1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/pci.h>
14#include <linux/module.h>
15#include <linux/seq_file.h>
16#include <linux/i2c.h>
17#include <linux/mii.h>
18#include <linux/slab.h>
19#include "net_driver.h"
20#include "bitfield.h"
21#include "efx.h"
22#include "nic.h"
23#include "farch_regs.h"
24#include "io.h"
25#include "phy.h"
26#include "workarounds.h"
27#include "selftest.h"
28#include "mdio_10g.h"
29
30/* Hardware control for SFC4000 (aka Falcon). */
31
32/**************************************************************************
33 *
34 * NIC stats
35 *
36 **************************************************************************
37 */
38
39#define FALCON_MAC_STATS_SIZE 0x100
40
41#define XgRxOctets_offset 0x0
42#define XgRxOctets_WIDTH 48
43#define XgRxOctetsOK_offset 0x8
44#define XgRxOctetsOK_WIDTH 48
45#define XgRxPkts_offset 0x10
46#define XgRxPkts_WIDTH 32
47#define XgRxPktsOK_offset 0x14
48#define XgRxPktsOK_WIDTH 32
49#define XgRxBroadcastPkts_offset 0x18
50#define XgRxBroadcastPkts_WIDTH 32
51#define XgRxMulticastPkts_offset 0x1C
52#define XgRxMulticastPkts_WIDTH 32
53#define XgRxUnicastPkts_offset 0x20
54#define XgRxUnicastPkts_WIDTH 32
55#define XgRxUndersizePkts_offset 0x24
56#define XgRxUndersizePkts_WIDTH 32
57#define XgRxOversizePkts_offset 0x28
58#define XgRxOversizePkts_WIDTH 32
59#define XgRxJabberPkts_offset 0x2C
60#define XgRxJabberPkts_WIDTH 32
61#define XgRxUndersizeFCSerrorPkts_offset 0x30
62#define XgRxUndersizeFCSerrorPkts_WIDTH 32
63#define XgRxDropEvents_offset 0x34
64#define XgRxDropEvents_WIDTH 32
65#define XgRxFCSerrorPkts_offset 0x38
66#define XgRxFCSerrorPkts_WIDTH 32
67#define XgRxAlignError_offset 0x3C
68#define XgRxAlignError_WIDTH 32
69#define XgRxSymbolError_offset 0x40
70#define XgRxSymbolError_WIDTH 32
71#define XgRxInternalMACError_offset 0x44
72#define XgRxInternalMACError_WIDTH 32
73#define XgRxControlPkts_offset 0x48
74#define XgRxControlPkts_WIDTH 32
75#define XgRxPausePkts_offset 0x4C
76#define XgRxPausePkts_WIDTH 32
77#define XgRxPkts64Octets_offset 0x50
78#define XgRxPkts64Octets_WIDTH 32
79#define XgRxPkts65to127Octets_offset 0x54
80#define XgRxPkts65to127Octets_WIDTH 32
81#define XgRxPkts128to255Octets_offset 0x58
82#define XgRxPkts128to255Octets_WIDTH 32
83#define XgRxPkts256to511Octets_offset 0x5C
84#define XgRxPkts256to511Octets_WIDTH 32
85#define XgRxPkts512to1023Octets_offset 0x60
86#define XgRxPkts512to1023Octets_WIDTH 32
87#define XgRxPkts1024to15xxOctets_offset 0x64
88#define XgRxPkts1024to15xxOctets_WIDTH 32
89#define XgRxPkts15xxtoMaxOctets_offset 0x68
90#define XgRxPkts15xxtoMaxOctets_WIDTH 32
91#define XgRxLengthError_offset 0x6C
92#define XgRxLengthError_WIDTH 32
93#define XgTxPkts_offset 0x80
94#define XgTxPkts_WIDTH 32
95#define XgTxOctets_offset 0x88
96#define XgTxOctets_WIDTH 48
97#define XgTxMulticastPkts_offset 0x90
98#define XgTxMulticastPkts_WIDTH 32
99#define XgTxBroadcastPkts_offset 0x94
100#define XgTxBroadcastPkts_WIDTH 32
101#define XgTxUnicastPkts_offset 0x98
102#define XgTxUnicastPkts_WIDTH 32
103#define XgTxControlPkts_offset 0x9C
104#define XgTxControlPkts_WIDTH 32
105#define XgTxPausePkts_offset 0xA0
106#define XgTxPausePkts_WIDTH 32
107#define XgTxPkts64Octets_offset 0xA4
108#define XgTxPkts64Octets_WIDTH 32
109#define XgTxPkts65to127Octets_offset 0xA8
110#define XgTxPkts65to127Octets_WIDTH 32
111#define XgTxPkts128to255Octets_offset 0xAC
112#define XgTxPkts128to255Octets_WIDTH 32
113#define XgTxPkts256to511Octets_offset 0xB0
114#define XgTxPkts256to511Octets_WIDTH 32
115#define XgTxPkts512to1023Octets_offset 0xB4
116#define XgTxPkts512to1023Octets_WIDTH 32
117#define XgTxPkts1024to15xxOctets_offset 0xB8
118#define XgTxPkts1024to15xxOctets_WIDTH 32
119#define XgTxPkts1519toMaxOctets_offset 0xBC
120#define XgTxPkts1519toMaxOctets_WIDTH 32
121#define XgTxUndersizePkts_offset 0xC0
122#define XgTxUndersizePkts_WIDTH 32
123#define XgTxOversizePkts_offset 0xC4
124#define XgTxOversizePkts_WIDTH 32
125#define XgTxNonTcpUdpPkt_offset 0xC8
126#define XgTxNonTcpUdpPkt_WIDTH 16
127#define XgTxMacSrcErrPkt_offset 0xCC
128#define XgTxMacSrcErrPkt_WIDTH 16
129#define XgTxIpSrcErrPkt_offset 0xD0
130#define XgTxIpSrcErrPkt_WIDTH 16
131#define XgDmaDone_offset 0xD4
132#define XgDmaDone_WIDTH 32
133
134#define FALCON_XMAC_STATS_DMA_FLAG(efx)				\
135	(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136
137#define FALCON_DMA_STAT(ext_name, hw_name)				\
138	[FALCON_STAT_ ## ext_name] =					\
139	{ #ext_name,							\
140	  /* 48-bit stats are zero-padded to 64 on DMA */		\
141	  hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,	\
142	  hw_name ## _ ## offset }
143#define FALCON_OTHER_STAT(ext_name)					\
144	[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145#define GENERIC_SW_STAT(ext_name)				\
146	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147
148static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
149	FALCON_DMA_STAT(tx_bytes, XgTxOctets),
150	FALCON_DMA_STAT(tx_packets, XgTxPkts),
151	FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
152	FALCON_DMA_STAT(tx_control, XgTxControlPkts),
153	FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
154	FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
155	FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
156	FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
157	FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
158	FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
159	FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
160	FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
161	FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
162	FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
163	FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
164	FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
165	FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
166	FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
167	FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
168	FALCON_DMA_STAT(rx_bytes, XgRxOctets),
169	FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
170	FALCON_OTHER_STAT(rx_bad_bytes),
171	FALCON_DMA_STAT(rx_packets, XgRxPkts),
172	FALCON_DMA_STAT(rx_good, XgRxPktsOK),
173	FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
174	FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
175	FALCON_DMA_STAT(rx_control, XgRxControlPkts),
176	FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
177	FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
178	FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
179	FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
180	FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
181	FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
182	FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
183	FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
184	FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
185	FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
186	FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
187	FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
188	FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
189	FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
190	FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
191	FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
192	FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
193	FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
194	FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
195	FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
196	GENERIC_SW_STAT(rx_nodesc_trunc),
197	GENERIC_SW_STAT(rx_noskb_drops),
198};
199static const unsigned long falcon_stat_mask[] = {
200	[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
201};
202
203/**************************************************************************
204 *
205 * Basic SPI command set and bit definitions
206 *
207 *************************************************************************/
208
209#define SPI_WRSR 0x01		/* Write status register */
210#define SPI_WRITE 0x02		/* Write data to memory array */
211#define SPI_READ 0x03		/* Read data from memory array */
212#define SPI_WRDI 0x04		/* Reset write enable latch */
213#define SPI_RDSR 0x05		/* Read status register */
214#define SPI_WREN 0x06		/* Set write enable latch */
215#define SPI_SST_EWSR 0x50	/* SST: Enable write to status register */
216
217#define SPI_STATUS_WPEN 0x80	/* Write-protect pin enabled */
218#define SPI_STATUS_BP2 0x10	/* Block protection bit 2 */
219#define SPI_STATUS_BP1 0x08	/* Block protection bit 1 */
220#define SPI_STATUS_BP0 0x04	/* Block protection bit 0 */
221#define SPI_STATUS_WEN 0x02	/* State of the write enable latch */
222#define SPI_STATUS_NRDY 0x01	/* Device busy flag */
223
224/**************************************************************************
225 *
226 * Non-volatile memory layout
227 *
228 **************************************************************************
229 */
230
231/* SFC4000 flash is partitioned into:
232 *     0-0x400       chip and board config (see struct falcon_nvconfig)
233 *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
234 *     0x8000-end    boot code (mapped to PCI expansion ROM)
235 * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
236 * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
237 *     0-0x400       chip and board config
238 *     configurable  VPD
239 *     0x800-0x1800  boot config
240 * Aside from the chip and board config, all of these are optional and may
241 * be absent or truncated depending on the devices used.
