;
1943
1944		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1945		if (rc) {
1946			dev_err(&pdev->dev,
1947				"No usable DMA configuration, aborting\n");
1948			goto err_out_res;
1949		}
1950		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1951		if (rc) {
1952			dev_err(&pdev->dev,
1953				"No usable consistent DMA configuration, aborting\n");
1954			goto err_out_res;
1955		}
1956	}
1957
1958	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1959		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1960
1961	dev->features |= NETIF_F_RXCSUM;
1962	dev->hw_features |= NETIF_F_RXCSUM;
1963
1964	regs = ioremap(pciaddr, CP_REGS_SIZE);
1965	if (!regs) {
1966		rc = -EIO;
1967		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1968			(unsigned long long)pci_resource_len(pdev, 1),
1969		       (unsigned long long)pciaddr);
1970		goto err_out_res;
1971	}
1972	cp->regs = regs;
1973
1974	cp_stop_hw(cp);
1975
1976	/* read MAC address from EEPROM */
1977	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1978	for (i = 0; i < 3; i++)
1979		((__le16 *) (dev->dev_addr))[i] =
1980		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1981
1982	dev->netdev_ops = &cp_netdev_ops;
1983	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1984	dev->ethtool_ops = &cp_ethtool_ops;
1985	dev->watchdog_timeo = TX_TIMEOUT;
1986
1987	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1988
1989	if (pci_using_dac)
1990		dev->features |= NETIF_F_HIGHDMA;
1991
1992	/* disabled by default until verified */
1993	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1994		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1995	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1996		NETIF_F_HIGHDMA;
1997
1998	rc = register_netdev(dev);
1999	if (rc)
2000		goto err_out_iomap;
2001
2002	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2003		    regs, dev->dev_addr, pdev->irq);
2004
2005	pci_set_drvdata(pdev, dev);
2006
2007	/* enable busmastering and memory-write-invalidate */
2008	pci_set_master(pdev);
2009
2010	if (cp->wol_enabled)
2011		cp_set_d3_state (cp);
2012
2013	return 0;
2014
2015err_out_iomap:
2016	iounmap(regs);
2017err_out_res:
2018	pci_release_regions(pdev);
2019err_out_mwi:
2020	pci_clear_mwi(pdev);
2021err_out_disable:
2022	pci_disable_device(pdev);
2023err_out_free:
2024	free_netdev(dev);
2025	return rc;
2026}
2027
2028static void cp_remove_one (struct pci_dev *pdev)
2029{
2030	struct net_device *dev = pci_get_drvdata(pdev);
2031	struct cp_private *cp = netdev_priv(dev);
2032
2033	unregister_netdev(dev);
2034	iounmap(cp->regs);
2035	if (cp->wol_enabled)
2036		pci_set_power_state (pdev, PCI_D0);
2037	pci_release_regions(pdev);
2038	pci_clear_mwi(pdev);
2039	pci_disable_device(pdev);
2040	free_netdev(dev);
2041}
2042
2043#ifdef CONFIG_PM
2044static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2045{
2046	struct net_device *dev = pci_get_drvdata(pdev);
2047	struct cp_private *cp = netdev_priv(dev);
2048	unsigned long flags;
2049
2050	if (!netif_running(dev))
2051		return 0;
2052
2053	netif_device_detach (dev);
2054	netif_stop_queue (dev);
2055
2056	spin_lock_irqsave (&cp->lock, flags);
2057
2058	/* Disable Rx and Tx */
2059	cpw16 (IntrMask, 0);
2060	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2061
2062	spin_unlock_irqrestore (&cp->lock, flags);
2063
2064	pci_save_state(pdev);
2065	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2066	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2067
2068	return 0;
2069}
2070
2071static int cp_resume (struct pci_dev *pdev)
2072{
2073	struct net_device *dev = pci_get_drvdata (pdev);
2074	struct cp_private *cp = netdev_priv(dev);
2075	unsigned long flags;
2076
2077	if (!netif_running(dev))
2078		return 0;
2079
2080	netif_device_attach (dev);
2081
2082	pci_set_power_state(pdev, PCI_D0);
2083	pci_restore_state(pdev);
2084	pci_enable_wake(pdev, PCI_D0, 0);
2085
2086	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2087	cp_init_rings_index (cp);
2088	cp_init_hw (cp);
2089	cp_enable_irq(cp);
2090	netif_start_queue (dev);
2091
2092	spin_lock_irqsave (&cp->lock, flags);
2093
2094	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2095
2096	spin_unlock_irqrestore (&cp->lock, flags);
2097
2098	return 0;
2099}
2100#endif /* CONFIG_PM */
2101
2102static const struct pci_device_id cp_pci_tbl[] = {
2103        { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2104        { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2105        { },
2106};
2107MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2108
2109static struct pci_driver cp_driver = {
2110	.name         = DRV_NAME,
2111	.id_table     = cp_pci_tbl,
2112	.probe        =	cp_init_one,
2113	.remove       = cp_remove_one,
2114#ifdef CONFIG_PM
2115	.resume       = cp_resume,
2116	.suspend      = cp_suspend,
2117#endif
2118};
2119
2120module_pci_driver(cp_driver);
2121