242 */
243#define FALCON_NVCONFIG_END 0x400U
244#define FALCON_FLASH_BOOTCODE_START 0x8000U
245#define FALCON_EEPROM_BOOTCONFIG_START 0x800U
246#define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
247
248/* Board configuration v2 (v1 is obsolete; later versions are compatible) */
249struct falcon_nvconfig_board_v2 {
250	__le16 nports;
251	u8 port0_phy_addr;
252	u8 port0_phy_type;
253	u8 port1_phy_addr;
254	u8 port1_phy_type;
255	__le16 asic_sub_revision;
256	__le16 board_revision;
257} __packed;
258
259/* Board configuration v3 extra information */
260struct falcon_nvconfig_board_v3 {
261	__le32 spi_device_type[2];
262} __packed;
263
264/* Bit numbers for spi_device_type */
265#define SPI_DEV_TYPE_SIZE_LBN 0
266#define SPI_DEV_TYPE_SIZE_WIDTH 5
267#define SPI_DEV_TYPE_ADDR_LEN_LBN 6
268#define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
269#define SPI_DEV_TYPE_ERASE_CMD_LBN 8
270#define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
271#define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
272#define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
273#define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
274#define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
275#define SPI_DEV_TYPE_FIELD(type, field)					\
276	(((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
277
278#define FALCON_NVCONFIG_OFFSET 0x300
279
280#define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
281struct falcon_nvconfig {
282	efx_oword_t ee_vpd_cfg_reg;			/* 0x300 */
283	u8 mac_address[2][8];			/* 0x310 */
284	efx_oword_t pcie_sd_ctl0123_reg;		/* 0x320 */
285	efx_oword_t pcie_sd_ctl45_reg;			/* 0x330 */
286	efx_oword_t pcie_pcs_ctl_stat_reg;		/* 0x340 */
287	efx_oword_t hw_init_reg;			/* 0x350 */
288	efx_oword_t nic_stat_reg;			/* 0x360 */
289	efx_oword_t glb_ctl_reg;			/* 0x370 */
290	efx_oword_t srm_cfg_reg;			/* 0x380 */
291	efx_oword_t spare_reg;				/* 0x390 */
292	__le16 board_magic_num;			/* 0x3A0 */
293	__le16 board_struct_ver;
294	__le16 board_checksum;
295	struct falcon_nvconfig_board_v2 board_v2;
296	efx_oword_t ee_base_page_reg;			/* 0x3B0 */
297	struct falcon_nvconfig_board_v3 board_v3;	/* 0x3C0 */
298} __packed;
299
300/*************************************************************************/
301
302static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
303static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
304
305static const unsigned int
306/* "Large" EEPROM device: Atmel AT25640 or similar
307 * 8 KB, 16-bit address, 32 B write block */
308large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
309		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
310		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
311/* Default flash device: Atmel AT25F1024
312 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
313default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
314		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
315		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
316		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
317		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
318
319/**************************************************************************
320 *
321 * I2C bus - this is a bit-bashing interface using GPIO pins
322 * Note that it uses the output enables to tristate the outputs
323 * SDA is the data pin and SCL is the clock
324 *
325 **************************************************************************
326 */
327static void falcon_setsda(void *data, int state)
328{
329	struct efx_nic *efx = (struct efx_nic *)data;
330	efx_oword_t reg;
331
332	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
333	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
334	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
335}
336
337static void falcon_setscl(void *data, int state)
338{
339	struct efx_nic *efx = (struct efx_nic *)data;
340	efx_oword_t reg;
341
342	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
343	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
344	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
345}
346
347static int falcon_getsda(void *data)
348{
349	struct efx_nic *efx = (struct efx_nic *)data;
350	efx_oword_t reg;
351
352	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
353	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
354}
355
356static int falcon_getscl(void *data)
357{
358	struct efx_nic *efx = (struct efx_nic *)data;
359	efx_oword_t reg;
360
361	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
362	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
363}
364
365static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
366	.setsda		= falcon_setsda,
367	.setscl		= falcon_setscl,
368	.getsda		= falcon_getsda,
369	.getscl		= falcon_getscl,
370	.udelay		= 5,
371	/* Wait up to 50 ms for slave to let us pull SCL high */
372	.timeout	= DIV_ROUND_UP(HZ, 20),
373};
374
375static void falcon_push_irq_moderation(struct efx_channel *channel)
376{
377	efx_dword_t timer_cmd;
378	struct efx_nic *efx = channel->efx;
379
380	/* Set timer register */
381	if (channel->irq_moderation) {
382		EFX_POPULATE_DWORD_2(timer_cmd,
383				     FRF_AB_TC_TIMER_MODE,
384				     FFE_BB_TIMER_MODE_INT_HLDOFF,
385				     FRF_AB_TC_TIMER_VAL,
386				     channel->irq_moderation - 1);
387	} else {
388		EFX_POPULATE_DWORD_2(timer_cmd,
389				     FRF_AB_TC_TIMER_MODE,
390				     FFE_BB_TIMER_MODE_DIS,
391				     FRF_AB_TC_TIMER_VAL, 0);
392	}
393	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
394	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
395			       channel->channel);
396}
397
398static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
399
400static void falcon_prepare_flush(struct efx_nic *efx)
401{
402	falcon_deconfigure_mac_wrapper(efx);
403
404	/* Wait for the tx and rx fifo's to get to the next packet boundary
405	 * (~1ms without back-pressure), then to drain the remainder of the
406	 * fifo's at data path speeds (negligible), with a healthy margin. */
407	msleep(10);
408}
409
410/* Acknowledge a legacy interrupt from Falcon
411 *
412 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
413 *
414 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
415 * BIU. Interrupt acknowledge is read sensitive so must write instead
416 * (then read to ensure the BIU collector is flushed)
417 *
418 * NB most hardware supports MSI interrupts
419 */
420static inline void falcon_irq_ack_a1(struct efx_nic *efx)
421{
422	efx_dword_t reg;
423
424	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
425	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
426	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
427}
428
429static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
430{
431	struct efx_nic *efx = dev_id;
432	efx_oword_t *int_ker = efx->irq_status.addr;
433	int syserr;
434	int queues;
435
436	/* Check to see if this is our interrupt.  If it isn't, we
437	 * exit without having touched the hardware.
438	 */
439	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
440		netif_vdbg(efx, intr, efx->net_dev,
441			   "IRQ %d on CPU %d not for me\n", irq,
442			   raw_smp_processor_id());
443		return IRQ_NONE;
444	}
445	efx->last_irq_cpu = raw_smp_processor_id();
446	netif_vdbg(efx, intr, efx->net_dev,
447		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
448		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
449
450	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
451		return IRQ_HANDLED;
452
453	/* Check to see if we have a serious error condition */
454	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
455	if (unlikely(syserr))
456		return efx_farch_fatal_interrupt(efx);
457
458	/* Determine interrupting queues, clear interrupt status
459	 * register and acknowledge the device interrupt.
460	 */
461	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
462	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
463	EFX_ZERO_OWORD(*int_ker);
464	wmb(); /* Ensure the vector is cleared before interrupt ack */
465	falcon_irq_ack_a1(efx);
466
467	if (queues & 1)
468		efx_schedule_channel_irq(efx_get_channel(efx, 0));
469	if (queues & 2)
470		efx_schedule_channel_irq(efx_get_channel(efx, 1));
471	return IRQ_HANDLED;
472}
473
474/**************************************************************************
475 *
476 * RSS
477 *
478 **************************************************************************
479 */
480
481static void falcon_b0_rx_push_rss_config(struct efx_nic *efx)
482{
483	efx_oword_t temp;
484
485	/* Set hash key for IPv4 */
486	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
487	efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
488
489	efx_farch_rx_push_indir_table(efx);
490}
491
492/**************************************************************************
493 *
494 * EEPROM/flash
495 *
496 **************************************************************************
497 */
498
499#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
500
501static int falcon_spi_poll(struct efx_nic *efx)
502{
503	efx_oword_t reg;
504	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
505	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
506}
507
508/* Wait for SPI command completion */
509static int falcon_spi_wait(struct efx_nic *efx)
510{
511	/* Most commands will finish quickly, so we start polling at
512	 * very short intervals.  Sometimes the command may have to
513	 * wait for VPD or expansion ROM access outside of our
514	 * control, so we allow up to 100 ms. */
515	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
516	int i;
517
518	for (i = 0; i < 10; i++) {
519		if (!falcon_spi_poll(efx))
520			return 0;
521		udelay(10);
522	}
523
524	for (;;) {
525		if (!falcon_spi_poll(efx))
526			return 0;
527		if (time_after_eq(jiffies, timeout)) {
528			netif_err(efx, hw, efx->net_dev,
529				  "timed out waiting for SPI\n");
530			return -ETIMEDOUT;
531		}
532		schedule_timeout_uninterruptible(1);
533	}
534}
535
536static int
537falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
538	       unsigned int command, int address,
539	       const void *in, void *out, size_t len)
540{
541	bool addressed = (address >= 0);
542	bool reading = (out != NULL);
543	efx_oword_t reg;
544	int rc;
545
546	/* Input validation */
547	if (len > FALCON_SPI_MAX_LEN)
548		return -EINVAL;
549
550	/* Check that previous command is not still running */
551	rc = falcon_spi_poll(efx);
552	if (rc)
553		return rc;
554
555	/* Program address register, if we have an address */
556	if (addressed) {
557		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
558		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
559	}
560
561	/* Program data register, if we have data */
562	if (in != NULL) {
563		memcpy(&reg, in, len);
564		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
565	}
566
567	/* Issue read/write command */
568	EFX_POPULATE_OWORD_7(reg,
569			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
570			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
571			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
572			     FRF_AB_EE_SPI_HCMD_READ, reading,
573			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
574			     FRF_AB_EE_SPI_HCMD_ADBCNT,
575			     (addressed ? spi->addr_len : 0),
576			     FRF_AB_EE_SPI_HCMD_ENC, command);
577	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
578
579	/* Wait for read/write to complete */
580	rc = falcon_spi_wait(efx);
581	if (rc)
582		return rc;
583
584	/* Read data */
585	if (out != NULL) {
586		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
587		memcpy(out, &reg, len);
588	}
589
590	return 0;
591}
592
593static inline u8
594falcon_spi_munge_command(const struct falcon_spi_device *spi,
595			 const u8 command, const unsigned int address)
596{
597	return command | (((address >> 8) & spi->munge_address) << 3);
598}
599
600static int
601falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
602		loff_t start, size_t len, size_t *retlen, u8 *buffer)
603{
604	size_t block_len, pos = 0;
605	unsigned int command;
606	int rc = 0;
607
608	while (pos < len) {
609		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
610
611		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
612		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
613				    buffer + pos, block_len);
614		if (rc)
615			break;
616		pos += block_len;
617
618		/* Avoid locking up the system */
619		cond_resched();
620		if (signal_pending(current)) {
621			rc = -EINTR;
622			break;
623		}
624	}
625
626	if (retlen)
627		*retlen = pos;
628	return rc;
629}
630
631#ifdef CONFIG_SFC_MTD
632
633struct falcon_mtd_partition {
634	struct efx_mtd_partition common;
635	const struct falcon_spi_device *spi;
636	size_t offset;
637};
638
639#define to_falcon_mtd_partition(mtd)				\
640	container_of(mtd, struct falcon_mtd_partition, common.mtd)
641
642static size_t
643falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
644{
645	return min(FALCON_SPI_MAX_LEN,
646		   (spi->block_size - (start & (spi->block_size - 1))));
647}
648
649/* Wait up to 10 ms for buffered write completion */
650static int
651falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
652{
653	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
654	u8 status;
655	int rc;
656
657	for (;;) {
658		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
659				    &status, sizeof(status));
660		if (rc)
661			return rc;
662		if (!(status & SPI_STATUS_NRDY))
663			return 0;
664		if (time_after_eq(jiffies, timeout)) {
665			netif_err(efx, hw, efx->net_dev,
666				  "SPI write timeout on device %d"
667				  " last status=0x%02x\n",
668				  spi->device_id, status);
669			return -ETIMEDOUT;
670		}
671		schedule_timeout_uninterruptible(1);
672	}
673}
674
675static int
676falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
677		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
678{
679	u8 verify_buffer[FALCON_SPI_MAX_LEN];
680	size_t block_len, pos = 0;
681	unsigned int command;
682	int rc = 0;
683
684	while (pos < len) {
685		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
686		if (rc)
687			break;
688
689		block_len = min(len - pos,
690				falcon_spi_write_limit(spi, start + pos));
691		command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
692		rc = falcon_spi_cmd(efx, spi, command, start + pos,
693				    buffer + pos, NULL, block_len);
694		if (rc)
695			break;
696
697		rc = falcon_spi_wait_write(efx, spi);
698		if (rc)
699			break;
700
701		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
702		rc = falcon_spi_cmd(efx, spi, command, start + pos,
703				    NULL, verify_buffer, block_len);
704		if (memcmp(verify_buffer, buffer + pos, block_len)) {
705			rc = -EIO;
706			break;
707		}
708
709		pos += block_len;
710
711		/* Avoid locking up the system */
712		cond_resched();
713		if (signal_pending(current)) {
714			rc = -EINTR;
715			break;
716		}
717	}
718
719	if (retlen)
720		*retlen = pos;
721	return rc;
722}
723
724static int
725falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
726{
727	const struct falcon_spi_device *spi = part->spi;
728	struct efx_nic *efx = part->common.mtd.priv;
729	u8 status;
730	int rc, i;
731
732	/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
733	for (i = 0; i < 40; i++) {
734		__set_current_state(uninterruptible ?
735				    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
736		schedule_timeout(HZ / 10);
737		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
738				    &status, sizeof(status));
739		if (rc)
740			return rc;
741		if (!(status & SPI_STATUS_NRDY))
742			return 0;
743		if (signal_pending(current))
744			return -EINTR;
745	}
746	pr_err("%s: timed out waiting for %s\n",
747	       part->common.name, part->common.dev_type_name);
748	return -ETIMEDOUT;
749}
750
751static int
752falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
753{
754	const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
755				SPI_STATUS_BP0);
756	u8 status;
757	int rc;
758
759	rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
760			    &status, sizeof(status));
761	if (rc)
762		return rc;
763
764	if (!(status & unlock_mask))
765		return 0; /* already unlocked */
766
767	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
768	if (rc)
769		return rc;
770	rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
771	if (rc)
772		return rc;
773
774	status &= ~unlock_mask;
775	rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
776			    NULL, sizeof(status));
777	if (rc)
778		return rc;
779	rc = falcon_spi_wait_write(efx, spi);
780	if (rc)
781		return rc;
782
783	return 0;
784}
785
786#define FALCON_SPI_VERIFY_BUF_LEN 16
787
788static int
789falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
790{
791	const struct falcon_spi_device *spi = part->spi;
792	struct efx_nic *efx = part->common.mtd.priv;
793	unsigned pos, block_len;
794	u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
795	u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
796	int rc;
797
798	if (len != spi->erase_size)
799		return -EINVAL;
800
801	if (spi->erase_command == 0)
802		return -EOPNOTSUPP;
803
804	rc = falcon_spi_unlock(efx, spi);
805	if (rc)
806		return rc;
807	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
808	if (rc)
809		return rc;
810	rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
811			    NULL, 0);
812	if (rc)
813		return rc;
814	rc = falcon_spi_slow_wait(part, false);
815
816	/* Verify the entire region has been wiped */
817	memset(empty, 0xff, sizeof(empty));
818	for (pos = 0; pos < len; pos += block_len) {
819		block_len = min(len - pos, sizeof(buffer));
820		rc = falcon_spi_read(efx, spi, start + pos, block_len,
821				     NULL, buffer);
822		if (rc)
823			return rc;
824		if (memcmp(empty, buffer, block_len))
825			return -EIO;
826
827		/* Avoid locking up the system */
828		cond_resched();
829		if (signal_pending(current))
830			return -EINTR;
831	}
832
833	return rc;
834}
835
836static void falcon_mtd_rename(struct efx_mtd_partition *part)
837{
838	struct efx_nic *efx = part->mtd.priv;
839
840	snprintf(part->name, sizeof(part->name), "%s %s",
841		 efx->name, part->type_name);
842}
843
844static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
845			   size_t len, size_t *retlen, u8 *buffer)
846{
847	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
848	struct efx_nic *efx = mtd->priv;
849	struct falcon_nic_data *nic_data = efx->nic_data;
850	int rc;
851
852	rc = mutex_lock_interruptible(&nic_data->spi_lock);
853	if (rc)
854		return rc;
855	rc = falcon_spi_read(efx, part->spi, part->offset + start,
856			     len, retlen, buffer);
857	mutex_unlock(&nic_data->spi_lock);
858	return rc;
859}
860
861static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
862{
863	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
864	struct efx_nic *efx = mtd->priv;
865	struct falcon_nic_data *nic_data = efx->nic_data;
866	int rc;
867
868	rc = mutex_lock_interruptible(&nic_data->spi_lock);
869	if (rc)
870		return rc;
871	rc = falcon_spi_erase(part, part->offset + start, len);
872	mutex_unlock(&nic_data->spi_lock);
873	return rc;
874}
875
876static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
877			    size_t len, size_t *retlen, const u8 *buffer)
878{
879	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
880	struct efx_nic *efx = mtd->priv;
881	struct falcon_nic_data *nic_data = efx->nic_data;
882	int rc;
883
884	rc = mutex_lock_interruptible(&nic_data->spi_lock);
885	if (rc)
886		return rc;
887	rc = falcon_spi_write(efx, part->spi, part->offset + start,
888			      len, retlen, buffer);
889	mutex_unlock(&nic_data->spi_lock);
890	return rc;
891}
892
893static int falcon_mtd_sync(struct mtd_info *mtd)
894{
895	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
896	struct efx_nic *efx = mtd->priv;
897	struct falcon_nic_data *nic_data = efx->nic_data;
898	int rc;
899
900	mutex_lock(&nic_data->spi_lock);
901	rc = falcon_spi_slow_wait(part, true);
902	mutex_unlock(&nic_data->spi_lock);
903	return rc;
904}
905
906static int falcon_mtd_probe(struct efx_nic *efx)
907{
908	struct falcon_nic_data *nic_data = efx->nic_data;
909	struct falcon_mtd_partition *parts;
910	struct falcon_spi_device *spi;
911	size_t n_parts;
912	int rc = -ENODEV;
913
914	ASSERT_RTNL();
915
916	/* Allocate space for maximum number of partitions */
917	parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
918	if (!parts)
919		return -ENOMEM;
920	n_parts = 0;
921
922	spi = &nic_data->spi_flash;
923	if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
924		parts[n_parts].spi = spi;
925		parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
926		parts[n_parts].common.dev_type_name = "flash";
927		parts[n_parts].common.type_name = "sfc_flash_bootrom";
928		parts[n_parts].common.mtd.type = MTD_NORFLASH;
929		parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
930		parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
931		parts[n_parts].common.mtd.erasesize = spi->erase_size;
932		n_parts++;
933	}
934
935	spi = &nic_data->spi_eeprom;
936	if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
937		parts[n_parts].spi = spi;
938		parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
939		parts[n_parts].common.dev_type_name = "EEPROM";
940		parts[n_parts].common.type_name = "sfc_bootconfig";
941		parts[n_parts].common.mtd.type = MTD_RAM;
942		parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
943		parts[n_parts].common.mtd.size =
944			min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
945			FALCON_EEPROM_BOOTCONFIG_START;
946		parts[n_parts].common.mtd.erasesize = spi->erase_size;
947		n_parts++;
948	}
949
950	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
951	if (rc)
952		kfree(parts);
953	return rc;
954}
955
956#endif /* CONFIG_SFC_MTD */
957
958/**************************************************************************
959 *
960 * XMAC operations
961 *
962 **************************************************************************
963 */
964
965/* Configure the XAUI driver that is an output from Falcon */
966static void falcon_setup_xaui(struct efx_nic *efx)
967{
968	efx_oword_t sdctl, txdrv;
969
970	/* Move the XAUI into low power, unless there is no PHY, in
971	 * which case the XAUI will have to drive a cable. */
972	if (efx->phy_type == PHY_TYPE_NONE)
973		return;
974
975	efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
976	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
977	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
978	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
979	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
980	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
981	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
982	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
983	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
984	efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
985
986	EFX_POPULATE_OWORD_8(txdrv,
987			     FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
988			     FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
989			     FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
990			     FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
991			     FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
992			     FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
993			     FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
994			     FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
995	efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
996}
997
998int falcon_reset_xaui(struct efx_nic *efx)
999{
1000	struct falcon_nic_data *nic_data = efx->nic_data;
1001	efx_oword_t reg;
1002	int count;
1003
1004	/* Don't fetch MAC statistics over an XMAC reset */
1005	WARN_ON(nic_data->stats_disable_count == 0);
1006
1007	/* Start reset sequence */
1008	EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1009	efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1010
1011	/* Wait up to 10 ms for completion, then reinitialise */
1012	for (count = 0; count < 1000; count++) {
1013		efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1014		if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1015		    EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1016			falcon_setup_xaui(efx);
1017			return 0;
1018		}
1019		udelay(10);
1020	}
1021	netif_err(efx, hw, efx->net_dev,
1022		  "timed out waiting for XAUI/XGXS reset\n");
1023	return -ETIMEDOUT;
1024}
1025
1026static void falcon_ack_status_intr(struct efx_nic *efx)
1027{
1028	struct falcon_nic_data *nic_data = efx->nic_data;
1029	efx_oword_t reg;
1030
1031	if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1032		return;
1033
1034	/* We expect xgmii faults if the wireside link is down */
1035	if (!efx->link_state.up)
1036		return;
1037
1038	/* We can only use this interrupt to signal the negative edge of
1039	 * xaui_align [we have to poll the positive edge]. */
1040	if (nic_data->xmac_poll_required)
1041		return;
1042
1043	efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1044}
1045
1046static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1047{
1048	efx_oword_t reg;
1049	bool align_done, link_ok = false;
1050	int sync_status;
1051
1052	/* Read link status */
1053	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1054
1055	align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1056	sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1057	if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1058		link_ok = true;
1059
1060	/* Clear link status ready for next read */
1061	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1062	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1063	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1064	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1065
1066	return link_ok;
1067}
1068
1069static bool falcon_xmac_link_ok(struct efx_nic *efx)
1070{
1071	/*
1072	 * Check MAC's XGXS link status except when using XGMII loopback
1073	 * which bypasses the XGXS block.
1074	 * If possible, check PHY's XGXS link status except when using
1075	 * MAC loopback.
1076	 */
1077	return (efx->loopback_mode == LOOPBACK_XGMII ||
1078		falcon_xgxs_link_ok(efx)) &&
1079		(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1080		 LOOPBACK_INTERNAL(efx) ||
1081		 efx_mdio_phyxgxs_lane_sync(efx));
1082}
1083
1084static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1085{
1086	unsigned int max_frame_len;
1087	efx_oword_t reg;
1088	bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1089	bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1090
1091	/* Configure MAC  - cut-thru mode is hard wired on */
1092	EFX_POPULATE_OWORD_3(reg,
1093			     FRF_AB_XM_RX_JUMBO_MODE, 1,
1094			     FRF_AB_XM_TX_STAT_EN, 1,
1095			     FRF_AB_XM_RX_STAT_EN, 1);
1096	efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1097
1098	/* Configure TX */
1099	EFX_POPULATE_OWORD_6(reg,
1100			     FRF_AB_XM_TXEN, 1,
1101			     FRF_AB_XM_TX_PRMBL, 1,
1102			     FRF_AB_XM_AUTO_PAD, 1,
1103			     FRF_AB_XM_TXCRC, 1,
1104			     FRF_AB_XM_FCNTL, tx_fc,
1105			     FRF_AB_XM_IPG, 0x3);
1106	efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1107
1108	/* Configure RX */
1109	EFX_POPULATE_OWORD_5(reg,
1110			     FRF_AB_XM_RXEN, 1,
1111			     FRF_AB_XM_AUTO_DEPAD, 0,
1112			     FRF_AB_XM_ACPT_ALL_MCAST, 1,
1113			     FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1114			     FRF_AB_XM_PASS_CRC_ERR, 1);
1115	efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1116
1117	/* Set frame length */
1118	max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1119	EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1120	efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1121	EFX_POPULATE_OWORD_2(reg,
1122			     FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1123			     FRF_AB_XM_TX_JUMBO_MODE, 1);
1124	efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1125
1126	EFX_POPULATE_OWORD_2(reg,
1127			     FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1128			     FRF_AB_XM_DIS_FCNTL, !rx_fc);
1129	efx_writeo(efx, &reg, FR_AB_XM_FC);
1130
1131	/* Set MAC address */
1132	memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1133	efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1134	memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1135	efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1136}
1137
1138static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1139{
1140	efx_oword_t reg;
1141	bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1142	bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1143	bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1144	bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1145
1146	/* XGXS block is flaky and will need to be reset if moving
1147	 * into our out of XGMII, XGXS or XAUI loopbacks. */
1148	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1149	old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1150	old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1151
1152	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1153	old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1154
1155	/* The PHY driver may have turned XAUI off */
1156	if ((xgxs_loopback != old_xgxs_loopback) ||
1157	    (xaui_loopback != old_xaui_loopback) ||
1158	    (xgmii_loopback != old_xgmii_loopback))
1159		falcon_reset_xaui(efx);
1160
1161	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1162	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1163			    (xgxs_loopback || xaui_loopback) ?
1164			    FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1165	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1166	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1167	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1168
1169	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1170	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1171	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1172	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1173	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1174	efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1175}
1176
1177
1178/* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
1179static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1180{
1181	bool mac_up = falcon_xmac_link_ok(efx);
1182
1183	if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1184	    efx_phy_mode_disabled(efx->phy_mode))
1185		/* XAUI link is expected to be down */
1186		return mac_up;
1187
1188	falcon_stop_nic_stats(efx);
1189
1190	while (!mac_up && tries) {
1191		netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1192		falcon_reset_xaui(efx);
1193		udelay(200);
1194
1195		mac_up = falcon_xmac_link_ok(efx);
1196		--tries;
1197	}
1198
1199	falcon_start_nic_stats(efx);
1200
1201	return mac_up;
1202}
1203
1204static bool falcon_xmac_check_fault(struct efx_nic *efx)
1205{
1206	return !falcon_xmac_link_ok_retry(efx, 5);
1207}
1208
1209static int falcon_reconfigure_xmac(struct efx_nic *efx)
1210{
1211	struct falcon_nic_data *nic_data = efx->nic_data;
1212
1213	efx_farch_filter_sync_rx_mode(efx);
1214
1215	falcon_reconfigure_xgxs_core(efx);
1216	falcon_reconfigure_xmac_core(efx);
1217
1218	falcon_reconfigure_mac_wrapper(efx);
1219
1220	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1221	falcon_ack_status_intr(efx);
1222
1223	return 0;
1224}
1225
1226static void falcon_poll_xmac(struct efx_nic *efx)
1227{
1228	struct falcon_nic_data *nic_data = efx->nic_data;
1229
1230	/* We expect xgmii faults if the wireside link is down */
1231	if (!efx->link_state.up || !nic_data->xmac_poll_required)
1232		return;
1233
1234	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1235	falcon_ack_status_intr(efx);
1236}
1237
1238/**************************************************************************
1239 *
1240 * MAC wrapper
1241 *
1242 **************************************************************************
1243 */
1244
1245static void falcon_push_multicast_hash(struct efx_nic *efx)
1246{
1247	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1248
1249	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1250
1251	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1252	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1253}
1254
1255static void falcon_reset_macs(struct efx_nic *efx)
1256{
1257	struct falcon_nic_data *nic_data = efx->nic_data;
1258	efx_oword_t reg, mac_ctrl;
1259	int count;
1260
1261	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1262		/* It's not safe to use GLB_CTL_REG to reset the
1263		 * macs, so instead use the internal MAC resets
1264		 */
1265		EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1266		efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1267
1268		for (count = 0; count < 10000; count++) {
1269			efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1270			if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1271			    0)
1272				return;
1273			udelay(10);
1274		}
1275
1276		netif_err(efx, hw, efx->net_dev,
1277			  "timed out waiting for XMAC core reset\n");
1278	}
1279
1280	/* Mac stats will fail whist the TX fifo is draining */
1281	WARN_ON(nic_data->stats_disable_count == 0);
1282
1283	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1284	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1285	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1286
1287	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1288	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1289	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1290	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1291	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1292
1293	count = 0;
1294	while (1) {
1295		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1296		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1297		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1298		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1299			netif_dbg(efx, hw, efx->net_dev,
1300				  "Completed MAC reset after %d loops\n",
1301				  count);
1302			break;
1303		}
1304		if (count > 20) {
1305			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1306			break;
1307		}
1308		count++;
1309		udelay(10);
1310	}
1311
1312	/* Ensure the correct MAC is selected before statistics
1313	 * are re-enabled by the caller */
1314	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1315
1316	falcon_setup_xaui(efx);
1317}
1318
1319static void falcon_drain_tx_fifo(struct efx_nic *efx)
1320{
1321	efx_oword_t reg;
1322
1323	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1324	    (efx->loopback_mode != LOOPBACK_NONE))
1325		return;
1326
1327	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1328	/* There is no point in draining more than once */
1329	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1330		return;
1331
1332	falcon_reset_macs(efx);
1333}
1334
1335static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1336{
1337	efx_oword_t reg;
1338
1339	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1340		return;
1341
1342	/* Isolate the MAC -> RX */
1343	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1344	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1345	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1346
1347	/* Isolate TX -> MAC */
1348	falcon_drain_tx_fifo(efx);
1349}
1350
1351static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1352{
1353	struct efx_link_state *link_state = &efx->link_state;
1354	efx_oword_t reg;
1355	int link_speed, isolate;
1356
1357	isolate = !!ACCESS_ONCE(efx->reset_pending);
1358
1359	switch (link_state->speed) {
1360	case 10000: link_speed = 3; break;
1361	case 1000:  link_speed = 2; break;
1362	case 100:   link_speed = 1; break;
1363	default:    link_speed = 0; break;
1364	}
1365
1366	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1367	 * as advertised.  Disable to ensure packets are not
1368	 * indefinitely held and TX queue can be flushed at any point
1369	 * while the link is down. */
1370	EFX_POPULATE_OWORD_5(reg,
1371			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1372			     FRF_AB_MAC_BCAD_ACPT, 1,
1373			     FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1374			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1375			     FRF_AB_MAC_SPEED, link_speed);
1376	/* On B0, MAC backpressure can be disabled and packets get
1377	 * discarded. */
1378	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1379		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1380				    !link_state->up || isolate);
1381	}
1382
1383	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1384
1385	/* Restore the multicast hash registers. */
1386	falcon_push_multicast_hash(efx);
1387
1388	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1389	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
1390	 * initialisation but it may read back as 0) */
1391	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1392	/* Unisolate the MAC -> RX */
1393	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1394		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1395	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1396}
1397
1398static void falcon_stats_request(struct efx_nic *efx)
1399{
1400	struct falcon_nic_data *nic_data = efx->nic_data;
1401	efx_oword_t reg;
1402
1403	WARN_ON(nic_data->stats_pending);
1404	WARN_ON(nic_data->stats_disable_count);
1405
1406	FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1407	nic_data->stats_pending = true;
1408	wmb(); /* ensure done flag is clear */
1409
1410	/* Initiate DMA transfer of stats */
1411	EFX_POPULATE_OWORD_2(reg,
1412			     FRF_AB_MAC_STAT_DMA_CMD, 1,
1413			     FRF_AB_MAC_STAT_DMA_ADR,
1414			     efx->stats_buffer.dma_addr);
1415	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1416
1417	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1418}
1419
1420static void falcon_stats_complete(struct efx_nic *efx)
1421{
1422	struct falcon_nic_data *nic_data = efx->nic_data;
1423
1424	if (!nic_data->stats_pending)
1425		return;
1426
1427	nic_data->stats_pending = false;
1428	if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1429		rmb(); /* read the done flag before the stats */
1430		efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1431				     falcon_stat_mask, nic_data->stats,
1432				     efx->stats_buffer.addr, true);
1433	} else {
1434		netif_err(efx, hw, efx->net_dev,
1435			  "timed out waiting for statistics\n");
1436	}
1437}
1438
1439static void falcon_stats_timer_func(unsigned long context)
1440{
1441	struct efx_nic *efx = (struct efx_nic *)context;
1442	struct falcon_nic_data *nic_data = efx->nic_data;
1443
1444	spin_lock(&efx->stats_lock);
1445
1446	falcon_stats_complete(efx);
1447	if (nic_data->stats_disable_count == 0)
1448		falcon_stats_request(efx);
1449
1450	spin_unlock(&efx->stats_lock);
1451}
1452
1453static bool falcon_loopback_link_poll(struct efx_nic *efx)
1454{
1455	struct efx_link_state old_state = efx->link_state;
1456
1457	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1458	WARN_ON(!LOOPBACK_INTERNAL(efx));
1459
1460	efx->link_state.fd = true;
1461	efx->link_state.fc = efx->wanted_fc;
1462	efx->link_state.up = true;
1463	efx->link_state.speed = 10000;
1464
1465	return !efx_link_state_equal(&efx->link_state, &old_state);
1466}
1467
1468static int falcon_reconfigure_port(struct efx_nic *efx)
1469{
1470	int rc;
1471
1472	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1473
1474	/* Poll the PHY link state *before* reconfiguring it. This means we
1475	 * will pick up the correct speed (in loopback) to select the correct
1476	 * MAC.
1477	 */
1478	if (LOOPBACK_INTERNAL(efx))
1479		falcon_loopback_link_poll(efx);
1480	else
1481		efx->phy_op->poll(efx);
1482
1483	falcon_stop_nic_stats(efx);
1484	falcon_deconfigure_mac_wrapper(efx);
1485
1486	falcon_reset_macs(efx);
1487
1488	efx->phy_op->reconfigure(efx);
1489	rc = falcon_reconfigure_xmac(efx);
1490	BUG_ON(rc);
1491
1492	falcon_start_nic_stats(efx);
1493
1494	/* Synchronise efx->link_state with the kernel */
1495	efx_link_status_changed(efx);
1496
1497	return 0;
1498}
1499
1500/* TX flow control may automatically turn itself off if the link
1501 * partner (intermittently) stops responding to pause frames. There
1502 * isn't any indication that this has happened, so the best we do is
1503 * leave it up to the user to spot this and fix it by cycling transmit
1504 * flow control on this end.
1505 */
1506
1507static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1508{
1509	/* Schedule a reset to recover */
1510	efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1511}
1512
1513static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1514{
1515	/* Recover by resetting the EM block */
1516	falcon_stop_nic_stats(efx);
1517	falcon_drain_tx_fifo(efx);
1518	falcon_reconfigure_xmac(efx);
1519	falcon_start_nic_stats(efx);
1520}
1521
1522/**************************************************************************
1523 *
1524 * PHY access via GMII
1525 *
1526 **************************************************************************
1527 */
1528
1529/* Wait for GMII access to complete */
1530static int falcon_gmii_wait(struct efx_nic *efx)
1531{
1532	efx_oword_t md_stat;
1533	int count;
1534
1535	/* wait up to 50ms - taken max from datasheet */
1536	for (count = 0; count < 5000; count++) {
1537		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1538		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1539			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1540			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1541				netif_err(efx, hw, efx->net_dev,
1542					  "error from GMII access "
1543					  EFX_OWORD_FMT"\n",
1544					  EFX_OWORD_VAL(md_stat));
1545				return -EIO;
1546			}
1547			return 0;
1548		}
1549		udelay(10);
1550	}
1551	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1552	return -ETIMEDOUT;
1553}
1554
1555/* Write an MDIO register of a PHY connected to Falcon. */
1556static int falcon_mdio_write(struct net_device *net_dev,
1557			     int prtad, int devad, u16 addr, u16 value)
1558{
1559	struct efx_nic *efx = netdev_priv(net_dev);
1560	struct falcon_nic_data *nic_data = efx->nic_data;
1561	efx_oword_t reg;
1562	int rc;
1563
1564	netif_vdbg(efx, hw, efx->net_dev,
1565		   "writing MDIO %d register %d.%d with 0x%04x\n",
1566		    prtad, devad, addr, value);
1567
1568	mutex_lock(&nic_data->mdio_lock);
1569
1570	/* Check MDIO not currently being accessed */
1571	rc = falcon_gmii_wait(efx);
1572	if (rc)
1573		goto out;
1574
1575	/* Write the address/ID register */
1576	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1577	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1578
1579	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1580			     FRF_AB_MD_DEV_ADR, devad);
1581	efx_writeo(efx, &reg, FR_AB_MD_ID);
1582
1583	/* Write data */
1584	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1585	efx_writeo(efx, &reg, FR_AB_MD_TXD);
1586
1587	EFX_POPULATE_OWORD_2(reg,
1588			     FRF_AB_MD_WRC, 1,
1589			     FRF_AB_MD_GC, 0);
1590	efx_writeo(efx, &reg, FR_AB_MD_CS);
1591
1592	/* Wait for data to be written */
1593	rc = falcon_gmii_wait(efx);
1594	if (rc) {
1595		/* Abort the write operation */
1596		EFX_POPULATE_OWORD_2(reg,
1597				     FRF_AB_MD_WRC, 0,
1598				     FRF_AB_MD_GC, 1);
1599		efx_writeo(efx, &reg, FR_AB_MD_CS);
1600		udelay(10);
1601	}
1602
1603out:
1604	mutex_unlock(&nic_data->mdio_lock);
1605	return rc;
1606}
1607
1608/* Read an MDIO register of a PHY connected to Falcon. */
1609static int falcon_mdio_read(struct net_device *net_dev,
1610			    int prtad, int devad, u16 addr)
1611{
1612	struct efx_nic *efx = netdev_priv(net_dev);
1613	struct falcon_nic_data *nic_data = efx->nic_data;
1614	efx_oword_t reg;
1615	int rc;
1616
1617	mutex_lock(&nic_data->mdio_lock);
1618
1619	/* Check MDIO not currently being accessed */
1620	rc = falcon_gmii_wait(efx);
1621	if (rc)
1622		goto out;
1623
1624	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1625	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1626
1627	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1628			     FRF_AB_MD_DEV_ADR, devad);
1629	efx_writeo(efx, &reg, FR_AB_MD_ID);
1630
1631	/* Request data to be read */
1632	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1633	efx_writeo(efx, &reg, FR_AB_MD_CS);
1634
1635	/* Wait for data to become available */
1636	rc = falcon_gmii_wait(efx);
1637	if (rc == 0) {
1638		efx_reado(efx, &reg, FR_AB_MD_RXD);
1639		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1640		netif_vdbg(efx, hw, efx->net_dev,
1641			   "read from MDIO %d register %d.%d, got %04x\n",
1642			   prtad, devad, addr, rc);
1643	} else {
1644		/* Abort the read operation */
1645		EFX_POPULATE_OWORD_2(reg,
1646				     FRF_AB_MD_RIC, 0,
1647				     FRF_AB_MD_GC, 1);
1648		efx_writeo(efx, &reg, FR_AB_MD_CS);
1649
1650		netif_dbg(efx, hw, efx->net_dev,
1651			  "read from MDIO %d register %d.%d, got error %d\n",
1652			  prtad, devad, addr, rc);
1653	}
1654
1655out:
1656	mutex_unlock(&nic_data->mdio_lock);
1657	return rc;
1658}
1659
1660/* This call is responsible for hooking in the MAC and PHY operations */
1661static int falcon_probe_port(struct efx_nic *efx)
1662{
1663	struct falcon_nic_data *nic_data = efx->nic_data;
1664	int rc;
1665
1666	switch (efx->phy_type) {
1667	case PHY_TYPE_SFX7101:
1668		efx->phy_op = &falcon_sfx7101_phy_ops;
1669		break;
1670	case PHY_TYPE_QT2022C2:
1671	case PHY_TYPE_QT2025C:
1672		efx->phy_op = &falcon_qt202x_phy_ops;
1673		break;
1674	case PHY_TYPE_TXC43128:
1675		efx->phy_op = &falcon_txc_phy_ops;
1676		break;
1677	default:
1678		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1679			  efx->phy_type);
1680		return -ENODEV;
1681	}
1682
1683	/* Fill out MDIO structure and loopback modes */
1684	mutex_init(&nic_data->mdio_lock);
1685	efx->mdio.mdio_read = falcon_mdio_read;
1686	efx->mdio.mdio_write = falcon_mdio_write;
1687	rc = efx->phy_op->probe(efx);
1688	if (rc != 0)
1689		return rc;
1690
1691	/* Initial assumption */
1692	efx->link_state.speed = 10000;
1693	efx->link_state.fd = true;
1694
1695	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1696	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1697		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1698	else
1699		efx->wanted_fc = EFX_FC_RX;
1700	if (efx->mdio.mmds & MDIO_DEVS_AN)
1701		efx->wanted_fc |= EFX_FC_AUTO;
1702
1703	/* Allocate buffer for stats */
1704	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1705				  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1706	if (rc)
1707		return rc;
1708	netif_dbg(efx, probe, efx->net_dev,
1709		  "stats buffer at %llx (virt %p phys %llx)\n",
1710		  (u64)efx->stats_buffer.dma_addr,
1711		  efx->stats_buffer.addr,
1712		  (u64)virt_to_phys(efx->stats_buffer.addr));
1713
1714	return 0;
1715}
1716
1717static void falcon_remove_port(struct efx_nic *efx)
1718{
1719	efx->phy_op->remove(efx);
1720	efx_nic_free_buffer(efx, &efx->stats_buffer);
1721}
1722
1723/* Global events are basically PHY events */
1724static bool
1725falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1726{
1727	struct efx_nic *efx = channel->efx;
1728	struct falcon_nic_data *nic_data = efx->nic_data;
1729
1730	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1731	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1732	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1733		/* Ignored */
1734		return true;
1735
1736	if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1737	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1738		nic_data->xmac_poll_required = true;
1739		return true;
1740	}
1741
1742	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1743	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1744	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1745		netif_err(efx, rx_err, efx->net_dev,
1746			  "channel %d seen global RX_RESET event. Resetting.\n",
1747			  channel->channel);
1748
1749		atomic_inc(&efx->rx_reset);
1750		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1751				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1752		return true;
1753	}
1754
1755	return false;
1756}
1757
1758/**************************************************************************
1759 *
1760 * Falcon test code
1761 *
1762 **************************************************************************/
1763
1764static int
1765falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1766{
1767	struct falcon_nic_data *nic_data = efx->nic_data;
1768	struct falcon_nvconfig *nvconfig;
1769	struct falcon_spi_device *spi;
1770	void *region;
1771	int rc, magic_num, struct_ver;
1772	__le16 *word, *limit;
1773	u32 csum;
1774
1775	if (falcon_spi_present(&nic_data->spi_flash))
1776		spi = &nic_data->spi_flash;
1777	else if (falcon_spi_present(&nic_data->spi_eeprom))
1778		spi = &nic_data->spi_eeprom;
1779	else
1780		return -EINVAL;
1781
1782	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1783	if (!region)
1784		return -ENOMEM;
1785	nvconfig = region + FALCON_NVCONFIG_OFFSET;
1786
1787	mutex_lock(&nic_data->spi_lock);
1788	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1789	mutex_unlock(&nic_data->spi_lock);
1790	if (rc) {
1791		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1792			  falcon_spi_present(&nic_data->spi_flash) ?
1793			  "flash" : "EEPROM");
1794		rc = -EIO;
1795		goto out;
1796	}
1797
1798	magic_num = le16_to_cpu(nvconfig->board_magic_num);
1799	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1800
1801	rc = -EINVAL;
1802	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1803		netif_err(efx, hw, efx->net_dev,
1804			  "NVRAM bad magic 0x%x\n", magic_num);
1805		goto out;
1806	}
1807	if (struct_ver < 2) {
1808		netif_err(efx, hw, efx->net_dev,
1809			  "NVRAM has ancient version 0x%x\n", struct_ver);
1810		goto out;
1811	} else if (struct_ver < 4) {
1812		word = &nvconfig->board_magic_num;
1813		limit = (__le16 *) (nvconfig + 1);
1814	} else {
1815		word = region;
1816		limit = region + FALCON_NVCONFIG_END;
1817	}
1818	for (csum = 0; word < limit; ++word)
1819		csum += le16_to_cpu(*word);
1820
1821	if (~csum & 0xffff) {
1822		netif_err(efx, hw, efx->net_dev,
1823			  "NVRAM has incorrect checksum\n");
1824		goto out;
1825	}
1826
1827	rc = 0;
1828	if (nvconfig_out)
1829		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1830
1831 out:
1832	kfree(region);
1833	return rc;
1834}
1835
1836static int falcon_test_nvram(struct efx_nic *efx)
1837{
1838	return falcon_read_nvram(efx, NULL);
1839}
1840
1841static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1842	{ FR_AZ_ADR_REGION,
1843	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1844	{ FR_AZ_RX_CFG,
1845	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1846	{ FR_AZ_TX_CFG,
1847	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1848	{ FR_AZ_TX_RESERVED,
1849	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1850	{ FR_AB_MAC_CTRL,
1851	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1852	{ FR_AZ_SRM_TX_DC_CFG,
1853	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1854	{ FR_AZ_RX_DC_CFG,
1855	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1856	{ FR_AZ_RX_DC_PF_WM,
1857	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1858	{ FR_BZ_DP_CTRL,
1859	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1860	{ FR_AB_GM_CFG2,
1861	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1862	{ FR_AB_GMF_CFG0,
1863	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1864	{ FR_AB_XM_GLB_CFG,
1865	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1866	{ FR_AB_XM_TX_CFG,
1867	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1868	{ FR_AB_XM_RX_CFG,
1869	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1870	{ FR_AB_XM_RX_PARAM,
1871	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1872	{ FR_AB_XM_FC,
1873	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1874	{ FR_AB_XM_ADR_LO,
1875	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1876	{ FR_AB_XX_SD_CTL,
1877	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1878};
1879
1880static int
1881falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1882{
1883	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1884	int rc, rc2;
1885
1886	mutex_lock(&efx->mac_lock);
1887	if (efx->loopback_modes) {
1888		/* We need the 312 clock from the PHY to test the XMAC
1889		 * registers, so move into XGMII loopback if available */
1890		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1891			efx->loopback_mode = LOOPBACK_XGMII;
1892		else
1893			efx->loopback_mode = __ffs(efx->loopback_modes);
1894	}
1895	__efx_reconfigure_port(efx);
1896	mutex_unlock(&efx->mac_lock);
1897
1898	efx_reset_down(efx, reset_method);
1899
1900	tests->registers =
1901		efx_farch_test_registers(efx, falcon_b0_register_tests,
1902					 ARRAY_SIZE(falcon_b0_register_tests))
1903		? -1 : 1;
1904
1905	rc = falcon_reset_hw(efx, reset_method);
1906	rc2 = efx_reset_up(efx, reset_method, rc == 0);
1907	return rc ? rc : rc2;
1908}
1909
1910/**************************************************************************
1911 *
1912 * Device reset
1913 *
1914 **************************************************************************
1915 */
1916
1917static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1918{
1919	switch (reason) {
1920	case RESET_TYPE_RX_RECOVERY:
1921	case RESET_TYPE_DMA_ERROR:
1922	case RESET_TYPE_TX_SKIP:
1923		/* These can occasionally occur due to hardware bugs.
1924		 * We try to reset without disrupting the link.
1925		 */
1926		return RESET_TYPE_INVISIBLE;
1927	default:
1928		return RESET_TYPE_ALL;
1929	}
1930}
1931
1932static int falcon_map_reset_flags(u32 *flags)
1933{
1934	enum {
1935		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1936					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1937		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1938		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1939	};
1940
1941	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1942		*flags &= ~FALCON_RESET_WORLD;
1943		return RESET_TYPE_WORLD;
1944	}
1945
1946	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1947		*flags &= ~FALCON_RESET_ALL;
1948		return RESET_TYPE_ALL;
1949	}
1950
1951	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1952		*flags &= ~FALCON_RESET_INVISIBLE;
1953		return RESET_TYPE_INVISIBLE;
1954	}
1955
1956	return -EINVAL;
1957}
1958
1959/* Resets NIC to known state.  This routine must be called in process
1960 * context and is allowed to sleep. */
1961static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1962{
1963	struct falcon_nic_data *nic_data = efx->nic_data;
1964	efx_oword_t glb_ctl_reg_ker;
1965	int rc;
1966
1967	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1968		  RESET_TYPE(method));
1969
1970	/* Initiate device reset */
1971	if (method == RESET_TYPE_WORLD) {
1972		rc = pci_save_state(efx->pci_dev);
1973		if (rc) {
1974			netif_err(efx, drv, efx->net_dev,
1975				  "failed to backup PCI state of primary "
1976				  "function prior to hardware reset\n");
1977			goto fail1;
1978		}
1979		if (efx_nic_is_dual_func(efx)) {
1980			rc = pci_save_state(nic_data->pci_dev2);
1981			if (rc) {
1982				netif_err(efx, drv, efx->net_dev,
1983					  "failed to backup PCI state of "
1984					  "secondary function prior to "
1985					  "hardware reset\n");
1986				goto fail2;
1987			}
1988		}
1989
1990		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1991				     FRF_AB_EXT_PHY_RST_DUR,
1992				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1993				     FRF_AB_SWRST, 1);
1994	} else {
1995		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1996				     /* exclude PHY from "invisible" reset */
1997				     FRF_AB_EXT_PHY_RST_CTL,
1998				     method == RESET_TYPE_INVISIBLE,
1999				     /* exclude EEPROM/flash and PCIe */
2000				     FRF_AB_PCIE_CORE_RST_CTL, 1,
2001				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2002				     FRF_AB_PCIE_SD_RST_CTL, 1,
2003				     FRF_AB_EE_RST_CTL, 1,
2004				     FRF_AB_EXT_PHY_RST_DUR,
2005				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2006				     FRF_AB_SWRST, 1);
2007	}
2008	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2009
2010	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2011	schedule_timeout_uninterruptible(HZ / 20);
2012
2013	/* Restore PCI configuration if needed */
2014	if (method == RESET_TYPE_WORLD) {
2015		if (efx_nic_is_dual_func(efx))
2016			pci_restore_state(nic_data->pci_dev2);
2017		pci_restore_state(efx->pci_dev);
2018		netif_dbg(efx, drv, efx->net_dev,
2019			  "successfully restored PCI config\n");
2020	}
2021
2022	/* Assert that reset complete */
2023	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2024	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2025		rc = -ETIMEDOUT;
2026		netif_err(efx, hw, efx->net_dev,
2027			  "timed out waiting for hardware reset\n");
2028		goto fail3;
2029	}
2030	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2031
2032	return 0;
2033
2034	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
2035fail2:
2036	pci_restore_state(efx->pci_dev);
2037fail1:
2038fail3:
2039	return rc;
2040}
2041
2042static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2043{
2044	struct falcon_nic_data *nic_data = efx->nic_data;
2045	int rc;
2046
2047	mutex_lock(&nic_data->spi_lock);
2048	rc = __falcon_reset_hw(efx, method);
2049	mutex_unlock(&nic_data->spi_lock);
2050
2051	return rc;
2052}
2053
2054static void falcon_monitor(struct efx_nic *efx)
2055{
2056	bool link_changed;
2057	int rc;
2058
2059	BUG_ON(!mutex_is_locked(&efx->mac_lock));
2060
2061	rc = falcon_board(efx)->type->monitor(efx);
2062	if (rc) {
2063		netif_err(efx, hw, efx->net_dev,
2064			  "Board sensor %s; shutting down PHY\n",
2065			  (rc == -ERANGE) ? "reported fault" : "failed");
2066		efx->phy_mode |= PHY_MODE_LOW_POWER;
2067		rc = __efx_reconfigure_port(efx);
2068		WARN_ON(rc);
2069	}
2070
2071	if (LOOPBACK_INTERNAL(efx))
2072		link_changed = falcon_loopback_link_poll(efx);
2073	else
2074		link_changed = efx->phy_op->poll(efx);
2075
2076	if (link_changed) {
2077		falcon_stop_nic_stats(efx);
2078		falcon_deconfigure_mac_wrapper(efx);
2079
2080		falcon_reset_macs(efx);
2081		rc = falcon_reconfigure_xmac(efx);
2082		BUG_ON(rc);
2083
2084		falcon_start_nic_stats(efx);
2085
2086		efx_link_status_changed(efx);
2087	}
2088
2089	falcon_poll_xmac(efx);
2090}
2091
2092/* Zeroes out the SRAM contents.  This routine must be called in
2093 * process context and is allowed to sleep.
2094 */
2095static int falcon_reset_sram(struct efx_nic *efx)
2096{
2097	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2098	int count;
2099
2100	/* Set the SRAM wake/sleep GPIO appropriately. */
2101	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2102	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2103	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2104	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2105
2106	/* Initiate SRAM reset */
2107	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2108			     FRF_AZ_SRM_INIT_EN, 1,
2109			     FRF_AZ_SRM_NB_SZ, 0);
2110	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2111
2112	/* Wait for SRAM reset to complete */
2113	count = 0;
2114	do {
2115		netif_dbg(efx, hw, efx->net_dev,
2116			  "waiting for SRAM reset (attempt %d)...\n", count);
2117
2118		/* SRAM reset is slow; expect around 16ms */
2119		schedule_timeout_uninterruptible(HZ / 50);
2120
2121		/* Check for reset complete */
2122		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2123		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2124			netif_dbg(efx, hw, efx->net_dev,
2125				  "SRAM reset complete\n");
2126
2127			return 0;
2128		}
2129	} while (++count < 20);	/* wait up to 0.4 sec */
2130
2131	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2132	return -ETIMEDOUT;
2133}
2134
2135static void falcon_spi_device_init(struct efx_nic *efx,
2136				  struct falcon_spi_device *spi_device,
2137				  unsigned int device_id, u32 device_type)
2138{
2139	if (device_type != 0) {
2140		spi_device->device_id = device_id;
2141		spi_device->size =
2142			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2143		spi_device->addr_len =
2144			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2145		spi_device->munge_address = (spi_device->size == 1 << 9 &&
2146					     spi_device->addr_len == 1);
2147		spi_device->erase_command =
2148			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2149		spi_device->erase_size =
2150			1 << SPI_DEV_TYPE_FIELD(device_type,
2151						SPI_DEV_TYPE_ERASE_SIZE);
2152		spi_device->block_size =
2153			1 << SPI_DEV_TYPE_FIELD(device_type,
2154						SPI_DEV_TYPE_BLOCK_SIZE);
2155	} else {
2156		spi_device->size = 0;
2157	}
2158}
2159
2160/* Extract non-volatile configuration */
2161static int falcon_probe_nvconfig(struct efx_nic *efx)
2162{
2163	struct falcon_nic_data *nic_data = efx->nic_data;
2164	struct falcon_nvconfig *nvconfig;
2165	int rc;
2166
2167	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2168	if (!nvconfig)
2169		return -ENOMEM;
2170
2171	rc = falcon_read_nvram(efx, nvconfig);
2172	if (rc)
2173		goto out;
2174
2175	efx->phy_type = nvconfig->board_v2.port0_phy_type;
2176	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2177
2178	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2179		falcon_spi_device_init(
2180			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2181			le32_to_cpu(nvconfig->board_v3
2182				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2183		falcon_spi_device_init(
2184			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2185			le32_to_cpu(nvconfig->board_v3
2186				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2187	}
2188
2189	/* Read the MAC addresses */
2190	ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2191
2192	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2193		  efx->phy_type, efx->mdio.prtad);
2194
2195	rc = falcon_probe_board(efx,
2196				le16_to_cpu(nvconfig->board_v2.board_revision));
2197out:
2198	kfree(nvconfig);
2199	return rc;
2200}
2201
2202static int falcon_dimension_resources(struct efx_nic *efx)
2203{
2204	efx->rx_dc_base = 0x20000;
2205	efx->tx_dc_base = 0x26000;
2206	return 0;
2207}
2208
2209/* Probe all SPI devices on the NIC */
2210static void falcon_probe_spi_devices(struct efx_nic *efx)
2211{
2212	struct falcon_nic_data *nic_data = efx->nic_data;
2213	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2214	int boot_dev;
2215
2216	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2217	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2218	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2219
2220	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2221		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2222			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2223		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2224			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2225			  "flash" : "EEPROM");
2226	} else {
2227		/* Disable VPD and set clock dividers to safe
2228		 * values for initial programming. */
2229		boot_dev = -1;
2230		netif_dbg(efx, probe, efx->net_dev,
2231			  "Booted from internal ASIC settings;"
2232			  " setting SPI config\n");
2233		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2234				     /* 125 MHz / 7 ~= 20 MHz */
2235				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2236				     /* 125 MHz / 63 ~= 2 MHz */
2237				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2238		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2239	}
2240
2241	mutex_init(&nic_data->spi_lock);
2242
2243	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2244		falcon_spi_device_init(efx, &nic_data->spi_flash,
2245				       FFE_AB_SPI_DEVICE_FLASH,
2246				       default_flash_type);
2247	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2248		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2249				       FFE_AB_SPI_DEVICE_EEPROM,
2250				       large_eeprom_type);
2251}
2252
2253static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2254{
2255	return 0x20000;
2256}
2257
2258static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2259{
2260	/* Map everything up to and including the RSS indirection table.
2261	 * The PCI core takes care of mapping the MSI-X tables.
2262	 */
2263	return FR_BZ_RX_INDIRECTION_TBL +
2264		FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2265}
2266
2267static int falcon_probe_nic(struct efx_nic *efx)
2268{
2269	struct falcon_nic_data *nic_data;
2270	struct falcon_board *board;
2271	int rc;
2272
2273	efx->primary = efx; /* only one usable function per controller */
2274
2275	/* Allocate storage for hardware specific data */
2276	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2277	if (!nic_data)
2278		return -ENOMEM;
2279	efx->nic_data = nic_data;
2280
2281	rc = -ENODEV;
2282
2283	if (efx_farch_fpga_ver(efx) != 0) {
2284		netif_err(efx, probe, efx->net_dev,
2285			  "Falcon FPGA not supported\n");
2286		goto fail1;
2287	}
2288
2289	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2290		efx_oword_t nic_stat;
2291		struct pci_dev *dev;
2292		u8 pci_rev = efx->pci_dev->revision;
2293
2294		if ((pci_rev == 0xff) || (pci_rev == 0)) {
2295			netif_err(efx, probe, efx->net_dev,
2296				  "Falcon rev A0 not supported\n");
2297			goto fail1;
2298		}
2299		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2300		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2301			netif_err(efx, probe, efx->net_dev,
2302				  "Falcon rev A1 1G not supported\n");
2303			goto fail1;
2304		}
2305		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2306			netif_err(efx, probe, efx->net_dev,
2307				  "Falcon rev A1 PCI-X not supported\n");
2308			goto fail1;
2309		}
2310
2311		dev = pci_dev_get(efx->pci_dev);
2312		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2313					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2314					     dev))) {
2315			if (dev->bus == efx->pci_dev->bus &&
2316			    dev->devfn == efx->pci_dev->devfn + 1) {
2317				nic_data->pci_dev2 = dev;
2318				break;
2319			}
2320		}
2321		if (!nic_data->pci_dev2) {
2322			netif_err(efx, probe, efx->net_dev,
2323				  "failed to find secondary function\n");
2324			rc = -ENODEV;
2325			goto fail2;
2326		}
2327	}
2328
2329	/* Now we can reset the NIC */
2330	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2331	if (rc) {
2332		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2333		goto fail3;
2334	}
2335
2336	/* Allocate memory for INT_KER */
2337	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2338				  GFP_KERNEL);
2339	if (rc)
2340		goto fail4;
2341	BUG_ON(efx->irq_status.dma_addr & 0x0f);
2342
2343	netif_dbg(efx, probe, efx->net_dev,
2344		  "INT_KER at %llx (virt %p phys %llx)\n",
2345		  (u64)efx->irq_status.dma_addr,
2346		  efx->irq_status.addr,
2347		  (u64)virt_to_phys(efx->irq_status.addr));
2348
2349	falcon_probe_spi_devices(efx);
2350
2351	/* Read in the non-volatile configuration */
2352	rc = falcon_probe_nvconfig(efx);
2353	if (rc) {
2354		if (rc == -EINVAL)
2355			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2356		goto fail5;
2357	}
2358
2359	efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2360			     EFX_MAX_CHANNELS);
2361	efx->timer_quantum_ns = 4968; /* 621 cycles */
2362
2363	/* Initialise I2C adapter */
2364	board = falcon_board(efx);
2365	board->i2c_adap.owner = THIS_MODULE;
2366	board->i2c_data = falcon_i2c_bit_operations;
2367	board->i2c_data.data = efx;
2368	board->i2c_adap.algo_data = &board->i2c_data;
2369	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2370	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2371		sizeof(board->i2c_adap.name));
2372	rc = i2c_bit_add_bus(&board->i2c_adap);
2373	if (rc)
2374		goto fail5;
2375
2376	rc = falcon_board(efx)->type->init(efx);
2377	if (rc) {
2378		netif_err(efx, probe, efx->net_dev,
2379			  "failed to initialise board\n");
2380		goto fail6;
2381	}
2382
2383	nic_data->stats_disable_count = 1;
2384	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2385		    (unsigned long)efx);
2386
2387	return 0;
2388
2389 fail6:
2390	i2c_del_adapter(&board->i2c_adap);
2391	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2392 fail5:
2393	efx_nic_free_buffer(efx, &efx->irq_status);
2394 fail4:
2395 fail3:
2396	if (nic_data->pci_dev2) {
2397		pci_dev_put(nic_data->pci_dev2);
2398		nic_data->pci_dev2 = NULL;
2399	}
2400 fail2:
2401 fail1:
2402	kfree(efx->nic_data);
2403	return rc;
2404}
2405
2406static void falcon_init_rx_cfg(struct efx_nic *efx)
2407{
2408	/* RX control FIFO thresholds (32 entries) */
2409	const unsigned ctrl_xon_thr = 20;
2410	const unsigned ctrl_xoff_thr = 25;
2411	efx_oword_t reg;
2412
2413	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2414	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2415		/* Data FIFO size is 5.5K.  The RX DMA engine only
2416		 * supports scattering for user-mode queues, but will
2417		 * split DMA writes at intervals of RX_USR_BUF_SIZE
2418		 * (32-byte units) even for kernel-mode queues.  We
2419		 * set it to be so large that that never happens.
2420		 */
2421		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2422		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2423				    (3 * 4096) >> 5);
2424		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2425		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2426		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2427		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2428	} else {
2429		/* Data FIFO size is 80K; register fields moved */
2430		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2431		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2432				    EFX_RX_USR_BUF_SIZE >> 5);
2433		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
2434		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2435		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2436		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2437		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2438		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2439
2440		/* Enable hash insertion. This is broken for the
2441		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2442		 * IPv4 hashes. */
2443		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2444		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2445		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2446	}
2447	/* Always enable XOFF signal from RX FIFO.  We enable
2448	 * or disable transmission of pause frames at the MAC. */
2449	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2450	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2451}
2452
2453/* This call performs hardware-specific global initialisation, such as
2454 * defining the descriptor cache sizes and number of RSS channels.
2455 * It does not set up any buffers, descriptor rings or event queues.
2456 */
2457static int falcon_init_nic(struct efx_nic *efx)
2458{
2459	efx_oword_t temp;
2460	int rc;
2461
2462	/* Use on-chip SRAM */
2463	efx_reado(efx, &temp, FR_AB_NIC_STAT);
2464	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2465	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2466
2467	rc = falcon_reset_sram(efx);
2468	if (rc)
2469		return rc;
2470
2471	/* Clear the parity enables on the TX data fifos as
2472	 * they produce false parity errors because of timing issues
2473	 */
2474	if (EFX_WORKAROUND_5129(efx)) {
2475		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2476		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2477		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2478	}
2479
2480	if (EFX_WORKAROUND_7244(efx)) {
2481		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2482		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2483		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2484		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2485		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2486		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2487	}
2488
2489	/* XXX This is documented only for Falcon A0/A1 */
2490	/* Setup RX.  Wait for descriptor is broken and must
2491	 * be disabled.  RXDP recovery shouldn't be needed, but is.
2492	 */
2493	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2494	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2495	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2496	if (EFX_WORKAROUND_5583(efx))
2497		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2498	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2499
2500	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2501	 * descriptors (which is bad).
2502	 */
2503	efx_reado(efx, &temp, FR_AZ_TX_CFG);
2504	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2505	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2506
2507	falcon_init_rx_cfg(efx);
2508
2509	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2510		falcon_b0_rx_push_rss_config(efx);
2511
2512		/* Set destination of both TX and RX Flush events */
2513		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2514		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2515	}
2516
2517	efx_farch_init_common(efx);
2518
2519	return 0;
2520}
2521
2522static void falcon_remove_nic(struct efx_nic *efx)
2523{
2524	struct falcon_nic_data *nic_data = efx->nic_data;
2525	struct falcon_board *board = falcon_board(efx);
2526
2527	board->type->fini(efx);
2528
2529	/* Remove I2C adapter and clear it in preparation for a retry */
2530	i2c_del_adapter(&board->i2c_adap);
2531	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2532
2533	efx_nic_free_buffer(efx, &efx->irq_status);
2534
2535	__falcon_reset_hw(efx, RESET_TYPE_ALL);
2536
2537	/* Release the second function after the reset */
2538	if (nic_data->pci_dev2) {
2539		pci_dev_put(nic_data->pci_dev2);
2540		nic_data->pci_dev2 = NULL;
2541	}
2542
2543	/* Tear down the private nic state */
2544	kfree(efx->nic_data);
2545	efx->nic_data = NULL;
2546}
2547
2548static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2549{
2550	return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2551				      falcon_stat_mask, names);
2552}
2553
2554static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2555				      struct rtnl_link_stats64 *core_stats)
2556{
2557	struct falcon_nic_data *nic_data = efx->nic_data;
2558	u64 *stats = nic_data->stats;
2559	efx_oword_t cnt;
2560
2561	if (!nic_data->stats_disable_count) {
2562		efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2563		stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2564			EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2565
2566		if (nic_data->stats_pending &&
2567		    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2568			nic_data->stats_pending = false;
2569			rmb(); /* read the done flag before the stats */
2570			efx_nic_update_stats(
2571				falcon_stat_desc, FALCON_STAT_COUNT,
2572				falcon_stat_mask,
2573				stats, efx->stats_buffer.addr, true);
2574		}
2575
2576		/* Update derived statistic */
2577		efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2578				     stats[FALCON_STAT_rx_bytes] -
2579				     stats[FALCON_STAT_rx_good_bytes] -
2580				     stats[FALCON_STAT_rx_control] * 64);
2581		efx_update_sw_stats(efx, stats);
2582	}
2583
2584	if (full_stats)
2585		memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2586
2587	if (core_stats) {
2588		core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2589		core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2590		core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2591		core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2592		core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2593					 stats[GENERIC_STAT_rx_nodesc_trunc] +
2594					 stats[GENERIC_STAT_rx_noskb_drops];
2595		core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2596		core_stats->rx_length_errors =
2597			stats[FALCON_STAT_rx_gtjumbo] +
2598			stats[FALCON_STAT_rx_length_error];
2599		core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2600		core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2601		core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2602
2603		core_stats->rx_errors = (core_stats->rx_length_errors +
2604					 core_stats->rx_crc_errors +
2605					 core_stats->rx_frame_errors +
2606					 stats[FALCON_STAT_rx_symbol_error]);
2607	}
2608
2609	return FALCON_STAT_COUNT;
2610}
2611
2612void falcon_start_nic_stats(struct efx_nic *efx)
2613{
2614	struct falcon_nic_data *nic_data = efx->nic_data;
2615
2616	spin_lock_bh(&efx->stats_lock);
2617	if (--nic_data->stats_disable_count == 0)
2618		falcon_stats_request(efx);
2619	spin_unlock_bh(&efx->stats_lock);
2620}
2621
2622/* We don't acutally pull stats on falcon. Wait 10ms so that
2623 * they arrive when we call this just after start_stats
2624 */
2625static void falcon_pull_nic_stats(struct efx_nic *efx)
2626{
2627	msleep(10);
2628}
2629
2630void falcon_stop_nic_stats(struct efx_nic *efx)
2631{
2632	struct falcon_nic_data *nic_data = efx->nic_data;
2633	int i;
2634
2635	might_sleep();
2636
2637	spin_lock_bh(&efx->stats_lock);
2638	++nic_data->stats_disable_count;
2639	spin_unlock_bh(&efx->stats_lock);
2640
2641	del_timer_sync(&nic_data->stats_timer);
2642
2643	/* Wait enough time for the most recent transfer to
2644	 * complete. */
2645	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2646		if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2647			break;
2648		msleep(1);
2649	}
2650
2651	spin_lock_bh(&efx->stats_lock);
2652	falcon_stats_complete(efx);
2653	spin_unlock_bh(&efx->stats_lock);
2654}
2655
2656static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2657{
2658	falcon_board(efx)->type->set_id_led(efx, mode);
2659}
2660
2661/**************************************************************************
2662 *
2663 * Wake on LAN
2664 *
2665 **************************************************************************
2666 */
2667
2668static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2669{
2670	wol->supported = 0;
2671	wol->wolopts = 0;
2672	memset(&wol->sopass, 0, sizeof(wol->sopass));
2673}
2674
2675static int falcon_set_wol(struct efx_nic *efx, u32 type)
2676{
2677	if (type != 0)
2678		return -EINVAL;
2679	return 0;
2680}
2681
2682/**************************************************************************
2683 *
2684 * Revision-dependent attributes used by efx.c and nic.c
2685 *
2686 **************************************************************************
2687 */
2688
2689const struct efx_nic_type falcon_a1_nic_type = {
2690	.mem_map_size = falcon_a1_mem_map_size,
2691	.probe = falcon_probe_nic,
2692	.remove = falcon_remove_nic,
2693	.init = falcon_init_nic,
2694	.dimension_resources = falcon_dimension_resources,
2695	.fini = falcon_irq_ack_a1,
2696	.monitor = falcon_monitor,
2697	.map_reset_reason = falcon_map_reset_reason,
2698	.map_reset_flags = falcon_map_reset_flags,
2699	.reset = falcon_reset_hw,
2700	.probe_port = falcon_probe_port,
2701	.remove_port = falcon_remove_port,
2702	.handle_global_event = falcon_handle_global_event,
2703	.fini_dmaq = efx_farch_fini_dmaq,
2704	.prepare_flush = falcon_prepare_flush,
2705	.finish_flush = efx_port_dummy_op_void,
2706	.prepare_flr = efx_port_dummy_op_void,
2707	.finish_flr = efx_farch_finish_flr,
2708	.describe_stats = falcon_describe_nic_stats,
2709	.update_stats = falcon_update_nic_stats,
2710	.start_stats = falcon_start_nic_stats,
2711	.pull_stats = falcon_pull_nic_stats,
2712	.stop_stats = falcon_stop_nic_stats,
2713	.set_id_led = falcon_set_id_led,
2714	.push_irq_moderation = falcon_push_irq_moderation,
2715	.reconfigure_port = falcon_reconfigure_port,
2716	.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2717	.reconfigure_mac = falcon_reconfigure_xmac,
2718	.check_mac_fault = falcon_xmac_check_fault,
2719	.get_wol = falcon_get_wol,
2720	.set_wol = falcon_set_wol,
2721	.resume_wol = efx_port_dummy_op_void,
2722	.test_nvram = falcon_test_nvram,
2723	.irq_enable_master = efx_farch_irq_enable_master,
2724	.irq_test_generate = efx_farch_irq_test_generate,
2725	.irq_disable_non_ev = efx_farch_irq_disable_master,
2726	.irq_handle_msi = efx_farch_msi_interrupt,
2727	.irq_handle_legacy = falcon_legacy_interrupt_a1,
2728	.tx_probe = efx_farch_tx_probe,
2729	.tx_init = efx_farch_tx_init,
2730	.tx_remove = efx_farch_tx_remove,
2731	.tx_write = efx_farch_tx_write,
2732	.rx_push_rss_config = efx_port_dummy_op_void,
2733	.rx_probe = efx_farch_rx_probe,
2734	.rx_init = efx_farch_rx_init,
2735	.rx_remove = efx_farch_rx_remove,
2736	.rx_write = efx_farch_rx_write,
2737	.rx_defer_refill = efx_farch_rx_defer_refill,
2738	.ev_probe = efx_farch_ev_probe,
2739	.ev_init = efx_farch_ev_init,
2740	.ev_fini = efx_farch_ev_fini,
2741	.ev_remove = efx_farch_ev_remove,
2742	.ev_process = efx_farch_ev_process,
2743	.ev_read_ack = efx_farch_ev_read_ack,
2744	.ev_test_generate = efx_farch_ev_test_generate,
2745
2746	/* We don't expose the filter table on Falcon A1 as it is not
2747	 * mapped into function 0, but these implementations still
2748	 * work with a degenerate case of all tables set to size 0.
2749	 */
2750	.filter_table_probe = efx_farch_filter_table_probe,
2751	.filter_table_restore = efx_farch_filter_table_restore,
2752	.filter_table_remove = efx_farch_filter_table_remove,
2753	.filter_insert = efx_farch_filter_insert,
2754	.filter_remove_safe = efx_farch_filter_remove_safe,
2755	.filter_get_safe = efx_farch_filter_get_safe,
2756	.filter_clear_rx = efx_farch_filter_clear_rx,
2757	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2758	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2759	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2760
2761#ifdef CONFIG_SFC_MTD
2762	.mtd_probe = falcon_mtd_probe,
2763	.mtd_rename = falcon_mtd_rename,
2764	.mtd_read = falcon_mtd_read,
2765	.mtd_erase = falcon_mtd_erase,
2766	.mtd_write = falcon_mtd_write,
2767	.mtd_sync = falcon_mtd_sync,
2768#endif
2769	.sriov_init = efx_falcon_sriov_init,
2770	.sriov_fini = efx_falcon_sriov_fini,
2771	.sriov_mac_address_changed = efx_falcon_sriov_mac_address_changed,
2772	.sriov_wanted = efx_falcon_sriov_wanted,
2773	.sriov_reset = efx_falcon_sriov_reset,
2774
2775	.revision = EFX_REV_FALCON_A1,
2776	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2777	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2778	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2779	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2780	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2781	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2782	.rx_buffer_padding = 0x24,
2783	.can_rx_scatter = false,
2784	.max_interrupt_mode = EFX_INT_MODE_MSI,
2785	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2786	.offload_features = NETIF_F_IP_CSUM,
2787	.mcdi_max_ver = -1,
2788};
2789
2790const struct efx_nic_type falcon_b0_nic_type = {
2791	.mem_map_size = falcon_b0_mem_map_size,
2792	.probe = falcon_probe_nic,
2793	.remove = falcon_remove_nic,
2794	.init = falcon_init_nic,
2795	.dimension_resources = falcon_dimension_resources,
2796	.fini = efx_port_dummy_op_void,
2797	.monitor = falcon_monitor,
2798	.map_reset_reason = falcon_map_reset_reason,
2799	.map_reset_flags = falcon_map_reset_flags,
2800	.reset = falcon_reset_hw,
2801	.probe_port = falcon_probe_port,
2802	.remove_port = falcon_remove_port,
2803	.handle_global_event = falcon_handle_global_event,
2804	.fini_dmaq = efx_farch_fini_dmaq,
2805	.prepare_flush = falcon_prepare_flush,
2806	.finish_flush = efx_port_dummy_op_void,
2807	.prepare_flr = efx_port_dummy_op_void,
2808	.finish_flr = efx_farch_finish_flr,
2809	.describe_stats = falcon_describe_nic_stats,
2810	.update_stats = falcon_update_nic_stats,
2811	.start_stats = falcon_start_nic_stats,
2812	.pull_stats = falcon_pull_nic_stats,
2813	.stop_stats = falcon_stop_nic_stats,
2814	.set_id_led = falcon_set_id_led,
2815	.push_irq_moderation = falcon_push_irq_moderation,
2816	.reconfigure_port = falcon_reconfigure_port,
2817	.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2818	.reconfigure_mac = falcon_reconfigure_xmac,
2819	.check_mac_fault = falcon_xmac_check_fault,
2820	.get_wol = falcon_get_wol,
2821	.set_wol = falcon_set_wol,
2822	.resume_wol = efx_port_dummy_op_void,
2823	.test_chip = falcon_b0_test_chip,
2824	.test_nvram = falcon_test_nvram,
2825	.irq_enable_master = efx_farch_irq_enable_master,
2826	.irq_test_generate = efx_farch_irq_test_generate,
2827	.irq_disable_non_ev = efx_farch_irq_disable_master,
2828	.irq_handle_msi = efx_farch_msi_interrupt,
2829	.irq_handle_legacy = efx_farch_legacy_interrupt,
2830	.tx_probe = efx_farch_tx_probe,
2831	.tx_init = efx_farch_tx_init,
2832	.tx_remove = efx_farch_tx_remove,
2833	.tx_write = efx_farch_tx_write,
2834	.rx_push_rss_config = falcon_b0_rx_push_rss_config,
2835	.rx_probe = efx_farch_rx_probe,
2836	.rx_init = efx_farch_rx_init,
2837	.rx_remove = efx_farch_rx_remove,
2838	.rx_write = efx_farch_rx_write,
2839	.rx_defer_refill = efx_farch_rx_defer_refill,
2840	.ev_probe = efx_farch_ev_probe,
2841	.ev_init = efx_farch_ev_init,
2842	.ev_fini = efx_farch_ev_fini,
2843	.ev_remove = efx_farch_ev_remove,
2844	.ev_process = efx_farch_ev_process,
2845	.ev_read_ack = efx_farch_ev_read_ack,
2846	.ev_test_generate = efx_farch_ev_test_generate,
2847	.filter_table_probe = efx_farch_filter_table_probe,
2848	.filter_table_restore = efx_farch_filter_table_restore,
2849	.filter_table_remove = efx_farch_filter_table_remove,
2850	.filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2851	.filter_insert = efx_farch_filter_insert,
2852	.filter_remove_safe = efx_farch_filter_remove_safe,
2853	.filter_get_safe = efx_farch_filter_get_safe,
2854	.filter_clear_rx = efx_farch_filter_clear_rx,
2855	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2856	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2857	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2858#ifdef CONFIG_RFS_ACCEL
2859	.filter_rfs_insert = efx_farch_filter_rfs_insert,
2860	.filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2861#endif
2862#ifdef CONFIG_SFC_MTD
2863	.mtd_probe = falcon_mtd_probe,
2864	.mtd_rename = falcon_mtd_rename,
2865	.mtd_read = falcon_mtd_read,
2866	.mtd_erase = falcon_mtd_erase,
2867	.mtd_write = falcon_mtd_write,
2868	.mtd_sync = falcon_mtd_sync,
2869#endif
2870	.sriov_init = efx_falcon_sriov_init,
2871	.sriov_fini = efx_falcon_sriov_fini,
2872	.sriov_mac_address_changed = efx_falcon_sriov_mac_address_changed,
2873	.sriov_wanted = efx_falcon_sriov_wanted,
2874	.sriov_reset = efx_falcon_sriov_reset,
2875
2876	.revision = EFX_REV_FALCON_B0,
2877	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2878	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2879	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2880	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2881	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2882	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2883	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2884	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2885	.rx_buffer_padding = 0,
2886	.can_rx_scatter = true,
2887	.max_interrupt_mode = EFX_INT_MODE_MSIX,
2888	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2889	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2890	.mcdi_max_ver = -1,
2891	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2892};
2893